CHARACTERIZATION OF POLARIZATION-MODE DISPERSION ON BURIED STANDARD SINGLE-MODE FIBERS

Pradeep Kumar Kondamuri

Committee: Dr. Chris Allen (Chair) Dr. Ron Hui Dr. Jim Stiles

- Introduction
- PMD concepts
- PMD measurement methods: JME method
- Measurement setup
- Measurement results and data analysis
- Conclusions and Future work

INTRODUCTION

- Fiber-optic communication technology is barely three decades old but it has made tremendous progress
- Currently fourth-generation fiber-optic systems are in use.
- Problems in the past included huge fiber loss, inter-modal dispersion, chromatic dispersion, electronic repeaters, etc.
- As the bit rate approaches >10 Gb/s per channel, current fiberoptic systems face a different dispersion impairment called 'polarization-mode dispersion' (PMD)
- PMD is random in nature and so statistical characterization is necessary for better understanding

PMD CONCEPTS

PMD in fibers

- Fundamental property of single-mode fibers
- Signal energy at a given λ is resolved into two orthogonal polarization modes with different refractive indices
- Difference in propagation time between both modes is differential group delay (DGD)
- PMD is a vector quantity in Stokes space
- Specified using PMD coefficient (ps/(km) or ps/(km)^{1/2})

Causes of PMD

- Birefringence
- Mode coupling

BIREFRINGENCE AND MODE COUPLING

Birefringence

- Despite their name, 'single-mode' fibers support two orthogonal modes of propagation
- Loss of degeneracy of the two modes is called birefringence
- Intrinsic and extrinsic factors
- PMD is typically larger in older fibers

Mode coupling

- Energy of light pulse launched in one mode will couple into the other and vice versa as it propagates along the fiber until both the modes are equally populated
- The length of the fiber at which the average power in one mode is within 1/e² of that of other is coupling length, L_c
- Short fibers (L<<L_c) and long fibers (L>>L_c)

PRINCIPAL STATES MODEL

- Developed by Poole and Wagner in 1986
- Assumes coherence time of source is high and PDL (polarizationdependent loss) in the link is negligible
- It states that for a length of fiber, there exists for every frequency a special pair of orthogonal polarization states, called the Principal states of polarization (PSPs)
- PSP- input polarization for which output state of polarization is independent of frequency to first order
- In time-domain, a light pulse launched in any PSP results in an output pulse that is undistorted to first order
- Difference in time delays of the two PSPs is DGD

SYSTEM IMPAIRMENTS DUE TO PMD

- PMD causes pulse spreading and distortion and thus can lead to system penalties
- In digital systems, DGD results in intersymbol interference (ISI) and hence power penalty
- Second-order PMD results in polarization-dependent chromatic dispersion (PCD) and PSP depolarization
- PMD induces coherent cross-talk between channels in polarization-multiplexed transmission systems

PMD MEASUREMENT METHODS

Time-domain methods

- Operate by sensing pulse delays
- Slow because of the need to determine PSPs experimentally
- Generally not suitable for field measurements
- Frequency-domain methods
 - Operate by detecting changes of polarization with frequency
 - Suitable for field measurements
- Some methods measure scalar instantaneous DGD, few measure mean DGD and some others measure instantaneous PMD vectors

JONES MATRIX EIGENANALYSIS (JME) METHOD

PMD measurement by JME method (Frequency-domain method)

- Measures instantaneous DGD vectors
- Any polarized signal can be expressed as a Jones vector
- Jones matrix describes the polarization-transforming characteristic of a two-port device
- Measurement of Jones matrix requires application of 3 known states of linearly polarized light to the DUT *Lightwave Lab., ITTC, University of Kansas*

JONES MATRIX EIGENANALYSIS (JME) METHOD (cont'd ..)

- Jones matrix is determined from the relationship of the measured output states to the known input states
- To determine DGD at a particular λ , Jones matrices at two different λs equally spaced about λ are measured
- DGD, $\Delta \tau$, is then determined using

 ρ_1 and ρ_2 are the Eigen values of $\Delta \tau = \begin{vmatrix} Arg\left(\frac{\rho_1}{\rho_2}\right) & \rho_1 \text{ and } \rho_2 \text{ are the Eigen values of} \\ T(\omega + \Delta \omega)T^{-1}(\omega); \text{ T is Jones matrix} \\ Eigen vectors of T(\omega + \Delta \omega)T^{-1}(\omega) \text{ locate} \end{vmatrix}$ the output PSP as a function of ω

- This method can be readily automated
- Not always practical in field tests

Measurement setup for making automated DGD measurements. *Lightwave Lab., ITTC, University of Kansas*

MEASUREMENT SETUP (cont'd..)

- Visual basic software running on the system controller controls the system
- One measurement at a specific λ and time takes ~ 4 sec.
- Max. measurable DGD with 0.1 nm step is ~ 40 ps
- Measurement uncertainty is $\sim \pm 310$ fs for 0.1 nm step
- Data automatically saved into text files (8 kB 30 kB)
- Measurement system is usually very reliable, but occasionally (once in a month or so) any of the instruments might become frozen

MEASUREMENT RESULTS AND DATA ANALYSIS: INDIVIDUAL FIBER SPANS

- 3 different 95-km fibers (1, 2, and 3) within a slotted-core, direct buried, standard single-mode fiber-optic cable
- Wavelength band:
 1510 1625 nm
- Spectral resolution: 0.1 nm
- Measurement repetition:
 on span 1, once every 3 hrs
 on spans 2 and 3, once every
 1 ½ hours

Measured, normalized DGD vs. wavelength and time for fiber span 2 (14 days, May 4, 2002 – May 18, 2002)

Measured, normalized DGD vs. wavelength and time for fiber span 3 (64 days, May 29, 2002 – Aug. 1, 2002)

DGD HISTOGRAM AND MEAN DGD VARIATION (SPAN 1)

Histogram of measured, normalized DGD data on fiber span 1

Frequency-averaged DGD and temperature vs. time for fiber span 1

TEMPORAL ACF (SPAN 3) AND SPECTRAL ACF (SPAN1)

SYSTEM OUTAGE ANALYSIS

- Goal is to determine outage probability, mean outage rate and mean outage duration as a function of threshold/ $<\Delta \tau >$
- From "WDM design issues with highly correlated PMD spectra of buried optical cables" by Caponi et.al, OFC '02
 - Outage probability: $P_{out} = P(\Delta \tau \ge \Delta \tau_{th}) = 1 \int_{0}^{\Delta \tau_{th}} f_{\Delta \tau}(\Delta \tau) d \Delta \tau$ P_{out} usually expressed in [minutes/year] $\Delta \tau_{th}$ is threshold; $f_{\Delta \tau}(\Delta \tau)$ is the pdf of DGD (Maxwellian)
 - Mean outage rate: R_{out} = mean number of outage events per unit time [1/year]

• Mean outage duration: $T_{out} = P_{out}/R_{out} = mean duration of an outage event [minutes]$

SYSTEM OUTAGE ANALYSIS (cont'd)

$$R_{out} = \frac{1}{2} f_{\Delta\tau} (\Delta\tau_{th}) \int_{-\infty}^{\infty} |\Delta\tau'| f_{\Delta\tau'|\Delta\tau} (\Delta\tau'|\Delta\tau) \cdot d\Delta\tau'$$

 $\Delta\tau'$ is the first derivative of $\Delta\tau$ w.r.t time
 $f_{\Delta\tau'|\Delta\tau}$ is the Conditional probability distribution
Caponi has showed that $\Delta\tau'$ is independent of $\Delta\tau$
 $R_{out} = \frac{1}{2} f_{\Delta\tau} (\Delta\tau_{th}) \int_{-\infty}^{\infty} f_{\Delta\tau'} (\Delta\tau') |\Delta\tau'| d\Delta\tau'$
 $f_{\Delta\tau} (\Delta\tau)$, and $f_{\Delta\tau'} (\Delta\tau')$ are the pdfs of DGD and
first derivative of DGD

P_{out}, **R**_{out} and **T**_{out} values (Individual spans)

Calculated P_{out}, R_{out}, and T_{out} versus threshold/mean DGD for the three fiber spans

	3* <dgd></dgd>	3.7* <dgd></dgd>
Span 1:MTBO	6.39 years	1648 years
Outage duration	136 min	108 min
Span 2:MTBO	3.25 years	833 years
Outage duration	69 min	55 min
Span 3:MTBO	3.96 years	1021 years
Outage duration	84 min	67 min

MTBO = mean time betweenoutages = 1 / R_{out}

TWO-FIBER CONFIGURATION: COLOR MAPS

18

1535

1540

1545

- Wavelength band: 1535-1565 nm
- Spectral resolution: 0.1 nm
- Measurement repetition: once every 23 minutes

Measured, normalized DGD vs. wavelength and time for fiber spans 1 and 2 concatenated (18 days, Aug. 22, 2002 – Sept. 9, 2002)

1550 λ (nm) 1555

1560

1565

COLOR MAPS (cont'd)

Measured, normalized DGD vs. wavelength and time for fiber spans 2 and 3 concatenated (21 days, Aug. 1, 2002 – Aug. 22, 2002) *Lightwave Lab., ITTC, University of Kansas* Measured, normalized DGD vs. wavelength and time for fiber spans 1 and 3 concatenated (16 days, Sept. 27, 2002 – Oct. 13, 2002) 22

DFT PLOT, HISTOGRAM AND MEAN DGD VARIATION FOR SPANS 1&2 CON.

TEMPORAL AND SPECTRAL ACFs FOR SPANS 1 & 2 CON.

Normalized temporal ACF of frequency-averaged DGD data on fiber spans 1 and 2 concatenated and its theoretical curve-fit *Lightwave Lab., ITTC, University of Kansas*

Normalized spectral ACF of time-averaged DGD data on fiber spans 1 and 2 and it's adjusted theoretical curve-fit

Calculated P_{out}, R_{out}, and T_{out} versus threshold/mean DGD for two-fiber configurations

	3* <dgd></dgd>	3.7* <dgd></dgd>	
Spans 1&2: MTBO	0.413 years	106 years	MTBO = mean time
Outage duration	9 min	7 min	
Spans 2&3: MTBO	0.644 years	167 years	between
Outage duration	14 min	11 min	outages
Spans 1&3: MTBO	0.525 years	135 years	$= 1 / R_{out}$
Outage duration	11 min	9 min	

Lightwave Lab., ITTC, University of Kansas

DESIGN RULES BASED ON DGD MARGIN

- DGD margin $M_{\tau} = \Delta \tau_{Rx} / \langle \Delta \tau \rangle$; $\Delta \tau_{RX}$ is receiver's DGD tolerance and $\langle \Delta \tau \rangle$ is the mean DGD
- For cases where $M_{\tau} > 3$, the frequency of PMD-induced outages will be low, and their duration may be brief
 - Use of reserved protection channels in WDM systems is a viable solution
- For cases where $M_{\tau} < 3$, the frequency of PMD-induced outages will be high with reasonably long duration
 - Use of PMD compensators, alternate modulation formats, or even replacing particular fiber segments may be appropriate

CONCLUSIONS

- An automated PMD measurement system was used to make longterm measurements on buried fibers
- Results showed DGD to vary slowly with time and high-DGD episodes to be spectrally localized
- DGD histograms had shapes consistent with Maxwellian
- <DGD> varied by 10 % or less during the measurements
- Drift times of DGD, measured for a long period, agreed with those reported by others, but needs further study
- DGD bandwidths estimated agreed well with those found using the theoretical spectral autocorrelation fits
- Outage analysis showed DGD excursions of > 3 times the <DGD> to be infrequent and relatively short lived

FUTURE WORK

- Variation of DGD with controlled fiber temperatures could be studied using a temperature chamber
- A detailed study of second-order PMD on buried fibers would be extremely useful
- Discrepancy in temporal autocorrelation analysis should be studied
- It would be interesting to see if the behavior observed on twofiber configurations is repeatable with buried EDFAs

QUESTIONS?