
A Framework for
Recording and Replay of Software that Performs I/O

Rajiv Ramanasankaran

Masters Thesis Defense
University of Kansas, Lawrence

May 20th, 2004

Committee:
Dr. Jerry James (Chair)

Dr. Douglas Niehaus
Dr. Perry Alexander

2

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

3

Introduction

• Debugging
– Process of finding and removing bugs

– Helps in understanding program flow

• Types of bugs
Bugs due to … Diagnosed by
Syntax Compiler errors
Runtime Exceptions
Logic/Design Highly Variable
Temporal environment Highly Variable

4

Introduction (contd…)

Temporal Environment
The sequence of states of a program consisting of

the contents of all of its variables and its status registers (such
as the program counter, the stack pointer).

The states change due to program source or due to
scheduling decisions.

5

Introduction (contd…)

Factors affecting the Temporal Environment

– Multiple threads of execution
– Non-determinacy: repeated executions of the

same program may give different results!
Scheduling of processes/threads
Signal delivery
I/O operations

6

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

7

Motivation

• Reproduction of concurrency scenarios is a
hard problem

• Limitations of traditional debugging techniques
– Print statements, trace debugging and user-

controlled breakpoints

• Absence of a framework for replaying execution
by re-creating the temporal environment

• Insufficient access to the concurrency model
while debugging

• Need for a definitive framework for testing and
creating concurrency scenarios

8

Motivation (contd…)

• Work done at ITTC
– BERT

• Reactor pattern: Event demultiplexing framework
• BThreads: User-level thread library

– Clever Insight
• Context switches
• Signals
• Interfaces with BThreads using the TDI (Thread

debugger interface)

– Need for a framework that replays software that
performs I/O

9

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

10

Solution

• Extend BERT, Clever Insight

• Reproduce the temporal environment

• Record and Replay I/O

• Develop a non-intrusive framework

• Allow creation of new concurrency scenarios

• Automate the framework

11

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

12

Parts of the framework

• Recording Framework
– GCC: Recording a trace of basic blocks
– BThreads: Recording context switches, signals and I/O

events (recording mode)

• Replaying Framework
– Clever Insight (context switch, signal delivery events)
– BThreads: I/O events (replay mode)

• Data Stream User Interface (DSUI)
– Tool for collecting data and trace information from a

program
– Ability to categorize records into events and families
– Provides post-processing tools for parsing the recorded

trace

13

Design and Implementation
System Model

BThreads

Program

GCC

bert.events DSUI
filter

bert.config

Clever
Insight Program

BThreads

linked
run

compiles
run

linked

Replay

Replay framework

Recording framework

14

Recording Framework

Recording the trace of basic blocks
– GCC provides a basic block profiling feature

(-ax command line option)

– A -bert option is devised which generates a trace of
basic blocks

– Helps in testing replay

15

Recording Framework

Recording I/O (BThreads)
Event types:

• Reactor Events

– Involves recording the list of registered handlers
and their states in the Reactor

• I/O Events

– Involves recording the contents of I/O buffers in a
system call, return values and the effects (e.g.,
errno)

• Command-line arguments

– Involves the recording of the command-line
arguments given to the program

16

Recording Framework

Reactor Events
Understanding the Reactor and its event handlers

• handle_input
• handle_output
• handle_close

Event handlers

17

Recording Framework

I/O events inside BThreads
• Record the contents of the variables in a system call

– e.g., read (int fd, void *buf, size_t count)

• Record the return values of the system call
– e.g., return values of read and write

• Record the effects of the system call
– e.g., the errno variable

Command-line arguments
• Recording the arguments given to main

18

Recording Framework

Recording context switch, signal delivery events
Involves recording of
– The thread id
– Program counter (PC)
– The basic block number
– Count of the basic block
– Signal received

When the program is run, all the above events are
directed to a single event history file.

19

Replay Framework

Post-processing using DSUI filters
• bert.events file contains the event history

• A configuration script is generated using a special DSUI filter

• Serves as a single input for Clever Insight to replay the
program

• Contains the commands needed to set up the Replay
framework

20

Replay Framework

Replay event handlers for I/O

– Instead of making the system calls, BThreads, in
replay mode, calls the replay event handlers

– A replay event handler

• fetches the recorded information from the event
history; and also

• copies the information to the system call buffers
and variables which hold application state
information (e.g., errno, return values)

21

Replay Framework

Replaying I/O events (BThreads)

read or write

call readwrapper
or writewrapper

Is
Replay?

Do
error checking

return
number of bytes

Call
replay event handler

Yes

No

call
read or write system call

Record I/O,
return values & effects

22

Replay Framework

Replaying Reactor events (BThreads)
– Recorded history contains

• a list of handlers;

• handler types and

• handler states (i.e. whether input or output could be
performed without blocking)

– When replaying
1. Iterate over the state of the handlers from history

2. Call the appropriate function (handle_input or
handle_output)

3. State of threads are automatically restored since the
handlers were processed in the same order

23

Replay Framework

Replaying context switches, signals (Clever Insight)

• Signal SIGPROF signifies the expiry of the scheduling timer and
forces a context switch.

– Before replay starts

handle SIGPROF nopass

• Set conditional breakpoints incrementally at places where there was
a context switch or signal delivery

break <pc> if block==<blk> && count==<cnt>

contd…

24

Replay Framework

Replaying context switches, signals (contd…)
• When the breakpoint is hit, the signal (SIGPROF or other)

needs to be delivered

– Controlled replay:

• The user gets control after every breakpoint; and

• Signal must be delivered manually in order to continue replay

– Automated replay:

• The signal is automatically delivered each time;and

• replay continues until the user interrupts it

– These features have been implemented for both : Clever insight
command-line mode as well as GUI mode

25

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

26

Features provided

• (de)activate_replay : deactivates/activates use of Clever
Insight as a replay tool

• controlled_replay command: replays program in
controlled mode

• automate_replay command: replays program in
automated mode

• runtcl_later <tcl_script>: executes the commands in the
Tcl script

• continue_replay command: continues replay of the
program in automated mode

• Attach arbitrary Tcl scripts to breakpoints

27

Features provided

• The user is free to use debugging primitives without
disturbing replay

• Constructing new scenarios: Ability to replay the
program till a point of interest (using controlled or
automated replay) and

• let the program continue (handle SIGPROF pass)

• create a new concurrency scenario

• Switch to the desired thread (feature in Clever Insight)
call switchtothread (thread_id)

• Use the recorded history of the new scenario for further
study

28

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

29

Evaluation

• Event history comparison

– Programs tested: pc.c, diningphil.c, mmult.c,
copy.c

– Compared the recorded basic block trace with
the trace of the program being replayed

– The history during replay conformed to the
recorded history

– Proves program took the same path while replay

30

Evaluation (contd…)

• Testing I/O reproducibility

– copy.c :A multithreaded program to make
multiple copies of a single large file was written
and the event history is obtained

– During replay, the calls to read the original file
are directed to the event stream but writes to the
copies of the file are allowed to proceed

– The copied files are compared to the original and
found to be equal in content

31

Evaluation (contd…)

• Testing thread interleaving

– The dining philosopher’s program is executed

– Specific thread interleaving leading to a
deadlock is noted

– The replayed program’s thread interleaving is
compared to the original and found to be same

32

Evaluation (contd…)

• Testing creation of concurrency scenarios
– The dining philosopher’s program is executed till

a point of interest but before any deadlock takes
place

– Thread states are changed using Clever Insight
to force a deadlock

– The new recorded event history is obtained and
replayed

– The replayed program reaches a deadlock as
per the scenario that was created

33

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

34

Related work

• Deterministic execution testing of ADA programs
– Uses source level transformations to generate a

file of synchronization events when the program is
run

– This file is then used to test execution with
different inputs

– Needs specific transformations for different
synchronization events

– Intrusive framework needing a lot of edits and re-
compiling for testing different scenarios

– No support for I/O reproducibility

35

Related work

• DejaVu

– Modified JVM

– Captures thread schedule and accesses to shared
variables

– Reproduces execution but no support for I/O

– Changes made to the JVM are specific to the
synchronization mechanisms

– No support for creating new scenarios

36

Related work

• JReplay: Instrumenting Java Bytecode
– Innovative tool doesn’t modify the JVM. Instead patches the

compiled Java class files

– Transforms a nondeterministic multithreaded program to a
sequential deterministic one by locking all threads but one

– Surrounds thread operations with locks in bytecode
controlled by an external scheduler and a recorded thread
schedule

– Depends heavily on the format of the Java class bytecode

– Deprecated Java API poses problems

– Doesn’t support I/O reproducibility

37

Outline

Introduction

Motivation

Solution

Design and Implementation of the Framework

Features provided by the Framework

Evaluation

Related work

Conclusions and Future work

38

Conclusions

• Formalized a process of recording a program’s history
and replaying it by re-creating the temporal environment

• Created a non-intrusive framework

• The framework exposes the concurrency model to the
user, yielding full control over it

• Supports traditional debugging primitives and offers a
choice to the user

• Supports the ability to create new scenarios

• Introduced a new method of interactivity through the
controlled and automated replay modes

39

Future work
• Extend the framework to distributed systems by

simulating the network on top of BERT

• Reproducible executions of Java programs by porting
the JVM on to BERT

• A richer set of GUI widgets to make debugging and
creation of concurrency scenarios easier

• Cover replay of more program types by writing wrappers
for other system calls

• Reproduce executions of the operating system by
porting User-mode Linux on to BERT

• Compress the event history to conserve space

40

Thank you

