Stochastic Evaluation of Fair Scheduling with Applications to Quality-Of-Service in Broadband Wireless Access Networks

Mohammed Hawa
Ph.D. Defense
University of Kansas
Presentation Outline

- Research Motivation.
- A scheduling architecture to support QoS in broadband wireless access networks.
 - Infrastructure MAC Protocol.
 - Support for UGS, rtPS, nrtPS and BE Traffic.
- Upper and lower bounds on mean waiting time of FQ algorithms under Poisson arrivals.
- Further study of three FQ policies (WFQ, SCFQ and SPFQ) using simulation.
- Discussion.
Motivation

- A QoS architecture for packet switched networks (e.g., the Internet) introduces tools to treat packets differently, thus providing guaranteed services to end users.
- The Internet is expanding to the wireless realm, especially in recent years:
 - WLANs (IEEE 802.11 or Wi-Fi™), BWA Networks (IEEE 802.16 or WiMAX) and 3G Cellular.
- Need to expand QoS to the wireless side.
Wireless QoS

- We introduce a new scheduling architecture to support QoS guarantees in BWA networks.
 - Should integrate with IETF QoS architectures for the wired Internet (IntServ and DiffServ).
 - Several new technical challenges: The wireless channel is a shared medium, bandwidth is a scarce resource, excessive amount of interference.

- QoS Management Functions:
 - Admission Control, Scheduling, Buffer Management and Congestion Control.
 - Concentrate on Scheduling.
IEEE 802.16 MAC Protocol

- For wireless networks it is natural to integrate the QoS architecture with the MAC protocol.
 - IEEE 802.16 is the industry backed standard for broadband wireless access (BWA) systems.
- In IEEE 802.16, a Base Station (BS) controls many end user Subscriber Stations (SSs).
- Upstream and downstream channels are separated using FDD.
- A request/grant mechanism to coordinate transmission between multiple SSs.
IEEE 802.16 Operation

Bandwidth Allocation
MAP

DownstreamFrame Period

Data Grants

Time

UpstreamFrame Period

Reservation (Request) Period (random access)
QoS in IEEE 802.16

- To support QoS, IEEE 802.16 defines the concept of a service flow.

- Upstream Service Flow Types in IEEE 802.16:
 - Unsolicited Grant Service (UGS)
 - Real-Time Polling Service (rtPS)
 - Non Real-Time Polling Service (nrtPS)
 - Best Effort (BE)
Real-Time Service Flows

- **Unsolicited Grant Service (UGS):**
 - Supports real-time traffic (Voice over IP).
 - Offers fixed size unsolicited data grants (transmission opportunities) on a periodic basis.

- **Real-Time Polling Service (rt-PS):**
 - Supports real-time flows that generate variable size data packets on a periodic basis (MPEG).
 - Offers periodic unicast request opportunities. The SSs specify the size of the desired data grants.
Non Real-Time Service Flows

- **Non Real-Time Polling Service (nrt-PS):**
 - Supports flows that require variable size data grants on a regular basis (high bandwidth FTP).
 - Offers infrequent unicast polls plus contention and piggybacking.

- **Best Effort (BE):**
 - The SS uses contention and piggybacking only.

- **Key service parameters for nrt-PS and BE:**
 - Minimum Reserved Traffic Rate.
 - Traffic Priority.
Scheduling in IEEE 802.16

- IEEE 802.16 defines the QoS service flow types, but does not define the scheduling algorithm to be used at the BS.
- IEEE 802.16 is very similar to DOCSIS, the de facto standard for HFC Cable Systems.
- No scheduling architectures have been proposed for IEEE 802.16 and those proposed for HFC networks do not specifically address the QoS requirements of DOCSIS (or IEEE 802.16).
The New BS Scheduler

Block generating Data Grants for UGS flows and unicast Requests for rtPS and nrtPS flows

Type 1 (FIFO) Queue

Type 2 (FIFO) Queues

semi-preemptive priority

Server

rtPS, nrtPS and BE Requests (either unicast, piggyback or contention)

Translate Requests into Data Grants

Type 3 (Priority) Queue

Flows with minimum bandwidth reservations

Flows with NO bandwidth reservations

flow 1

Flow 2

Flow N

Flows 1 ... M

Framing and Contention/Data Minislot Allocation

priority-enhanced WFQ (or a variant)
Scheduler Architecture

- Requests arrive at the BS.
 - Through contention, unicast requests and piggybacking.
- Requests are translated into upstream data grants.
- Data grants are scheduled on a frame-by-frame basis by building a corresponding allocation MAP:
 - The hardware block responsible for creating the MAP is represented by a server.
 - Each data grant (or unicast request opportunity) is treated as a packet. Actual transmission of the corresponding data packet takes place in the next frame.
- Data grants are queued in three types of buffers: Type 1, Type 2 and Type 3 buffers.
Scheduler Advantages

- Easy to implement in hardware thus gaining a performance advantage over software-based alternatives.
- Takes advantage of the Tolerated Jitter parameter for UGS to fit as many packets as possible in the upstream frame thus avoiding fragmentation and being more efficient.
- Lends itself to easier and straightforward performance analysis via classical queuing theory techniques.
Novel Features

- **Semi-preemptive priority**: A grant undergoing service is sometimes allowed to complete service even if a grant of higher priority arrives in the meantime. This happens only when the newly arriving high priority grant can still be delivered within its deadline.

- **Priority-enhanced WFQ**: If two data grants (from two different queues) have identical WFQ virtual finish times, the first grant to be served is chosen based on its priority level.
Extra Features

- **Dynamic Contention Minislot Allocation:** An appropriate number of contention request minislots is allocated in each frame period to reduce collisions and to shorten contention resolution.

- **Buffer Management** mechanism based on RED was also suggested.
Analysis of FQ Algorithms

- Our Wireless QoS architecture is built mainly around Fair Queueing (FQ) algorithms.
 - Significant work on deterministic worst-case delay analysis of such FQ policies.
 - Little work on stochastic delay analysis.
- We introduce a new stochastic analysis method to evaluate upper and lower bounds on mean packet delay and mean buffer occupancy experienced by FQ policies.
Background on FQ Policies

- Provide **fair** treatment for supported flows by splitting bandwidth based on pre-defined weights.
- Arriving packets are assigned **timestamps**.
- Packets are served in increasing order of their timestamps.
- Timestamps are either **virtual finish times** or **virtual start times**.

\[
F_k^i = \frac{L_k^i}{r_k} + S_k^i, \\
S_k^i = \max(F_k^{i-1}, v(a_k^i)), \\
k \in K, \quad i = 1, 2, 3, \ldots
\]
M/G/FQ Stochastic Analysis

- Stochastic Analysis Assumptions:
 - Poisson arrivals, general packet length distribution and infinite buffer lengths.
- Finding Exact mean waiting time is not practical:

\[
M_j = \sum_{n_k=0}^{\infty} E[M_j | q_k = n_k] \cdot P[q_k = n_k]
\]

\[
E[M_j | q_k = n_k] = \\
\sum_{l_j=0}^{m'_j-1} \left(\sum_{m_j=l_j}^{m'_j-1} m_j \cdot P_{m_j-l_j} \left(\lambda_j \cdot R + \rho_j \cdot (n_k + m_j) \right) \right) \cdot P[q_j = l_j] \\
+ m'_j \cdot \left(1 - \sum_{l_j=0}^{m'_j-1} \left(\sum_{m_j=l_j}^{m'_j-1} P_{m_j-l_j} \left(\lambda_j \cdot R + \rho_j \cdot (n_k + m'_j) \right) \right) \cdot P[q_j = l_j] \right)
\]
Upper and Lower Bounds

An arrival at the kth queue must wait for:

- R: Residual Time
- N_k: Packets in queue k
- M_j: Packets not in queue k but with smaller timestamps.

Upper and lower bounds on M_j can be found in terms of N_k by using the FQ bounded fairness criterion.

$$W_k = R + \frac{1}{\mu} \left(N_k + \sum_{j \in J} M_j \right)$$

$$W_k = \frac{1}{2} X^2 \lambda + \rho_k W_k + \frac{1}{\mu} \sum_{j \in J} M_j$$
Using the Bounded Fairness

- Fairness can be mathematically quantified by a **bound** Ψ on the difference in normalized services received by different flows in a FQ system.

- Many scheduling policies exhibit this **bounded fairness** criterion including WFQ, SCFQ, SPFQ and SFQ.

$$M_j \leq \min \left((N_k + 1) \frac{r_j}{r_k} + \bar{\psi}_j \frac{r_j}{XC}, \ N_j + \lambda_j W_k \right)$$

$$M_j \geq \min \left(\max \left((N_k + 1) \frac{r_j}{r_k} + \bar{\psi}_j \frac{r_j}{XC} - 1, 0 \right), \ N_j + \lambda_j W_k \right)$$
The Results

- The Upper and Lower bounds on Mean Packet Waiting Time:

\[
\frac{1}{2} \frac{X^2 \lambda}{1 - \rho_k} \leq W_k \leq \frac{1}{2} \frac{X^2 \lambda}{1 - \rho_k} + \frac{1}{\mu r_k} \sum_{j \in J} \left[\frac{1}{r_j} + \frac{\psi_j r_j}{\mu} \right]
\]

- The Upper and Lower bounds on Mean Buffer Occupancy can be found using Little’s Law \(N_k = \lambda_k W_k \).
Experimental Results

- Link capacity: 10 Mb/s.
- Four Flows with each making a 2.5 Mb/s reservation.
- Tagged flow sends at 0.25 – 2.0 Mb/s.
- Other Flows send at 2.5, 2.75, 2.75 Mb/s.
- Packet Length is Uniform between 500 and 1500 bytes.
- Tested Algorithms: WFQ, SCFQ and SPFQ.
Deterministic Bound!

- The same above experiment except: We show the corresponding **deterministic** upper bound.
- The stochastic bounds are much better than the deterministic bound.
- **Caution:** the comparison is not mathematically rigorous.
Reducing the System Load

- The same above experiment except: All non-tagged Flows send at **2.0 Mb/s**.
- The upper bound is weaker, because the loss of \(N_j + \lambda_j W_k\) information is more obvious when the load on the non-tagged flows is reduced.
- Lower bound gives a good quick estimate of mean waiting time.
Diverse Flow Reservations

- Link capacity: 10 Mb/s.
- 1st Flow has 4 Mb/s and 2nd Flow has 6 Mb/s reservation.
- Tagged flow sends at 0.5 – 3.5 Mb/s.
- Other flow sends at a fixed 6.0 Mb/s.
- Packet Length is Uniform between 500 and 1500 bytes.
- Tested Algorithms: WFQ, SCFQ and SPFQ.
Different Packet Distribution

- The same above experiment except: Packet Length is **Exponential** with mean of 1000 bytes.
- Mean waiting time bounds work correctly for various flow setups and packet length distributions.
Simulation Study of FQ

- Further study of FQ policies under random arrivals using simulation.
- As long as none of the incoming flows is misbehaving, then WFQ, SCFQ and SPFQ algorithms exhibit virtually the same mean waiting time.
- Other FQ policies do not necessarily perform the same (e.g., SFQ).
- The performance of WFQ, SCFQ and SPFQ is different than the reference GPS policy.
Case: Two Flows

- Link capacity: 10 Mb/s.
- 1st Flow has 7 Mb/s and 2nd Flow has 3 Mb/s reservation.
- Tagged flow sends at 0.5 – 8.0 Mb/s.
- Other flow sends at a fixed 2.0 Mb/s.
- Packet Length is Uniform between 500 and 1500 bytes.
- Tested Algorithms: WFQ, SCFQ and SPFQ.
WFQ, SCFQ and SPFQ perform practically the same when the tagged flow is transmitting below 7 Mb/s.

Once the tagged flow starts misbehaving, the mean delay of the different FQ algorithms starts to differ.

This result applies for different number of incoming flows, reservation scenarios, arrival rates and packet length distributions.

Example: 4 flows, exponential packet length distribution (see table).

<table>
<thead>
<tr>
<th>Case</th>
<th>Reservations</th>
<th>$\lambda_1 \bar{L}$</th>
<th>$\lambda_2 \bar{L}$</th>
<th>$\lambda_3 \bar{L}$</th>
<th>$\lambda_4 \bar{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5 – 9</td>
<td>0.25</td>
<td>0.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.5 – 7</td>
<td>0.75</td>
<td>1.5</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.5 – 5</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.5 – 3</td>
<td>1.75</td>
<td>3.5</td>
<td>1.75</td>
<td></td>
</tr>
</tbody>
</table>
Case: Four Flows

- **Graph A**
 - SCFQ
 - WFQ
 - SPFQ
 - Mean Waiting Time (ms) vs. Incoming Load of Tagged Flow (Mb/s)

- **Graph B**
 - SCFQ
 - WFQ
 - SPFQ
 - Mean Waiting Time (ms) vs. Incoming Load of Tagged Flow (Mb/s)

- **Graph C**
 - SCFQ
 - WFQ
 - SPFQ
 - Mean Waiting Time (ms) vs. Incoming Load of Tagged Flow (Mb/s)

- **Graph D**
 - SCFQ
 - WFQ
 - SPFQ
 - Mean Waiting Time (ms) vs. Incoming Load of Tagged Flow (Mb/s)
Comparison with GPS

- The same earlier experiment with two flows except: Tested algorithms are SCFQ and GPS.
- Conclusion: Although WFQ, SCFQ and SPFQ are attempting to emulate GPS, they fail to emulate its exact behavior under random arrivals.
Virtual Capacity

- A new concept to simplify comparing FQ algorithms to other queueing systems.
- Define the mean waiting time as:

\[W_k = \frac{R}{1 - \frac{\lambda_k}{\mu_k}} = \frac{R}{1 - \frac{\lambda_kL_k}{c_k}} \]

- Converts the result for waiting time in M/G/FQ to an equivalent M/G/1 system.
- Useful in visualizing the operations of FQ systems (Show bias in flow treatment).
Comparison with FIFO

- The same earlier experiment with two flows except: Tested algorithms are SCFQ and FIFO.
- Lower reservation flow is actually mistreated (compared to FIFO) so that the flow with higher reservation receives a lower delay.
- Flow mistreatment grows smaller as r_2 approaches r_1.
Contributions

- A new QoS scheduling architecture for both IEEE 802.16 and DOCSIS.
 - Performance evaluation using OPNET was slowed down by the DOCSIS module bugs.
- Simple and reasonably tight upper and lower bounds on mean waiting time of FQ algorithms under Poisson arrivals.
- Study of stochastic performance of packet-based FQ policies: WFQ, SCFQ and SPFQ.
- A new Queueing System, called H-F²Q.
Publications and Submissions

Discussion

- Thank you!