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Abstract

Testing is an important phase in the development cycle of any system. Testing in-
volves developing the test cases and running them on the product. It will be useful
if the testing process is automated. An automatic test case generator automatically
generates test cases. Mostly the Automatic Test case generators generate test cases
in a format that is dependent on a particular language or to a particular simulation
environment. This limits the flexibility of the tool. Thus if an Automatic Test Case
Generator generates test cases in a language independent format then any third party
tool can simply transform these language independent test cases into a format that is
compatible for their simulation environment. This thesis presents an automatic test
case generator DVTG [15], which automatically generates test vectors from Rosetta
specifications. DVTG generates the test vectors in XML format. In the process of gen-
erating the abstract test vectors, DVTG first generates a set of scenarios from Rosetta
specifications. Test scenarios represent a range of values and this range of values can
be very high. So to limit the set of test cases, a user specifies test requirements that
places constraints on the number of test cases that will be generated. Combining User
specified requirements and the scenarios, abstract test vectors in XML will be gen-
erated. This XML format can be used to generate concrete test vectors that will be
suitable for a particular simulation environment. As part of this thesis work, concrete
vectors in WAVES [10] format are generated from XML test vectors. The vectors in

WAVES format can be used to test the VHDL implementation of the system.
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Chapter 1

Introduction

1.1 Testing

The importance of testing and its implications with respect to quality of the system
developed is boundless [14]. Testing is a critical factor in quality assurance and repre-
sents the final review of system specification, design and code generation. Testing is
very labor intensive and accounts for approximately 50% of the cost of system devel-
opment [13]. Testing is the process of executing a program with the purpose of finding
an error. A good test case thus, is one that has a high probability of finding an error.

Simulation is commonly used as a means of testing the system. In this tech-
nique test cases are designed after the system is developed and then the system is
driven with the selected test data to observe the output. Based on the output the
correctness of the system is verified. This technique tends to focus more on the im-
plementation of the system and overlooks the actual behavior of the system. This

problem can be overcome by using Specification based techniques.



As Systems become complex it will be useful if a designer can represent the
system at higher levels of abstraction. Working at higher levels of abstraction gives
the designer the power to design a system with incomplete information. System Level
specifications provide the designer the capability to work at higher abstraction levels
and allows them to focus more on the original requirements. Rosetta, a System Level
Design Language is used in this thesis. The test cases are generated from the specifi-
cations even before the system is implemented and once the product is developed its

implementation can be validated against the test cases previously developed.

1.2 Motivation

The main purpose of testing is to reduce risk. Reducing the risk of using a program
also increases our confidence that the developed product will perform as intended.
Testing is typically done by choosing the test cases and executing the implementation
on the test cases to determine the correctness of the product. Typically the test
cases are developed to target a particular functionality of the program and the test
cases should be instantiated with values to actually observe the output data. This
process is very tedious and repetitious. To effectively test a product, there should be
a way to automate test data generation. An Automatic Test Case Generator is a tool
that automatically generates test data. Automating test data generation has many
advantages. For example if the underlying implementation changes for some reason,
then the whole process of generating test cases must be repeated. But if the test data

generation is automated then the developer can simply apply the automatic test data



generator and generate new test cases. This potentially reduces the cost of testing

manifold.

1.3 Problem Statement

To be effective, an Automatic Test Case Generator should be able to generate the test
data in a format that is independent of any language or any simulation environment.
There are many automatic test data generators in industry, but most of these generate
test data specific to a particular simulation environment. This thesis builds on exist-
ing test case generator, Design Verification Test Generator (DVTG). DVTG takes a
Rosetta specification as input and generates test vectors in Rosetta. This limits a user
unfamiliar with Rosetta from using the tool. This also forces to change the existing
tool whenever we want to test a new implementation. It is more useful for the test
data generator to generate test cases which are independent of any testing environ-
ment. This thesis is an effort into making DVTG generate test vectors in a language

independent format.

1.4 Proposed Solution

Given the inherent flexibility and data-neutrality of Extensible Markup Language
(XML) [4], applying it to test vector and test requirement representation helps simplify
transformation of test vectors into other formats. XML allows a developer working
with automatic test case generators to define tags that gives information about the

data embedded within them. A Document Type Definition(DTD) [4] is defined as part



of this thesis for representing the abstract test vectors. This DTD provides the rules
that define the elements and structure of the new mark up language. It also serves
as the guideline for other developers to interface with the application. The process of
generating the abstract test vectors in XML format and the subsequent transformation

to WAVES and an input format for simulating ALTERA models is shown in Figure

1.1
ificati vectorsin
Specification XML
Input Test format
WAVES format for smulating
ALTERA models

Figure 1.1: Flow of generation of test vectors

The system to be tested is specified in Rosetta. The test vector generator takes
this specification and generates the abstract test vectors in XML. These abstract test
vectors are further transformed into concrete test vectors. An XSLT, a transformation
sheet, is developed to convert abstract test vectors in XML to WAVES, the input test
data format for simulating VHDL implementations. DOM that stores the parsed XML
as an Object Tree is used to transform the XML abstract test vectors into a input

format for simulating models designed using ALTERA MAXPLUS II.



1.5 Organization of Thesis

Chapter 2 provides an introduction to Rosetta, a System Level Design Language
(SLDL) [6]. It gives an insight into how Rosetta provides a declarative specification
capability. A brief introduction to XML is also provided in this chapter. Additionally
the different features of XML that were used in this thesis are discussed in this chap-
ter. The DTD, the template that defines the markup for XML is next introduced.
Furthermore this chapter gives an introduction to XSLT. Different formats for testing
environments such as WAVES are also described in this chapter.

Chapter 8 introduces the DVTG tool, which automatically generates abstract test
vectors in Rosetta. Chapter 4 describes the implementation issues in this thesis. It
discusses the different features of Rosetta that this implementation supports. Chapter
5 demonstrates how the test cases for examples like Schmidt Trigger, Alarm Clock are
generated in XML, and the transition to a corresponding WAVES format. Chapter 6

summarizes this thesis work and proposes future work that may be done in this field.



Chapter 2

Background

A brief introduction to Rosetta, a System Level Design Language and how it can be
used to specify complex systems in an abstract manner is provided in this chapter.
An automatic test case generator, DVTG, is also briefly explained in this chapter. A
brief overview of XML and the details of XSLT that can be used for transforming
XML documents are provided here. Document Object Model (DOM) that is used to
store a parsed XML document in a object Tree Representation is also discussed. This
chapter also highlights the different formats for testing environments. WAVES is a
IEEE specification for testing VHDL systems. ALTERA MAX+PLUS II provides an
environment for simulating a model. The input format for ALTERA’s simulator is

also discussed in this chapter.



facet schmidt_trigger(input_voltage :: in real;
output_value :: out bit) is
/* local declarations */
b::bit;
begin state_based
/* first pre condition */
prel: (input_voltage > 0.0) and (input_voltage < 5.0)
/* first post condition */
postl: if (input_voltage < 1.0)
then (b’=0)
else if (input_voltage > 4.0)
then (b’=1)
else (b’=b)
end if;
end facet schmidt_trigger

Figure 2.1: Schmidt Trigger Specification

2.1 Rosetta Specification Language

As systems become increasingly complex the need to express them at higher levels
of abstraction increases. Rosetta [7] provides an ability to represent a system at a
higher level of abstraction. This language allows the designer to specify details about
the system that other hardware description languages may not provide. This includes
capabilities like expressing constraints on the system and crossing domain boundaries.
Developed from the concepts of formal verification and functional programming worlds,
it allows the designers to develop and integrate specifications from multiple design
domains. The format of a Rosetta specification can be easily understood with an
example. Figure 2.1 presents the specification of schmidt trigger.

Facet is the basic unit of specification in Rosetta. The domain defines ev-
erything from basic semantic unit of any Rosetta specification through systems and

components. Each facet defines a particular aspect of a component or system from a



particular perspective. The facet keyword marks the beginning of any Rosetta spec-
ification. It is followed by an optional parameter list that identifies the input and
output variables of the specification. The specification in figure 2.1 defines a facet
schmidt_trigger with the interface items input_voltage and output_value. All Rosetta
parameters are declared using the notation z::7T, where x is a variable and T is a type.
The scope of the parameters extends throughout the facet. Parameter declarations
have an optional mode. Mode in indicates that the variable is an input variable and
out indicates that the variable is an output variable.

The declaration of local variables follows the parameter declaration. In the
schmidt trigger specification b is declared to be of type bit and is visible over the entire
facet. The declarations can also be exported to other facets using the export keyword.
Referencing the variables outside the facet requires the facet name as the qualifier.
When referenced in the facet body all the parameters and variables are referenced
without any decoration. For example in the above schmidt trigger specification in
figure 2.1 the variable b is referred to as schmidt_trigger.b outside the facet.

The specification body is opened by the begin keyword that is followed by the
specification domain. The domain extends the base definition semantics by adding new
definitions specific to a design domain. The above example uses state_based domain
that provides the basic semantics of state. Some of the existing domains in Rosetta
are state_based, logic, finite state etc. Figure 2.2 shows the different domains defined
for constraint and requirement modeling.

Rosetta is a descriptive specification language. All the expressions in the spec-

ification are boolean expressions. The domain is followed by a set of terms. Terms
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finite-state infinite-state

Di screte-tine

Figure 2.2: Domains and Interactions

define the behavior modeled by the facet. A term is represented using the notation
l:expression where [ is the label associated with the expression. Labels have no se-
mantic meaning of their own, but can be used to represent the expression specified in
the corresponding term. They are used to refer the term in other definitions as well

as when the term is exported. All specifications end with a end clause.

2.2 DVTG

DVTG generates test vectors from Rosetta specifications. The task of generating
the test vectors is divided into three phases - generation of test scenarios, generating
the abstract test vectors from the scenarios and the user specified requirements and
translating the abstract test vectors into concrete test vectors.

The Rosetta parser transforms the Rosetta specification and builds a Rosetta
Object Model, ROM [12]. ROM is the Object Tree representation for Rosetta. It

contains the java classes for all the Rosetta constructs. All the information that is



specified in the Rosetta specification is stored in ROM. Any tool can simply traverse
ROM and access all the information that is given in a Rosetta specification.

DVTG traverses ROM and generates the test scenarios. A test scenario is a
set of boolean conditions that are constraints on the values of the input and output
parameters. There are many strategies that can be used to generate the test scenarios.
DVTG uses multi-condition strategy to generate the test cases for logical expressions.
Boundary testing is used for relational expressions.

Abstract test vectors are generated from test scenarios and the user defined
requirements. The test requirements specify the range of values for the control vari-
ables and limits the number of test cases that can be generated. The abstract test
cases are generated in the Rosetta format. As a part of this thesis the abstract test
cases will be generated in XML format. These abstract test vectors are converted to

concrete test vectors in WAVES [10] format.

2.3 WAVES: A test environment for VHDL

The Waveform and Vector Exchange Specification [WAVES] [10] was designed to be
the unified testing environment for systems developed using VHDL. The various uses

of WAVES include:

1. Defining the test stimuli in the form of digital waveforms or test vectors.

2. Defining the results to be collected, and

3. Controlling the execution of the test stimuli and to collect and compare the

results after executing the VHDL simulation.

10
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Figure 2.3: WAVES-VHDL Test Bench Configuration

WAVES serves as a test bench for VHDL simulation. WAVES is an IEEE standard
and is also a subset of the VHDL standard. This format guarantees conformity among
multiple applications and easy integration with VHDL units under test. WAVES test
suite consists of a WAVES test bench, a user developed WAVES data set and the
VHDL model to be tested. Test vectors can be specified with the help of a principal
WAVES dataset element - the External file.

Figure 2.3 shows the usage of test bench in simulation. It consists of a Data set
that contains information about the input and the expected output values. The input
values are given to the VHDL model. A Test Bench Monitor compares the response
from the simulation to the expected output from the WAVES data set. It notifies the
error if there are any differences between expected output and the output obtained

from the simulation.

11



2.4 Altera MAX+PLUS I1

The Altera Multiple Array MatriX Programmable Logic User System (MAX+PLUS
IT) [1] provides a multi-platform, architecture-independent design environment that
easily adapts to specific needs. It is a fully integrated package for creating logic designs
for Altera Programmable logic devices - including the Classic, MAX 5000, MAX 7000,
MAX 9000, FLEX 6000, FLEX 8000 and FLEX 10K families of devices. This software
offers a full spectrum of logic design capabilities - a variety of design entry methods for
hierarchial designs, powerful logic synthesis, timing-driven compilation, partitioning,
functional and timing simulation, linked multi-device simulation, timimg analysis and
verification. In MAX4+PLUS II a logic design, including all subdesigns, is called a
project. A project consists of all files in the design hierarchy, including ancilliary input
and output files. MAX+PLUS II performs compilation, simulation, timing analysis

and programming on one project at a time.

2.4.1 ALTERA Project Verification

MAX+PLUS II provides three applications - the MAX+PLUS II Simulator, the Tim-
ing Analyzer and the Waveform Editor - to help test the logic of a compiled project.
The Simulator tests the logical operation and internal timing of a project, allowing the
user to model a circuit design before it is programmed into a device. For functional,
timing or multi-project simulation , the project must be compiled and a Simulator
Netlist File (.snf) should be generated. The Simulator uses a graphical waveform

Simulator Channel File (.scf) or an ASCII Vector File (.vec) as the source of input

12



vectors. It is easy to create an Input Vector File which generates a .scf file.

2.4.2 Input test format for simulating ALTERA MAXPLUS II mod-

els

An ASCII text file (with the extension .vec) is used as the input for simulation, func-
tional testing, or waveform design entry. Simulation is carried out based on the vector
file which specifies the input logic levels. These input logic levels are the vectors that
drive the input pins and determine the internal logic levels throughout the project. It
also specifies the start and stop times of the vectors and also the intervals at which
these vectors can be applied. The Simulator creates an .scf file based on the .vec file.

The .vec file can be created using any normal text editor.

2.5 An Introduction to XML

As the abstract test vectors are generated in XML this section provides a brief intro-
duction to XML. XML, the Extensible Markup Language, is a W3C-endorsed standard
for document markup [9]. It defines a general syntax used to markup data with simple
human readable tags. Data is included in XML documents as strings of text, and
the data is surrounded by text markup that describes the data. A particular unit of
data and markup is called an element. The XML specification defines the rules for
the syntax- how the data is represented in tags, how the tags are placed, how the
attributes should be defined for a particular tag and so on . XML is a meta-markup
language, it doesn’t have a fixed set of tags. Users can define their own tags based

on their application. This provides a lot of flexibility for specifications. For instance

13



a chemist can use tags that describe molecules, atoms, and other relevant elements in
chemistry, while real estate agent can use elements that describe appartments, rents
etc. A tool that deals with generation of test vectors can use it to define tags that
define vectors, conditions, and parameters. The generic format of a tagged value can

be represented as:

<tag> data(attributes) </tag>

All forms of data must be embedded in tags. Though XML is flexible in the type of
elements it allows to be defined, it mandates a grammar for every XML document.
That grammar defines the placement of tags, how tags should be nested and how
the attributes should be attached to the elements. XML documents that follow rules

defined in the grammar are called Well-Formed XML documents.

2.5.1 XML Building Blocks

All the XML documents are made up of the following building blocks.

Elements, Tags, Attributes, Entities, PCDATA, CDATA.

Elements are the main building blocks of an XML Document.

Tags are used to markup elements. A starting tag like <element> can be used as
a beginning of the element and a tag like </element> defines the end of the

element.

Entities are used to define common text. They are expanded when they are parsed

by the XML parser.

14



PCDATA is text that is parsed by the XML parser.

CDATA is the text that is not parsed by the XML parser.

Empty Elements are elements that do not have any content. They can be represented

as <elementname/> or <elementname></elementname>.

XML Trees: XML documents are represented as trees. Figure 2.4 gives a clear idea

about XML documents.

<person>
<name>
<firstname>Albert</firstname>
<lastname>Einsten</lastname>
</name>
<profession>scientist</profession>
</person>

Figure 2.4: XML Representation

Parents and Children Elements: The above XML structure is composed of one person
element. mame and profession are children for the person element. firstname

and lastname are the children for the name element.

Attributes: An attribute is a name-value pair attached to the elements start tag. The
name and the value are separated by an “=” sign or optionally by a space. For

example Figure 2.5 shows a person born in 03/14/1879 and died in 04/18/1955

where born and died are the attributes.

Uses of XML: XML is used to separate data from HTML. With HTML, data is stored

inside HTML. But with XML data can be stored in separate XML files. In this way

15



<person born=’’03/14/1879’’ died=’’04/18/1955"°>
Albert Einstein
</person>

Figure 2.5: Attributes in an XML Document

HTML can be used for external data and display and be certain that any changes in
the underlying data does not require changes for the HTML.

As computer systems and databases in real world contain data in different
formats, it is a major problem for developers working on different database formats to
exchange information. By converting and storing all the data in XML this complexity
is reduced and the same data can be used by different applications. As XML data
is stored in text format it is a software and hardware independent way of sharing
the data. XML can also be used to store the data. The data can be stored in files
or in databases. Applications can be designed to retrieve the data from the store.
Applications can also be written to display the XML data.

The major advantage of XML is that it can be used to create new languages.
For instance WML(Wireless Markup Language), a language used to markup Internet

applications for mobile phones, is an XML derivative.

2.5.2 DTD

A Document Type Definition (DTD) [3] is defined for representing the test vectors
in XML. DTD defines formal syntax that defines an XML document. It defines the
order in which elements appear in a document. It also defines the attributes that

can be defined for a particular element. It is a template that gives an idea about

16



the document. Any XML parser will fill this template to obtain the resultant XML
document. Every XML file can carry a description of its own format with a DTD. This
can be used as an interchange format for different groups if they agree on a specific
DTD. DTD can be used to verify the data that you receive from the outside world or
it can be used to test your own data.

DTD’s can be defined based on the specific application. XML documents can
be categorized into two classes. If a document conforms to the rules specified in the
DTD then it is called a wvalid document. If it does not conform, it is known as non-valid

document.

2.5.3 XML Schema

An XML Schema [3] defines the legal building blocks of an XML document. It defines
all the elements that appear in an XML document. It defines the children for a
particular node and also the order in which they can appear and the number of child
elements. It also indicates the attributes for a particular element. With Schema you
can determine if a particular element is empty. XML Schemas support data types.
With support for data types it is easier to describe permissible document content.
XML Schemas are represented in XML. So any XML parser can be used to parse a
particular XML Schema file and access it using DOM. It can also be transformed using
XSLT as it is in XML format. XML Schemas are extensible, and with this feature we
can reuse our Schema in other Schemas and multiple schemas can be referenced from

the same document.
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2.5.4 XSLT

In this thesis an XSLT is used to convert abstract test vectors in XML to WAVES for-
mat. A gentle introduction to XSLT follows. XSLT stands for Extensible Style Sheet
Transformation [11]. It is a W3C standard defined for transforming XML docments.
The style sheet defines a set of rules that defines how information embedded between
the tags in XML should be transformed. An XSLT style sheet is an XML document.
It has the same features as XML, the data is represented in tags. An XSLT style sheet
consists of a set of template rules each of which has the function “mplement a par-
ticular rule if a particular node is encountered.” The order of the rules does not have
any significance. If more than one rule matches a particular element in the document,
then a conflict-resolution algorithm is applied. It resembles text processing languages
like Perl. The difference between a serial text processing language and XSLT is that
the input is not processed line by line in XSLT. The input XML document is treated
like a tree and each template rule is applied to a branch in the tree.

There are many XSLT processors that take a tree structure as input and gen-
erates another tree structure as the output. The input tree structure is produced by
parsing the XML document and the output tree structure will often be serialized into

another XML document.

2.5.5 DOM

DOM stands for Document Object Model [2]. It provides a standard programming
interface to the applications. Using DOM a developer can access all the building

blocks of XML documents like text nodes, attributes and a lot more. It is designed to
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work with any language and any Operating System. The XML document should be
stored in the memory before it can be accessed. An XML parser stores the XML in
memory. After the document is loaded the information can be accessed and modified
using DOM API. It gives capability to create new elements, new nodes and also new
attributes. It also gives the capability to delete the elements. A DOM represents a
tree view of an XML document. There will be a top level parent element and there
will be different child nodes for the parent element. A child node can or cannot have

siblings.

2.5.6 JAXP

JAXP stands for Java Api for Xml Processing [8]. JAXP leverages the parser stan-
dards SAX(Simple API for XML Parsing) and DOM(Document Object Model), so
that the XML data can be parsed as a stream of events in the former case or as an
object representation of the data in the later case. This package also supports XSLT
that can be used to convert the XML data into other formats like HTML for repre-
sentation purposes. This package also supports namespaces , allowing to work with
DTD’s which might otherwise cause naming conflicts. This package allows any XML
complaint parser to be used from within an application. This package is used in this
thesis to parse XML documents. Xalan and Xerces [8] parsers are used as part of this

thesis work.
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2.5.7 Summary

From the research conducted as part of our work, we found it useful to have an test
vector generator that generates the test vectors in a language and platform indepen-
dent manner. Also generating the test vectors from Rosetta specifications allows the
designer to work at a highly abstract level. Based on the discussions in the previous
chapters and the introductions of the technologies given in this chapter, we can form

a framework for the representation of test-vectors in XML.
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Chapter 3

Design Verification Test

(Generation

Details of the actual problem that this thesis addresses are provided in this chapter.
Details of the test vector generator, DVTG [5] are provided. It gives the details about
the three phases involved in the generation of concrete test vectors - generation of test
scenarios, generation of abstract test vectors in XML and the generation of concrete
test vectors from the abstract test vectors. It further discusses the rationale behind
selecting XML as the intermediary representation format for the abstract test vectors.

There are automatic test case generators in industry that generate test cases
particular to a simulation environment [15]. This makes the tool dependent on a par-
ticular language and limits flexibility of the tool to integrate it with other applications.
This limitation prevents the user to work with the tool if they are not familiar with

the language in which the test vectors are generated. Moreover the implementation
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of the tool must be changed every time a new format needs to be generated. DVTG
is an automatic test case generator that is used to generate test cases from Rosetta.
The following sections give a brief introduction about the specifics of DVTG and how

1t works.

3.1 Test Scenarios

A test scenario is a set of boolean conditions that are constraints on the values of
input and output parameters of a haraware or software module. The methodology
used for generating the test scenarios is an extension of the implementation based
techniques applied to formal languages. FEach test scenario consists of input criteria and
acceptance criteria. The constraints on the inputs are specified by the pre-condition
and hence the input criteria is obtained from the pre-condition. The constraints on the
output for specific input values are specified by the post-condition. The acceptance
criteria is therefore obtained from the post-condition. For a given test case and system
if the input criteria are satisifed and does not satisfy the output criteria, then there is
an error in the implementation.

Input criteria can be as specific as a single value or it can be generalized to a
range of values. Thus an input variable can be initializd to a single value or it can be
constrained within a range of values. The single value is used when the system needs
to be driven to a particular state before the test vectors can be generated. The range
of values are used to generate the abstract test vectors in the range. Similarly the

acceptance criteria specify a single value or a range of values for the output parame-
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ters. Thus the test scenarios provide a class of tests that will serve as inputs for the
simulation of the system.

As all the terms inside a facet are boolean expressions, the test scenarios are
generated by evaluating the expressions to true or false. Operators joining the variables
and literals of various types are used to form the expressions. According to the multi
condition strategy that is used to generate the test scenarios, enough test scenarios
should be generated for an expression to take all possible values. For example, in the
case of an arithmetic expression that has an integer outcome, test scenarios should
be generated such that the result of the expression ranges from the smallest to the
largest integer. In the case of boolean the entire range of outcomes are covered in the
set of true and false. As all Rosetta terms are boolean expressions and they evaluate
to true, test scenarios are generated such that the operands in the expression take all
possible values that make the expression true.

In this work, input parameters are referred to as driving values. This indicates
that the input parameters drive the system to a particular state. Output parameters
are referred as driven values. This signifies that the output parameters will be driven
to a particular state. Rosetta expressions are specified as predicates. A predicate is
called controllable if the values of the variables that build the predicate are driving
values. As the driving values are used to control the system, the predicate is called as
a controllable predicate. Similarly if the predicate contains only driven values, then it
cannot be controlled and hence it is called as non-controllable.

Rosetta expressions will be composed of either logical operators or relational

operators or both. The following paragraphs gives information about how the different
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logical and relational operators are processed in DVTG.

3.1.1 Logical Operators

Logical Operators are handled according to the canonical definition of each operator.
Primarily all possible test cases for the operator based on the truth table are gener-
ated. After that redundant test cases are eliminated. For instance, consider a binary
expression. It contains two operands and an operator. If both the operands of an
operator have driving values then there are no output values to be observed and the
test scenarios for this expression can be ignored. In the following paragraphs the terms

P(x) and Q(y) are used. Both are predicates over x and y respectively.

e And Operator

P(x) | Q(x) | P(x) and Q(x)
0 [ 0 0
0 1 0
1 0 0
1 1 1

Table 3.1: Truth Table for AND Operator

Table 3.1 shows the truth table for the AND Operator. From the above table we
can infer that the expression P(X) and Q(y) is true only when both the predicates
P(x) and Q(y) are true. Hence the only test scenario that is generated for an

AND expression is:

(P(x) = true) AND (Q(y) = true).

If the AND expression is a pre-condition then the test scenario can be eliminated

as there are no output values to be observed.
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e Or Operator

P(x) | Q) | P(x) or Q(x)
0 [ o 0
0 1 1
1 0 1
1 1 1

Table 3.2: Truth Table for OR Operator

Table 3.2 shows the truth table for the OR operator. From the above table it
can be observed that the OR expression is true when either or both the operands
are true. The OR expression is false when both the operands are false. So, the
test scenarios that can be generated when the OR expression is evaluated to true

are shown below:

(P(z) = false) AND (Q(y) = true) (3.1)
(P(z) =true) AND (Q(y) = false) (3.2)
(P(xz) =true) AND (Q(y) = true) (3.3)

By considering driving and driven values for the variables, P(x) is controllable
when x is a driving variable and non-controllable if x is a driven variable. If
P(x) is a controllable predicate in the expression (P(X) OR Q(y) ) then the
only scenario of interest is when P(x) is false. This is because the above OR
expression will be true always regardless of the value of Q(y) when P(x) is true.

The same applies to Q(y).
After eliminating the redundant test scenarios the final test scenarios are shown
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in the table 3.3. In table 3.3 the left side columns indicate the driving and the

x y | Test conditions considered
0 0 3.1 3.2 3.3

0 1 - 3.2 -

1 0 3.1 - -

1 1 - - -

Table 3.3: Final Test Scenarios of OR Operator

driven values. 1 indicates that a variable is a driving variable and 0 indicates
that a variable is a driven variable. Thus the test scenarios that will be generated

for an OR expression will be different.

¢ Not Operator

P(x) | not(P(x))
0 1
1

Table 3.4: Truth Table for NOT Operator

Not is a unary operator. From the truth table 3.4 it can be inferred that the
NOT expression evaluates to true when the predicate P(x) is false. So the only

test scenario that is generated is:

(P(x) = false)
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e If-Then-Else Operator

If-Then-FElse operator contains three predicates. The predicate in the Then con-
dition is evaluated to true if the if condition is true. FElse condition is evaluated
to true if the if condition is false. An if expression of the form If P(x) Then
Q(y) Else R(z) is equivalent to the disjunction of the form (P(x) and Q(y))
or (not(P(x)) and R(z)). Based on this transformation, the truth table is

shown in Table 3.5.

P(x) and Q(y) | not(P(x)) and R(z) | (P(x) and Q(y)) or (not(P(x)) and R(z))
0 0 0
0 1 1
1 0 1
1 1 0

Table 3.5: Truth Table for If-Then-Else Operator

From the above truth table, evaluating the if expression to true, we get the

following test scenarios

not(P(x) and Q(y)) and (not(P(x)) and R(z)) (3.4)

(P(z) and Q(y)) and not(not(P(z)) and R(z)) (3.5)

The above test scenarios can further be simplified using De Morgans laws. Con-

sidering the test scenario 3.4

not(P(z) and Q(y)) and (not(P(z)) and R(z))

27




By expanding the NOT Operator using De Morgans laws we obtain:

not(P(x)) or not(Q(y)) and (not(P(z)) and R(z))

Applying the test scenario generation algorithm for the OR Operator, we get

three scenarios:

P(z) and not(Q(y)) and (not(P(z)) and R(z)) (3.6)
not(P(x)) and Q(y) and (not(P(z)) and R(z)) (3.7)
not(P(x)) and not(Q(y)) and (not(P(z)) and R(z)) (3.8)

First test scenario can be eliminated from the above 3 test scenarios as there is a

contradiction in P(x) and not(P(x)). Thus the resultant 2 test scenarios are:

not(P(x)) and Q(y) and R(z)

not(P(z)) and not(Q(y)) and R(z)

It can be observed that the above two scenarios are contradictory as one test
scenario contains Q(y) and the other test scenario contains not(Q(y)). So

we can infer that the predicate Q(y) does not have any significance when the
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predicate P(x) is false. So by ignoring Q(y) we get a single scenario:

not(P(x)) and R(z)

The final simplified scenario is:

(P(z) = false) and (R(z) = true)

Applying the similar technique to simplify test scenario 3.5 the final scenario is

obtained as:

Thus the final list of test scenarios generated for an If-Then-Else expression can

be summarized as follows:

(P(z) = true) and (Q(y) = true)

(P(z) = false) and (R(z) = true)

3.1.2 Relational Operators

A Relational expression is an expression is an expression that contains operands with

a relational operator. To generate the test conditions, test values are obtained that

cause the relational expressions to evaluate to either true or false. The test scenarios

generated for the relational operators are shown in table 3.6. In a relational expression,
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Operator | Expression | True Expressions | False Expressions
< x <y x <y X >y
=< x =<y x =<y X >y
> X >y X >y x =<y
>= X >=y X >=y x <y
= x=y x=y x /=y
/= x /=y x /=y x=y

Table 3.6: Test Conditions for Relational Operators

the right hand side operand divides the whole expression into two classes. One of the
classes evaluate the expression to true and the other class evaluates it to false. For
example the expression a < 10 is divided into two classes. One class contains all the
values of a that are less than 10 and the other class contains all the values of a that
are greater than 10.

In some cases there can be logical expressions that have relational expressions
as an operand. If these sub expressions generates many values for the operand, then
they are combined according to the rules of the operator joining the sub-expressions.
The following example shows a scenario where the relational and the logical expressions

are combined in an expression. Considering an if expression of the following form:

if (input1<10)

then ((outputl = 5) and (output2 = 20)

else ((outputl = 10) and (output2 = 30)

end if

The scenarios that were generated for the above expressions are as follows:

scenariol: (inputl < 10) and (outputl = 5) and (output2 = 20)

scenario2: (inputl >= 10) and (outputl = 10) and (output2 = 30)
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3.2 Test Requirements

Scenarios represent the boolean conditions specified on the input and output variables.
They typically represent a range of values for the input and output variables. This
range can be huge and the number of values that are generated can be very high. A
user can place constraints on the values with a requirements file that limits the number
of values that can be generated. The requirements should be set such that there is a
practical limit on the range of values that can be generated.

Requirements can be directly specified on the input variables or there can be
cases where a user can specify a range of values over a property of an input and not the
input directly. In such cases it is necessary for the user to provide a mechanism so that
inputs with the right property or characteristics are generated. Test requirements are
generally specified on the input parameters of the components. The input parameters
act as control variables for any component. These control variables can directly modify
the output variables or they modify the data variables inside a component. The data

variables are declarations that were made locally in the component. Figure 3.1 shows

package testrequirements is

begin logic
test_req(parameter::label;lower_bound,upper_bound, setps: :number) ;
test_init(seq: :number;vector: :univ) ;
init(seq: :number;vector::univ);

export all;

end package testrequirements;

Figure 3.1: Test Requirements Package

the package that is used to specify the test requirements for a particular system. The

function test_req takes a variable and it specifies a lower bound, upper bound and an
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increment for the variable. The functions test_init and init accepts a sequence number

and a vector. These vectors are used to drive a system to a particular state.

3.2.1 General Requirements

These requirements specify a range of values for the input variables. They are specified
using the Rosetta function test_req. With this function a user specifies a lower bound,
an upper bound and an increment for all the variables. The combination of all the
numbers for different variables are the different test cases selected. This is illustrated

with a sample example in figure 3.2. Figure 3.2 defines two test_req functions that

reql: test_req(varl, 1, 2, 1);
req2: test_req(var2, 2, 3, 1);

Figure 3.2: Specifying Test Requirements

initializes two variables varl and var2. The test cases that will be generated are

shown in Figure 3.3.

varl = 1 var2 = 2
varl = 1 var2 = 3
varl = 2 var2 = 2
varl = 2 var2 = 3

Figure 3.3: Test Cases Generated

3.2.2 Initial Vectors and Test Cases

In some situations, for the test cases to be generated a system needs to be driven to a
particular state. The initial test vectors are used to drive the system to a initial state.

The functions test_init and init are used to achieve this functionality. These functions
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take a sequence number and an expression as an argument. The sequence number
is an integer and it determines the order in which the initial vectors are evaluated.

Figure 3.4 illustrates this concept.

package store_req is
begin logic
facet store(timeln::in time;setAlarm::in bit;setTime::in bit;
toggleAlarm: :in bit;clockTime: :out time;
alarmTime: :out time;alarmOn::out bit) is

test_req(param: : sequence (char) ; lower_bound,upper_bound,increment: :real):

begin state_based
I1:init (1, (alarmTime = 10.0));
I2:init(2, (clockTime = 20.0));
I3:init(3,(alarmOn = 1.0));
14:test_req(timeIn,5.0,6.0,1.0);
end facet store;

end package store_req;

Figure 3.4: Requirements file illustrating usage of init function
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Chapter 4

Implementation Details

4.1 Abstract Test Vectors

The main goal behind generating test vectors is to specify expected output values
for specified input values. Vectors are obtained from test scenarios that are in turn
obtained from the specification and user specified requirements. The DVTG tool
restricts the test cases generated from test requirements to preconditions specified in
the Rosetta specification. Scenarios generated from Rosetta specification are combined
with user requirements to generate the abstract vectors. The process in represented

in Figure 4.1.

4.2 XML Representation

The format for the XML representation for abstract test vectors is described in Fig-
ure 4.2. The DTD( Document Type Definition) [3] is presented and then the DTD is

described with an example.
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Rosetta
Specification

Abstract

DVTG Vectors

User /
Requirements

Figure 4.1: Flow of generation of Abstract Test Vectors

<!ELEMENT vectorslist (vector)#*>
<!ELEMENT vector (condition)*>
<!ELEMENT condition (parameter,value)*>
<!ELEMENT parameter (#PCDATA)*>
<!ELEMENT value (#PCDATA)=*>

<!ATTLIST parameter mode CDATA #REQUIRED*>

Figure 4.2: Abstract Test Vectors DTD

The XML document has vectorslist as the root element. wvector is the child
element for the root. The vectorslist root element can have many vector child elements.
A wvector has condition as the child element. There can be many condition elements
in a vector element. Each condition has parameter and value as child elements. A
parameter has a name and an attribute associated with it. An attribute is used to
decorate a node. It gives more information about the node. Here the parameter node
has mode as the attribute. It defines if the parameter is of input mode or output
mode. A condition also has value as a child that stores the value of the parameter.

This is explained with a simple example for a schmidt Trigger. Figure 4.3
shows the scenario file for the schmidt trigger specification. From the specification
in figure 4.3 for schmidtTrigger we can infer the following facts. The component

has an input variable input_voltage and an output variable output_value. This

35



package schmidtTrigger is
begin logic
facet schmidt_trigger(input_voltage::in real;output_value::out bit) is
b :: bit;
begin state_based
ACCEPT_1: (input_voltage >= 0.0) and (input_voltage =< 5.0);
ACCEPT_1: (input_voltage < 1.0) and (b’ = 0);
ACCEPT_2: (input_voltage > 4.0) and (b’ = 1);
ACCEPT_3: (input_voltage =< 4.0) and (input_voltage >= 1.0) and (b’ = b);
ACCEPT_1: (output_value = b’);
end facet schmidt_trigger;
end package schmidtTrigger;

Figure 4.3: Scenarios file for Schmidt Trigger

specification has a local variable declaration b that is of type bit. In this specification
input_voltage becomes the control variable and the declared variable becomes the
data variable. According to the specification the value of the input variable should
lie between 0.0 and 5.0. According to the output condition output _value = b’, the
value of the output variable equals the value of b in its next state. The value of the
output variable is 0 if the input value is less than 1.0. If the input value lies between
1.0 and 4.0 then the value of the output variable equals the value of the declared
variable in the previous state. If the value of the output variable is greater than 4.0
then the output value equals 1.0. The XML representation of the abstract test vectors
is shown in Figure 4.4.

Figure 4.4 shows the Abstract Test Vectors in XML for Schmidt Trigger. The
XML file starts with <wectorslist> element and is the collection of all the vectors.
This is followed by the <wector> element. This element contains an abstract test vec-
tor. This element contains two <condition> elements. The first <condition> element

stores the information about the input parameter input_voltage. It contains two ele-
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<vectorslist>

<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 0.0 </value>
</condition>
<condition>
<parameter mode = "out'">output_value </parameter>
<value> 0.0 </value>
</condition>
</vector>
<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 0.5 </value>
</condition>
<condition>
<parameter mode = "out'">output_value </parameter>
ments <parameter> and <wvalue>. The attribute mode = “in” for the <parameter>

node specifies that input_voltage is an input variable. The <walue> element stores
the value for the input_voltage variable. The other <condition> element stores the
data about the output variable output_value. The <parameter> element stores the
name and mode of the variable and the value element stores the value of the variable.
We have a set of <wector> elements that store information about all the abstract test

vectors. This information is ended by an ending < /vectorslist> tag.

4.2.1 Concrete Test Vectors

As there is no testing software for Rosetta, abstract test vectors that are generated
from DVTG are transformed into a format that is specific to some testing environment.
DVTG converts the abstract test vectors into two formats. One is WAVES format,

an input format for testing VHDL implementations. The other is an input format
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<value> 0.0 </value>
</condition>
</vector>

<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 4.0 </value>
</condition>
<condition>
<parameter mode = "out'">output_value </parameter>
<value> 1.0 </value>
</condition>
</vector>
<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 4.5 </value>
</condition>
<condition>
<parameter mode = "out'">output_value </parameter>
<value> 1.0 </value>
</condition>
</vector>
</vectorslist>

Figure 4.4: Abstract Test Vectors for Schmidt Trigger
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for simulating models designed in ALTERA MAXPLUS II. This process is shown in

figure 4.5.

XSLT to generate

concrete test >

vectorsin WAVES

Concrete Test
Vectorsin WAVES
format

Abstract Test
Vectorsin XML

DOM to generate
test vectors for

ALTERA "
MAXPLUSII

Concrete Test
Vectorsfor ALTERA
MAXPLUSII

Figure 4.5: Generation of Concrete Test Vectors

Generation of test vectors in WAVES format

The abstract test vectors that have been generated in XML are transformed into
WAVES, the test format for simulating the VHDL implementations. This functionality
is achieved by using XSLT. An XSLT has been developed as part of this thesis to
generate test vectors in WAVES format. XSLT takes an input XML document and
generates the output based on the rules specified in the transformation sheet. The
style sheet used as part of my thesis is shown in figure 4.6.

This XSLT has different templates specifying the action to be taken when a
particular node is encountered. The XSLT processor walks through the XML docu-
ment and when the appropriate node is encountered corresponding action is executed.
In the transformation sheet in Figure 4.6 there are four templates. The first template

matches the beginning <wvector> element and prints all the input and the output vari-
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<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0org/1999/XSL/Transform">

<xsl:template match="/">
<xsl:text>}</xsl:text>
<xsl:value-of select="count(vectorslist/vector)"/>
<xsl:apply-templates select="/vectorslist/vector[1]/condition/parameter"/>
<xsl:text>
</xsl:text>
<xsl:apply-templates select="/vectorslist/vector"/>
<xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="/vectorslist/vector">
<xsl:apply-templates select="condition/value">
</xsl:apply-templates>
<xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="/vectorslist/vector[1]/condition/parameter">
<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="condition/value">
<xsl:value-of select="."/>
<xsl:text>&#9;</xsl:text>
</xsl:template>

</xsl:stylesheet>

Figure 4.6: XSLT for generating WAVES format
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ables. The following templates extracts values for all the variables and prints them in

a format shown in Figure 4.7.

input_voltage output_value
0.0 0.

B PR W wWwWNDNNERE =, O
OO0 01O 0o O o1 O O
L, O O O0OO0OO0OOOo
O O O O O OO O o OOl

Figure 4.7: Concrete Test Vectors in WAVES format

Test format for testing ALTERA MAXPLUS II models

ALTERA MAXPLUS II has a simulation environment that allows users to simulate
the models designed using that tool. To simulate the model the test requirements
should be specified in a specific format. This thesis generates concrete test vectors in
that format.

Converting the abstract test vectors in XML to this format is implemented
using DOM. The input XML abstract test vectors are parsed and the information is
stored in DOM. DOM is an Object Tree representation for the input XML document.
An application has been developed as part of this thesis that walks through DOM and
generates the output in the required format. The input format for testing the models
designed using ALTERA MAXPLUS II is shown in Figure 4.8. The test format in
Figure 4.8 contains the input parameters and their corresponding initial, final and the

increment values. It also contains all the output parameters.
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START 0;

STOP 5;

INTERVAL 0.5;

INPUTS input_voltage;
0UTPUTS output_value;

Figure 4.8: Input Test format for ALTERA MAXPLUS II

4.3 Support for Rosetta Data Types in DVTG

In the Schmidt Trigger specification there are two variables of type real and bit. In
addition to these data types Rosetta has other data types. Data Types in Rosetta
can be classified into two categories, Primitive Data Types and Composite Data Types.
Primitive data types are atomic and cannot be decomposed. Composite data types are
not elemental values and they can be defined by describing their contents. Support for
different data types in DVTG is discussed in the following section. DVTG supports
all the primitive data types like integers, reals, booleans and bits. It also provides
support for composite data types such as bit-vectors and sequences. The following

sections discuss the different composite data types and their support in DVTG.

4.3.1 Bit Vectors

A Bit Vector is a sequence of bits. Each element of a bitvector can be either 0 or 1. A
bitvector is declared by encapsulating the bits with in square brackets. The different

elements in a bitvector are separated by commas. [7] A Bitvector can be defined as
bitvector: :type is sequence(bit);.

All the operations that can be performed over bits are generalized to bitvectors. The

operations are performed by operating on the same indexed bits from the two bitvec-
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tors. If any of the bitvectors is longer then the shorter bitvector is padded to the
left with 0’s. To allow bitvectors of specific lengths, a special subtype of bitvector is
defined. A wordtype former takes a natural number as an argument and selects all

the bitvectors that have the length as the specified natural number.

wordtype(n: :integer) : :set(bitvector) is sel(b::bitvector | #b = n);

The definitions

word: :subtype(bitvector) is wordtype(16);
byte: :subtype(bitvector) is wordtype(8) ;

nybble: : subtype (bitvector) is wordtype (4);

define new types called word, byte, and nybble that have 16, 8 and 4 for lengths

respectively.

Specifying Test Requirements for BitVectors

The specification of requirements for bit vectors is the same as specifying the test
requirements for primitive data types like reals, integers etc. Specifying the test re-
quirements for primitive data types is acheived by using test_req Rosetta function.
This function will be specifying a lower bound, upper bound and an increment for
the variables. For example the function declaration test req(var,1.0,5.0,1.0) ini-
tialises 1.0 as the lower bound, 5.0 as the upper bound and increments in steps of
1.0 for the variable var. The test requirements for bit vectors are specified similarly.
There will be a lower bound that is specified as a bitvector and an upper bound speci-

fied as bitvector. The increment is specified as a real number. This is illustrated with
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a sample example. test_req(var,[0,0,0,0],[1,1,0,0],1) initialises var that is of
type bitvector to have [0,0,0,0] as the lower bound, [1,1,0,0] as the upper bound and 1
as the increment. Rosetta supports bv2nat() and nat2bv() functions that facilitate the
conversion of a bitvector to a natural and a natural to a bitvector respectively. The
increment can thus be specified as a natural number.

BitVectors are containers of bits. They have only 0’s and 1’s as the variable
elements. Rosetta also supports composite data types that are containers of elements
that may not be 0’s and 1’s. These data types are Sets and Sequences. Sets provide
a container for a specified type that is not indexed and does not contain duplicate
items. Sequences index elements allowing individual elements within the Sequence to

be accessed.

4.3.2 Sequences

The features of arrays and lists are combined into a single data structure called Se-
quence [7]. Sequences are indexed so that individual elements can be randomly ac-
cessed with their index. For illustration purposes if § = [1,2,1] then s(0) = 1, s(1)
= 2 and s(2) = 1. A Sequence can have multiple instances of the same value. In the
above example element '1’ appears in two instances. The sequence “[ ]” former forms
sequences by extension. The order of the elements in the sequence is the same as the

lexical ordering in the former.
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Specifying Test Requirements for Sequences

The specification of test requirements for sequences is different from specifying the test
requirements for primitive data types. The test requirements for primitive data types
contains specifying the lower bound, upper bound and increments for the variables.
But the requirements for Sequences contain only initialized values and do not contain
any final values or any increment. After the initial values are specified the individual el-
ements in the sequence can be accessed with an index. test_req(var, [apples,oranges,grapes])
is an example of specifying the requirement for sequences. var is of type Sequence and
the initialized value is [apples,oranges,grapes]. The elements are indexed from 0

and the individual elements can be accessed with the index.

Implementation details of Sequences

The initialized values for the sequences are extracted from the test requirements file
by parsing the test requirements. The variable name and the initialised values for the
variable are stored in a data structure. The values are stored in the order in which
they appear in the test requirement file. In the vector generator these values are
acquired and based on the functionality specified in the scenarios file the corresponding
operation is performed and the concrete test vectors are generated. For example if
a is initialised to the sequence [apples,oranges,grapes], then a[0] corresponds to
the element apples, a[1] corresponds to the element oranges and so on.

Rosetta supports another composite datatype sets. Sets are also collection of
elements, but there is no ordering among the elements of the set, so the individual

elements cannot be accessed with an index. Generating test vectors for Sets is simi-
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lar to generating the test vectors for Sequences. But while extracting the initialised
values for the variables from the user specified test requirements and storing them in
a data-structure, the order of the elements in which the elements are stored need not
be considered. Moreover with a set, test vectors cannot be generated for individual

elements. Vectors should be generated for the entire collection of elements.
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Chapter 5

Examples

In the chapters thus far the methodology of generation of test vectors from Rosetta
specifications has been discussed. In this chapter this methodology is illustrated with
some sample examples. Schmidt Trigger and Alarm Clock examples are used to illus-
trate this methodology. Abstract and Concrete test vectors for both the examples are

discussed here.

5.1 Schmidt Trigger

5.1.1 Functionality and Specification

A Schmidt Trigger is a square wave generating circuit component with hysteresis.
If the output value exceeds a particular value (upper threshold) or if it goes below
a certain value (lower threshold) the output value changes. If the input value is in
between the upper threshold and the lower threshold then the output value remains

the same.
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facet schmidt_trigger(input_voltage :: in real;
output_value :: out bit) is
/* local declarations */
b::bit;
begin state_based
/* first pre condition */
prel: (input_voltage > 0.0) and (input_voltage < 5.0)
/* first post condition */
postl: if (input_voltage < 1.0)
then (b’=0)
else if (input_voltage > 4.0)
then (b’=1)
else (b’=b)
end if;
out : (output_value = b’)
end facet schmidt_trigger;

Figure 5.1: Schmidt Trigger Specification

From the specification in Figure 5.1 we can see that the component has in-
put_voltage, an input variable that is of type real. output_value is the output variable
that is of type bit. The domain included is state_based. The first term prel indicates
that the input variable input_voltage should be between 0.0 and 5.0. The term labeled
out describes the relationship between the output variable and the locally declared
variable. The second term labeled post1 describes the actual functionality of the com-
ponent. If the value of the input variable is less than 1.0 then the value of the declared
variable is 0. If the value is greater than 4.0 then the declared variable is 1. If the
value of the input variable lies between 1.0 and 4.0 then the value of the declared

variable equals the value of the variable in the previous state.

5.1.2 Test Scenarios

Based on the conditions specified in Figure 5.1 a scenarios file is generated. As shown
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facet schmidt_trigger(input_voltage::in real;output_value::out bit) is
b::bit;

begin state_based

ACCEPT_1: (input_voltage < 1.0) and (b’ = 0);

ACCEPT_2: (input_voltage > 4.0) and (b’ = 1);

ACCEPT_3: (input_voltage =< 4.0) and (input_voltage >= 1.0) and (b’ = b);
ACCEPT_4: (output_value = b’);

end facet schmidt_trigger;

Figure 5.2: Scenarios for Schmidt Trigger

in Figure 5.2 the conditions ,that were specified in the specification in Figure 5.2, are
represented as boolean conditions in the scenarios file. The first scenario is obtained
by requiring the pre-condition to be true. The test scenarios for the post condition
are obtained by evaluating the post condition to true. Three acceptance conditions

are obtained by evaluating the IF-THEN-ELSE statements.

5.1.3 Test Requirements

The vectors are generated from the scenarios. From the scenarios in Figure 5.2 it can
be inferred that the number of test vectors that can be generated can be very large
and there must be a limit on the number of test vectors that can be generated. This
is achieved by specifying test requirements. These test requirements specify the initial
values, final values and increments for all the input variables. Figure 5.3 shows the
test requirements.

test_req is the declaration of the function that is used to initialize the input variables.
The term labeled [1 actually specifies the initial value, final value and increment for
input voltage. The input variable is initialized to 0.0 and the maximum value is 5.0.

It should be incremented in steps of 0.5.

49



package schmidt_trigger_ REQ is

begin 1logic
facet schmidt_trigger_ REQ(input_voltage::in

real;output_value::out real) is

test_req(a,b,c,d::real)::real;
begin state_based
1l1:test_req(input_voltage,0.0,5.0,0.5);
end facet schmidt_trigger_ REQ;

end package schmidt_trigger_REQ;

Figure 5.3: Requirements for Schmidt Trigger Specification

5.1.4 Output for Abstract Test Vectors in XML Format

The test vectors are generated from the generated test scenarios and the user specified
test requirements. The abstract test vectors are shown in Figure 5.4 are obtained by
evaluating the variables in the test scenarios file in Figure 5.2 with the values of the

variables from the test requirements in Figure 5.3.

<vectorslist>
<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 0.0 </value>
</condition>
<condition>
<parameter mode = "out">output_value </parameter>
<value> 0.0 </value>
</condition>
</vector>
<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 0.5 </value>
</condition>
<condition>
<parameter mode = "out">output_value </parameter>
<value> 0.0 </value>
</condition>
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</vector>
<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 4.0 </value>
</condition>
<condition>
<parameter mode = "out">output_value </parameter>
<value> 1.0 </value>
</condition>
</vector>
<vector>
<condition>
<parameter mode = "in">input_voltage </parameter>
<value> 4.5 </value>
</condition>

<condition>
<parameter mode = "out">output_value </parameter>
<value> 1.0 </value>

</condition>

</vector>
</vectorslist>

Figure 5.4: Abstract Test Vectors for Schmidt Trigger

5.1.5 Concrete Test Vectors in WAVES format

Abstract Test vectors are converted to WAVES format using a style sheet, XSLT. The
abstract test vectors in Figure 5.4 are given as an input to XSLT and the output is

the WAVES format shown in Figure 5.5.

ol



input_voltage output_value
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Figure 5.5: Concrete Test Vectors in WAVES format

5.2 Alarm Clock

An Alarm Clock is a time keeping device. It provides the basic capability of displaying
time, setting time, setting alarm and sounding the alarm. The following are the

requirements for the alarm clock:

o When the setTime bit is set, the timeln is stored as clocktime and output as the

displaytime.

e When the setAlarm bit is set, the timeln is stored as alarmTime and output as

the displaytime.

when the alarmToggle bit is set, the alarmOn bit is toggled.

When the clockTime and alarmTime are equivalent and alarmOn is high then

the alarm should be sounded, otherwise it should not.

The clock increments its time value when the time is not being set.

The specification of alarm is shown in Figure 5.6. The parameterized list gives the
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use time_types;

package alarm is

begin logic

facet alarmClockBeh(timeIn::in time; displayTime::out time;alarm::out bit;

setAlarm::in bit;setTime::in bit; alarmToggle::in bit) is

alarmTime :: time;
clockTime :: time;
alarmOn :: bit;

begin state_based
setclock: if setTime = 1
then (clockTime’ = timeIn) and (displayTime’ = timeln)

else clockTime’ = clockTime
end if;
setalarm: if setAlarm = 1
then (alarmTime’ = timeIn) and (displayTime’ = timeIn)
else alarmTime’ = alarmTime
end if;

displayClock: setTime = O and setAlarm = 0 => displayTime’ = clockTime;
tick : setTime => clockTime’ = increment_time(clockTime) ;

armalarm: if alarmToggle = 1
then alarmOn’
else alarmOn’
end if;

sound : alarmOn and %(alarmTime = clockTime);

—alarmOn
alarmOn

end facet alarmClockBeh;

end package alarm;

Figure 5.6: System Level Specification for Alarm Clock
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inputs to the system and the outputs from the system. Inputs correspond to the

control variables to the clock.

timeln - contains the current time input and can be used to set either the alarm time

or the clock time.

displayTime - is the time being currently displayed.

alarm - drives the audible alarm.

setAlarm and setTine control whether the alarm time or clock time are currently

being set.

alarmToggle - causes the alarm set state to toggle.

The state of the clock is represented by the local variables. The internal variables of

the system are:

clockTime - This bit maintains the current time.

alarmTime - It stores the value of the time associated with sounding the alarm.

alarmOmn is “1” when the alarm is set and “0” otherwise.

Inspecting the specification in Figure 5.6 indicates that each requirement is defined
as a labeled term. Term setClock handles the case where the clock time is being set.
Term setalarm handles when the alarm time is being set. Term alarmarm handles
the toggling of the alarm set bit. tick causes the clock time to be incremented. The
sound term defines the alarm output in terms of the alarmOn bit and whether the

alarmTime and clockTime values are equal. Figure 5.7 shows the flow of inputs and
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timeln setAlarm setTime alarmToggle
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. darmTime
clockTime alarmon
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MUX

\
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setTime displayTime

Figure 5.7: Structural Representation Of Alarm Clock
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outputs diagrammatically. From Figure 5.7 we see that there are three components
store, muz and comparator that comprise the alarm clock. As DVTG generates test
vectors for individual components of a complex system, a single component muz is
taken and its generation of concrete test vectors are illustrated here. The specification

of a component of alarm clock, muz is shown in Figure 5.8.

use time_types;
package alarm is
begin logic
facet mux(timelIn::in time; displayTime::out time;
clockTime: :in time; setAlarm::in bit; setTime::in bit) is

begin state_based

11: YsetAlarm => (displayTime’ = timeln);

12: YsetTime => (displayTime’ = timeln);

13: %(-(setTime xor setAlarm)) => (displayTime’ = clockTime);
end mux;
end alarm;

Figure 5.8: Alarm Clock Specification

From the specification in Figure 5.8 it can be inferred that ¢imeln that is
of type time is an input variable. clockTime is also an input variable of type time.
setAlarm and setTime are input variables of type bit. As the concept of state is used
the facet includes a state_based domain.

The actual specification of alarm clock is specified in terms. The first term /1 specifies
that if the setAlarm bit is set then the output variable displayTime in its next state
equals the input variable ¢imeln. The second term [2 also specifies that the output
variable displayTime equals the input variable timeln when the setTime bit is set.
The last term [3 specifies that when both the setTime and setAlarm bits are set

simultaneously then the value of the displayTime equals the clockTime.
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5.2.1 Abstract Test Vectors in XML

The test vectors are generated from the generated test scenarios and the user specified
test requirements. Variables in Test scenarios are evaluated by instantiating with the

values from the test requirements. The abstract test vectors are shown in Figure 5.9

<vectorslist>
<vector>

<condition>
<parameter mode = "in">setAlarm </parameter>
<value> 0.0 </value>

</condition>

<condition>
<parameter mode = "in">setTime </parameter>
<value> 0.0 </value>

</condition>

<condition>
<parameter mode = "in">clockTime </parameter>
<value> 6.2 </value>

</condition>

<condition>
<parameter mode = "in">timeIn </parameter>
<value> 5.1 </value>

</condition>

<condition>
<parameter mode = "out">displayTime </parameter>
<value> 6.2 </value>

</condition>

</vector>

</vectorslist>

Figure 5.9: Abstract Test Vectors for muz component

5.2.2 Concrete Test Vectors in WAVES format

Abstract Test vectors are converted to WAVES format using a style sheet, XSLT. The

abstract test vectors in Figure 5.9 are given as an input to XSLT and the output is
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the WAVES format shown in Figure 5.10.

setAlarm setTime clockTime timeIn displayTime

0.0 0.0 6.2 5.1 6.2
1.0 0.0 6.2 5.1 5.1
0.0 1.0 6.2 5.1 5.1
1.0 1.0 6.2 5.1 6.2

Figure 5.10: Concrete Test Vectors for muz component

The above shown Schmidt Trigger and Alarm clock examples illustrate the sup-
port for primitive data types like reals, integers, booleans, bits in DVTG. DVTG also
supports composite data types, data types whose elements are composed of primitive
data types. Composite data types provides the user more flexibility while specifying
the components. A user can represent more functionality with composite data types
than with primitive data types. For example if a user wants to perform boolean op-
erations on a collection of bits instead of a single bit, then defining a data type that
contains a set of bits and performing operations on that data type will be more useful
than performing on the individual bits. Such a collection of bits is called a BitVector

in Rosetta. The following example illustrates the support for bit vectors in DVTG.

5.3 BitVectors support in Rosetta

A BitVector is a sequence of bits. All the operations that can be performed over bits
are generalized to bitvectors. The following sections shows the specifications, abstract

and concrete test vectors for bitvectors.
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5.3.1 Specification Illustrating BitVectors

The specification in Figure 5.11 shows the sample specification using bitvectors. The
facet contains two input variables A and B. The length of these bitvectors is 4. The
outout variable is C is also of type bitvector. The term [ specifies the actual func-
tionality. It states that the output variable is the logical and between the two input

variables.

package bvector is
begin logic
facet bvet(A::in bitvector(4);B::in bitvector(4);C::out bitvector(4)) is
begin state_based
11:C = A and B;
end facet bvet;
end package bvector;

Figure 5.11: BitVector specification

5.3.2 Test Scenarios

Figure 5.12 shows the scenarios file for the specification in Figure 5.11. The specifica-
tion in Figure 5.11 is given as an input to the scenario generator and the final scenarios

obtained are shown in Figure 5.12.

package bvector is
begin logic
facet bvet(A::in bitvector(4);B::in bitvector(4);C::out
bitvector(4)) is
begin state_based
ACCEPT_1:(C = A and B);
end facet bvet;
end package bvector;

Figure 5.12: Scenarios for BitVectors
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5.3.3 Test Requirements

Figure 5.13 shows the requirements file for bitvectors. The requirement specification
for bit-vectors is the same as specifying the test requirements for reals. The function
test_req takes the variable name, its lower bound specified as a bit-vector, the upper
bound specified as bit-vector and the increment. The increment is specified as a real
number. The requirement specification in Figure 5.13 contains two test_req functions

that initialize two variables.

package bvector_req is
begin logic
facet bvector_req is
test_req(param: :set (char) ;ip::bitvector(4) ;maximum: :bitvector(4) ;inc
::bit;
begin state_based
l1i:test_req(4,[0,0,0,0]1,[0,1,1,1],1);
12:test_req(B,[0,0,0,0],[0,1,1,1],1);
end facet bvector_req;
end package bvector_req;

Figure 5.13: Requirements for BitVectors

5.3.4 Abstract Test Vectors in XML

The abstract test vectors are generated by instantiating the variables in test scenarios
in Figure 5.12 by the values specified in the test requirements in Figure 5.13. The

abstract test vectors are shown in Figure 5.14.
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<vectorslist>
<vector>
<condition>
<parameter mode = "in"> B </parameter>
<value> [0,0,0,0] </value>
</condition>
<condition>
<parameter mode = "in"> A </parameter>
<value> [0,0,0,0] </value>
</condition>
<condition>
<parameter mode="out"> C </parameter>
<value> [0, 0, 0, 0 ] </value>
</condition>
</vector>

<vector>
<condition>
<parameter mode = "in"> B </parameter>
<value> [0,1,1,1] </value>
</condition>
<condition>
<parameter mode = "in"> A </parameter>
<value> [0,1,1,1] </value>
</condition>
<condition>
<parameter mode="out"> C </parameter>
<value> [0, 1, 1, 1 ] </value>
</condition>
</vector>
</vectorslist>

Figure 5.14: Abstract Test Vectors for BitVectors
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5.3.5 Concrete Test Vectors in WAVES format

There is an XSLT, a transformation sheet, developed as part of this thesis that gen-
erates the concrete test vectors. Abstract test vectors in Figure 5.14 are given as an
input to this transformation sheet and the resultant concrete test vectors are shown

in Figure 5.15.

[090’0’0] [O,O’O’O] [O’ 0’ 0’ O ]
[O’O’O’O] [0’090’1:] [0’ O’ O’
[0’0’0’0] [O’O’l’O] [O’ 0’ O’ O ]

o
—

o,1,1,11  [o0,1,0,11 [0, 1, 0, 1]
0,1,1,11  [o,1,1,01 [0, 1, 1, 0]
[091’1!1] [091’1’1] [O’ 1! 1! 1]

Figure 5.15: Concrete Test Vectors for BitVectors

BitVectors are indexed collection of bits. Rosetta also provides data types
that are collection of elements where the elements may not be simple reals or bits.
The elements can be strings, numbers, bitvectors etc. Sets and Sequences are the
data types that define the collection of elements. As Sequences define an indexed
collection of elements generating test vectors for elements other than reals, integers
will be different. The following example shows the generation of concrete test vectors

for Sequences.
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5.4 Sequences Support in Rosetta

5.4.1 Specication of Sequences

Sequences are indexed collection of elements. Figure 5.16 shows a specification con-
taining sequences. This specification contains an input parameter A that is of type
Sequence and an output parameter B that is also of type Sequence. Term [1 specifies

the actual functionality of the specification.

package SequenceType is
begin logic
facet Sequence_Type(A::in sequence(char);B::out sequence(char)) is
begin state_based
11:B = A;
end facet Sequence_Type;
end package SequenceType;

Figure 5.16: Specification for Sequences

5.4.2 Test Requirements

Specifying Test Requirements for Sequences are different that specifying test require-
ments for numbers. test_req function initializes only a lower bound that is a collection
of elements. Each element can be accessed with an index. Figure 5.17 shows a speci-

fication that provides requirements for Sequences.

package SequenceType_REQ is
begin logic
facet Sequence_Type_REQ is
S::sequence(character);
test_req(param: :sequence(char) ;initial_value: :sequence(S))::int;
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begin state_based
tl:test_req(A, [apples,oranges,grapes,oranges]);
end facet Sequence_Type_REQ;

end package SequenceType_REQ;

Figure 5.17: Requirements for Sequences
5.4.3 Abstract Test Vectors in XML

Figure 5.18 shows the abstract test vectors for Sequences. These are obtained by com-

bining the scenarios obtained from the specification and the user defined requirements.

<vectorslist>
<vector>
<condition>
<parameter> A </parameter>
<value> apples </value>
</condition>
<condition>
<parameter> B </parameter>
<value> apples </value>
</condition>
</vector>

<vector>
<condition>
<parameter> A </parameter>
<value> oranges </value>
</condition>
<condition>
<parameter> B </parameter>
<value> oranges </value>
</condition>
</vector>
</vectorslist>

Figure 5.18: Abstract Test Vectors for Sequences

64



5.4.4 Concrete Test Vectors in WAVES format

Figure 5.19 shows the Concrete Test Vectors in WAVES format for Sequences. Ab-
stract Test Vectors are given as an input to a Transformation Sheet that is developed

as part of this thesis and the resultant output is shown in Figure 5.19.

A B
apples apples
oranges oranges
grapes grapes
oranges oranges

Figure 5.19: Concrete Test Vectors for Sequences
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Chapter 6

Summary and Future Work

6.1 Summary

The importance of testing in the development of any system cannot be understated.
It accounts for approximately 50% in the development cycle of the product. The
traditional approach for testing is implementation based testing. But this technique
tends to overlook the intended behavior of the system and focus on the correctness
of the implementation. This problem is overcome by using specification based testing
techniques that derive tests from requirements.

Testing involves developing test cases and running the test cases on the imple-
mentation. Developing test cases is an repetitious and tedious process. Thus automat-
ing the process of generating the test cases will reduce testing costs. An automatic test
case generator automatically generates test cases. There are many test case generators
by now that generate test cases in a particular language. This limits the ability of the

tool to integrate with other applications. It will be very useful if the automatic test
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case generator can generate test cases in a format that is independent of any language
or any simulation environment.

In this thesis we have developed a tool that automates the process of generating
the test cases from a Rosetta specifications. The tool generates test scenarios and test
vectors for input Rosetta requirement specifications. The test scenarios only give a
range of values for testing, but not the actual input test cases. This range can be very
large. So in order to limit the number of test cases that will be generated, a user can
specify the test requirements for the coverage area desired.

In this thesis we have chosen XML as the language independent format for
the test cases. This format is chosen because XML is getting widely deployed in
the industry as a standard way of representing data. The abstract test vectors are
generated in XML. The XML test vectors are then converted to concrete test vectors.
As part of this thesis, the abstract test vectors are converted into WAVES, a format
for testing the VHDL implementations and into input test format for simulating the

models designed using ALTERA MAX+II software.

6.2 Conclusions

Specification based Testing techniques should be used to augment Implementation
based techniques, but not to completely replace them. Using the specifications from
System Level Design Languages allows the systems to be represented at higher ab-
straction levels and the problem associated with being not able to concentrate on

requirements is solved with this testing technique.
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Automated test case generation will be of immense use in the field of testing.
The purpose of representing the test cases in a language independent format is served
well by XML. As part of this thesis work, the XML abstract test vectors are trans-
formed into two different formats. The concrete test vectors in these formats can be
used to simulate VHDL models and models designed using ALTERA MAXPLUS II
software. This XML format can be used to generate concrete test vectors for most of

the simulation environments.

6.3 Future Work

The existing implementation of test vector generator does not implement all the fea-

tures of Rosetta. Future work includes:

1. This tool supports only a limited set of data types like integer, real, bit, boolean,
bit-vector, sequences. The support for user defined data types is not supported

in this tool.

2. The support for structural specifications is not provided in this tool. When there
are multiple facets in a single package, this tool cannot generate test vectors for

the entire package. The test vectors will be generated for the individual facets.

3. In structural specifications, there should be support for generating the test cases
for facets that do not have any interface parameters. If a particular facet does
not have any input parameters or any output parameters to be observed then
with this tool test cases cannot be generated. But when this facet is part of a

package then it should be able to import the variables from the package and able

68



to generate the test cases.

. This tool requires the input format for the test requirements to be in Rosetta.

It will be more useful if the test requirements can be specified in XML.

. The process of simulating the design can also be automated. A test harness will
be used to instantiate the inputs and feed those inputs to the program to test
its functionality. As this tool generates the test inputs in XML format if a test
harness is developed that takes XML input form, then these abstract test vectors

can be used for simulation purposes.
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