

Hardware/Software Co-design :
Software Thread Manager

Michael Finley

EECS 891, Fall 2004
University of Kansas

Table of Contents
Page

Introduction... 2
Background... 3
Functional Requirements .. 5

SW Thread Manager Access Registers.. 5
Thread ID Table Encoding (each row) ... 10
Thread Status ... 10
SWTM Memory Map .. 11
FPGA Core : Block Diagram... 11

Implementation ... 12
File : opb_threadCore.vhd ... 12
File : user_logic.vhd... 20

Results... 37
Conclusion .. 37
Acknowledgements... 38
Publications... 38
Bibliography ... 38

Introduction

 The goal of this project was to develop a module for use in a larger design which would
demonstrate the use of FPGAs in Hardware/Software Co-design applications. The
application being developed is a Real Time Operating System for use in a multi-threaded
application platform targeted for the Xilinx Virtex-II Pro series of FPGAs. These devices
combine one or more Power PC microprocessor cores (PPC 405) and an array of
programmable logic cells.

 This project focused on a module implementing a Software Thread Manager (SWTM). The
SWTM is responsible for tracking the present status of each of the system’s software threads
and for providing a set of atomic functions that are used to manipulate those threads.
Included within the SWTM functionality is a simple FIFO based scheduling mechanism to
enable initial evaluation. This aspect of the design was setup to allow a separate Scheduler
module to be incorporated later for implementing different scheduling algorithms. The
design was specified using VHDL. A complete listing of the source files is included later in
this report.

Page 2 of 38

Background

 Embedded system design has traditionally been an exercise in balancing seemingly
opposing goals and real world constraints. The environment in which many of these systems
are used is often limited in size, forcing this same constraint upon the implementation of the
system. Other constraints that tend to complicate the solution include the desire to minimize
the costs and the development time. How to achieve a high degree of specialized
functionality in a limited space, with the lowest cost, and in the smallest time, is an example
of these opposing goals.

 Semiconductor device manufacturers typically produce generalized functions to be able to
reach the largest market possible. Using these “building block” functions a designer can
create the specialized functionality required by the system to be designed. The individual
packaging of each device however forces the overall size of the system to be much larger
than it would be if specialized devices, targeted directly for the application were available.
The advent of the “micro-controller” helped address this need by combining a
microprocessor with other select functions that would typically be required to build a basic
system in the same package. Again, the functions included(memory, I/O interfaces, interrupt
control) were selected and tailored to reach the broadest set of generalized applications
possible. While a step in the right direction, these devices still could not address the diverse
range of specialized applications that might benefit from the reduction in size.

 Another solution industry has offered is the option of having an “Application Specific
Integrated Circuit(ASIC)” produced. A system designer can specify the functionality to be
incorporated into the device, which is then produced. The very specialized nature of these
devices however tends to limit there use to the system for which they were designed and the
overall quantity produced is low enough that the cost for each, and the initial setup charge, is
prohibitive for most applications.

 The advent of the Hybrid CPU/FPGA device has dramatically addressed the need for a high
degree of specialized functionality in a small space. The fact that the FPGA configuration is
stored internally in RAM memory also allows the device to be (re)programmed as needed to
implement the specialized functionality required without sacrificing the device’s adaptability
to the broadest range of applications. The device manufacturer’s need to reach the broadest
market possible is preserved, and system designers are ecstatic. In a very real sense, system
designers can now readily design their own application specific micro-controller using the
basic device and libraries of building block functions.

 Another important consideration in the design of a system is the amount of time and effort
that will be required to accurately perform that design. The ability to reuse portions of an
already existing design can have a substantial impact in reducing the required time and effort.
An example of the usefulness of this approach is the use of an operating system within the
system's programming. The operating system is a collection of services made available to
the system's application programmer and includes an abstracted interface between the
application and the hardware. The application programmer takes advantage of the time and

Page 3 of 38

effort that was required to produce the operating system by using it's services wherever
possible thus allowing him/her to focus solely on the design of the new application. To the
degree that the operating system is used as an interface between the user and the application,
a certain familiarity and ease of use is also produced. This approach is partially responsible
for the success and widespread use of today's personal computers.

 Real time embedded systems could also benefit from adopting a similar approach.
Including an operating system whose services are designed to create a reusable platform
would allow a system designer to focus on the unique requirements of this particular system.
When a company adopts this approach while designing a variety of related systems a number
of benefits can result including; reduced time to market, a decrease in the variety of
components to be procured allowing "bulk" purchases, and even a decreased reliance on the
particular components that are used to create the platform since the operating system forms
an abstraction layer between the application(s) and the hardware. Should the hardware
platform have to be changed, the operating system could be updated to account for the new
hardware and the application(s) might not be impacted. The time and effort required to
update the operating system would then benefit and be shared by all of the systems that are
based off the original platform.

 The nature of the platform to be developed, and hopefully shared across multiple designs, is
also an important consideration, as it will impact every design that utilizes it. Being easily
adaptable to a diverse set of applications will encourage and enable its reuse and extend its
"lifetime." The degree to which it encourages, and perhaps even imposes, certain
architectural styles is also a benefit, as it can tend to raise the quality of all applications built
upon it. While the ability to reuse a given platform across multiple designs is important, the
ability to reuse certain portions of a given application can also be helpful when designing
additional applications. One platform that encourages this ability, and the one chosen for the
system of which this project is a component, is the multi-threaded application platform.
Applications developed for this type of architecture divide the system's processing into
individual "threads of execution." Each thread tends to be highly focused on minimal issues
and is as independent as possible from the other threads within the application. This
approach encourages modularity and allows the designer of a given thread to focus on a
subset of the issues addressed by the system as a whole.

 A design based on this programming style has quite a challenge before it in keeping track of
all the threads, their current status, shared data structures, and the scheduling of when and
why a given thread should run. Including services within the platform to address these
details simplifies the design of applications and abstracts these low-level details from the
application's programmer(s). This project implements the services required to create, delete,
and modify/track the current status of the system's software threads.

 Many of the modules being developed to create this platform, including this project, are
utilizing Hardware/Software Co-design methodologies. Taking advantage of the ever-
increasing size and density of today's programmable logic devices, functionality traditionally
implemented in software is being implemented in hardware instead.

Page 4 of 38

Functional Requirements

 As the first step in planning for this portion of the system, and given the centralized role it
plays, a series of meetings were held to discuss and ultimately specify the functional
requirements for the SWTM module. A number of people attended and shared their thoughts
and expertise. The "Acknowledgements" section at the end of this report includes the names
of those people that attended. The ultimate outcome of these meetings has been summarized
and is presented in the following section.

 In the following discussion the functions supported by the SWTM are referred to as
registers due to their similarity to standard memory mapped storage registers. One point of
particular concern in the early planning of this module was the need to have atomic access to
these functions. Most of these functions result in one or more read-modify-write accesses
being performed on the data structures maintaining the present status of each thread. To
invoke a standard function typically a parameter is passed to the function, which then
computes a result and returns this value to the caller. To make this sequence atomic the
function is accessed with a read instruction where the parameter is passed in a subset of the
address lines used to specify which function is to be performed. The hardware extends the
length of the bus cycle by as many cycles as necessary to complete the function before
returning the result within a single atomic sequence.

SW Thread Manager Access Registers

 The following registers are used to access a variety of functions built in to the FPGA. All
registers are accessed as having a 32-bit width even though the implementation may only use
a subset of the full 32 bits. In these cases, the least significant bits are utilized, and the upper
bits are padded with zeros for read operations and ignored for write operations. Write
operations performed on read only registers generate an exception to the CPU.

 The depth of a given register specifies the number of successive, 32 bit locations that are
utilized by this register. Registers having a depth greater than one are utilizing the least
significant address lines to specify a parameter to be passed to a hardware function associated
with this register. To keep each access on an even 32 bit boundary, the parameter to be
passed in must be multiplied by 4 before adding to the base address of the register.

Example : a particular register accepts an 8 bit parameter encoded into the address used to
access the register (depth=256). The address corresponding to a parameter of zero equals the
base address of the register. The address corresponding to a parameter of one equals the base
address of the register plus four.

References in the following descriptions to a thread’s status refer to that thread’s entry in the
Thread ID Table and utilize the format specified in the Thread ID Table Encoding on page
10.

Page 5 of 38

References in the following descriptions to “queue” refer to the Ready to Run Queue,
implemented as a linked list within the Thread ID Table, where each thread has a pointer to
the next thread in the queue.

que_length read only, depth = 1

This register holds the number of thread IDs currently in the queue. This register is updated
automatically when a thread is added to, or removed from the queue and can be read at any
time without side effects.

add_thread read only, depth = 256

Reading this register adds the encoded thread ID to the queue. Before the thread is added the
following checks are made;

The queue must not be full ,
The thread’s status must be : used, ~exited, and ~queued

If either test fails, the value returned is the thread’s current status with the ERR_BIT set to
indicate that the operation was unsuccessful. If the thread is successfully added to the queue,
the previous thread’s Next field is set to point to this thread, this thread’s status is updated to
show that it is now queued (used, ~exited, queued), and the value returned is zero.

idle_thread read/write, depth = 1

This register is written to specify the ID of the thread to be used as the “idle thread.” This
value is returned when the software requests the ID of the next thread in the queue and the
queue is empty. When reading this register, the ID is returned in bits 23..30 , with bit 31 set
for all error conditions, else cleared.

next_thread read only, depth = 1

This register is read to retrieve the ID of the next thread in the queue. The hardware copies
the value returned to the current_thread register, removes the thread’s ID from the queue, and
updates the thread’s status to show that it is no longer in the queue. (used, ~exited, ~queued)
If the queue is empty, the contents of the idle_thread register are returned instead. The thread
ID is returned in bits 23..30 with bit 31 set for all error conditions.

current_thread read only, depth = 1

This register holds the ID of the thread currently running on the CPU and can be read at any
time without side effects. Its contents are updated automatically when the next_thread
register is read, and is used by the hardware to identify the current thread and to qualify
certain operations. The ID is returned in bits 23..30, with bit 31 set for all error conditions,
else cleared.

Page 6 of 38

create_thread_detached read only, depth = 1

This register is read to retrieve an unused ID number in preparation for creating a new,
detached thread. If no IDs are available the read operation returns zero + the ERR_BIT set.
If an ID is available, the status of the new thread is updated to be; used, ~exited, ~queued,
~joined, detached, the thread’s parent ID field(PID) is set to zero, and the ID number is
returned in bits 23…30. (all other bits = 0).

create_thread_joinable read only, depth = 1

This register is read to retrieve an unused ID number in preparation for creating a new
joinable thread. The new thread is not yet joined but must be later to prevent memory leaks.
If no IDs are available the read operation returns zero + the ERR_BIT set. If an ID is
available, the status of the new thread is updated to be; used, ~exited, ~queued, ~joined,
~detached, the thread’s parent ID field(PID) is set to the value in the current_thread register,
and the ID number is returned in bits 23…30. (all other bits = 0).

exit_thread read only, depth = 1

This register is read to update the status of the currently running thread to show that it has
terminated. The effects of this operation vary depending on the current status of the thread
and are summarized below.

If the thread’s status shows it to be detached, the thread ID is de-allocated, changing its status
to, ~used, ~exited, ~queued, ~joined, ~detached, and its PID field to zero. A value of zero is
returned.

If the thread’s status shows it to not be detached, the thread’s status is updated to show that it
has exited(used,exited) and then the following steps are performed;

If the thread’s PID != 0, and the thread has been joined(joined=1) ,

If the parent thread’s status = used, ~exited, ~queued, and the queue is not full,
set the parent thread’s status to queued, add the parent thread’s ID to the queue, and

return zero.
Else return the parent’s status + ERR_BIT.

Else return 0

read_thread read (write if in debug “stop” mode), depth = 256

Reading this register returns the encoded thread IDs row from the Thread ID Table without
producing any side effects. The ERR_BIT and auxiliary status bits (E1, E2, E3) are returned
as zeros. If the design is in debug, stopped mode, writing to register sets this row value to the
data written.

Page 7 of 38

yield_thread read only, depth = 1

This register is read to place the current thread back on the queue and then return the ID of
the next thread in the queue, which is also copied to the current_thread register. If the queue
is empty, the current thread is not re-added to the queue, and its ID is returned instead.

clear_thread read only, depth = 256

Reading this register de-allocates the encoded thread ID by setting the thread’s status to,
~used, ~exited, ~queued, ~joined, ~detached, and the thread’s PID field to zero. Before the
thread is de-allocated the following check is made,

The thread’s PID field must equal the contents of the current_thread register

If this test fails, the thread’s status is left unchanged and the value returned is the thread’s
current status with the ERR_BIT set to indicate that the operation was unsuccessful. If
successful, a value of zero is returned.

join_thread read only, depth = 256

This register is read to join the encoded thread ID(child) to the current thread(parent). The
child thread’s status is first checked to verify that it is, used, ~joined, ~detached, and that its
PID equals the contents of the current_thread register. If any of these tests fail, the child’s
status + ERR_BIT is returned. If all tests passed, the child’s status is checked to see if it has
already exited. If it has, the value 0 + THREAD_ALREADY_TERMINATED is returned,
else the child’s status is changed to joined, and a value of zero is returned.

detach_thread read only, depth = 256

This register is read to detach the encoded thread ID(child) from the current thread(parent).
The child thread’s status is first checked to verify that it is, used, ~exited, ~joined, ~detached,
and that its PID equals the contents of the current_thread register. If any of these tests fail,
the child’s status + ERR_BIT is returned. If all tests passed, the child’s status is changed to
detached, the child’s PID is set to zero, and a value of zero is returned.

Page 8 of 38

The following registers are included to enhance troubleshooting the system’s operation.

soft_start read, write, depth = 1

Writing any value to this register de-asserts the Soft_Stop and all Soft_Reset signals.
Reading this register returns all zeros.

soft_stop read, write, depth = 1

Writing any value to this register asserts the Soft_Stop signal, used by all system IP’s to halt
operation. Reading this register returns the value of the Soft_Stop signal in the LSB, all other
bits = zero.

soft_reset read, write, depth = 1

Writing to this register selectively asserts a number of soft_reset signals depending on the
data written. Each bit corresponds to a particular IP; User IP(27), SpinLock(28),
Semaphores(29), Scheduler(30), SWTM(31=LSB).

Reading this register returns all zeros with a one in any position(s) corresponding to an IP
that failed to signal completion before an encoded time delay. (default delay = 4096 clock
cycles)

exception_cause, exception_address read only, depth = 1

Certain events cause a critical exception to be raised. These events should not occur during
normal operation and are indicative of a failure within the system. When one of these events
is detected, a code representing the particular type of event is stored in the exception_cause
register and the associated address that was being accessed is stored in the exception_address
register. The system SW can then read these registers to determine the reason for the
interrupt. The causes and codes are listed below.

Cause Code returned
Write to Read Only Register 1
Undefined Address 2
Soft Reset Failure 3

Page 9 of 38

Thread ID Table Encoding (each row)

 0 7 8 15 16 23 24 25 26 27 28 29 30 31
-------------|-------------|-------------|-------------------------------------
Thread ID	Next	PID	D J S1 S0 E3 E2 E1 ERR_BIT

Each row is logically divided into two sections, the Next Available ID and the Thread Status.

The Next Available ID is contained in bits 0 through 7 and specifies a thread ID, ranging from
0..255. The collection of this section in all rows collectively form the Next Available Thread ID
Stack. On initialization, rows 0 through 255 are programmed with the value 0 through 255
respectively. A separate pointer is maintained by the hardware which points to the top of the
stack. As a thread is created the value at the top of the stack is used for the thread ID of the
newly created thread and the stack pointer is advanced. Whenever a thread is de-allocated the
thread ID of that thread is put back on to the stack at the present location pointed to by the stack
pointer. As threads can come into and out of existence in any order, the value in any particular
row can take on any value and won’t necessarily remain in the initial ordering of 0..255. The
value stored in this field is not related in any way to the thread whose status is stored in this same
row.

The Thread Status is stored in bits 8 through 31 and uses the encoding shown and detailed below.
The “Next” field holds the thread ID of the next thread to run when this thread exits, yields, or is
preempted by a scheduling timer event. The “PID” field holds the ID# of this thread’s parent
thread. The remaining bits are encoded as shown below. Note that no interpretation of bits
28..30 is made unless bit 31 is set. Stated otherwise, the hardware will always set bit 31 to
indicate an error condition and then encode additional information regarding that error in bits
28..30.

Thread Status

S1 S0 E3 E2 E1
 0 0 unused 0 0 0 error in thread PID,status , or no IDs available
 0 1 used, exited 0 0 1 THREAD_ALREADY_TERMINATED
 1 0 used, not exited, not queued 0 1 0 THREAD_ALREADY_QUEUED
 1 1 used, not exited, queued 0 1 1
 1 0 0
J = 0 this thread has not been joined 1 0 1
J = 1 this thread has been joined, 1 1 0
 1 1 1
D = 0 this thread is not detached
D = 1 this thread is detached
 ERR_BIT = 0 no error occurred
PID = this thread's Parent ID ERR_BIT = 1 set for all errors
Next = next thread in queue

Page 10 of 38

SWTM Memory Map

address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
--------------- -|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------

clear_thread 01020000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 T T T T T T T T 0 0
join_thread 01020400 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 T T T T T T T T 0 0
detach_thread 01020800 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 T T T T T T T T 0 0
read_thread 01020C00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 T T T T T T T T 0 0
add_thread 01021000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 T T T T T T T T 0 0

--------------- -|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------
create_thread_joinable 01021400 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
create_thread_detached 01021800 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
exit_thread 01021C00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
next_thread 01022000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
yield_thread 01022400 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
current_thread 01024000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
idle_thread 01024400 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
que_length 01024800 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
exception_address 01024C00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
exception_register 01025000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

--------------- -|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------
core_start 01025400 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
core_stop 01025800 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
core_reset 01025C00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

--------------- -|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------
core end 01027FFF 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MIR start 01028000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MIR end 0102FFFF 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. The least significant 10 address lines are zero for any base address.
2. Bits 16..21 are decoded internally to identify which register is being accessed.
3. Bits 30,31 are zero for ALL accesses to keep data transfers as a single, 32 bit bus cycle.
4. T in bits 22..29 for the first five registers specifies the thread ID of the thread to be manipulated.

FPGA Core : Block Diagram

The diagram to the right shows the
initial platform used to test the
operation of the SWTM. The timers,
decision_reg, scheduler, and Xilinx
PICs are not part of the SWTM but
were added to create a minimal
platform for evaluation and further
development.

Page 11 of 38

Implementation

 The SWTM module is specified in two VHDL files; opb_threadCore and user_logic. The
design is based on a reference design provided by Xilinx intended as a starting point for
developing re-useable modules; Slave Services Package 0 (SSP0). This design is intended for
applications not needing to be able to function as a bus master.

 The top level module, opb_threadCore.vhd, establishes the interface to the PowerPC
microprocessor, the rest of the system, and instantiates any lower level modules required by the
design. For this design three modules are required;

1. opb_ipif_ssp0 - the slave services package for the OPB bus.
2. user_logic - the behavioral definitions for the SWTM component.
3. RAMB16_S36_S36 - a dual port BRAM component, 512 rows by 36 bits, used to create the

Thread ID Table. This design only uses one of the two ports. The second port is left open in
anticipation that a Scheduler IP module could utilize this port to directly modify the “Next”
pointers of each thread to control the order in which the threads are scheduled to run.

The two VHDL files are listed in the following sections.

File : opb_threadCore.vhd

-- $Id: opb_core_ssp0_ref.vhd,v 1.1 2003/06/26 14:10:56 anitas Exp $
-- opb_threadCore.vhd
--
-- ***
-- ** Copyright(C) 2003 by Xilinx, Inc. All rights reserved. **
-- ** **
-- ** This text contains proprietary, confidential **
-- ** information of Xilinx, Inc. , is distributed by **
-- ** under license from Xilinx, Inc., and may be used, **
-- ** copied and/or disclosed only pursuant to the terms **
-- ** of a valid license agreement with Xilinx, Inc. **
-- ** **
-- ** Unmodified source code is guaranteed to place and route, **
-- ** function and run at speed according to the datasheet **
-- ** specification. Source code is provided "as-is", with no **
-- ** obligation on the part of Xilinx to provide support. **
-- ** **
-- ** Xilinx Hotline support of source code IP shall only include **
-- ** standard level Xilinx Hotline support, and will only address **
-- ** issues and questions related to the standard released Netlist **
-- ** version of the core (and thus indirectly, the original core source). **
-- ** **
-- ** The Xilinx Support Hotline does not have access to source **
-- ** code and therefore cannot answer specific questions related **
-- ** to source HDL. The Xilinx Support Hotline will only be able **
-- ** to confirm the problem in the Netlist version of the core. **
-- ** **
-- ** This copyright and support notice must be retained as part **
-- ** of this text at all times. **
-- ***

-- opb_threadCore v3.0
--
-- Author : Michael Finley

Page 12 of 38

-- Date : 7/26/04

library ieee;
use ieee.std_logic_1164.all;

library opb_ipif_ssp0_v1_00_b;
use opb_ipif_ssp0_v1_00_b.all;

library opb_threadCore;
use opb_threadCore.all;

-- ports

-- Definition of Generics:
-- C_BASEADDR -- User logic base address
-- C_HIGHADDR -- User logic high address
-- C_MIR_BASEADDR -- Base address of MIR/Reset register
-- C_MIR_HIGHADDR -- High address of MIR/Reset register
-- C_USER_ID_CODE -- User ID to place in MIR/Reset register
-- C_OPB_DWIDTH -- OPB data bus width
-- C_OPB_AWIDTH -- OPB address bus width
-- C_FAMILY -- Target FPGA architecture
-- C_RESET_TIMEOUT -- Soft Reset max clock cycles else timeout
--
-- Definition of Ports:
-- OPB Bus
-- OPB_ABus -- OPB address bus
-- OPB_BE -- OPB byte enables
-- OPB_Clk -- OPB clock
-- OPB_DBus -- OPB data bus
-- OPB_RNW -- OPB read not write
-- OPB_Rst -- OPB reset
-- OPB_select -- OPB Select
-- OPB_seqAddr -- OPB sequential address
-- Sln_DBus -- Slave read bus
-- Sln_errAck -- Slave Error acknowledge
-- Sln_retry -- Slave retry
-- Sln_toutSup -- Slave Timeout Suppress
-- Sln_xferAck -- Slave transfer acknowledge

-- User Logic
-- Access_Intr -- access violation interrupt
-- Soft_Reset(s) -- clear state machines, data structures
-- Soft_Reset(s)_Done -- reset done response(s) from IPs
-- Soft_Stop -- halt state machines

-- entity

entity opb_threadCore is
 generic
 (
 C_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_MIR_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_MIR_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_USER_ID_CODE : integer := 3;
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_FAMILY : string := "virtex2";
 C_RESET_TIMEOUT : natural := 4096
);
 port
 (
 --Required OPB bus ports, do not add to or delete
 OPB_ABus : in std_logic_vector(0 to C_OPB_AWIDTH-1);

Page 13 of 38

 OPB_BE : in std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 OPB_Clk : in std_logic;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 OPB_RNW : in std_logic;
 OPB_Rst : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 Sln_DBus : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Sln_errAck : out std_logic;
 Sln_retry : out std_logic;
 Sln_toutSup : out std_logic;
 Sln_xferAck : out std_logic;

 Access_Intr : out std_logic;

 Scheduler_Reset : out std_logic;
 Scheduler_Reset_Done : in std_logic;

 Semaphore_Reset : out std_logic;
 Semaphore_Reset_Done : in std_logic;

 SpinLock_Reset : out std_logic;
 SpinLock_Reset_Done : in std_logic;

 User_IP_Reset : out std_logic;
 User_IP_Reset_Done : in std_logic;

 Soft_Stop : out std_logic;

 Current_Thread_ID : out std_logic_vector(0 to 7);

 Next_Thread_ID : in std_logic_vector(0 to 7);
 Dequeue_Request : out std_logic;
 Next_Thread_Valid : in std_logic;

 Thread_ID_2_Sched : out std_logic_vector(0 to 7);
 Enqueue_Request : out std_logic;
 Enqueue_Busy : in std_logic;

 DOB : out std_logic_vector(0 to 31);
 DOPB : out std_logic_vector(0 to 3);
 ADDRB : in std_logic_vector(0 to 8);
 CLKB : in std_logic;
 DIB : in std_logic_vector(0 to 31);
 DIPB : in std_logic_vector(0 to 3);
 ENB : in std_logic;
 SSRB : in std_logic;
 WEB : in std_logic
);

 --fan-out attributes for XST
 attribute MAX_FANOUT : string;
 attribute MAX_FANOUT of OPB_Clk : signal is "10000";
 attribute MAX_FANOUT of OPB_Rst : signal is "10000";

end entity opb_threadCore;

-- architecture

architecture imp of opb_threadCore is

 -- include OPB-In and OPB-Out pipeline registers
 --
 constant PIPELINE_MODEL : integer := 5;

 --IP Interconnect (IPIC) signal list --do not delete
 --

Page 14 of 38

 signal Bus2IP_Addr : std_logic_vector(0 to C_OPB_AWIDTH-1);
 signal Bus2IP_BE : std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 signal Bus2IP_Burst : std_logic;
 signal Bus2IP_Clk : std_logic;
 signal Bus2IP_CS : std_logic;
 signal Bus2IP_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal Bus2IP_RdCE : std_logic;
 signal Bus2IP_Reset : std_logic;
 signal Bus2IP_RNW : std_logic;
 signal Bus2IP_WrCE : std_logic;
 signal IP2Bus_Ack : std_logic;
 signal IP2Bus_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal IP2Bus_Error : std_logic;
 signal IP2Bus_PostedWrInh : std_logic;
 signal IP2Bus_Retry : std_logic;
 signal IP2Bus_ToutSup : std_logic;

 --BlockRam interconnect
 --
 signal DOA : std_logic_vector(0 to 31);
 signal DOPA : std_logic_vector(0 to 3);
 signal ADDRA : std_logic_vector(0 to 8);
 signal CLKA : std_logic;
 signal DIA : std_logic_vector(0 to 31);
 signal DIPA : std_logic_vector(0 to 3);
 signal ENA : std_logic;
 signal SSRA : std_logic;
 signal WEA : std_logic;
 -- signal DOB : std_logic_vector(0 to 31);
 -- signal DOPB : std_logic_vector(0 to 3);
 -- signal ADDRB : std_logic_vector(0 to 8);
 -- signal CLKB : std_logic;
 -- signal DIB : std_logic_vector(0 to 31);
 -- signal DIPB : std_logic_vector(0 to 3);
 -- signal ENB : std_logic;
 -- signal SSRB : std_logic;
 -- signal WEB : std_logic;

component RAMB16_S36_S36
 --
 -- thread ID table : dualport BRAM, 512 rows by 36-bits
 --
 -- port_A : thread registers,ports and control
 -- port_B : unused
 --
 generic (
 INIT_00 : bit_vector := X"00";
 INIT_01 : bit_vector := X"00";
 INIT_02 : bit_vector := X"00";
 INIT_03 : bit_vector := X"00";
 INIT_04 : bit_vector := X"00";
 INIT_05 : bit_vector := X"00";
 INIT_06 : bit_vector := X"00";
 INIT_07 : bit_vector := X"00";
 INIT_08 : bit_vector := X"00";
 INIT_09 : bit_vector := X"00";
 INIT_0A : bit_vector := X"00";
 INIT_0B : bit_vector := X"00";
 INIT_0C : bit_vector := X"00";
 INIT_0D : bit_vector := X"00";
 INIT_0E : bit_vector := X"00";
 INIT_0F : bit_vector := X"00";
 INIT_10 : bit_vector := X"00";
 INIT_11 : bit_vector := X"00";
 INIT_12 : bit_vector := X"00";
 INIT_13 : bit_vector := X"00";
 INIT_14 : bit_vector := X"00";
 INIT_15 : bit_vector := X"00";
 INIT_16 : bit_vector := X"00";
 INIT_17 : bit_vector := X"00";

Page 15 of 38

 INIT_18 : bit_vector := X"00";
 INIT_19 : bit_vector := X"00";
 INIT_1A : bit_vector := X"00";
 INIT_1B : bit_vector := X"00";
 INIT_1C : bit_vector := X"00";
 INIT_1D : bit_vector := X"00";
 INIT_1E : bit_vector := X"00";
 INIT_1F : bit_vector := X"00";
 INIT_20 : bit_vector := X"00";
 INIT_21 : bit_vector := X"00";
 INIT_22 : bit_vector := X"00";
 INIT_23 : bit_vector := X"00";
 INIT_24 : bit_vector := X"00";
 INIT_25 : bit_vector := X"00";
 INIT_26 : bit_vector := X"00";
 INIT_27 : bit_vector := X"00";
 INIT_28 : bit_vector := X"00";
 INIT_29 : bit_vector := X"00";
 INIT_2A : bit_vector := X"00";
 INIT_2B : bit_vector := X"00";
 INIT_2C : bit_vector := X"00";
 INIT_2D : bit_vector := X"00";
 INIT_2E : bit_vector := X"00";
 INIT_2F : bit_vector := X"00";
 INIT_30 : bit_vector := X"00";
 INIT_31 : bit_vector := X"00";
 INIT_32 : bit_vector := X"00";
 INIT_33 : bit_vector := X"00";
 INIT_34 : bit_vector := X"00";
 INIT_35 : bit_vector := X"00";
 INIT_36 : bit_vector := X"00";
 INIT_37 : bit_vector := X"00";
 INIT_38 : bit_vector := X"00";
 INIT_39 : bit_vector := X"00";
 INIT_3A : bit_vector := X"00";
 INIT_3B : bit_vector := X"00";
 INIT_3C : bit_vector := X"00";
 INIT_3D : bit_vector := X"00";
 INIT_3E : bit_vector := X"00";
 INIT_3F : bit_vector := X"00";
 INIT_A : bit_vector := X"000000000000000000000000000000000000";
 INIT_B : bit_vector := X"000000000000000000000000000000000000";
 INITP_00 : bit_vector := X"00";
 INITP_01 : bit_vector := X"00";
 INITP_02 : bit_vector := X"00";
 INITP_03 : bit_vector := X"00";
 INITP_04 : bit_vector := X"00";
 INITP_05 : bit_vector := X"00";
 INITP_06 : bit_vector := X"00";
 INITP_07 : bit_vector := X"00";
 SRVAL_A : bit_vector := X"000000000000000000000000000000000000";
 SRVAL_B : bit_vector := X"000000000000000000000000000000000000";
 WRITE_MODE_A : string := "WRITE_FIRST";
 WRITE_MODE_B : string := "WRITE_FIRST"
);

 -- synthesis translate_on
 port
 (
 DOA : out STD_LOGIC_VECTOR (0 to 31);
 DOB : out STD_LOGIC_VECTOR (0 to 31);
 DOPA : out STD_LOGIC_VECTOR (0 to 3);
 DOPB : out STD_LOGIC_VECTOR (0 to 3);
 ADDRA : in STD_LOGIC_VECTOR (0 to 8);
 ADDRB : in STD_LOGIC_VECTOR (0 to 8);
 CLKA : in STD_ULOGIC;
 CLKB : in STD_ULOGIC;
 DIA : in STD_LOGIC_VECTOR (0 to 31);
 DIB : in STD_LOGIC_VECTOR (0 to 31);
 DIPA : in STD_LOGIC_VECTOR (0 to 3);
 DIPB : in STD_LOGIC_VECTOR (0 to 3);

Page 16 of 38

 ENA : in STD_ULOGIC;
 ENB : in STD_ULOGIC;
 SSRA : in STD_ULOGIC;
 SSRB : in STD_ULOGIC;
 WEA : in STD_ULOGIC;
 WEB : in STD_ULOGIC
);
end component RAMB16_S36_S36;

component user_logic is
 --
 -- thread ID table registers/ports and control
 --
 generic (
 C_RESET_TIMEOUT : natural := 4096
);
 port
 (
 Bus2IP_Addr : in std_logic_vector(0 to 31);
 Bus2IP_Clk : in std_logic;
 Bus2IP_CS : in std_logic;
 Bus2IP_Data : in std_logic_vector(0 to 31);
 Bus2IP_RdCE : in std_logic;
 Bus2IP_Reset : in std_logic;
 Bus2IP_WrCE : in std_logic;
 IP2Bus_Ack : out std_logic;
 IP2Bus_Data : out std_logic_vector(0 to 31);
 IP2Bus_Error : out std_logic;
 IP2Bus_PostedWrInh : out std_logic;
 IP2Bus_Retry : out std_logic;
 IP2Bus_ToutSup : out std_logic;
 DOA : in std_logic_vector(0 to 31);
 DOPA : in std_logic_vector(0 to 3);
 ADDRA : out std_logic_vector(0 to 8);
 CLKA : out std_logic;
 DIA : out std_logic_vector(0 to 31);
 DIPA : out std_logic_vector(0 to 3);
 ENA : out std_logic;
 SSRA : out std_logic;
 WEA : out std_logic;
 Access_Intr : out std_logic;
 Scheduler_Reset : out std_logic;
 Scheduler_Reset_Done : in std_logic;
 Semaphore_Reset : out std_logic;
 Semaphore_Reset_Done : in std_logic;
 SpinLock_Reset : out std_logic;
 SpinLock_Reset_Done : in std_logic;
 User_IP_Reset : out std_logic;
 User_IP_Reset_Done : in std_logic;
 Soft_Stop : out std_logic;
 Current_Thread_ID : out std_logic_vector(0 to 7);
 Next_Thread_ID : in std_logic_vector(0 to 7);
 Dequeue_Request : out std_logic;
 Next_Thread_Valid : in std_logic;
 Thread_ID_2_Sched : out std_logic_vector(0 to 7);
 Enqueue_Request : out std_logic;
 Enqueue_Busy : in std_logic
);
end component user_logic;

component opb_ipif_ssp0 is
 --
 -- OPB slave services package, ver.0
 --
 generic
 (
 C_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_MIR_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";

Page 17 of 38

 C_MIR_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_USER_ID_CODE : integer := 1;
 C_PIPELINE_MODEL : integer := 4;
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_FAMILY : string := "virtex2"
);
 port
 (
 OPB_ABus : in std_logic_vector(0 to C_OPB_AWIDTH-1);
 OPB_BE : in std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 OPB_Clk : in std_logic;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 OPB_RNW : in std_logic;
 OPB_Rst : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 Sln_DBus : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Sln_errAck : out std_logic;
 Sln_retry : out std_logic;
 Sln_toutSup : out std_logic;
 Sln_xferAck : out std_logic;
 Bus2IP_Addr : out std_logic_vector(0 to C_OPB_AWIDTH-1);
 Bus2IP_BE : out std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 Bus2IP_Burst : out std_logic;
 Bus2IP_Clk : out std_logic;
 Bus2IP_CS : out std_logic;
 Bus2IP_Data : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Bus2IP_RdCE : out std_logic;
 Bus2IP_Reset : out std_logic;
 Bus2IP_RNW : out std_logic;
 Bus2IP_WrCE : out std_logic;
 IP2Bus_Ack : in std_logic;
 IP2Bus_Data : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 IP2Bus_Error : in std_logic;
 IP2Bus_PostedWrInh : in std_logic;
 IP2Bus_Retry : in std_logic;
 IP2Bus_ToutSup : in std_logic
);
end component opb_ipif_ssp0;

--
begin
--

OPB_IPIF_SSP0_I : opb_ipif_ssp0
 generic map
 (
 C_BASEADDR => C_BASEADDR,
 C_HIGHADDR => C_HIGHADDR,
 C_MIR_BASEADDR => C_MIR_BASEADDR,
 C_MIR_HIGHADDR => C_MIR_HIGHADDR,
 C_USER_ID_CODE => C_USER_ID_CODE,
 C_PIPELINE_MODEL => PIPELINE_MODEL,
 C_OPB_AWIDTH => C_OPB_AWIDTH,
 C_OPB_DWIDTH => C_OPB_DWIDTH,
 C_FAMILY => C_FAMILY
)
 port map
 (
 OPB_ABus => OPB_ABus,
 OPB_BE => OPB_BE,
 OPB_Clk => OPB_Clk,
 OPB_DBus => OPB_DBus,
 OPB_RNW => OPB_RNW,
 OPB_Rst => OPB_Rst,
 OPB_select => OPB_select,
 OPB_seqAddr => OPB_seqAddr,
 Sln_DBus => Sln_DBus,
 Sln_errAck => Sln_errAck,
 Sln_retry => Sln_retry,

Page 18 of 38

 Sln_toutSup => Sln_toutSup,
 Sln_xferAck => Sln_xferAck,
 Bus2IP_Addr => Bus2IP_Addr,
 Bus2IP_BE => Bus2IP_BE,
 Bus2IP_Burst => Bus2IP_Burst,
 Bus2IP_Clk => Bus2IP_Clk,
 Bus2IP_CS => Bus2IP_CS,
 Bus2IP_Data => Bus2IP_Data,
 Bus2IP_RdCE => Bus2IP_RdCE,
 Bus2IP_Reset => Bus2IP_Reset,
 Bus2IP_RNW => Bus2IP_RNW,
 Bus2IP_WrCE => Bus2IP_WrCE,
 IP2Bus_Ack => IP2Bus_Ack,
 IP2Bus_Data => IP2Bus_Data,
 IP2Bus_Error => IP2Bus_Error,
 IP2Bus_PostedWrInh => IP2Bus_PostedWrInh,
 IP2Bus_Retry => IP2Bus_Retry,
 IP2Bus_ToutSup => IP2Bus_ToutSup
);

USER_LOGIC_I : user_logic
 generic map
 (
 C_RESET_TIMEOUT => C_RESET_TIMEOUT
)
 port map
 (
 Bus2IP_Addr => Bus2IP_Addr,
 Bus2IP_Clk => Bus2IP_Clk,
 Bus2IP_CS => Bus2IP_CS,
 Bus2IP_Data => Bus2IP_Data,
 Bus2IP_Reset => Bus2IP_Reset,
 Bus2IP_RdCE => Bus2IP_RdCE,
 Bus2IP_WrCE => Bus2IP_WrCE,
 IP2Bus_Ack => IP2Bus_Ack,
 IP2Bus_Data => IP2Bus_Data,
 IP2Bus_Retry => IP2Bus_Retry,
 IP2Bus_Error => IP2Bus_Error,
 IP2Bus_ToutSup => IP2Bus_ToutSup,
 IP2Bus_PostedWrInh => IP2Bus_PostedWrInh,
 DOA => DOA,
 DOPA => DOPA,
 ADDRA => ADDRA,
 CLKA => CLKA,
 DIA => DIA,
 DIPA => DIPA,
 ENA => ENA,
 SSRA => SSRA,
 WEA => WEA,
 Access_Intr => Access_Intr,
 Scheduler_Reset => Scheduler_Reset,
 Scheduler_Reset_Done => Scheduler_Reset_Done,
 Semaphore_Reset => Semaphore_Reset,
 Semaphore_Reset_Done => Semaphore_Reset_Done,
 SpinLock_Reset => SpinLock_Reset,
 SpinLock_Reset_Done => SpinLock_Reset_Done,
 User_IP_Reset => User_IP_Reset,
 User_IP_Reset_Done => User_IP_Reset_Done,
 Soft_Stop => Soft_Stop,
 Current_Thread_ID => Current_Thread_ID,
 Next_Thread_ID => Next_Thread_ID,
 Dequeue_Request => Dequeue_Request,
 Next_Thread_Valid => Next_Thread_Valid,
 Thread_ID_2_Sched => Thread_ID_2_Sched,
 Enqueue_Request => Enqueue_Request,
 Enqueue_Busy => Enqueue_Busy
);

ID_TABLE : RAMB16_S36_S36
 port map
 (

Page 19 of 38

 DOA => DOA,
 DOB => DOB,
 DOPA => DOPA,
 DOPB => DOPB,
 ADDRA => ADDRA,
 ADDRB => ADDRB,
 CLKA => CLKA,
 CLKB => CLKB,
 DIA => DIA,
 DIB => DIB,
 DIPA => DIPA,
 DIPB => DIPB,
 ENA => ENA,
 ENB => ENB,
 SSRA => SSRA,
 SSRB => SSRB,
 WEA => WEA,
 WEB => WEB
);

end architecture imp;

File : user_logic.vhd

--SINGLE_FILE_TAG

-- $Id: user_logic.vhd,v 1.1 2003/06/26 14:10:56 anitas Exp $

-- user_logic.vhd - entity/architecture pair

--
-- ***
-- ** Copyright(C) 2003 by Xilinx, Inc. All rights reserved. **
-- ** **
-- ** This text contains proprietary, confidential **
-- ** information of Xilinx, Inc. , is distributed by **
-- ** under license from Xilinx, Inc., and may be used, **
-- ** copied and/or disclosed only pursuant to the terms **
-- ** of a valid license agreement with Xilinx, Inc. **
-- ** **
-- ** Unmodified source code is guaranteed to place and route, **
-- ** function and run at speed according to the datasheet **
-- ** specification. Source code is provided "as-is", with no **
-- ** obligation on the part of Xilinx to provide support. **
-- ** **
-- ** Xilinx Hotline support of source code IP shall only include **
-- ** standard level Xilinx Hotline support, and will only address **
-- ** issues and questions related to the standard released Netlist **
-- ** version of the core (and thus indirectly, the original core source). **
-- ** **
-- ** The Xilinx Support Hotline does not have access to source **
-- ** code and therefore cannot answer specific questions related **
-- ** to source HDL. The Xilinx Support Hotline will only be able **
-- ** to confirm the problem in the Netlist version of the core. **
-- ** **
-- ** This copyright and support notice must be retained as part **
-- ** of this text at all times. **
-- ***
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_misc.all;
library Unisim;

Page 20 of 38

use Unisim.all;

--
-- Title SW Thread Manager
-- Author Mike Finley
-- Date 7/26/04
-- Version 3.0.1
--

-- Port declarations

-- Definition of Ports:
-- IPIC
-- Bus2IP_Addr -- Bus to IP address
-- Bus2IP_Clk -- Bus to IP clock
-- Bus2IP_CS -- Bus to IP chip select
-- Bus2IP_Data -- Bus to IP data bus
-- Bus2IP_RdCE -- Bus to IP read chip enable
-- Bus2IP_Reset -- Bus to IP reset
-- Bus2IP_WrCE -- Bus to IP write chip enable
-- IP2Bus_Ack -- IP to Bus data acknowledge
-- IP2Bus_Data -- IP to Bus data bus
-- IP2Bus_Error -- IP to Bus error during transaction
-- IP2Bus_PostedWrInh -- IP to Bus disable bursts
-- IP2Bus_Retry -- IP to Bus retry transaction
-- IP2Bus_ToutSup -- IP to Bus time out suppress
--
-- BRAM portA
-- DOA -- ID table data to IP
-- DOPA -- ID table data to IP (parity bits)
-- ADDRA -- IP to ID table address
-- CLKA -- IP to ID table clock
-- DIA -- IP to ID table data
-- DIPA -- IP to ID table data(parity bits)
-- ENA -- IP to ID table enable
-- SSRA -- IP to ID table sync-set/reset command
-- WEA -- IP to ID table write enable
--
-- Debug control
-- Access_Intr -- Interrupt for access violations
-- Scheduler_Reset -- Soft reset to Scheduler IP
-- Scheduler_Reset_Done -- Scheduler done signal to SWTM
-- Semaphore_Reset -- Soft reset to Semaphore IP
-- Semaphore_Reset_Done -- Semaphore done signal to SWTM
-- SpinLock_Reset -- Soft reset to SpinLock IP
-- SpinLock_Reset_Done -- SpinLock done signal to SWTM
-- User_IP_Reset -- Soft reset to User_IP
-- User_IP_Reset_Done -- User_IP done signal to SWTM
-- Soft_Stop -- stop state machines at appropriate point if 1
--
-- Scheduler IP interconnect
-- Current_Thread_ID --
-- Next_Thread_ID --
-- Thread_ID_2_Sched --
-- Current_Thread_Update --
-- Enqueue --
-- Scheduler_Busy --
--

-- Entity section

entity user_logic is
 generic (
 C_RESET_TIMEOUT : natural
);
 port (

Page 21 of 38

 Bus2IP_Addr : in std_logic_vector(0 to 31);
 Bus2IP_Clk : in std_logic;
 Bus2IP_CS : in std_logic;
 Bus2IP_Data : in std_logic_vector(0 to 31);
 Bus2IP_RdCE : in std_logic;
 Bus2IP_Reset : in std_logic;
 Bus2IP_WrCE : in std_logic;
 IP2Bus_Ack : out std_logic;
 IP2Bus_Data : out std_logic_vector(0 to 31);
 IP2Bus_Error : out std_logic;
 IP2Bus_PostedWrInh : out std_logic;
 IP2Bus_Retry : out std_logic;
 IP2Bus_ToutSup : out std_logic;

 DOA : in std_logic_vector(0 to 31);
 DOPA : in std_logic_vector(0 to 3);
 ADDRA : out std_logic_vector(0 to 8);
 CLKA : out std_logic;
 DIA : out std_logic_vector(0 to 31);
 DIPA : out std_logic_vector(0 to 3);
 ENA : out std_logic;
 SSRA : out std_logic;
 WEA : out std_logic;

 Access_Intr : out std_logic;

 Scheduler_Reset : out std_logic;
 Scheduler_Reset_Done : in std_logic;

 Semaphore_Reset : out std_logic;
 Semaphore_Reset_Done : in std_logic;

 SpinLock_Reset : out std_logic;
 SpinLock_Reset_Done : in std_logic;

 User_IP_Reset : out std_logic;
 User_IP_Reset_Done : in std_logic;

 Soft_Stop : out std_logic;

 Current_Thread_ID : out std_logic_vector(0 to 7);

 Next_Thread_ID : in std_logic_vector(0 to 7);
 Dequeue_Request : out std_logic;
 Next_Thread_Valid : in std_logic;

 Thread_ID_2_Sched : out std_logic_vector(0 to 7);
 Enqueue_Request : out std_logic;
 Enqueue_Busy : in std_logic
);
end entity user_logic;

-- Architecture section

architecture IMP of user_logic is

-- Signal declarations

-- Define the memory map for each register, Address[16 to 21]
--
constant C_CLEAR_THREAD : std_logic_vector(0 to 5) := "000000";
constant C_JOIN_THREAD : std_logic_vector(0 to 5) := "000001";
constant C_DETACH_THREAD : std_logic_vector(0 to 5) := "000010";
constant C_READ_THREAD : std_logic_vector(0 to 5) := "000011";
constant C_ADD_THREAD : std_logic_vector(0 to 5) := "000100";

constant C_CREATE_THREAD_J : std_logic_vector(0 to 5) := "000101";

Page 22 of 38

constant C_CREATE_THREAD_D : std_logic_vector(0 to 5) := "000110";
constant C_EXIT_THREAD : std_logic_vector(0 to 5) := "000111";
constant C_NEXT_THREAD : std_logic_vector(0 to 5) := "001000";
constant C_YIELD_THREAD : std_logic_vector(0 to 5) := "001001";

constant C_CURRENT_THREAD : std_logic_vector(0 to 5) := "010000";
constant C_IDLE_THREAD : std_logic_vector(0 to 5) := "010001";
constant C_QUEUE_LENGTH : std_logic_vector(0 to 5) := "010010";

constant C_EXCEPTION_ADDR : std_logic_vector(0 to 5) := "010011";
constant C_EXCEPTION_REG : std_logic_vector(0 to 5) := "010100";

constant C_SOFT_START : std_logic_vector(0 to 5) := "010101";
constant C_SOFT_STOP : std_logic_vector(0 to 5) := "010110";
constant C_SOFT_RESET : std_logic_vector(0 to 5) := "010111";

constant Z32 : std_logic_vector(0 to 31) := (others => '0');
constant H32 : std_logic_vector(0 to 31) := (others => '1');

constant MAX_QUEUE_SIZE : std_logic_vector(0 to 7) := (others => '1');

constant TOUT_CYCLES : natural := 3; -- assert timeout suppress
signal cycle_count : natural := 0;
signal state_count : natural := 0;

-- Extended Thread Error Codes returned in lower 4 bits
--
constant ERROR_IN_STATUS : std_logic_vector(0 to 3) := "0001";
constant THREAD_ALREADY_TERMINATED : std_logic_vector(0 to 3) := "0011";
constant THREAD_ALREADY_QUEUED : std_logic_vector(0 to 3) := "0101";

-- Exception "cause" returned in Exception register
--
constant WRITE_TO_READ_ONLY : std_logic_vector(0 to 3) := "0001";
constant UNDEFINED_ADDRESS : std_logic_vector(0 to 3) := "0010";
constant SOFT_RESET_FAILURE : std_logic_vector(0 to 3) := "0011";

-- SWTM and SCHEDULER disagree if thread was queued prior to dequeue
constant SCHEDULER_ERROR : std_logic_vector(0 to 3) := "0100";

-- timeout while waiting for enqueue to begin
constant SCHEDULER_ERROR_5 : std_logic_vector(0 to 3) := "0101";

-- timeout while waiting for enqueue acknowledgement
constant SCHEDULER_ERROR_6 : std_logic_vector(0 to 3) := "0110";

-- timeout while waiting for dequeue to begin
constant SCHEDULER_ERROR_7 : std_logic_vector(0 to 3) := "0111";

-- timeout while waiting for dequeue acknowledgement
constant SCHEDULER_ERROR_8 : std_logic_vector(0 to 3) := "1000";

-- Address,Cause for access exceptions
--
signal Exception_Address : std_logic_vector(0 to 31) := (others => '0');
signal Exception_Cause : std_logic_vector(0 to 3) := (others => '0');
signal access_error : std_logic := '0';

-- Debug control signals
--
-- Soft reset signals, LSB = SWTM reset; reset IP(s) if '1'
-- Resets done, handshake from IPs if done resetting(1)
-- core_stop , halt state machines at next appropriate point if '1'
--
signal soft_resets : std_logic_vector(0 to 4) := (others => '0');
signal resets_done : std_logic_vector(0 to 4);

Page 23 of 38

signal reset_status : std_logic_vector(0 to 4);
signal core_stop : std_logic := '0';

-- Declarations for each register

-- Current thread,Idle thread : bits 0..7 = ID, bit 8 = '1' = invalid
signal Current_Thread : std_logic_vector(0 to 8) := Z32(0 to 7) & '1';
signal Idle_Thread : std_logic_vector(0 to 8) := Z32(0 to 7) & '1';

signal Que_Length : std_logic_vector(0 to 7) := (others => '0');

-- internal signals
--
signal next_ID : std_logic_vector(0 to 8) := (others => '0');
signal addr : std_logic_vector(0 to 5);
signal addr2 : std_logic;
signal testOK : std_logic;

-- Begin architecture

begin -- architecture IMP

CLKA <= Bus2IP_Clk; -- BRAM port A clk = system clock
SSRA <= '0'; -- BRAM port A sync.reset, not used
DIPA <= (others => '0'); -- BRAM port A parity inputs, not used

Soft_Stop <= core_stop;

Scheduler_Reset <= soft_resets(3);
resets_done(3) <= Scheduler_Reset_Done;

Semaphore_Reset <= soft_resets(2);
resets_done(2) <= Semaphore_Reset_Done;

SpinLock_Reset <= soft_resets(1);
resets_done(1) <= SpinLock_Reset_Done;

User_IP_Reset <= soft_resets(0);
resets_done(0) <= User_IP_Reset_Done;

Access_Intr <= access_error;

Current_Thread_ID <= Current_Thread(0 to 7);

ADDR_DECODE : process(Bus2IP_Addr) is
--
-- combine address bits to form a 6-bit address
-- to decode for memory mapping,
-- addr2 set to 0 for all valid addresses, else 1
--
begin
 if (Bus2IP_Addr(17 to 21) < 5) or
 (Bus2IP_Addr(22 to 29) = Z32(0 to 7)) then
 addr2 <= Bus2IP_Addr(16) or Bus2IP_Addr(30) or Bus2IP_Addr(31);
 else
 addr2 <= '1'; -- invalid address
 end if;
 addr <= addr2 & Bus2IP_Addr(17 to 21);
end process ADDR_DECODE;

CYCLE_CONTROL : process(Bus2IP_Clk) is
--
-- create a counter for the number of elapsed cycles
-- in each bus transaction.
-- assert TimeOut suppress when count = TOUT_CYCLES

Page 24 of 38

--
begin
 IP2Bus_Retry <= '0'; -- no retry
 IP2Bus_Error <= '0'; -- no error
 IP2Bus_PostedWrInh <= '1'; -- inhibit posted write
 --
 -- count the number of elapsed clock cycles in transaction
 --
 if Bus2IP_Clk'event and (Bus2IP_Clk = '1') then
 if (Bus2IP_CS = '0') then
 cycle_count <= 0; -- hold in reset, or
 elsif cycle_count < C_RESET_TIMEOUT then
 cycle_count <= cycle_count + 1; -- next cycle, or
 else
 cycle_count <= C_RESET_TIMEOUT; -- saturate counter
 end if;
 end if;
 --
 -- activate time out suppress if count exceeds TOUT_CYCLES
 --
 if cycle_count > TOUT_CYCLES then
 IP2Bus_ToutSup <= '1'; -- halt time out counter
 else
 IP2Bus_ToutSup <= '0'; -- release
 end if;
end process CYCLE_CONTROL;

MANAGER_ACCESS : process (Bus2IP_Clk) is
--
-- provide access to each of the SW Thread Manager's
-- mechanisms and registers
--
variable current_status : std_logic_vector(0 to 31);
variable new_ID : std_logic_vector(0 to 7);

 procedure end_transaction is
 begin
 WEA <= '0';
 ENA <= '0'; -- protect BRAM
 IP2Bus_Ack <= '1'; -- done, "ack" the bus
 state_count <= 0; -- reset present_state counter
 end procedure;

 procedure raise_Exception (cause : in std_logic_vector(0 to 3)) is
 begin
 Exception_Address <= Bus2IP_Addr(0 to 31); -- save address
 Exception_Cause <= cause; -- save reason
 access_error <= '1'; -- assert interrupt
 end_transaction;
 end procedure;

begin
 if Bus2IP_Clk'event and (Bus2IP_Clk = '1') then

 -- drive out zeros if not being accessed
 -- or in a write operation
 --
 if(Bus2IP_RdCE = '0') then
 IP2Bus_Data(0 to 31) <= (others => '0');
 end if;

 IP2Bus_Ack <= '0'; -- pulse(010) to end bus transaction
 access_error <= '0'; -- pulse(010) for access error interrupt

 case addr is

 when C_SOFT_START | C_SOFT_STOP =>
 --
 -- write any data to soft_start to clear all
 -- soft reset signals and the Soft_Stop signal

Page 25 of 38

 -- always returns zeros on read
 --
 -- write any data to Soft_Stop to assert the
 -- Soft_Stop signal
 -- returns signal level in LSB on read
 --
 if (Bus2IP_WrCE = '1') then
 if (addr = C_SOFT_START) then
 soft_resets <= (others => '0');
 resets_done(4) <= '0'; -- clear SWTM's reset done
 core_stop <= '0'; -- clear core_stop
 else
 core_stop <= '1'; -- assert core_stop
 end if;
 end_transaction;
 elsif (Bus2IP_RdCE = '1') then -- perform read
 if (addr = C_SOFT_START) then
 IP2Bus_Data(0 to 31) <= Z32(0 to 31);
 else
 IP2Bus_Data(0 to 31) <= Z32(0 to 30) & core_stop;
 end if;
 end_transaction;
 end if;

 when C_SOFT_RESET =>
 --
 -- read/write to the soft resets register (1 bit per IP)
 -- write '1' to reset, reads '1' if timeout error occured
 -- before IP reports finished
 --
 -- SW Thread Manager = bit#4 (LSB)
 -- Scheduler = bit#3
 -- Semaphore = bit#2
 -- SpinLock = bit#1
 -- User_IP = bit#0
 --
 if (Bus2IP_WrCE = '1') then -- write to soft_resets
 case cycle_count is
 when 0 =>
 soft_resets <= Bus2IP_Data(27 to 31);
 reset_status <= (others => '0');
 resets_done(4) <= '0'; -- clear SWTM's reset_done
 when 1 =>
 if (soft_resets(4) = '1') then
 --
 -- perform a soft reset on SWTM
 --
 next_ID <= Z32(0 to 8);
 Que_Length <= Z32(0 to 7);
 Current_Thread <= Z32(0 to 7) & '1';
 WEA <= '0';
 ENA <= '0';
 core_stop <= '0';
 Exception_Address <= (others => '0');
 Exception_Cause <= (others => '0');
 Dequeue_Request <= '0';
 Enqueue_Request <= '0';
 end if;
 when others =>
 if (soft_resets(4) /= resets_done(4)) then
 --
 -- initialize the thread ID table to all zeros
 -- and the next available stack to 0..255
 --
 ADDRA <= next_ID;
 ENA <= '1';
 WEA <= '1';
 if (next_ID(0) = '0') then
 -- init available ID stack & thread ID table
 DIA <= next_ID(1 to 8) & Z32(0 to 23);
 else

Page 26 of 38

 -- clear 2nd half of table (unused)
 DIA <= Z32(0 to 31);
 end if;
 if (next_ID = H32(0 to 8)) then
 resets_done(4) <= '1'; -- done
 end if;
 next_ID <= next_ID + 1;
 else
 --
 -- wait for all IPs to finish initialization or
 -- the maximum time to be exceeded then
 -- ack to finish transaction
 --
 if (resets_done = soft_resets) then -- done
 end_transaction;
 elsif (cycle_count = C_RESET_TIMEOUT) then
 reset_status <= (resets_done xor soft_resets);
 raise_Exception(SOFT_RESET_FAILURE); -- timeout
 end if;
 end if;
 end case;
 elsif (Bus2IP_RdCE = '1') then -- return reset status
 -- returns 1's in bit positions that failed
 IP2Bus_Data(0 to 31) <= Z32(0 to 26) & reset_status;
 end_transaction;
 end if;

 when C_CURRENT_THREAD | C_QUEUE_LENGTH =>
 --
 -- read the requested register, error if write
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 if (addr = C_CURRENT_THREAD) then
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Current_Thread;
 else -- C_QUEUE_LENGTH
 IP2Bus_Data(0 to 31) <= Z32(0 to 23) & Que_Length;
 end if;
 end_transaction;
 end if;

 when C_EXCEPTION_ADDR | C_EXCEPTION_REG =>
 --
 -- read the requested register, error if write
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 if (addr = C_EXCEPTION_ADDR) then
 IP2Bus_Data(0 to 31) <= Exception_Address;
 else -- C_EXCEPTION_REG
 IP2Bus_Data(0 to 31) <= Z32(0 to 27) & Exception_Cause;
 end if;
 end_transaction;
 end if;

 when C_IDLE_THREAD =>
 --
 -- read/write to the idle thread register
 -- LSB=1 for uninitialized register
 --
 if (Bus2IP_WrCE = '1') then -- write new idle thread ID
 Idle_Thread <= Bus2IP_Data(24 to 31) & '0';
 end_transaction;
 elsif (Bus2IP_RdCE = '1') then -- return idle thread ID
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Idle_Thread;
 end_transaction;
 end if;

Page 27 of 38

 when C_READ_THREAD =>
 --
 -- read/write to the addressed row in ID Table
 -- writing is only enabled when core_stop = 1
 --
 ADDRA <= '0' & Bus2IP_Addr(22 to 29); -- thread ID
 if (Bus2IP_WrCE = '1') then
 --
 -- write to table if "stopped" else error
 --
 case cycle_count is
 when 0 => -- initiate BRAM write
 if (core_stop = '1') then
 WEA <= '1';
 ENA <= '1';
 DIA <= Bus2IP_Data(0 to 31);
 else
 raise_Exception(WRITE_TO_READ_ONLY);
 end if;
 when 1 => -- write done
 end_transaction;
 when others =>
 WEA <= '0';
 ENA <= '0';
 end case;
 elsif (Bus2IP_RdCE = '1') then
 --
 -- read the thread's status
 --
 case cycle_count is
 when 0 => -- initiate BRAM read
 WEA <= '0';
 ENA <= '1';
 when 1 => null; -- still reading
 when 2 => -- set output data, signal done
 IP2Bus_Data(0 to 31) <= DOA;
 end_transaction;
 when others =>
 WEA <= '0';
 ENA <= '0';
 end case;
 end if;

 when C_CREATE_THREAD_D | C_CREATE_THREAD_J =>
 --
 -- create a detached or joinable thread
 --
 -- perform bram (read, read,modify,write), ack
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 --
 -- run "create" mechanism, return completion status
 --
 case cycle_count is
 when 0 =>
 if next_ID(0) = '1' then
 -- no IDs available, return with error bit set
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 30) & '1';
 end_transaction;
 else
 -- read next ID from stack
 --
 WEA <= '0';
 ENA <= '1';
 ADDRA <= next_ID;
 end if;
 when 1 => null; -- still reading bram
 when 2 =>

Page 28 of 38

 new_ID := DOA(0 to 7); -- save new ID#
 ADDRA <= '0' & new_ID; -- point to new thread
 when 3 => null; -- still reading bram
 when 4 =>
 WEA <= '1'; -- enable write to bram
 if addr = C_CREATE_THREAD_D then -- set new thread status
 -- create detached
 DIA <= DOA(0 to 7) & Z32(0 to 7) &
 Z32(0 to 7) & "1010" & Z32(0 to 3);
 else
 -- create joinable
 DIA <= DOA(0 to 7) & Z32(0 to 7) &
 Current_Thread(0 to 7) & "0010" & Z32(0 to 3);
 end if;
 when 5 =>
 -- return new ID with no error,
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & new_ID & '0';
 -- point to next available ID
 next_ID <= next_ID + 1;
 end_transaction;
 when others =>
 WEA <= '0';
 ENA <= '0';
 end case;
 end if;

 when C_CLEAR_THREAD | C_JOIN_THREAD | C_DETACH_THREAD =>
 --
 -- clear the encoded thread ID if its PID = current_thread
 --
 -- join on the encoded thread ID if its PID = current_thread
 -- and its status = used,~joined,~detached
 --
 -- detach the encoded thread ID if its PID = current_thread
 -- and its status = used,~exited,~joined,~detached
 --
 -- perform (read,modify,write, read,modify,write), ack
 -- thread status available ID stack
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 case cycle_count is
 when 0 => -- initiate BRAM read
 ADDRA <= '0' & Bus2IP_Addr(22 to 29); -- thread ID
 testOK <= '0'; -- set to '1' for ID deallocation
 WEA <= '0';
 ENA <= '1';
 when 1 => null; -- still reading bram
 when 2 => -- check status

 if (addr = C_JOIN_THREAD) and
 (DOA(16 to 23) & '0' = Current_Thread) and -- PID = current thread
 (DOA(24 to 25) = "00") and -- ~detached,~joined
 (DOA(26 to 27) /= "00") then -- not unused
 if DOA(26) = '0' then
 -- thread has already exited, return error code
 IP2Bus_Data(0 to 31) <= Z32(0 to 27) & THREAD_ALREADY_TERMINATED;
 testOK <= '1'; -- recycle thread ID
 WEA <= '1'; -- clear old status but
 DIA <= DOA(0 to 7) & Z32(0 to 23); -- preserve ID stack
 else
 IP2Bus_Data(0 to 31) <= Z32; -- success, return zero
 DIA <= DOA(0 to 24) & '1' & DOA(26 to 31); -- set joined bit and
 WEA <= '1'; -- preserve all other bits
 end if;

 elsif (addr = C_CLEAR_THREAD) and
 (DOA(16 to 23) & '0' = Current_Thread) and -- PID = current thread
 (DOA(24) = '0') and -- not detached

Page 29 of 38

 (DOA(26 to 27) /= "11") then -- not (used,~exited,queued)
 IP2Bus_Data(0 to 31) <= Z32; -- success, return zero
 testOK <= '1'; -- recycle thread ID
 WEA <= '1'; -- clear old status but
 DIA <= DOA(0 to 7) & Z32(0 to 23); -- preserve ID stack

 elsif (addr = C_DETACH_THREAD) and
 (DOA(16 to 23) & '0' = Current_Thread) and -- PID = current thread
 (DOA(24 to 26) = "001") then -- used,~exited,~detached,~joined
 IP2Bus_Data(0 to 31) <= Z32; -- success, return zero
 WEA <= '1';
 -- set PID=0, set detached bit, preserve all other bits
 DIA <= DOA(0 to 15) & Z32(0 to 7) & '1' & DOA(25 to 31);

 else
 -- error occurred, return thread status w/ LSB=1
 --
 IP2Bus_Data(0 to 31) <= DOA(0 to 27) & ERROR_IN_STATUS;
 end if;
 when 3 =>
 WEA <= '0'; -- end bram write
 when 4 =>
 --
 -- deallocate thread ID on successful clear or
 -- already exited, joinable child, just now joined
 --
 if (testOK = '1') and
 (next_ID /= Z32(0 to 8)) then
 ADDRA <= next_ID - 1;
 next_ID <= next_ID - 1;
 else
 end_transaction;
 end if;
 when 5 => null; -- still reading bram
 when 6 =>
 -- put ID back on stack, preserve other bits
 DIA <= Bus2IP_Addr(22 to 29) & DOA(8 to 31);
 WEA <= '1';
 when 7 =>
 end_transaction;
 when others =>
 WEA <= '0';
 ENA <= '0';
 end case;
 end if;

 when C_NEXT_THREAD =>
 --
 -- return the next thread in the queue, idle thread if empty
 -- set Current Thread = to the thread ID returned
 --
 -- perform (read, modify, write), ack
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 case state_count is
 when 0 =>
 if Que_Length = 0 then
 --
 -- que is empty, return idle thread
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Idle_Thread;
 Current_Thread <= Idle_Thread;
 end_transaction;

 elsif Next_Thread_Valid = '1' then
 --
 -- the next thread has been identified,
 -- read from Scheduler and check thread status
 -- as stored by SWTM for consistency

Page 30 of 38

 --
 WEA <= '0'; -- initiate BRAM read
 ENA <= '1';
 ADDRA <= '0' & Next_Thread_ID;
 state_count <= state_count + 1; -- move to next state
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_7);
 else
 null; -- waiting for valid status from Scheduler
 end if;
 when 1 =>
 state_count <= state_count + 1; -- still reading BRAM
 when 2 =>
 if DOA(26 to 27) = "11" then
 --
 -- thread status is used,~exited,queued so
 -- prepate to return ID to system and
 -- update thread status to used,~exited,~queued
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Next_Thread_ID & '0';
 Current_Thread <= Next_Thread_ID & '0';
 Que_Length <= Que_Length - 1;
 DIA <= DOA(0 to 25) & "10" & DOA(28 to 31);
 WEA <= '1';
 state_count <= state_count + 1; -- move to next state
 else
 --
 -- SWTM and SCHEDULER disagree if thread was queued
 -- return thread ID, set error bit and raise exception
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Next_Thread_ID & '1';
 raise_Exception(SCHEDULER_ERROR);
 end if;
 when 3 =>
 ENA <= '0';
 WEA <= '0'; -- end bram write
 Dequeue_Request <= '1'; -- tell Scheduler to dequeue
 state_count <= state_count + 1; -- move to next state
 when 4 =>
 if Next_Thread_Valid = '0' then
 Dequeue_Request <= '0'; -- deassert request
 end_transaction; -- done
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_8);
 else
 null; -- waiting for scheduler acknowledgement
 end if;
 when others =>
 WEA <= '0';
 ENA <= '0';
 end case;
 end if;

 when C_ADD_THREAD =>
 --
 -- if the thread is already in the queue, don't re-add, return error
 --
 -- else add the encoded thread ID to the queue if its status is
 -- used, ~exited, ~queued, changing its queued bit to true.
 --
 -- perform (read, modify, write), ack
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 case state_count is
 when 0 => -- initiate BRAM read
 WEA <= '0';
 ADDRA <= '0' & Bus2IP_Addr(22 to 29); -- encoded thread ID
 ENA <= '1';
 state_count <= state_count + 1;

Page 31 of 38

 when 1 =>
 state_count <= state_count + 1; -- still reading BRAM
 when 2 =>
 --
 -- check to see if thread should/can be re-added to queue
 --
 if (DOA(26 to 27) = "11") then
 --
 -- thread is already in the queue, return error code
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 27) & THREAD_ALREADY_QUEUED;
 end_transaction;
 elsif (DOA(26) = '0') or
 (Que_Length = MAX_QUEUE_SIZE) then
 --
 -- thread is unused or exited, or queue is full
 -- operation failed, return error code
 --
 IP2Bus_Data(0 to 31) <= DOA(0 to 27) & ERROR_IN_STATUS;
 end_transaction;
 else
 --
 -- update status to show now queued and
 -- increment the queue length
 --
 IP2Bus_Data(0 to 31) <= Z32; -- return 0, no error
 Que_Length <= Que_Length + 1;
 DIA <= DOA(0 to 25) & "11" & DOA(28 to 31);
 WEA <= '1';
 state_count <= state_count + 1;
 end if;
 when 3 =>
 WEA <= '0'; -- end BRAM write
 ENA <= '0';
 Thread_ID_2_Sched <= Bus2IP_Addr(22 to 29); -- thread ID
 if Enqueue_Busy = '0' then
 state_count <= state_count + 1;
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_5);
 else
 null; -- waiting for scheduler to be ready
 end if;
 when 4 =>
 Enqueue_Request <= '1'; -- assert request
 state_count <= state_count + 1;
 when 5 =>
 --
 -- wait for Scheduler to acknowledge then
 -- remove request and finish transaction
 --
 if Enqueue_Busy = '1' then
 Enqueue_Request <= '0';
 end_transaction;
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_6);
 else
 null; -- waiting for scheduler to acknowledge
 end if;
 when others =>
 WEA <= '0';
 ENA <= '0';
 end case;
 end if;

 when C_YIELD_THREAD =>
 --
 -- if the queue is not empty, re-add the current thread to the queue,
 -- then return the next thread in the queue,
 -- else return the current thread
 --
 -- perform (read,modify,write, read,modify,write, read,modify,write),ack

Page 32 of 38

 -- current thread, last thread added, next thread
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 case state_count is
 when 0 =>
 if Que_Length = 0 then
 --
 -- queue is empty, return current thread
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Current_Thread;
 end_transaction;
 else
 --
 -- read current thread's status
 --
 ADDRA <= '0' & Current_Thread(0 to 7);
 WEA <= '0';
 ENA <= '1';
 state_count <= state_count + 1;
 end if;
 when 1 =>
 state_count <= state_count + 1; -- still reading bram
 when 2 =>
 current_status := DOA(0 to 31); -- save for later use
 --
 -- check to see if thread's status is used,~exited,~queued
 --
 if (DOA(26 to 27) = "10") and
 (Que_Length /= MAX_QUEUE_SIZE) then
 --
 -- update status to show now queued
 --
 DIA <= DOA(0 to 25) & "11" & DOA(28 to 31);
 WEA <= '1';
 Que_Length <= Que_Length + 1;
 state_count <= state_count + 1;
 else
 -- operation failed, return error code
 --
 IP2Bus_Data(0 to 31) <= DOA(0 to 27) & ERROR_IN_STATUS;
 end_transaction;
 end if;
 when 3 =>
 WEA <= '0'; -- end bram write
 Thread_ID_2_Sched <= Current_Thread(0 to 7);
 if Enqueue_Busy = '0' then
 state_count <= state_count + 1;
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_5);
 else
 null; -- wait for scheduler to be ready
 end if;
 when 4 =>
 Enqueue_Request <= '1'; -- assert request
 state_count <= state_count + 1;
 when 5 =>
 --
 -- wait for Scheduler to acknowledge
 -- then remove request
 --
 if Enqueue_Busy = '1' then
 Enqueue_Request <= '0';
 state_count <= state_count + 1;
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_6);
 else
 null; -- waiting for scheduler to acknowledge
 end if;
 when 6 =>

Page 33 of 38

 --
 -- wait for Scheduler to finish enqueuing and
 -- identify next thread to run, then
 -- read from Scheduler and check thread status
 -- as stored by SWTM for consistency
 --
 if (Enqueue_Busy = '0') and
 (Next_Thread_Valid = '1') then
 WEA <= '0';
 ENA <= '1';
 ADDRA <= '0' & Next_Thread_ID;
 state_count <= state_count + 1; -- move to next state
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_7);
 else
 null;
 end if;
 when 7 =>
 state_count <= state_count + 1; -- still reading BRAM
 when 8 =>
 if DOA(26 to 27) = "11" then
 --
 -- thread status is used,~exited,queued so
 -- prepate to return ID to system and
 -- update thread status to used,~exited,~queued
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Next_Thread_ID & '0';
 Current_Thread <= Next_Thread_ID & '0';
 Que_Length <= Que_Length - 1;
 DIA <= DOA(0 to 25) & "10" & DOA(28 to 31);
 WEA <= '1';
 state_count <= state_count + 1; -- move to next state
 else
 --
 -- SWTM and SCHEDULER disagree if thread was queued
 -- return thread ID, set error bit and raise exception
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 22) & Next_Thread_ID & '1';
 raise_Exception(SCHEDULER_ERROR);
 end if;
 when 9 =>
 ENA <= '0';
 WEA <= '0'; -- end bram write
 Dequeue_Request <= '1'; -- tell Scheduler to dequeue
 state_count <= state_count + 1; -- move to next state
 when 10 =>
 if Next_Thread_Valid = '0' then
 Dequeue_Request <= '0'; -- deassert request
 end_transaction; -- done
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_8);
 else
 null; -- wait for scheduler acknowledgement
 end if;
 when others =>
 WEA <= '0';
 ENA <= '0';
 end case;
 end if;

 when C_EXIT_THREAD =>
 --
 -- terminate the current thread
 --
 -- perform 3 read,modify,write cycles then ack
 --
 if (Bus2IP_WrCE = '1') then
 raise_Exception(WRITE_TO_READ_ONLY);
 elsif (Bus2IP_RdCE = '1') then
 case cycle_count is
 when 0 => -- read current thread's status

Page 34 of 38

 IP2Bus_Data(0 to 31) <= Z32; -- change if failure occurs
 WEA <= '0';
 ADDRA <= '0' & Current_Thread(0 to 7);
 ENA <= '1';
 when 1 => null; -- still reading bram
 when 2 => -- update current thread's status in table
 WEA <= '1';
 current_status := DOA(0 to 31);
 if (current_status(24) = '1') then
 --
 -- thread is detached, clear status,
 -- preserve ID stack and 'next' field
 --
 DIA <= current_status(0 to 15) & Z32(0 to 15);
 else
 --
 -- thread is joined or joinable, set status to used,exited
 --
 DIA <= current_status(0 to 25) & "01" & current_status(28 to 31);
 end if;
 when 3 =>
 WEA <= '0'; -- disable write
 when 4 =>
 if (current_status(24 to 25) /= "00") then
 --
 -- if not joinable, deallocate ID
 --
 ADDRA <= next_ID - 1;
 next_ID <= next_ID - 1;
 end if;
 when 5 => null; -- still reading
 when 6 =>
 if (current_status(24 to 25) /= "00") then
 WEA <= '1';
 DIA <= Current_Thread(0 to 7) & DOA(8 to 31);
 end if;
 when 7 =>
 WEA <= '0'; -- disable write
 when 8 =>
 if (current_status(25) = '1') then
 --
 -- if joined, read parent status
 --
 ADDRA <= '0' & current_status(16 to 23);
 else
 --
 -- thread is joinable or detached, finished
 --
 end_transaction;
 end if;
 when 9 => null; -- reading parent status
 --
 -- check to see if thread should/can be re-added to queue
 --
 when 10 =>
 if (DOA(26 to 27) = "11") then
 --
 -- thread is already in the queue, return error
 --
 IP2Bus_Data(0 to 31) <= Z32(0 to 27) & THREAD_ALREADY_QUEUED;
 end_transaction;
 elsif (DOA(26) = '0') or
 (Que_Length = MAX_QUEUE_SIZE) then
 --
 -- thread is unused or exited, or queue is full
 -- operation failed, return error code
 --
 IP2Bus_Data(0 to 31) <= DOA(0 to 27) & ERROR_IN_STATUS;
 end_transaction;
 else
 --

Page 35 of 38

 -- update status to show now queued and
 -- increment the queue length
 --
 IP2Bus_Data(0 to 31) <= Z32; -- return 0, no error
 Que_Length <= Que_Length + 1;
 DIA <= DOA(0 to 25) & "11" & DOA(28 to 31);
 WEA <= '1';
 end if;
 when 11 =>
 WEA <= '0'; -- end write
 ENA <= '0';
 state_count <= 0;
 when others =>
 --
 -- enqueue parent thread via the scheduler
 --
 case state_count is
 when 0 =>
 Thread_ID_2_Sched <= current_status(16 to 23);
 if Enqueue_Busy = '0' then
 state_count <= state_count + 1;
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_5);
 else
 null; -- wait for scheduler to be ready
 end if;
 when 1 =>
 Enqueue_Request <= '1'; -- assert request
 state_count <= state_count + 1;
 when 2 =>
 --
 -- wait for Scheduler to acknowledge then
 -- remove request and finish transaction
 --
 if Enqueue_Busy = '1' then
 Enqueue_Request <= '0';
 end_transaction;
 elsif (cycle_count = C_RESET_TIMEOUT) then
 raise_Exception(SCHEDULER_ERROR_6);
 else
 null; -- waiting for scheduler to acknowledge
 end if;
 when others => null;
 end case;
 end case;
 end if;

 when others =>
 if ((Bus2IP_WrCE = '1') or (Bus2IP_RdCE = '1')) then
 raise_Exception(UNDEFINED_ADDRESS);
 end if;

 end case; -- case addr
 end if; -- rising clock edge

end process MANAGER_ACCESS;

end architecture IMP;

Page 36 of 38

Results

The following table shows the number of clock cycles inserted into the bus transaction, total
cycles, and the resulting time required for each of the SWTM’s operations. These values are
based on a typical read operation requiring 3 clock cycles and a system clock frequency of 100
MHz.

 cycles added total cycles time (ns)
ADD_THREAD 5 8 80
CLEAR_THREAD 7 10 100
CREATE_THREAD_JOINABLE 5 8 80
CREATE_THREAD_DETACHED 5 8 80
CURRENT_THREAD 0 3 30
DETACH_THREAD 7 10 100
EXIT_THREAD 14 17 170
IDLE_THREAD 0 3 30
JOIN_THREAD 7 10 100
NEXT_THREAD 4 7 70
QUEUE_LENGTH 0 3 30
READ_THREAD 2 5 50
YIELD_THREAD 10 13 130

EXCEPTION_ADDRESS 0 3 30
EXCEPTION_REGISTER 0 3 30

SOFT_START 0 3 30
SOFT_STOP 0 3 30
SOFT_RESET 513 516 5160

Conclusion

This design was combined with a simple module consisting of three programmable timers and a
programmable interrupt controller to form a basic system to facilitate testing and further
research. The resulting platform required 2528 slices of the 4928 slices available within the
“v2p7” device on the development board. Initial testing consisted of manual read and write
operations to the SWTM to verify proper operation of each of the SWTM mechanisms. After all
mechanisms had been successfully verified, more extensive testing was performed by team
members writing typical applications in software. Further testing and development is ongoing
and showing very promising results.

All in all, what started as a project to demonstrate what I had already learned ultimately turned in
to a wonderful learning and growing experience. The “behavioral” style of specifying a design
in VHDL can abstract the designer from the details of the implementation. While this can be a
powerful advantage it has also taught me to never abstract oneself too far. Keeping in mind the
“nuts and bolts” of how a design is put together is also a key to a truly successful design.

Page 37 of 38

Acknowledgements

The following individuals provided valuable help and insight in the planning, testing, and
ongoing research related to this design and the Hardware/Software Co-design project;

Mitch Trope
Razali Jidin
Jorge Ortiz
Wesley Peck
Jason Argon

Ed Komp
Dan Deavors
Dr. David Andrews
Dr. Douglas Niehaus
Dr. Jerry James

Publications

1. Programming Models for Hybrid FPGA-CPU Computational Components: A Missing Link

David Andrews, Douglas Niehaus, Razali Jidin, Michael Finley, Wesley Peck, Michael
Frisbie, Jorge Ortiz, Ed Komp, and Peter Ashenden; IEEE micro, July/August 2004

Bibliography

The following sources were referenced while performing this design;

1. Operating System Concepts, 6th edition; Silberschatz, Galvin, Gagne;

ISBN 0-471-41743-2

2. The Student's Guide to VHDL, 1st edition; Peter J. Ashenden; ISBN 1-55860-520-7

3. Implementing the Thread Programming Model on Hybrid FPGA/CPU Computational

Components; David Andrews, Douglas Niehaus, Razali Jidin;

4. Optimize MicoBlaze Processors for Consumer Electronics Products; John Carbone; Xcell

Journal, Spring 2004

5. Xilinx website : www.xilinx.com

6. Virtex-II Pro Platform FPGAs : Functional Description (DS083-2.pdf, v3.1.1)

7. Virtex-II Pro Platform FPGAs : Functional Description (DS110-2.pdf, v1.1)

8. PowerPC 405 Processor Block Reference Guide (ppc405block_ref_guide.pdf, v3.1.2)

Page 38 of 38

