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ABSTRACT 
 
 
 
One of the challenges faced by the embedded and real-time system designers is to 

meet the system requirements rapidly and with low cost. An ideal way to meet these 

requirements is to use commercial off-the shelf components (COTS). Creating COTS 

components that are reusable in a wide range of applications is difficult. Custom 

components made available by reconfigurable devices typically achieve higher 

performance than COTS components but at higher development cost. However, a 

large obstacle in realizing the potential advantages of reconfigurable components is 

that programming these devices is still difficult. A high level-programming model is 

needed that abstracts the FPGA and CPU components available in the hybrid chips. 

The multi-threaded programming model has been developed in this thesis as a 

convenient way to describe embedded applications and has many ideal properties that 

may allow FPGA resources to be more fully utilized. This report will answer the 

question of how to map a threaded programming model onto a computational model 

for modern FPGAs.   
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Chapter 1 

 Introduction 

 

A primary requirement for many computing systems is to process large quantities of 

data in the minimum time with minimum levels of power consumption. 

Reconfigurable computing offers greater performance advantages over commodity 

processing elements in the high-performance computing arena. However, a large 

obstacle in realizing these potential advantages is that programming these devices in 

such a way as to maximize the usage of available resources is still difficult. Today’s 

high end FPGAs offers over 120,000 logic cells, 500 18x18 multipliers and 1200 I/O 

pins and multiple RISC processor cores [1][8]. The next generation of FPGAs will 

offer even greater number of resources. The outstanding issue is how to use these 

resources efficiently to solve various engineering problems.  

 

1.1 Objective   

 

One of the traditional uses of reconfigurable devices is as a co-processor. The 

majority of the general-purpose operations occur in the CPU and special instructions 

such as loops are executed on FPGAs. With the increase in size and complexity of the 

FPGAs, their capabilities also increase. The FPGAs available in today’s market can 

perform more than just executing simple instructions and loops.  

 1



The high level of integration provided by todays processing technology has brought 

new challenges in the design of digital systems, where entire systems consisting of 

hardware and software are being integrated into single systems-on-chip. This trend 

challenges EDA tool developers to provide tools that support the development of such 

systems and provide the productivity improvements required to design such systems 

in a cost-effective manner. Verilog and VHDL work very well for hardware 

implementation flows but with the increase in system complexity there arises a need 

for a new design language. Now the question arises if HDLs cannot work efficiently 

then can the programming languages be used? But even the use of programming 

languages has its own drawbacks. First, hardware circuits can execute operations with 

a wide degree of concurrency. Conversely, software-programming languages like 

C/C++ were conceived for uni-processor sequential execution. Second, detailed 

timing of the operations is very important in hardware, because of performance and 

interface requirements of the circuit being described. On the other hand, most 

programming languages do not support timing constructs. Over the last decade, a few 

research groups have tried to ease the mapping of hardware models in programming 

languages into corresponding HDL models.  

High-level languages (usually a variant of C or C++) are being used as tools 

for abstracting details and for rapid development of programs that are implemented in 

FPGAs. Examples include Streams-C [2], Esterel-C [3] and Handel C 

[4][12][13][14]. All these languages try to help software engineers in applying their 

skills across the CPU/FPGA boundaries. Unfortunately, current hybrid programming 
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models are still immature. What is lacking is a technology that allows for high levels 

of concurrency of codes with dynamic control structures such as message passing and 

blocking I/O [7][10][11].  

The threaded programming model has emerged as a mechanism for handling 

the interactions of concurrent, lightweight computations, and has been met with great 

acceptance, as is demonstrated by the wide use of Pthreads [6], and new commodity 

CPU hardware support for multi-threading. The research described in this thesis 

addresses the question of how to efficiently map a threaded programming model onto 

a computational model for modern FPGAs. 

 

1.2 Approach 

 

Instead of issuing a command from the processor to execute a special instruction, a 

sequence of instructions, or a loop, in our approach the processor may issue a 

command to the co-processor to start executing a hardware thread. The design is re-

entrant; so multiple threads can be executed simultaneously. Hardware threads can 

create more hardware threads, or they could communicate with the processor to start 

new software threads. 

While there are many topics of interest that we could discuss, we focus on the 

core components that enable this new computational model. The remaining thesis is 

organized as follows. Chapter 2 discusses background and related work. Chapter 3 

describes the Virtex II pro FPGA family that has been used to implement a prototype 
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of our approach. Chapter 4 discusses the model of computation and the components 

that make up this model. In Chapter 5 and 6 we describe implementation of Factorial 

and Fibonacci respectively. In Chapter 7 we discuss the results and future work that 

can be done. 
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Chapter 2 

Background and Related Work 

 
Before attempting to synthesize hardware from a programming language like C or 

C++, we need to extend the semantics by adding additional semantics. In particular, 

concurrency, reactivity, communication mechanisms, and event handling semantics 

need to be added. Also, a synthesizable subset of the language needs to be defined, 

together with synthesis semantics for programming language constructs. With these 

enhancements, it is possible to create C/C++ descriptions of hardware at the well-

understood RTL and behavioral levels of abstraction, providing an opportunity to 

leverage existing, mature hardware-synthesis technology that has been developed in 

the context of HDL based synthesis to create a C/C++ synthesis system. In this 

Chapter we describe some of the extensions of C and Java. 

Over the last decade, a few research groups have tried to ease the mapping of 

hardware models in programming languages into corresponding HDL models. Most 

approaches include both extended and restricted programming language constructs. 

Extensions are needed to express concurrency, structural information and various 

other types of constraints such as the timing constraints. Restrictions are motivated by 

avoiding constructs with no hardware meaning such as print statements, as well as 

avoiding constructs whose translation into hardware is difficult. Giving the required 

extensions to C various languages have been defined such as HARDWAREC, 

CONES, SYSTEMC [16], ECL, HANDLE-C, STREAMC, BACH-C and so on. 
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HARDWAREC is a fully synthesizable language with a C-like syntax and a cycle-

based semantic. It doesn’t support pointers, recursion and dynamic memory 

allocation. CONES from AT&T Bell Laboratories is an automated synthesis system 

that takes behavioral models written in a C-based language and produces gate-level 

implementations. Here, the C model describes circuit behavior during each clock 

cycle of sequential logic. This subset is very restricted and doesn’t contain unbounded 

loops nor does pointers. SYSTEMC support a mixed synchronous and asynchronous 

approach implemented as a C++ library. Other extensions include ECL from Cadence 

based on C and Esterel, HANDLE-C and BACH-C originally based on OCCAM. 

This chapter discusses the mechanisms of HANDLE-C, STREAMSC, ECL 

and JHDL.  

 

2.1 HANDEL-C [4][12][13] [14] 

 

Handel-C is a programming language developed by Ian Page, Programming Research 

Group (Oxford University/UK) and designed for compiling programs into hardware 

images of FPGAs or ASICs. It is basically a small subset of C, extended with a few 

constructs for configuring the hardware device and to support generation of efficient 

hardware. It comprises all common expressions necessary to describe complex 

algorithms, but lacks processor-oriented features like pointers and floating point 

arithmetic. The programs are mapped into hardware at the netlist level, currently in 

xnf or edif format. Handel-C is to hardware (gates) what “C” is to micro-assembly 

 6



code. The language is designed around a simple timing model that makes it very 

accessible to system architects and software engineers. 

 

Highlights 

 

• High-level language based on ISO/ANSI-C for the implementation of 

algorithms in hardware. 

• Allows software engineers to design hardware without retraining 

• Clean extensions for hardware design including flexible data widths, 

• Parallelism and communications 

 

Comparison of Handel-C with VHDL 

Comparing Handel-C with VHDL shows that the aims of these languages are quite 

different. VHDL is designed for hardware engineers who want to create sophisticated 

circuits. It provides all constructs necessary to craft complex hardware designs. By 

choosing the right elements and language constructs in the right order, the designer 

can specify every single gate or flip-flop built and manipulates the propagation delays 

of signals throughout the system. VHDL expects that the developer knows about low-

level hardware and about the gate-level effects of every single code sequence. This 

quite easily distracts the designer from the actual algorithmic or functional subject.  
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In contrast to that, Handel-C is not designed to be a hardware description 

language, but a high-level programming language with hardware output. It doesn't 

provide highly specialized hardware features and allows only the design of digital, 

synchronous circuits. Instead of trying to cover all potentially possible design 

particularities, its focus is on fast prototyping and optimizing at the algorithmic level. 

The low-level problems are hidden completely; the compiler does all the gate-level 

decisions and optimization so that the programmer can focus his mind on the task he 

wants to implement. As a consequence, hardware design using Handel-C resembles 

more to programming than to hardware engineering.  

Applications for Handel-C 

 

Handel-C enables concurrent hardware and software application design within a 

common C language environment. Celoxica’s rapid hardware prototyping capability 

offers an unparalleled ability to design and build fully optimized applications, thus 

boosting performance and reducing costs. This allows software engineers to reduce 

development complexity and compress the time-to-market by directly participating in 

the hardware design process. A number of recent projects developed under Handel-C 

illustrate the language’s wide applications fit. 

 

• Internet Security—DES encryption algorithm in hardware for SSL 

acceleration 

• Digital Music—MP3 decoding in reconfigurable hardware 
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• Internet Telephony—Voice-over-IP phone implementing H.323 and TCP/IP 

in hardware 

• Image Processing—Accelerating complex image processing algorithms in 

FPGAs 

 

2.2 STREAMS-C [2] 

 

The Streams-C compiler synthesizes hardware circuits for reconfigurable FPGA-

based computers from parallel C programs. The Streams-C language consists of a 

small number of libraries and intrinsic functions added to a synthesizable subset of C, 

and supports a communicating process programming model. The processes may be 

either software or hardware processes, or the compiler manages communication 

among the processes transparently to the programmer. For the hardware processes, 

the compiler generates RTL VHDL, targeting multiple FPGAs with dedicated 

memories. For the software processes, a multi –threaded software program is 

generated. 

 

General Overview  

 

The concept of stream-based computation is a fundamental formalism for high 

performance embedded systems, which is characterized by streams of data produced 

at high rate The Streams-C language, supports this kind of system with minimal 
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number of language extensions and library callable from a C program. The compiler 

targets a combination of software and hardware. 

For computation occurring in hardware, the compiler generates RTL VHDL 

for a target FPGA board containing multiple FPGAs, external memories, and 

interconnects. The language extensions, such as declaration for a process or stream, 

allocate resources on the board for these objects. These extensions allow the 

programmer to allocate registers on an FPGA and define register bit lengths, assign 

variables to memories; define concurrent processes; define stream connections 

between processes; and read/write streams to communicate data between processes. 

The processes operate asynchronously and synchronize through stream operations, 

which may occur within the body of the process. A distributed memory model is 

followed, with local state belonging to each process and inter-process communication 

via streams. The extensions include mapping directives to give the applications 

developer control over the mapping of processes to hardware components and of 

streams to communication media on the target application board. 

A hardware streams library has been built for the Annapolis Microsystems 

Wildforce accelerator board. The compiler, based on Napa C compiler and Malleable 

Architecture Generator (MARGE), synthesizes hardware circuits from a C-language 

program. Although the target is a synchronous set of circuits on multiple 

communicating FPGAs, the C programmer does not have to be concerned with 

synchronizing state machines, or other hardware timing events. The compiler 

generated state machines control sequencing and loops. The hardware streams library 
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encapsulates the data flow synchronization between stream reader and writer. The 

combination of compiler –generated computation nodes with the hardware streams 

library allows applications developers to target FPGA boards from a high level 

concurrent language.   

A software library using POSIX threads provides concurrent processes and stream 

support in software. Thus the software libraries support a dual function: when all 

processes are mapped to software, the system provides a functional simulation 

environment for the parallel program. When processes are mapped to a combination 

of software and hardware, the software libraries are used for communication among 

software processes and between software and hardware processes. Hardware libraries 

are used for communication among hardware processes and for the hardware side of 

communication to software processes.    

 

2.3 ECL: Esterel-C Language [3]  

 

The ECL (Esterel-C Language) project is a system-level specification research project 

originating at Cadence Berkeley Laboratories. Luciano Lavagno, Roberto Passerone, 

and Ellen Sentovich developed ECL. ECL is both a language and a compiler. It is 

intended for system-level specification of communication blocks; it supports 

asynchronous and synchronous communication blocks with a mix of control and data 

parts, and implementation in a mix of hardware and software. 
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Overview  

 

The basic syntax of an ECL program is C-like, with the addition of the module. A 

module is like a subroutine, but may take special parameters called signals. The 

signals behave as signals in Esterel or VHDL: they carry both “event” presence or 

absence status information and a value. An orthogonal, “kernel” subset of Esterel 

constructs is provided in ECL to manipulate the signals.  

 

Background 
 

 

Esterel is a language and compiler with synchronous semantics. This means that an 

Esterel program has a global clock, and each module in the program reacts at each 

“tick” of the global clock. All modules react simultaneously and instantaneously, 

computing and emitting their outputs in “zero time”, and then are quiescent until the 

next clock tick. This is classical finite state machine (FSM) behavior, but with a 

description that is distributed and implicit, making it very efficient to write, 

understands and compile into EFSMs (and hence either software or hardware). This 

underlying FSM behavior implies that the well-developed set of algorithms pertaining 

to FSMs can be applied to Esterel programs. Thus, one can perform property 

verification, implementation  

The Esterel language provides special constructs that make the specification 

of complex control structures very natural. It is often referred to as a reactive 
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language, since it is intended for control-dominated systems where continuous 

reaction to the environment is required. Broadcasting signals does communication, 

and a number of constructs are provided for manipulating these signals and 

supporting waiting, concurrency and signal pre-emption (e.g., a wait (signal), parallel, 

abortion and suspension). The Esterel compiler resolves the internal communication 

between modules, and creates a C program implementing the underlying FSM 

behavior. A sophisticated graphical source-level debugger is provided with the 

Esterel environment. While Esterel only provides a few simple data types, one can 

create and use any legal C data types; however, this is separate from the Esterel 

program, and must be defined separately by the designer. Pure C procedures and 

functions can be defined by the user and called from an Esterel program, but again 

definitions and code must be written by hand by the designer. ECL automates this 

task, by automatically generating all the required declarations and definitions (“glue 

code”). 

 

Key Features 

 

• ECL is a combination of C and Esterel-like reactive statements, giving the 

designer a familiar language with a few new constructs to ease the 

specification of control. 
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• ECL nicely handles mixed control/data specifications, with a control portion 

that has fully synchronous semantics, and a data portion that has the familiar 

C semantics. 

• The control portion is equivalent to an EFSM, permitting the use of existing 

powerful techniques for optimization, analysis, and synthesis of FSMs. In 

particular, logic synthesis and optimization can be applied to reduce size or 

improve speed, implicit state exploration techniques can be used for 

optimization and functional analysis, and synthesis techniques used to create 

implementations in hardware or software. 

• ECL compilation involves a choice when splitting the code to the reactive part 

(fully synthesizable) and the data part (software-only, and possibly preserving 

the form of the incoming code). An ECL prototype compiler is currently 

implemented and under test on industrial examples. 

 

2.4 JHDL-Java Based Hardware Description Language [15] 

  

General Overview 

 

JHDL is a language developed with the intent of elegantly embodying the run-time 

reconfiguration paradigm in a commonly used programming environment. This 

approach allows the user to describe netlist, simulate, and execute full run-time 

reconfigurable systems, all with a single Java description. Java is used to implement a 
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simulation kernel that models hardware execution with a set of classes such as 

"Wire", "Synchronous", "Combinational Logic", and so forth. The dynamic 

creation/destruction of these objects is exploited to model run-time hardware 

reconfiguration. Furthermore, the component classes provide built-in hierarchical 

netlisting. Finally, the system is bundled into wrapper classes that can either perform 

the computation by running the simulation kernel, or by making device driver calls to 

load a corresponding circuit into an FPGA system. Thus, software simulation and 

hardware execution are performed with the same piece of code, enabling a true 

codesign methodology.  

Available appendages to the JHDL circuit model include a set of tools for 

debugging, simulating, testing and interfacing to the circuit, both as it exists in 

simulation ("in software",) and while the program is executing on an FPGA ("in 

hardware.") These appendages interact with the JHDL circuit model through three 

well-defined APIs:  

• Circuit Structure and Circuit State APIs allow for the creation of netlisters and 

other specialized viewers (e.g. schematics, waveforms, memory viewers, 

hierarchy browsers, etc.)  

• Simulator APIs allow tools to control execution of the simulator (for both 

simulation and hardware execution) as well as receive key feedback from the 

simulator.  
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These features allow designers to quickly and easily design, debug and deploy custom 

configurable computing machine (CCM) applications -- either a stand-alone (no 

computer interface), or with an accompanying runtime user interface (UI.)  

JHDL is an exploratory attempt to identify the key features and functionality 

of good FPGA tools. The design of an FPGA system has three major arenas:  

• The structure or organization of the circuits.  

• The layout of the circuits.  

• The interface of the FPGA circuits with the host application software.  

All traditional FPGA tools present some method for designing the circuit 

structure. A few of these also permit the user to perform the layout of the circuit; 

more often, circuit layout must be performed with a separate, non-integrated tool. But 

almost no tools provide a way to naturally interface the running hardware platform 

with the software running on the host machine. This last issue is important: FPGA-

based systems typically operate in tandem with a general-purpose host 

microprocessor and it is important to simulate the entire system, including the host 

computer system and its application software in conjunction with the FPGA design to 

ensure that the entire application works as desired.  
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Features of JHDL 

 

In its current state JHDL includes:  

• a library that supports Xilinx 4K, Virtex, and Virtex II series devices.  

• a graphical debugging tool that allows designers to simulate, debug and 

hierarchically navigate their designs. This tool can display a schematic view 

annotated with simulation or execution data, provide a waveform view of any 

desired signals, and allows the designer to invoke any public methods 

implemented by the circuit class (via Java reflection).  

• a schematic generator that can automatically create a high-quality schematic 

view of a JHDL description.  

• an EDIF 2.0 netlist class that generates output compatible with current Xilinx 

M2 place and route software.  

• an EDIF parser allowing the user to import externally-generated designs and 

modules into JHDL.  

• simulation models and transparent run-time support for the Annapolis 

Microsystems WildForce platform and the SLAAC1 platform.  

• a table-based state-machine generator.  

• facilities for instrumenting both simulation and hardware execution to 

streamline the circuit verification process.  

• a graphical floorplanner (under development) that will be used cooperatively 

with the schematic view to manually floor-plan designs.  
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In addition to these specific design aids, JHDL provides a unified design 

environment where a single, user interface can be used for both simulation and 

execution. This allows the designer to request either simulation or execution (or a 

mixture of the two) using the exact same commands for both. This is a big advantage 

for designers because they can learn a single debugging environment that works for 

both simulation and execution in contrast with current systems where execution and 

simulation environments are distinct and very different. Moreover, this is what makes 

it possible to use the same program for both software simulation and hardware 

execution.  

JHDL Advantages 

•  JHDL is free, has an open source, is easy to set-up and configure.  

• JHDL is based on a popular language and requires no language extensions for 

circuit design.  

• The CCM control paradigm is CCM independent, adopting the object-instance 

construction metaphor from object-oriented languages. The abstraction will 

work with any standard CCM.  

• JHDL supports both partial and global configuration and demonstration 

applications from ATR have been implemented to show this capability.  

• A JHDL application description serves as both simulation and execution for 

CCM applications. No code modifications are required and switching between 
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software simulation and hardware execution on the CCM requires the setting 

of a single boolean-variable.     

Limitations 

 

Currently, JHDL doesn't support all forms of digital systems design that you may be 

familiar with. In particular, asynchronous loops are unsupported and, if they exist in 

your circuit, will result in a simulator error message to the effect that "xxx not on 

propagate list".  
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Chapter 3 

Virtex-II ProTM Platform FPGAs [1]  

 

With the development of Intellectual Property cores now provided by companies like 

Xilinx and Altera, and the increased capabilities of FPGA and CPLD devices, entire 

systems can now be built on a single silicon die (System on a Chip). The system can 

be customized or configurable eliminating the economic disadvantage and 

inflexibility associated with ASIC customized designs. The configurable processor is 

a highly integrated device, with a dedicated processor and programmable logic on a 

single configurable chip. These platforms represent a robust environment for 

development of wide ranging and changing application requirements. The Virtex-II 

Pro Platform FPGA solution is one of the most technically sophisticated silicon 

developed by Xilinx in collaboration with IBM and Mindspeed. [1]  

 

3.1 Architecture: Array Overview 

 

 

 

 

 

 

 
    Figure 1: FPGA Architecture [1] [8]
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Virtex-II Pro devices are user-programmable gate arrays with various 

configurable elements and embedded blocks optimized for high-density and high-

performance system designs. Virtex-II Pro devices implement the following 

functionality: 

 Embedded high-speed serial transceivers enable data bit rate up to 3.125 Gb/s 

per channel. 

 Embedded IBM PowerPC 405 RISC processor blocks with clock speeds up to  

      400 MHz. 

 SelectIO-Ultra blocks provide the interface between package pins and the 

internal configurable logic.  

 Configurable Logic Blocks (CLBs) provide functional elements for 

combinatorial and synchronous logic, including basic storage elements.  

 Block SelectRAM+ memory modules provide large 18 Kb storage elements of   

     True Dual-Port RAM 

 Embedded multiplier blocks are 18-bit x 18-bit dedicated multipliers. 

 Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital 

solutions for clock distribution delay compensation, clock multiplication and 

division, and coarse- and fine-grained clock phase shifting. 

The Virtex-II Pro solution offers a powerful paradigm for complex embedded 

systems found in signal processing, industrial control, image processing, networking, 

communications and aeronautical applications 
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3.2 Summary of Features 

 

The important architectural features of this platform are listed below. 

• A PowerPC core and programmable logic (FPGA) on the same silicon die 

providing the advantageous of: 

o  reduced area 

o  numerous programmable I/O ports 

o  ability to create processor-based architectures with required peripherals 

for   any specific application 

o  reduced system development and debug time 

• Programmable logic to implement user defined functions. 

The advantages for platform FPGA implementations include customizing of 

functionality, ease of design reuse and ability to fix design bugs. This reconfigurable 

platform is essential for the computational model. We chose Virtex-II pro platform 

because of these features and also availability. 
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Chapter 4 

Computational Model 

 

In this Chapter we propose a computational model that addresses the issues outlined 

in Chapter one. This new computational model can be easily mapped from a threaded 

programming model and tends to both fully utilize the available resources of the 

reconfigurable devices and provide high levels of concurrency. This technique will be 

able to solve proportionally larger problems at greater speeds.  

 A computational model is defined informally as a systematic, coherent 

framework for computation. This computational model is made of basic structures, 

which we call transformations. There are four basic transformations in our design. A 

transformation is roughly analogous to a machine instruction or a set of instructions. 

In a high level language, several machine instructions are used to represent a single 

statement. Similarly many transformations can be used to construct a high-level 

program statement. 

The four types or categories of transformations used in this computational 

model are: simple transformations, routing transformations, dual transformations and 

first-in- first-out (FIFO) transformations. Each of these transformations is described 

in detail below. 
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4.1 Simple Transformations 

 

A simple transformation involves two registers, A and B and some function  f: A→B. 

The set of functions that f could be is constrained by the capabilities of hardware and 

timing requirements. Initially, the active state of the thread is contained in register A. 

The thread state that is being used is called the active state. 

After some number of cycles (typically one), the transformation f is completed and 

the state of the thread is placed in B. Simple transformations make up the primary 

data computations in the system.  

Figure 2 shows a simple transformation. Example of a machine instruction 

analogous to a simple transformation is A= add(A, B), that is the contents of the 

register A is updated with the sum of contents of register A and register B. Note that 

in general the registers may contain other data that is not acted upon by f.  

 

                                       B

f 

 A

ADD

 A

Figure2: Simple Transformation
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Simple transformations may also be state machines that take one or more than 

one cycles to complete. When the machine terminates, the thread state is moved from 

A to B, and the state machine restarts when a new thread is placed in register A. 

Sequences of these simple transformations can be chained together to form a 

pipelined computation. Pipelines are the fundamental construct that provides 

concurrency within this computational model.  

 

4.2 Routing Transformations 

 

 Routers are structures that route thread states between other transformations. They 

are analogous to, but different from, branch instructions in traditional processes. 

Figure 4 gives a simple example of a route transformation, which is analogous to the 

simple if-then construct. Based on the thread state, the thread is routed one way or the 

other. This type of router can be trivially realized as a demultiplexer. 

 

VHDL Pseudo Code  

process(input,selector) 
begin 
      if (selector ='0') then 
           output 1 <= input; 
      else output 2 <=input; 
      end if; 
 end process; 
 

                                       Figure 3: VHDL Pseudo Code, Routing Transformation  
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                                                            Figure 4: Routing Transformation 

 

A merge is illustrated in Figure 6. This is used at the target destination of multiple 

transformations, where several thread flows merge into one. For example, a 

subroutine called from several locations would use a merge transformation to 

combine multiple source locations into one destination. One implementation of this 

kind of transformation is a multiplexer. Depending on the thread state, only one 

thread is selected to pass onto the output.   

 

  

                                       Figure 5: VHDL Pseudo Code, Merge Transformation 

 

VHDL Pseudo Code  

process(input1,input2,selector) 
begin 
      if (selector ='0') then 
           output<= input 1; 
      else output<= input 2; 
      end if; 
 end process; 
      

Output 2 

Router

Input  

Output 1  
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Figure 6: Merge Transformation 

           

In general, some threads may attempt to use the same resources at the same time, 

causing deadlock, thus some sort of flow-control is necessary. One adequate approach 

is to use a simple control mechanism involving a valid bit and pause signal.  A valid 

bit and a pause signal are associated with all incoming thread. The valid bit defines 

whether the signal carries some valid data or not. When a transformation such as 

merge cannot accept a thread, the pause signal is asserted. Naturally some kind of 

logic must be used for these pause signals, and if used in a cycle, then must be used 

carefully to avoid deadlock.  

 

4.3 Dual Transformations 

 

In this subsection we describe the dual transformation, which we believe is a novel 

structure, and is the technology that enables us to model re-entrant concurrent 

hardware threads with complex control structures found in most programming 

languages. 

Input 1 Input 2

Router

Output
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 Dual Transformations are difficult to describe in abstract, so it is best to 

illustrate with several examples. 

Examples of Dual transformations 

 

Consider the case in which a thread is going to invoke a function or subroutine (see 

Figure 7). To do this the thread is placed at the input of port A. The active thread state 

is placed on the stack via a RAM write. At the output of port A, a new thread is 

created which contains the parameters to the function and some return information, 

such as the address of the RAM where the entry was stored, say r. This is analogous 

to the Call machine instruction found o nearly all microprocessors. After performing 

the transformations in the subroutine, the thread is routed to the input of port B. The 

calling thread is retrieved from the “stack” through a RAM read according to the 

value of r. The state of the thread is appended with the function return value and is 

emitted at the output of port B. This is analogous to the Return machine instruction. 

The thread then continues its path of execution. In this transformation the use of port 

A and port B can occur simultaneously. 
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The mechanism for storing the thread state in the RAM depends on the nature of the 

function. If the function requires that the threads be returned in the same order as they 

were called, then the RAM can be organized as a simple FIFO. In general, threads 

return in a random order irrespective of the order they are called; thus a unique 

address must be passed along with the thread state. 

 Special logic is required to keep track of addresses of RAM entries that are 

empty and to those that are full. One way to do is to assign a flag bit for each address. 

The flag bit is set to ‘1’ if the address is free and it is set ‘0’ if the address is full. 

There are some disadvantages in this implementation. First, we need extra memory 

space to store those flag bits. As the length of the RAM increases the number of flag 

bits increases. Most importantly, we must develop a search algorithm to find out 

which flag bit is ‘1’ and which is ‘0’. That also requires additional resources, and can 

take considerable time unless additional storage is used. 

 Another implementation is to use a linked list to manage the free memory 

address. Each memory location has a portion of the content allocated for the linked 

Input A Input B 

    A                          B 

Output A 

RAM 

Output B 

Figure 7:General form of Dual Transformation 
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list. The freed address is inserted into the head of the list, and requires one memory 

write to that address to update the link to the previous head pointer. When requested, 

a free address is allocated from the head of the list, which requires a memory read to 

update the head pointer. If an allocation and a free request occur in the same cycle, 

then the freed address can be used immediately to satisfy the allocation request, and 

the linked list remains unchanged. This can be done in one clock cycle and this is the 

basic criterion used in designing the Call-Return block. 

 

Here is what a list containing the numbers 1, 2, and 3 might look like Figure 8. 

 

1 2 3 

The Overall list is built by connecting the nodes together by their 
next pointers. Head 

Each node stores one data element 

Each node stores one next 
pointer The next field of the last 

node is NULL 

A “head” pointer keeps the 
whole list by storing a 
pointer to the first node 

Figure 8: Linked List Example [5] 

  

Another example of dual transformation that is slightly different than 

Call/Return is that instead of returning a single thread with some return information 
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many threads are returned. One thread invokes the subroutine by placing an active 

thread state at the input of port A, it is placed in the stack but instead of one thread 

being omitted from the output of port A, a number of threads are emitted. After all 

these threads complete they return at the input of port B and only one thread that was 

placed on the stack is emitted out and continues its path of execution. This is 

analogous to a DOALL statement, which facilitates parallelism.   

Another use of dual transformation is FIFO pipes for message passing. Messages are 

added through one port of the FIFO and removed from another. Special care must be 

taken when considering the boundary conditions, such as when a thread writes to a 

full-queue and when a thread reads from an empty queue.    

          Another example of dual transformation is in interprocess communication with 

mailboxes. A sender can leave a message for a receiver in a particular mailbox 

through a RAM write and the corresponding receiver can retrieve its message from 

that mailbox through a RAM read. An example of message passing dual 

transformation (Send- Receive block) is described in Section 6.3.3.2. 

 The blocking I/O transformation is an unusual type of dual transformation. 

When a blocking I/O operation is requested at the input of port A, the thread is placed 

on the stack and instead of a new thread being issued on the output of port A, an I/O 

request is sent. When the reply to the I/O request is received at the input of the port B, 

the thread is removed from the stack, combined with the results of the I/O operation 

and emitted out from output of port B. That requires some way of associating the I/O 

response with the thread ID making the request, which is often the case.  
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The dual transformations can be used for semaphores. A register within the 

semaphore transformation may hold the value of the semaphore and a RAM can be 

used to hold the state of blocked thread. A WAIT and POST command corresponds to 

threads entering ports A and B. When a thread enters the input of port A it issues a 

WAIT command and checks the state of the semaphore in the register. If the 

semaphore is free then the thread continues its path of execution. If the semaphore is 

in use by some other thread, then the thread is placed on the RAM. The entering of 

the thread at the input of port B causes the POST command to be issued and 

depending on the return information, a blocked thread is retrieved from the RAM and 

emitted at the output of port B.  

 

4.4 FIFO Transformations 

 

The last transformations we discuss are the FIFO transformations. Since the registers 

are limited in capacity, it may sometimes make sense to store the thread state in RAM 

when it is inactive; i.e. is when it is not being used.  

The FIFO transformations just like the route transformations do not change 

the thread state. Figure 9 illustrates the FIFO transformations. If a part of a thread is 

inactive, that is it does not read or write, it is a waste of resources to carry it further 

through various transformations so it is placed in a FIFO and when the other part of 

the thread completes its transformations, the inactive part of the thread is removed 
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from the FIFO and appended back with it. Dual-ported memory allows a thread to be 

inserted and removed from the FIFO every cycle.  

FIFO transformations in general can be used to avoid deadlock due to 

resource limitations and for scheduling purposes. Consider a case where more than 

one thread is trying to access a resource. Depending on the priority scheme selected, 

one thread can be given access to the resource and the other threads can be placed on 

the FIFO. FIFO transformations along with PAUSE signal and VALID bit form the 

basis of the control and scheduling mechanism of the computational model. The 

priority scheme developed with FIFO transformations is briefly described in Section 

6.3.2.      

   

FIFO 

Figure 9: A FIFO Transformation 

Inactive 
thread 
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Chapter 5 

Factorial 

 

In this Chapter, we present a small example, a recursive computation of factorial. We 

begin by describing the algorithm in high-level language and then describe the model 

of computation.     

 

5.1 Factorial Algorithm [9] 

 

The algorithm is simple but will illustrate a number of features unique to this 

computational model. The factorial of a natural number is defined as follows: 
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int fact(int n)  
{ 
   if (n == 0) or (n == 1) 
      return 1; 
   else 
      return (n * fact (n-1)); 
} 
 

                           Figure 10: Factorial in C 
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A naïve implementation of the factorial function is given above and is an example 

often used to teach recursion. It is for that purpose that we selected to implement the 

factorial function in our computational model. 

 

5.2 Model of Computation Implementation  
Input

 

   
R1

 

 

 

 

R5 

       Call                                                     Ret

C

D1

(-) 
M2 

D2 

(X)

 

 

R7

R2

 

 

 

 

 

 

 

 

 

 

R4 R3 

R6

Output

  R - Register 
  M - Multiplexer  
  C - Comparator  
  D - Demultiplexer 
 (-)- Decrementer 
 (x)- Multiplier  

  

M1

Figure11: Model of Computation Factorial
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Figure 11 graphically represents a high-level view of our implementation of the 

computation for the factorial function. In this section we will describe how it works. 

Placing a valid thread on the input line labeled inputdata performs the call to the 

function fact. The line inputdata is a bus that consists of data bits and control bits. 

The data bits contain the return address information and the value to compute, x and 

the valid bit. The line labeled outputdata returns the computation result.    

 When a thread enters the module, it first passes through a router; M1, 

described in the Section 5.3.2.1.Which thread is chosen by the router depends on the 

scheduling policy (blocking priority). Scheduling policies are described in detail in 

Section 5.4. Once the thread is emitted from M1, it is placed in a register R1. In the 

next cycle, the thread undergoes a test for x Є {0, 1, 2} and the boolean result s is 

passed to another router. Depending on the value of s the router routes the thread to 

the right (s=0) or to the left (s =1). 

 We need to follow two potential execution paths, one when s=0 and the other 

when s=1.When s =0 the algorithm is trivial. The value that is returned is nothing but 

the same value of computation, x. When s=1, then x > 2 and the algorithm is no 

longer trivial. A part of the thread that contains x is passed through a decrementer and 

the decremented value is appended to the thread. This thread then enters a dual 

transformation and invokes a subroutine call. The databus of the thread is placed on 

the RAM and a new thread is emitted out containing return information and the new 

value of computation. This process repeats until s=0 and the thread is routed the other 

way (left). The thread then invokes the return function. The thread carries some return 
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information (return address) with it. This return information is used to retrieve the 

stored thread. The returned data is passed through a multiplier (x) and the product is 

stored in a register R7. This thread again invokes the return function. This continues 

until all the threads associated with a value of computation are retrieved, multiplied 

and the result obtained. Then the thread containing the result is sent out at the output 

port of the model. 

 

5.3 Model of Computation: Building Blocks 

 

The basic blocks in this program are registers, multiplexers, demultiplexers and the 

call-return block. Of all these building blocks the call-return block is the most 

significant one and allows us to fully implementing recursion. We will discuss each 

of these modules in detail in this subsection. 

 

5.3.1 Examples of Simple Transformations 

 

In this subsection we describe some of the examples of simple transformations, which 

we used in the Factorial program. 
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5.3.1.1 Is_greaterthan_2 

 

Is_greaterthan_2 is an example of simple transformations. In this particular example 

of factorial it checks if the number is greater than two and outputs a boolean value of 

‘1’. 

output

 
>2 

datain

Figure 12: is_greaterthan_2

                                          

 
VHDL Pseudo Code 
 
process(input) 
begin 
if(input='0')or(input='1')or(input='2')then       

output <= '0'; 
   else output <='1'; 
   end if; 
 end process; 
 

 

 

 

 

 

 

 

                                                       Figure 13: VHDL Pseudo Code, Is_greaterthan_2 
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5.3.1.2 Decrementer 

 

 Decrementer is also an example of simple transformation. The input is decremented 

by one and transformed to the output.   

                                                     

 

 
    

                                         Figure 15: VHDL Pseudo Code, Decrementer               

   

 

 

 

                                                        Figure 15: VHDL Pseudo Code, Decrementer 

 

  

  dataout

datain

 
(- 1 ) 

underflow_error 

Figure 14: Decrementer

VHDL Pseudo Code 

process(input) 
begin 
   if(input='0')then                
      underflow_error <= '1'; 
   else output <= input - '1'; 
   end if; 
 end process; 
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4.3.1.3 Multiplier 

 

 Another example of simple transformations is the multiplier. The two inputs are 

multiplied and their product is transformed to the output.  

 

 

 

     Output

 
Multiplier 

         Input 2 
 

      
                       Input 1 

             

 

 

 

  Figure 16: Multiplier

       

             

 

 

             

 

                  
VHDL Pseudo Code  

             output <= input 1 *  input 2; 
                                          Figure 17: VHDL Pseudo Code, Multiplier 
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5.3.2 Examples of Routing Transformations 

 

5.3.2.1 Multiplexers 

 

 Multiplexers are basically selection devices. It is an example of routing 

transformations Depending on the thread state, only one thread is selected to pass 

onto the output.    

                                             

 

 

 

 

 

 
                                                     Fi 
                                
                                             Figure 19: VHDL Pseudo Code, Multiplexer 
 

                                     

Figure 18: Multiplexer

 Output 

 
Multiplexer

        
      
Input 1 Input 2

Selector 

VHDL Pseudo Code  

process(input 1,input 2,selector) 
begin 
      if (selector ='0') then 
           output <= input 1; 
      else output <= input 2; 
      end if; 
 end process; 
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5.3.2.2 Demultiplexers 

 

 Demultiplexer is another example of routing transformations. Depending on the 

condition the input is routed to one output or another. 

                                     

 

 

                                                 Figure 21: VHDL Pseudo Code, Demultiplexer 

 

  Output 1

 
Demultiplexer

      
   Input 

Selector

Output 2

Figure 20: Demultiplexer

VHDL Pseudo Code  

process(input,selector) 
begin 
      if (selector ='0') then 
           output 1 <= input; 
      else output 2 <= input; 
      end if; 
 end process; 
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5.3.3 Example of Dual Transformations 

 

5.3.3.1 Call-Return Block 

  

In the factorial program, the call-return block is the most significant block and is an 

ideal example for dual transformation. The data placed on the input line of the call is 

written on the RAM and a new thread is emitted out containing return information 

and the new value of computation. A thread with some return information is placed 

on the input of the return function. This return information is used to retrieve the 

stored data from the RAM. 

 

   
  Call                    Return 

                                    Figure 22: Call-Return Block

As discussed in Chapter 4, an efficient way to implement this design is to implement 

the RAM as a linked list. The RAM used in this design is a single port distributed 

select RAM.  

 The following are characteristics of the Distributed SelectRAM [1]  

• A write operation requires only one clock edge. 
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• A read operation requires only the logic access time. 

• Outputs are asynchronous and dependent only on the logic delay. 

• Data and address inputs are latched with the write clock and have a setup-to 

clock timing specification. There is no hold-time requirement.  

These characteristics of the distributed SRAM make it suitable for our design. 

      di 
 
 

                     

Consider the SRAM elements to be the nodes of a linked list. head is a 

register pointing to a free element in the SRAM. addr, di and we are the inputs to the 

SRAM and do is the output of the SRAM. The SRAM elements are initialized such 

that the first element points the second, the second to the third and so on. On system 

start up the head register points to the first element of the SRAM. 

To simplify the explanation of this implementation, we consider four 

scenarios, corresponding to the four possibilities of threads arriving on Ports A and 

B.When no thread arrive on A and B, the implementation simply does nothing. The 

following figures illustrate a design that is sufficient for the scenario in which there is 

only one thread entering the dual transformation, and that thread is issuing a call 

instruction. 

R/W Port do 
          
         addr 

                         
Write Read 

                  
we 

           Figure 23: Single-Port Distributed RAM 
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we 
 
 
       SRAM 
 
di                  do  
 
 
 
addr 

Head 

call_data 

call output  address

                     Figure 24: Call-Return Block (Call Only)

 

 

 call_output_address <= head 
addr <= head 
di <= call_data 
head<= do 

 
 

 

                                                                               Figure 25: Call only  

 

During the call process a thread is written into the RAM and the address where the 

thread is stored is emitted out of the call-return block. 

The contents of the head register point towards the element where the thread 

is to be stored. Thus, the head register output is latched on the addr port of the 

SRAM and also is the output of call function. The data input to the call function is 
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latched on the di port of the SRAM and the do of the SRAM updates the head 

register, i.e., now head points to the next free address.   

Figures 26 and 27 illustrate the scenario where a thread enters the dual 

transformation, Call-Return Block and invokes a return instruction. 

 
we 
 
    SRAM 
 
di             do  
 
 
addr 

Head 

     return_data 

 

 
return_input_address 

       Figure 26: Call-Return Block (Return Only)  

 

addr<= return_input_address 
return_data<= do 
di<=head 
head<= return_input_address  
 

 

 

 

                                                                           Figure 27: Return Only 

 

During the return process a thread with some return information is placed on the input 

of the return function and this information is used to retrieve the stored thread. 

 The return_input address is latched on the addr port of the SRAM and the 

data read from the port do is placed on the signal return data. The contents of the 
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head register are latched on the di port and then it is updated with the return input 

address. 

 The following Figures 28 and 29 describe a scenario where two threads are 

entering the dual transformation simultaneously and one of them issues a call 

instruction and the other issues a return instruction. 

 
 
we 
 
   SRAM    
 
di 

do 
 
 
addr               
                 

call_data

return_input_address

 

 

 

 

 

 
call_output_address

 

 Figure 28: Call-Return Block (Both Call and Return) 

 

 
addr<= return_input_address 
return data<= do 
call_output_address <= return_input_address 
di <= call_data 

 
 

 
 
 
                                                                     Figure 29: Both Call and Return  
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When both call and return take place at the same time a thread is written into the 

RAM and the address is emitted out of the call output port. Simultaneously at the 

return output port a stored thread is retrieved. 

This is one of the simplest cases of Call-Return. The address from which the 

stored thread is retrieved is written into during the call process. Both the call and the 

return simultaneously are possible in one clock cycle because of the use of 

Distributed Select RAM. 

The return_input address is latched on the addr port of the SRAM and the data 

read from the port do is placed on the signal return data. The call data is latched on 

the di port of the SRAM. Since the recently freed element is written to the call 

output address is same as the return input address. 

Figure 30 shows the hardware of the Call-Return Block. 
return_data 

 

        call_ output_address 

0
 
mux

mux

 
mux

 
mux 

Head 
01

1

0

1
0

1

Head in

Head out

call_data 

return_input_ address 

 
we 
 
 
       SRAM 
di                     do  
 
 
 
addr 

 

Figure 30: Call-Return Block 
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5.4 Scheduling and Control Logic 

 

Deadlocks can be caused when more than one thread competes for the use of a 

transformation. Prudent use of FIFO and good capacity planning can be used to avoid 

deadlock. In the discussion below, we have assumed that deadlocks occur only 

because of capacity limitations but there are many other reasons that cause deadlocks 

such as incorrect programming and software faults in the compiler. 

 Deadlocks depend on the scheduling policies used in the transformations 

particularly the routing transformations. For the factorial example described in 

Section 5.2, a scheduling policy is required at the two routers, M1 and M2 where 

there is a possibility that more than one thread can compete for its use. 

 A round robin strategy would guarantee fairness, but might cause exponential 

growth in the number of threads. Another strategy is to give preference to one source 

of threads over the other. We have implemented the scheduling in the routers in such 

a way that only one thread is given priority and the other thread must wait for the first 

thread to run to completion. These routers are called blocking priority routers, since 

one thread is given priority over the other and the lower priority thread is blocked. 

Another technique to resolve priority is to use non-blocking priority routers. Non-

blocking priority routers use a FIFO to store the lower priority thread.  We discuss 

this technique in detail in Section 6.3.2.1.  

 The Factorial program utilizes the valid/pause signals to manage control flow 

between connected transformations and registers. When a transformation or a register 
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is in use by one thread and another thread tries to access it a Pause signal is asserted 

by the transformation to the new thread asking it to hold and wait till it is free to 

accept it. If all the transformations are asserting a Pause signal, the system goes into 

deadlock. 
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Chapter 6 

 Fibonacci  

 

 In this chapter, we begin with a brief introduction to the Fibonacci algorithm in 

Section 6.1 and then proceed to describe the model of computation in Section 6.2 and 

the building blocks in Section 6.3. 

 

6.1 Fibonacci Algorithm [9]  

 

Let us suppose that we need to find the fibonacci of a number, x, Fib (x).   

The algorithm is recursive and each call to Fib creates two threads and the result of 

one thread is communicated to another. Functionally the algorithm is represented as 
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In high-level language like C the algorithm is as follows: 

 

int fib(int n){   
    if (n <= 2) return 1     

     else return fib (n-1) + fib (n-2) 
    }  

 
 
 
 
             
                                                                     Figure 31: Fibonacci in C 
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This algorithm is modeled closely after the recursive definition. Implementation of 

the model of computation of fibonacci is more complex than the factorial because the 

fibonacci function refers to itself twice.  

   
6.2 Model of Computation Implementation 

 

Figure 32 illustrates the graphical implementation of the model of computation for the 

fibonacci program. Placing a valid thread on the input line labeled inputdata 

performs the call to the function fib. The line is a bus, which consists of data bits and 

control bits. The data bits contain the return address information and the value to 

compute, x and also specify whether the thread is valid or not. The line labeled 

outputdata returns the computation result.    

 When the thread enters the module, it first passes through a blocking priority 

router, called BP. Once the thread is emitted from BP, it passes through a non-

blocking priority router(NBP1) and then the selected thread is placed in a register 

R1. In the next cycle, the thread undergoes a test for x Є {1, 2} and the boolean result 

s is placed to another router. Depending on the value of s the router routes the thread 

to the right (s=1) or to the left(s=0). 

 If s=1, then neither the value of x nor the value of s are relevant, so they are 

simply dropped. For illustration, we show that a register is used to contain the value 

1, but in practice, this could be hard coded into that portion of the thread state. 

 Next, the thread competes with another thread for the services of another 2-3 

router. It is likely that preference is given to this thread. Based on part of the return 
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information r.dest, the thread is routed to the transformation that issued the call. The 

return information ‘r’ is made up of two fields: r.dest and r.index. The router uses 

r.dest to route to the calling information. The field r.index may be used by the 

calling transformation to look up the calling thread state in a RAM. We’ll discuss this 

shortly.  

 Backing up to D1, if s=0, then x>2 and the algorithm is no longer trivial. 

First, the thread enters a dual transformation to get a communication channel. The 

communication block is explained in Section 5.3.3.1. If none are available, the thread 

blocks. The dual transformation uses the RAM labeled stk. Once a communication 

channel is received, the value of the channel is given by p, and the thread state is 

augmented to hold this value. The left port of the dual transformation performs the 

function get_pipe_channel ( ). 

 Next, the thread forks into two threads. Note that for illustration we show this 

happening in one cycle, but in fact this can be performed in the same cycle that shows 

the previous transformation. Now there are two threads with nearly identical states. 

We label these threads, left and right based on their position in the figure. The left 

thread does not have the value r because analysis shows that the thread does not 

return, so r is never referenced, and thus it may be dropped. The thread on the right 

does eventually return, so that thread retains the value of r.  

 Both threads then perform a subtraction and place the result in a temporary 

variable. The value of x is no longer used, so the threads no longer need to maintain 

its value. Next, both the threads call fib and pass the parameters x-1 and x-2. The 
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only state that needs to be in the left stack is the value of p and the states that need to 

be stored in the right stack are the values of p and r. On the left, the value r.dest is set 

to 1, which is the unique return value for this particular transformation, and the index 

of the array in which p is stored is emitted in r.index. When the thread returns, the 

value r.index is used to match the return value, stored in t2, with the communication 

channel p. A similar event happens to the right, with r.dest set to 2. 

 Once the left thread return, the return value (t2) is sent via a mailbox p. Use of 

get_pipe_channel ( ) ensures that the channel will be empty. Once the message is 

sent, the thread terminates. On the right, the return value is also placed in t2, and then 

the thread tries to read the value sent through mailbox p. If no value is sent, the thread 

is stored on the stack in location p. Once the message is sent, the dual transformation 

emits the thread together with the received message placed in t3. In the next step the 

thread releases the communication channel. When that’s complete, the two values t2 

and t3 are added. When the addition is complete, the result is stored in t4 and the 

value is returned.  
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Figure 32: Model of Computation Fibonacc
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6.3 Program of Computation: Building Blocks 

 

The basic blocks in this program of computation are registers, multiplexers, 

demultiplexers, adders, the call-return block, the communication block, non-blocking 

priority routers and the send-receive block. Of all these building blocks the send-

receive block has not yet been discussed and is an ideal example of message passing 

dual transformation. 

Registers, multiplexers, demultiplexers and decrementers were discussed in Chapter 

5.We will discuss the remaining blocks in this subsection. 

 

6.3.1 Examples of Simple Transformations 

 

6.3.1.1 Adder 

  

Adder is an example of simple transformations. The two inputs are added and their 

sum is transformed to the output.  

Figure 33: Adder

  Output 

 
Adder 

        Input 2

overflow_error

                          
      
Input1                                      
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VHDL Pseudo Code  

process(input1,input2)  
begin 
      output_temp <= input1 + input2;  
end process; 
process(input1,input2) 
begin 
  if(input1=/’0’)and (input2=/’0’) then 
     if(output_temp =’0’) then 
        overflow_error<=’1’; 
     else overflow_error<=’0’; 
     end if;       
     end if; 
end process; 
output<=output_temp;  
 

 

                         Figure 34: VHDL Pseudo Code, Adder with Overflow Error Check 

 

 

6.3.2 Examples of Routing Transformations 

 

6.3.2.1 Non-Blocking Priority Router 

 

In Chapter 5, we described a scheduling policy where, if more than one thread tries to 

access a routing transformation, we give priority to one of the threads over the other 

thread. The routing transformation is hence called a blocking priority router. However 

this might lead to computational errors. To avoid this kind of error we suggest 

another kind of a router, which has a FIFO along with the router. This is called the 
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non-blocking priority router. In this router the thread that is given the higher priority 

is routed to the next transformation and the one thread that has a lower priority is 

placed in the FIFO. 

The scheduling policy used by us is given in the following VHDL code. Consider the 

two inputs of the ROUTER to be input1, input2 and FIFOOUT and the outputs to 

be output and FIFOIN. 

 

 

             

VHDL Pseudo Code  

OUTPUT_Selection:process(select,input1,input2,FIFOOUT)
begin 
   case select is 
      when "000" =>output<=(others=>'0'); 
      when "001" =>output<= FIFOOUT; 
      when "010" =>output<= input2; 
      when "011" =>output<= input2; 
      when "100" =>output<= input1; 
      when "101" =>output<= input1; 
      when "110" =>output<= input1; 
                   FIFOIN <=input2; 
      when "111" =>FIFOIN <=input2; 
                   output<= input1; 
      when others=>NULL; 
     end case; 
   end process; 
 
       

                                        Figure 35: VHDL Pseudo Code, Non-Blocking Priority Router       
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Figure 3                                             6: Non-Blocking Priority Router

 

6.3.3 Example of Dual Transformations 

 

6.3.3.1 Communication Block 

 

 In the fibonacci program, the communication block is one of the most significant 

blocks and is a good example for dual transformation. On a request instruction a 

channel number is emitted out of request port and on a release instruction a channel is 

released. 
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     Request          Release       

 

 
 Figure 37: Communication Block

 

This block is similar to the Call-Return Block discussed in Chapter 5.Consider 

the SRAM elements to be the nodes of a linked list. head is a register pointing to the 

free element in the SRAM. addr, di and we are the inputs to the SRAM and do is the 

output of the SRAM. Data is read from the SRAM only when there is a thread issuing 

a request instruction. The SRAM elements are initialized such that the first element 

points the second, the second to the third and so on. On system start up the head 

register points to the first element of the SRAM. 

Figures 38 and illustrate the scenario where a thread issues a request and no thread 

issues a release. 

 
 
we 
 
       SRAM  
 
di                 do 
 
addr 

Head 

 

 

 

 

 

channel number                      Figure 38:Communication Block (Request Only) 
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Channel_number<= head 
addr <= head 
head<= do 
 

 

 

 

                                                     Figure 39:Request Only 

 

During the request process a channel_number is emitted out of the communication 

block.The value of the head register points towards the first free element of the 

RAM. The head register output is the output of request function. The do of the 

SRAM updates the head register, i.e., now head points to the next free address. 

Next we consider a case in which no thread requests a channel and one thread 

releases a channel. This is shown in Figures 40 and 41. 

 

 

head 

 
release_channel 

 
we 
 
    SRAM 
 
di             do  
 
 
addr 

 

 

 

 

 

 
Figure 40: Communication Block (Release Only)
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addr<= release_channel  
di<=head 
head<= release_channel  
 

 

                                                                 Figure 41: Release Only 

 

 During the release process a thread with some release information is placed on 

the input of the release function.The release_channel is latched on the addr port of 

the SRAM. The contents of the head register are latched on the di port and then the 

content of the head is updated with the release_channel. 

  

In the scenario explained below, two threads enter the communication block 

simultaneously. One of the threads issues a request instruction and the other thread 

issues a release instruction.   

 
Channel_number <= release_channel 
 

 

 

                                                                    Figure 42: Both Request and Release 

 

The process for handling this scenario is simple. There is no access to the 

RAM. The release_channel becomes the channel_number.   
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Figure 43 shows the hardware of the Communication Block. 
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        channel_number 

 
we 
 
 
       SRAM 
 
di                     do  
 
 
 
addr 

                                Figure 43: Communication Block 

6.3.3.2 Send-Receive Block 

  

In the example of fibonacci design, the most significant block is the Send-Receive 

block. This block is used for message passing and is an example of dual 

transformations. The function of message system is to allow threads to communicate 

among themselves in a more organized way than shared memory. Indirect 

communication [6] is one of the ways in which threads that communicate refer to 

each other. With indirect communication, the messages are sent to and received from 

“mailboxes”. A mailbox is an object into which messages or threads can be placed 
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and from which messages and threads can be removed. Each mailbox has a unique 

identification. 

In our design this unique identification is called the channel number and is provided 

by the communication block discussed before. Communication is possible between 

two threads only if they share a mailbox. The Send and Receive primitive are 

defined as follows: 

Send (A, message) – Send a message to mailbox A 

message=Receive (A) – Receive a message from mailbox A 

 

   
Send                Receive    

 Figure 44: Send-Receive Block

                                          

 The mailbox is implemented using a Distributed SelectRAM, explained in 

Section 6.3.3.1. The mailbox can be empty or full. At the system start-up the RAM 

elements are empty and therefore are all initialized with all zeroes. The two least 

significant bits of the data written into the RAM are the status bits and describe the 

status of the data in the RAM that is whether it is empty or contains a message or 

contains a thread.  Figure 45 shows the status bits.          
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               There are three possibilities when a thread reaches the Receive input 

with mailbox M:  another thread has sent a message and it is waiting in the RAM, 

another thread is sending to the same mailbox M in the same clock cycle, or there is 

no message in M.  If there is a message in M, or if the sender is sending to mailbox M 

in the same cycle, then the receiver is emits out r1_o.  Otherwise, the active thread 

state of the receiver is placed in the mailbox at address M and the status bit set to 

11.When a thread sends a message to mailbox at address M, and there is a previously 

stored thread then the thread is “awoken,” paired with the message, and emitted out 

on bus r2_o.  Note that there is a scenario when a thread is emitted out of both r1_o 

and r2_o simultaneously. Analysis shows that the there is no output from the send 

port. 

                               
                            Figure 45: Status Bits 

   
   Send                       Receive     

  r1_o 

  r_is_i Status Bits

00 – Empty 
01 – Message 
10 – X 
11 - Thread 
 

Msg/Thread

No output awaken thread 
r2_o

picknmove thread 
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Next, we describe the working of the Send/Receive block in detail under the scenario 

where there is a sending thread and no receive thread. 

  
we 
 
    SRAM 
di              
                 do 
 
 
addr 

1 
 
0 

empty 

msg 

LSB 

    Figure 46: Send-Receive Block (Send Only) 

 

 

send( s.msg, s.addr) 
if ( M[s.addr].status == empty) then 
     M[s.addr] <= s.msg 
     M[s.addr].status <= msg 
else if ( M[s.addr].status == thread) then 
     r2_o.msg <= s.msg 
     r2_o.data<= M[s.addr].data 
     M[s.addr].status <= empty 
else ERROR 

                                                                           Figure 47: Send Only 

 

During the send process, depending on the status either a message is written 

into the RAM for the receiver to receive, or a receiving thread previously stored by 

the receiver is awaken, paired with the message and removed from the RAM. If there 
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is a previously stored message in the mailbox (status bits 01) then an error is 

generated, when some other sending thread sends a message to it. 

During the receive process depending on the status either a thread is written into the 

RAM for the sender to awaken it or a message stored by the sender is retrieved out of 

the RAM. This is illustrated in Figures 48 and 49. 

 
  

we 
 
    SRAM 
di              
                 do 
 
 
addr 

1 
 
0 

 

empty 

            thread 

LSB 

          Figure 48: Send-Receive Block (Receive Only) 

 

receive(r.thread, r.addr) 
if (M[r.addr].status == empty) then 
     M[r.addr] <= r.thread 
     M[r.addr].status <= thread 
else if (M[r.addr].status == msg) then 
     r1_o.msg<= M[r.addr].msg 
     M[r.addr].status <= empty 
else ERROR 

 

 

 

 

 

 

 

                                                                     Figure 49: Receive Only 
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If there is a previously stored thread in the mailbox (status bits 11) then an 

error is generated, when some other receiving thread sends a thread to it. 

Finally we consider the scenario where there are two threads, one sending and another 

one receiving.      

 

 

   send(s.msg, s.addr), receive(r.thread, r.addr)
        if ( s.addr == r.addr)    
           r1_o.msg <= s.msg 
           r1_o.data<= r.thread 
 

 

                                           Figure 50: Both Send and Receive at the Same Mailbox  

 

 When one thread is sending a message to a mailbox and another thread is 

trying to receive from the same mailbox then the message from the sender is 

appended to the receiver input. Note that there is a case when a sending thread has a 

message for a mailbox and at the same time a receiving thread is receiving a message 

from another mailbox. This case is a complex case and has not been dealt by us. The 

implementation of this scenario requires more than one clock cycle, which is not our 

criterion.   
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Figure 51 shows the hardware for the send-receive block. 
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                                  Figure 51: Send-Receive Block  

6.4 Capacity and Scheduling      

 

In the Fibonacci program, the number of threads is exponential in the size of x, which 

can quickly overwhelm the capacity of modern FPGAs. However, by studying the 

behavior and straightforward use of transformations and thread scheduling, we can 

easily manage the complexity and maintain high utilization of the system. 

 In our example, we have not provided the details for resolving competition 

between recursive calls. In particular, the 3-1-merge transformation at the top of the 

model needs to be defined. One possibility is a round robin approach, which 
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guarantees fairness but would employ a breadth-first strategy, and cause an explosion 

in the number of threads as shown in figure 52.       

       X 

X-1 X-2

X-2 X-3 X-3 X-4 

 

 

         Figure 52: Breadth-first search 

 

  If however, preference is given to one caller, then the computation resembles 

more of a depth- first search, making it quite tractable as shown in figure 53.  

 X

              
X-2 X-1

 
X-2

 

X-3 
  Figure 53: Depth-first search 

 

 To implement the preference, the top router should be augmented with a RAM 

to queue threads that it cannot immediately service. This is the non-blocking priority 

router discussed before. In this model a fair scheduler is not the most efficient 

implementation. 
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Chapter 7 

Results and Future Work 

 

In this chapter, we describe the simulation and synthesis results. The VHDL Code for 

factorial and fibonacci is simulated using Modelsim XE II 5.8c and synthesized using 

Xilinx ISE 6.3i. 

 

7.1 Simulation Results 

 

Table 1 shows the results from the factorial example. The column named input 

indicates the values that are presented to the Factorial program. Note that the 

implementation allows for multiple threads to be actively executing at the same time. 

In the case where multiple threads were presented, we show the values and the cycle 

number in which they start and end the program. 
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Input 

Input Cycle 
Number 

 
Output 

Output Cycle 
Number 

2 1 2 3 
3 1 6 8 
4 1 24 13 
5 1 120 18 
6 1 720 23 
7 1 5040 28 
8 1 40320 33 
9 1 362880 38 
10 1 3628800 43 
1,7 1,2 1,5040 3,29 
2,10 1,2 2,362880 3,44 
1,8,2 1,2,3 1,2,40320 3,5,34 
1,10,2,5 1,2,3,4 1,2,120,362880 3,5,21,44 

 

Table 1: Factorial Results 

 

Observations: 

The time taken to obtain the factorial of a number is independent of the number of 

threads. This is because of the scheduling policy used by us. We opted for blocking 

priority in which a new thread is blocked until an old thread has completed its 

execution. 

  

Table 2 shows the results for the Fibonacci.  
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Input 

Input Cycle 
Number 

 
Output 

Output Cycle 
Number 

1 2 1 3 
2 2 1 3 
3 2 2 15 
4 2 3 25 
5 2 5 36 
6 2 8 48 
7 2 13 75 
8 2 21 103 
1,2 2,3 1,1 3,4 
1,3,5 2,3,4 1,2,5 3,26,41 
1,2,4 2,3,4 1,1,3 3,4,29 
1,2,5,6 2,3,4,5 1,1,5,8 3,4,61,63 
1,2,3,4,5 2,3,4,5,6 1,1,2,3,5 3,4,25,36,50 
1,2,3,4,5,7 2,3,4,5,6,7 1,1,2,3,5,13 3,4,30,55,90,124 

 

Table 2: Fibonacci Results 

 

Observations: 

We observe that the time taken to obtain the fibonacci of a number is dependent on 

the number of threads. This is because of the non-blocking priority scheduling 

scheme used by us.  

 

7.2 Synthesis Report 

In this section, we present a summary of the resources that it would take to implement 

the Factorial program in Xilinx 2vp20ff1152-7 FPGA. 
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 The following figure gives a summary of the synthesis report.  

 

 

The following figure gives a summary of the synthesis report when the Fibonacci 

program is synthesized for Xilinx 2vp20ff1152-7 FPGA.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design Statistics 
 # IOs:47 
Macro Statistics
 # RAM: 1 
 # 64x10-bit single-port distributed RAM: 1 
 # Registers: 8 
 # 10-bit register: 1 
 # 12-bit register: 4 
 # 16-bit register: 1 
 # 48-bit register: 2 
 # Multiplexers: 4 
 # 2-to-1 multiplexer: 4 
 # Multipliers: 1 
 # 36x4-bit multiplier: 1 
 
Device utilization summary 
Selected Device: 2vp20ff1152-7  
 Number of Slices:           179 out of  9280    1%   
 Number of Slice Flip Flops: 161 out of 18560    0%   
 Number of 4 input LUTs:     289 out of 18560    1%   
 Number of bonded IOBs:       46 out of   564    8%   
 Number of MULT18X18s:         3 out of    88    3%   
 Number of GCLKs:              1 out of    16    6%   
 
 
Timing Summary
Speed Grade: -7 
   Minimum period: 8.877ns(Maximum Frequency: 112.651MHz) 
   Minimum input arrival time before clock: 2.689ns 
   Maximum output required time after clock: 10.593ns 
   Maximum combinational path delay: No path found 
 

                                              Figure 54: Summary of Synthesis Report, Factorial 
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The following Figure 55 gives a summary of the synthesis report for the Fibonacci 

program. 

                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design Statistics 
# IOs: 14 
Macro Statistics  
# RAM: 4 
# 128x14-bit single-port distributed RAM: 3 
# 64x22-bit single-port distributed RAM:  1 
# Registers: 16 
 #  13-bit register: 4 
 #  14-bit register: 6 
 #  19-bit register: 4 
 #  20-bit register: 1 
 #  25-bit register: 1 
# Adders/Subtractors: 1 
 #  5-bit adder: 1 
# Comparators: 1 
 #  6-bit comparator equal: 1 
 
Device utilization summary
Selected Device: 2vp20ff1152-7  
 Number of Slices:          1088 out of  9280   11%   
 Number of Slice Flip Flops: 346 out of 18560    1%   
 Number of 4 input LUTs:    1762 out of 18560    9%   
 Number of bonded IOBs:       12 out of   564    2%   
 Number of GCLKs:              2 out of    16   12%   
 
Timing Summary
Speed Grade: -7 
  Minimum period: 7.454ns (Maximum Frequency:134.156MHz) 
  Minimum input arrival time before clock: 7.728ns 
  Maximum output required time after clock: 8.960ns 
  Maximum combinational path delay: 8.879ns 
 

 

                                      Figure 55: Summary of Synthesis Report, Fibonacci 
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7.3 Future Work 

 

 In the summary of the synthesis report we see that 11% of the CLBs were 

used. This is number is quiet modest but can still be reduced by using 

BlockRAM instead of Distributed SelectRAM.  

 The programs were limited to input sizes that were small. Increase in the input 

size would increase the number of resources used.  

 The next step to improve this computational model will be to implement 

pointers to functions to include memory management capabilities. 

 

7.4 Conclusion 

 

The Computational model developed by us has the following features 

 Fully recursive 

 Allows high-level concurrency 

 Implements complex constructs such as call-return subroutine and 

message passing 

 Utilizes modest resources  

 

There is now a computational model that allows reconfigurable logic to provide an 

excellent base for design and implementation of various complex algorithms such as 

genetic algorithms in hardware. The emerging high-level synthesis technology with 

this computational model raises the level of abstraction for FPGA programming from 

gate-level parallelism and will help the system designers to bridge the gap between 

hardware and software.  
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