
A Unified Scheduling Model for Precise

Computation Control

Michael Frisbie
frizz@ittc.ku.edu

17 May 2004

Outline

� Introduction

� Related Work

� Implementation

� Evaluation

� Conclusions

� Future Work

Introduction

Computer system designers wish to directly specify the computational
semantics they desire with as much precision as possible.

Traditionally, computer systems have been divided into two separate use
categories:

� General-Purpose

� Real-Time

A single set of system characteristics is no longer appropriate for every
application.

A configurable platform is needed.

Properties of a Configurable System

Satisfaction of any given constraint may require precise control over any
arbitrary set of system resources.

Threads are not the only computational elements managed by most
operating systems. Computational elements present in the Linux operating
system include:

� hardirqs

� softirqs

� tasklets

� processes

The Unified Scheduling Model

The scheduling policies controlling every computational element of the
system are implemented as an explicit scheduling decision function (SDF).

The semantics of each SDF are a configurable system property.

Each SDF is associated with a set of computations, and this association is
represented in a structure known as a group.

Linux interrupt processing has been restructured in order to place it under
configurable scheduling control.

Related Work

CPU scheduling research has generally been restricted to the scheduling
of threads, and almost all modern operating systems utilize a priority
scheduling algorithm in their thread scheduler.

Advantages:

� Any given thread scheduling semantics can be represented by specifying a particular
priority arrangement.

� Priority schedulers are efficient, both in terms of speed and space.

� Priority schedulers are easy to implement.

Disadvantages:

� The ease with which any given semantics can be translated into a priority arrange-
ment can vary greatly.

� Priority Inversion

� Dynamic priority assignment introduces unnecessary overhead.

Co-Resident Operating Systems

This architecture allows for a real-time executive to coexist with a general
purpose operating system.

The real-time kernel can meet its timing constraints, and the general-
purpose kernel can operate with little modification.

One example, RTLinux, places a small, real-time operating system under-
neath the Linux kernel.

RTLinux intercepts interrupts and treats the Linux kernel as its idle thread.

Computations are assumed to either have strict timing constraints that
cannot be violated or no timing constraints at all.

Other Work

POSIX soft real-time standard

UTIME increases the temporal resolution with which timer interrupts can
be scheduled.

LynxOS and TimeSys encapsulate interrupt service routines as threads.

HLS structures execution domains in a similar hierarchical manner.

Implementation

The unified scheduling model consists of a set of components and permits
the system designer to configure them into a hierarchic decision structure
that is responsible for deciding which computation should be executed on
a particular CPU.

Each computation is represented.

A scheduling decision function (SDF) is associated with a particular set of
computations to form a group.

Groups can be linked to form a hierarchy.

Existing Scheduling and Execution Mechanisms

Some computations possess their own context while others can execute in
any context.

Processes can be scheduled actively or lazily.

Hardirqs are scheduled “as fast as possible.”

Softirqs, tasklets, and bottom-halves are all deferrable functions.

Scheduling and interrupt latency are metrics of performance.

The Scheduling Hierarchy

The scheduling hierarchy is employed by first calling the decision function
that is associated with the group at the root of the hierarchy.

Decision functions associated with other groups may be called.

The decision of the root group is returned to the calling function.

This function is responsible for properly executing the computation that is
chosen by the scheduling hierarchy.

Root Group

Member Member Member

SDF

Group Computation Group SDF

Member

Computation Computation

MemberMember

Root

Scheduling Decision Functions

Each SDF has a unique name and a reference count.

The decision function chooses which member to execute, but does not
actually execute it.

The parameter setting function is used to communicate data that is used
by the decision function.

The member removal function is used to inform an SDF that one of its
members has been removed.

Groups

Each group has a unique name and numeric identifier.

A pointer to an SDF determines the scheduling semantics that the group
will impose on its members.

A pointer is provided which can be used to store arbitrary data.

A reference count is stored for each group.

A list of members is maintained for each group.

Members

Each member contains a pointer to the entity that the member represents,
such as a process, hardirq, softirq, or group.

An integer used to indicate the type of this entity.

Members also contain a pointer to data that can be considered during the
execution of a group’s SDF.

Group Creation

This function accepts a group name and an SDF name.

It first verifies that a group with the given name does not already exist and
that the corresponding SDF exists.

A new group is allocated and stored in the global group data structure.

The SDF reference count is incremented and the group’s reference count
is initialized to zero.

If no root group exists, then the new group becomes the root group.

Joining or Leaving a Group

These functions accept a group identifier, a member identifier, and a
member type.

They confirm that the group identifier refers to a valid group and that
the computation or group that is specified by the member identifier and
member type pair exists.

Existing membership is tested.

A new member is allocated and appended to the group’s member list or the
existing member is removed from the group’s member list and deallocated.

If the member is a process, then the group is appended to or removed
from the process’s group list. Otherwise, if the member is a group, then its
reference count is incremented or decremented accordingly.

Group Parameter-Setting

An SDF often needs data to be supplied by the user in order to make its
decisions.

This function accepts a group name, setting number, member identifier and
type, and a value pointer along with the size of the data it references.

It first verifies that the specified group exists.

It attempts to locate the member that is denoted by the member identifier
and member type pair.

The presence or absence of this member is noted and the parameter-
setting function of the SDF that is associated with the group is executed.

Group Destruction

This function accepts only a group name.

It first verifies that a group with the given name exists and that its reference
count is zero.

The member list must be empty.

The corresponding group is removed from the global group data structure
and deallocated.

The SDF usage count is decremented.

If the group is the root group, then the root group is set to NULL.

Atomic Hierarchy Creation

It is often not adequate to sequentially create a hierarchy through a series
of group joining.

The ability to specify a hierarchy atomically has been added.

This is accomplished by submitting an array of atomic hierarchy nodes.

Each of these nodes specifies the relationship between a parent group and
a set of child groups.

This function only specifies a hierarchical relationship and does not actually
create the groups.

Writing an SDF: The Decision Function

1 member decision_function(previous_task, this_cpu, group) {
2 choice = PASS;
3 for (each_member_in_group_member_list(group)) {
4 if (member_is_ready(member)) {
5 consider_member_data(member.data);
6 if (this_member_is_better(member, choice)) {
7 if (member.entity_type == group) {
8 member = run_decision_func(previous_task,
9 this_cpu,
10 member.entity);
11 }
12 if (member != PASS)
13 choice = member;
14 }
15 }
16 }
17 return choice;
18 }

Writing an SDF: The Parameter-Setting Function

1 int set_param_function(group, setting, member, value, size) {
2 switch(setting) {
3 case SETTING_NUMBER_ONE:
4 if (member == NULL) {
5 return error;
6 }
7 if (member.data == NULL) {
8 allocate(member.data, size);
9 }
10 copy(member.data, value, size);
11 break;
12 case SETTING_NUMBER_TWO:
13 copy(group.data.variable_number_one, value, size);
14 break;
15 default:
16 return error;
17 }
18 return 0;
19 }

SDF Registration and Unregistration

The creation of an SDF is not complete until the SDF data structure is
specified and accessible.

An SDF is useless unless it is associated with one or more groups within
the scheduling hierarchy.

In order for groups to associate themselves with a particular SDF, the SDF
must first register itself with a global data structure that provides a mapping
between SDFs and their unique names.

SDF registration is done in the kernel module initialization routine.

If an SDF is no longer being used, then it can be removed from the global
SDF storage structure.

Computational Elements

The unified nature of the scheduling model establishes the ability of the
scheduling hierarchy to consider a wide range of computations.

Processes are unique among system computations in two ways:

� They possess their own context.

� Processes can be created and destroyed.

A placeholder member type is created in order to represent the standard
Linux scheduler and all the processes that have not been explicitly placed
under control of the scheduling hierarchy.

Hardirqs

Hardirqs have become a controllable computation by handling interrupt
concurrency control and scheduling in software rather than hardware.

When a critical section attempts to disable interrupts at the hardware level:

� This fact is noted in a software data structure but not actually carried
out on the hardware.

� When a subsequent interrupt occurs, it is marked in a separate data
structure, and control is then transferred to the decision function.

� Based on the available data structures, the decision function can
then decide whether to run the corresponding hardirq or postpone its
execution until a later time.

Small Handler Scheduling
Hierarchy

Physical
Device

P
I
C

CPU

Software

Hardware

Concurrency Control

Hardware Interrupt Flag This flag should be disabled during access to any data that
is used by the small irq handler.

Software Interrupt Flag This flag must be disabled during access to any data that
is used by a hardirq. This flag is not sufficient for protecting
data that is accessed by hardirqs that ignore this flag.

Preemption Count This counter variable is associated with each process.
Whenever it is equal to zero, the current process
may be preempted by another process. Asynchronous
preemption cannot occur while an interrupt flag is
disabled.

Spin Locks
Read/Write Locks

Locks protect data that can be accessed concurrently by
multiple CPUs. When a lock is acquired by a process, its
preemption count is incremented in order to prevent the
process from being preempted while holding a lock.

Bottom-Half Flag This flag synchronizes access to bottom half data
structures.

Interrupt-Specific Flags A specific flag is designated for each hardirq and can be
used as a replacement for the software interrupt flag.

Softirqs

The softirq scheduling algorithm is reliant upon the softirq execution
mechanism.

The softirq decision function assumes that it is only called after the hardirq
decision functions have expressed no opinion.

The softirq decision function first ensures that no other hardirqs or bottom-
halves are executing. If this check fails, then RETURN is returned.

Otherwise, the highest priority pending softirq is determined by surveying
the pending softirq bit field, and the corresponding softirq member is
returned. If no softirqs are pending, then PASS is returned.

Adding New Computational Elements

The existing scheduling and execution code must be separated.

A data structure needs to be associated with the new computation type.

This structure must contain a unique identifier for the computation.

The internal functions of the unified scheduling model must then be
modified to use this identifier in locating computations of the new type.

Also, a new computation type identifier must be designated for the new
type, and the the internal methods must be modified to acknowledge it.

Code that calls the scheduling hierarchy must be modified to execute the
member if it is chosen.

Adding New Computational Elements: Computation Types

Process Computations of this type are executed using a context-switch.
Hardirq Computations of this type are executed by calling the computation function

directly.
Softirq Computations of this type are executed by calling the computation function

directly.
Group Members that are associated with this computation type are not chosen by

the scheduling hierarchy. Instead, decision functions can directly execute
the decision function associated with a member of this type.

Nothing This computation type signifies a placeholder for the Linux scheduler. It
signifies that the scheduling hierarchy has chosen nothing but that another
scheduler may make a choice.

Pass This computation type can be returned by decision functions to assert that
they have no opinion about what to choose.

Return This computation type can be chosen by a decision function in order to
signify that no choice should be made by the hierarchy and that the current
thread should continue execution by returning from the calling function.

Evaluation

Implement both existing and desired programming models using this new
framework.

� KURT-Linux

� Pipeline Model

� E-Machine

Scheduling overhead and interrupt accuracy have been measured.

Explicit Plan Programming Model

The KURT-Linux programming model allows processes to be explicitly
assigned intervals of execution.

Interval data structure:

� member id

� member type

� begin

� end

� processor

� instances

� period

Explicit Plan Programming Model: Decision Function

Consider the first interval in the schedule.

If the member associated with the interval can be executed, then it is
selected for execution and a timer to signal the interval’s end time is
created.

If the first interval on the list has expired, then its beginning and ending
times are updated based on its periodicity and remaining lifetime. The first
interval is then reconsidered.

If none of the previous checks have succeeded, then a timer for the interval
is programmed and the decision function returns without having an opinion
about what member should be chosen.

Explicit Plan Programming Model: Parameter-Setting and Member
Removal Functions

The SUBMIT EXPLICIT PLAN setting is used to submit a schedule.

The SUBMIT EXPLICIT PLAN WAIT setting is also used to submit a
schedule and block calling process until the schedule is finished or a signal
is delivered.

The SUSPEND INTERVAL setting allows a computation to suspend its
execution during any intervals in which it is currently executing.

The member removal function removes any of the intervals remaining in
the schedule that are associated with the leaving member.

Pipeline Model

Many real-time applications require multiple tasks to coordinate their
execution.

A common model for this cooperation is the pipeline model.

Applications such as videoconferencing programs and industrial automa-
tion control can be represented as a pipeline of several tasks.

Response
Computation

Action
Computation

Actuator
Stimulus

Computations
Processing

E-Machine

The E-machine is an embedded interpreter that is designed for real-time
applications.

Computations are divided into to classes:

� Drivers

� Tasks

The E-machine consists of a single thread that is responsible for executing
E-code. E-code can execute a driver, schedule a task, and schedule the
execution of E-code in the future.

Top−Level
Group

Root

Explicit Plan
Group

EDF Group

Task 1 Task 2 Task NE−Machine
Thread

Scheduling Overhead

The overhead of executing the scheduling hierarchy depends on the
structure of the hierarchy and the decision path that it takes.

These tests were performed over a period of 10,000 seconds on a
computer system with a 200 MHz Pentium Pro processor. System load
was generated by cyclically executing a two-process kernel compilation on
the local hard disk through a secure shell connection.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

In
st

an
ce

s

Microseconds

Explicit Plan Scheduling Overhead

Min Value=1.1,Max Val=47.8;Underflow=0,Overflow=0
Total number of values : 103214365

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

In
st

an
ce

s

Microseconds

Standard Linux Process Scheduling Overhead

Min Value=0.2,Max Val=84.7;Underflow=0,Overflow=0
Total number of values : 1056028

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

In
st

an
ce

s

Microseconds

Hardirq and Softirq Scheduling Hierarchy Overhead

Min Value=0.6,Max Val=30.5;Underflow=0,Overflow=0
Total number of values : 42147244

Interrupt Accuracy

The modifications to interrupt concurrency control that have been made
allow for interrupts to be delivered to the CPU more accurately.

This fact has been confirmed by measuring the accuracy with which a timer
interrupt can be delivered to the CPU.

The difference between the scheduled time of a timer interrupt and its
actual delivery has been measured.

These tests were performed under the same conditions as the scheduling
overhead tests.

Interrupt Accuracy Without IRQ Modifications

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

In
st

an
ce

s

Microseconds

IRQ Accuracy

Min Value=1.9,Max Val=57.4;Underflow=0,Overflow=0
Total number of values : 1022615

Interrupt Accuracy With IRQ Modifications

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

In
st

an
ce

s

Microseconds

IRQ Accuracy

Min Value=1.9,Max Val=25.2;Underflow=0,Overflow=0
Total number of values : 1022535

Conclusions

The demand on computer systems to handle an increasingly wide range
of applications with equally varied execution semantics creates a need for
a fully configurable resource control mechanism.

Since control of system resources can be simplified to controlling all
the computations that use them, a configurable computation scheduling
system is needed.

The system must be able to unite all computations under a single
scheduling mechanism in order to attain the precision that is desired by
system designers.

Future Work

Proxy Execution

Computation Type Reduction

Control Path Consolidation

Questions?

