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Abstract 

Over the past decade, various methods for video shot boundary detection and 

classification have been proposed and implemented by numerous researchers. 

Nonetheless, many of these techniques are specific to the type of transition or they are 

more complicated than necessary. Our research is developed around the idea of creating a 

simple, real-time and general algorithm which can be used to detect both effects as well 

as transitions within a video-stream segment. We have implemented several novel 

methods which have led to such a system. Adaptive examples, use of no thresholds, 

parameter free algorithms, extremely sensitive change detectors, parallel analyzers and 

uncertainty groups are among these methods. 

 

Keywords: Video shot boundary detection, video segmentation, temporal segmentation, 
and threshold. 
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1. Background 

1.1. Introduction 

Advances in video research have benefited a wide range of industries, such as news 

websites, television channels, film industries, surveillance and security companies, 

remote sensing projects, meteorology centers, and medical imaging industries. Further 

advances in technologies have opened a vast market for video-related products and 

research. As demand rises, the need for more precise algorithms increases. Consequently, 

in the recent years significant efforts have been devoted to video data analysis and 

recognition, including video shot detection, shot grouping, scene detection, classification 

and retrieval, audio track analysis,  video indexing, and motion detection. 

Video temporal segmentation (video shot boundary detection) is at the center of many 

video related research topics. Hence, a lot of time and resources have been invested to 

improve the existing techniques and to open the door to a more efficient and accurate 

approaches. This thesis aims toward explaining two novel methods for uncompressed 

video shots boundary detection and classification in real time. The proposed methods use 

examples of transitions as basis for detection and classification of transitions, instead of 

complicated mathematical or statistical models used in other methods. Our first algorithm 

is based on predefined examples whereas our second method is based on adaptive 

examples. 
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1.2. Motivation 

Video temporal segmentation is used in many other research areas. Hence it is important 

to achieve perfect or near perfect results in temporal segmentation. Although this topic 

has been researched for over one decade, no algorithm has been able to perfectly detect 

all the transitions. The motivations behind this research was to introduce a distinct 

algorithm which results in better outcomes for all the three primary transitions (cuts, 

fades and dissolves) which can easily be expanded to be used against other transitions 

and effects. 

1.3. Goals 

Consider a video processing system that detects the common types of transitions such as 

cuts, dissolves and fades. If in this system, a mathematical model is defined for every 

transition type then with the introduction of each new transition or effect a new model 

becomes necessary. Hence, a downfall of these methods is that they tend to be very 

complex. This has a negative effect on performance. As noted by Boreczky and Rowe 

[16], the simpler algorithms typically outperform the more complicated ones. The second 

problem with mathematical model approach is that it is not general enough, meaning it 

cannot be expanded to other types of transitions easily. 

Hence, the motivations behind this research was to develop an algorithm that is as simple 

as possible but not simpler. An example based technique will achieve this goal and at the 

same time it will be general enough to detect not only all types of transitions but also 

camera and graphical effects within the video. 



  21

With simplicity comes a faster execution speed which is an important fact for many 

higher level research works which require the output of temporal segmentation 

algorithms. 

1.4. Overview 

Many temporal segmentation algorithms can be divided into three main stages 

(representation, detection and classification) and two optional stages (false prevention 

and detection). These steps are often merged into a pipeline (see figure 1.1) and 

occasionally two or more stages are combined for ease of implementation. Our two 

temporal segmentation algorithms follow this general design. Implementation details are 

described on the subsequent chapters. 

 

Fig. 1.1. Illustrates a general process flow for temporal video segmentation 
algorithms. 
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1.5. Thesis Organization 

This thesis is organized as follow: 

• Chapter 1 provides the reader with the motivations and goals behind the work and 

also with an overview of the algorithms used.  

• Chapter 2 reviews existing literature and related work in video temporal 

segmentation. It also covers topics such as classification algorithms as well as 

labeling, thresholding, and false positive detection and prevention methods in video 

shot boundary detection. 

• Chapter 3 discusses the design and implementation details of the first technique, 

temporal segmentation based on predefined examples.  

• Chapter 4 discusses the design and implementation details of the second technique, 

temporal segmentation based on adaptive examples. 

• Chapter 5 presents and discusses the experimental results for both of the algorithms 

which are discussed in chapter 3 and 4. 

• Chapter 6 contains the summaries, and discussion of future work. 

• Bibliography contains the list of references used in this document. 

• Appendix A contains the derivations for some of the equations. 

• Appendix B contains the glossary of some of the commonly used terms in the field of 

temporal segmentation as well as terms introduced in this document. 
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2. Literature Review 

Video related research is a fairly new field as the computing power did not meet 

researchers’ needs previously. Though in the past few years, tremendous growth in video 

research and technologies has taken place, especially in the area of video temporal 

segmentation (shot boundary detection). 

2.1. Introduction 

The research efforts in the last decade have provided the community with great collection 

of literature. Thus it is essential and worthy to review these works and aim to improve 

rather than reinvent the wheel. This chapter presents the literature review for different 

stages of temporal video segmentation as illustrated in figure 1.1.  

2.2. Basic Camera Operations 

To be able to perform thorough research on temporal video segmentation, it is important 

to first learn about the basic camera operations used in video capture. Having this 

knowledge is necessary in order to effectively distinguish between these operations and 

transitions or effects in question later on. Basic camera operations are divided into three 

groups: Linear Movements, Rotational Movements, and Lens Movements. Figure 2.1 

demonstrates all these movements. 
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Fig. 2.1. Demonstrates the major camera operations (movements). 

 

Linear Movements are divided into three groups and each is described below: 

• Boom refers to the movement along the boom axis. In other words, camera moves 

up and down. 

• Dolly refers to the movement along the dolly axis. In other words, camera moves 

back and forth. 

• Track refers to the movement along the track axis. In other words, camera moves 

left and right. 
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Rotational Movements are caused by camera rotation along one of the main three axes. 

• Tilt is the camera rotation along the track axis. 

• Rotate is the camera rotation along the dolly axis. 

• Pan is the camera rotation along the boom axis. 

Lens Movements or zooms are due to the movements of lens (back and forth). 

• Zoom in results in objects appearing closer than they really are or closer than the 

previous state (in previous frame). 

• Zoom out results in objects appearing farther than they really are or farther than 

the previous state (in previous frame). 

Camera movements are one of the main reasons behind the lower detection quality in 

many algorithms. They are mentioned further in this chapter, especially in false detection 

and prevention related sections. 

The next step in producing video programs (such as movies, news, and sport shows) is 

the editing stage during which the different shots are joined through the use of transitions 

to create the final product. These topics are discussed in the following section. 

2.3. Transitions Overview 

Transitions are used to merge different shots into a final product in the editing stage. 

Many well-known video editing software such as Adobe Premiere and Ulead Media 

Studio are used by the directors and other people to edit and merge the video shots. On 
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the other hand, our task in this research is to reverse this process. In other words, rather 

than creating transitions, we have to identify them and extract the surrounding shots. 

Many different transition types exist which can be used in the editing process, however as 

Lienhart claims [63], 99% of all transitions (edits) fall under one of the following three 

categories: 

• cuts, 

• fades, or  

• dissolves. 

Hence, this section mainly focuses on these transitions. These transitions types fall under 

temporal transition category, meaning they cause a gradual frame by frame space-wise 

global change in pixel intensities of one shot which will eventually lead to a frame in the 

next shot. 

Although having the knowledge of other types of transitions, is also of a great interest 

since many of them can create confusion while detecting one of the main transitions.  

Therefore also discussed in this section, are the following transition types: 

• wipe, and 

• graphical transitions. 

One major point of distinction among different transition types is the length. According 

to this property they are divided into two groups. First are those transition types which 

lack any actual lengths (i.e. the transitions which can be defined as a sudden change in 
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video stream while moving from one frame to the next). The second category can be 

defined as those transitions which are presented as a frame by frame modification of one 

shot which will eventually lead to the next. These categories are labeled as abrupt and 

gradual transitions respectively. 

2.3.1. Abrupt Transitions (Cuts) 

Almost all abrupt transitions are cuts. In fact they are common enough to be frequently 

used in place of abrupt transitions in the existing literature. This transition type has also 

been labeled as breaks and hard cuts by the previous researchers of the field. 

As previously mentioned cuts lack any actual length. In other words, they are defined as a 

sudden change in the video stream while moving from on frame to the next. These 

transitions are easier to detect than gradual transitions since they are presented as an 

abrupt change between two frames of no correlation [6]. Figure 2.2 displays a frame 

sequence of two shots merged together by a cut. 

 

Fig. 2.2. Demonstrates an example for an abrupt transition (cut). 

 

Figure 2.3 demonstrates the work performed by Miadowicz [73] to represent the video 

stream in a numerical format. As this figure demonstrates, the cut transition between two 

frames is clearly distinguishable from the rest of the video sequence. 
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Fig. 2.3. Demonstrates an abrupt transition (cut) in a numerical representation format of a video 
stream. (A) Presents the video sequence. (B) Presents the numerical representation of the 
video sequence and (C) Presents the first order derivative or cross differences curve for 
the same cut transition. 
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Even though, cut transitions can be easily detected in an usual case (such as figure 2.2), 

due to complications such as camera movements, graphical effects, and other transitions, 

no one has been able to develop a system that detects all types of transitions within all 

types of video with a 100% accuracy. Therefore, considerable amount of research has 

been dedicated to cut detection, such as [34], [36], [63], [74], [75], [88], [100], and [103]. 

These works are reviewed later on in this chapter. 

Most of these methods result in an acceptable detection output for example, Lienhart in 

comparison of different techniques [63], states that hard cuts detection was very reliable 

in most cases and 95% hit rate at 5% false hits are attainable. He adds that the false 

positives are caused by dark or very dynamic scenes with strong object motion, blasts or 

fast camera pans. Due to the high accuracy of cut detection algorithms, many researchers 

have shifted their focus from cut recognition to improving the gradual transitions related 

techniques. 

2.3.2. Gradual Transitions 

As previously mentioned, gradual transitions are defined as a frame by frame 

modification of one shot which will eventually lead to the next. Depending on these 

modifications, gradual transitions are categorized into various groups. Fades, dissolves, 

wipes and graphical transitions are among those discussed in this section. 

Fade 

During editing, fades are produced by use of monochrome frames and usually linear 

scaling of the pixel intensities or their statistical representation [16]. A complete fade is 
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consisted of two parts, fade out and fade in. During a fade out, the first shot gradually 

transforms into a monochrome frame whereas during a fade in, the monochrome frame 

transforms into the frames of the next shot. Figure 2.4 demonstrates a complete fade 

transition where frame 428 represents the monochrome frame. 

 

Fig. 2.4. Demonstrates a complete fairly short fade to black. 
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Fig. 2.5. Demonstrates a complete fade to black with several monochrome frames in the middle. 
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A fade transition can have one monochrome frame between fade out and fade in (such as 

the fade in figure 2.4) or it can be consisted of several such frames. Example of latter 

fade, is presented by figure 2.5. No specific limit exists on number of monochrome 

frames or the length of fades in and fades out. Hence, depending on the assumptions of 

segmentation algorithm, a very long sequence of monochrome frames can be counted as a 

separate shot if desired. 

Truong, et. al. [103] aims at improving the fade detection algorithms by considering 

different properties of fades. These properties and authors’ other observations are as 

follow: 

1. All fades have one or more monochrome frames. 

2. There are large negative spikes that appear near beginning of a fade-out and ending 

of a fade-in on the second derivative curve of luminance variance. 

3. Depending on whether frames sequence is fading-in or fading-out, the variance of 

fading frames will increase or decrease rapidly. 

4. To avoid false positives caused by dark scenes, the variance or the starting frame 

of a fade-out and the ending frame of a fade-in should be limited to be above a 

threshold. 

Truong has also improved the existing techniques by proposing many enhancements 

through analysis of variance and mean curves. Similar techniques are used by Miadowicz 

[73] for fade detection. Figure 2.6 demonstrates a fade sequence along with its numerical 

representation. It represents a special case where there is a cut combined by a fade in. As 
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will be discussed in more details later this scenario cannot be detected by many 

transitions. 

 

Fig. 2.6. Demonstrates a cut transition immediately followed by a fade 
transition in a numerical representation format of a video stream. 
(A) Presents the video sequence. (B) Presents the numerical 
representation of the video sequence and (C) Presents the first 
order derivative or cross differences curve for the same transitions. 
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Hampapur et. al. represents a mathematical model for fade out transitions in their paper 

[50]. This model is presented in equation 2.1. In this equation, E(x, y, t) represent the 

generated pixel intensity value for each pixel located at ),( yx  coordinate of frame t,  id  

represents the length of the transition, ),,( 1
1

−
− + i

ei ttyxS  represents the current pixel intensity 

at location ),( yx  for the segment of the shot 1−iS  starting at time 1−i
et  which is used to 

generate the transition. i  sub- and superscripts represent the item index number. Finally, 

)1( id
t−  is used as the scaling function. Fade in follows a similar model and further details 

on both equations are available in [50]. 

],0[),1(),,(),,( 1
1

i
i

i
ei dt

d
tttyxStyxE ∈−⋅+= −

−
 (2.1) 

Improper use of scaling function can lead to an effect such as the one presented in figure 

2.7. In such a case, the fades in or fades out do not start or end (respectively) with a 

monochrome frame. Hence depending on the specifications the detection algorithms can 

label such cases as fade or simply as change in brightness. 

 

Fig. 2.7. Demonstrates an incomplete fade to white. 
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Fades in and fades out are specific cases of dissolve transition type where the first or 

second shot respectively is a monochrome shot. Hence the equations presented in 

dissolve section can also be applied to fades. 

Dissolve 
A Dissolve is generated through gradually decreasing the effect of the pixel intensities of 

the ending frames in the outgoing shot and increasing the effect of the pixel intensities of 

the beginning frames in the incoming shot. According to [3] dissolves can be grouped 

into two main categories (cross-dissolve and additive dissolve) depending on the scaling 

function for incoming and outgoing shots. Perry [87] takes this one step farther by 

naming many different types of dissolve. According to [87], types of dissolves include 

additive, cross, dip to color, dither, fade in/fade out, non-additive, random invert, and 

ripple.  

 

Fig. 2.8.Illustrates variations of intensity scaling functions used to produce dissolves transitions. 
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Figure 2.8 illustrates these different scaling functions. In both cross and additive dissolve 

types, intensity scaling function of the outgoing shot decreases with the same rate as the 

intensity scaling function of the incoming shot increases. The difference between the two 

is in additive dissolve scaling functions; during the transition, both scaling functions for 

incoming and outgoing shots of adaptive dissolve, are at their highest values.  

Cross-dissolves are more common than additive dissolves. Hence many techniques do not 

distinguish between the two. Recall that a dissolve transition, Sn(i, j), starting from frame 

L1 and ending at frame (L1+F) is modeled by [6] (equation 2.2).  
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(2.2) 

This equation represents a cross dissolve. The model for additive dissolve can be 

obtained by simply modifying the intensity scaling factor )( 1

F
Ln − . 

Similar to cuts and fades, various mathematical and statistical models based techniques as 

well as learning based methods exist for dissolve detection (such as [6], [30], [63], [64], 

[78] and [103]). Lienhart [64] developed and evaluated many learning techniques for 

video shot boundary detection including neural networks, support vector machines, and 

linear vector quantization whereas Ngo [78] focused on detection based on support vector 

machines. Truong et. al. improved the existing mathematical model based techniques for 
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dissolve detection by proposing many enhancements through analysis of variance and 

mean curves of main transition types [103]. 

 

Fig. 2.9. Demonstrates a dissolve transition in a numerical representation format of a video 
stream. (A) Presents the video sequence. (B) Presents the numerical 
representation of the video sequence and (C) Presents the first order derivative 
or cross differences curve for the same transitions. 
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Figure 2.9 demonstrates a dissolve sequence along with its numerical representation. 

Similar charts and sequence are presented in figure 2.10 for a different dissolve. The 

difference between the two is in their numerical representation. The latter is less common 

and it is meant to demonstrate the reasons behind the difficulties with dissolve detection 

due to variations in its representation. 

 

Fig. 2.10. Demonstrates a dissolve transition in numerical representation 
format of a video stream. This dissolve causes a completely 
different input stream behavior than the one in figure 2.9. (A) 
Presents the video sequence. (B) Presents the numerical 
representation of the video sequence and (C) Presents the first 
order derivative or cross differences curve for the same 
transitions. 
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Truong et. al. have algebraically shown that the first order difference of the variance 

curve changes linearly from a negative value to a positive value. Hence, the zero crossing 

sequences whose starting values are below and their endings values are above a specified 

threshold are points of dissolve transitions. 

They also performed smoothing to cancel the effect of noise and motion while detecting 

the dissolves. The smoothing process causes the position of negative and positive peaks 

of the curve not to be coincident. To fix this problem the algorithm looks back and forth 

with a specific threshold in mind to find the correct starting and ending positions of 

dissolve transitions. As the last step, the algorithm looks at the variance curves while 

considering the fact that it will have a parabolic shape during a dissolve. 

Wipe and Slide 

Although wipe transition type is less common than cut, fade and dissolve transition types, 

there exist more varieties of wipes than other three transitions due to the fact that it is a 

specific type of spatial transition. 

A spatial transition is a gradual pixel by pixel space-wise localized change in pixel 

intensities of one shot during which the pixels in the ending frames of that shot give their 

place to the corresponding pixels in the corresponding frames of the upcoming shot 

which will eventually lead to a frame within the second shot. Wipes are specific type of 

spatial transition since there should exist a specific order in which pixels of a frame in the 

preceding shot give their place to the pixels in a frame of the upcoming shot. This order 

yields a pattern in the video sequence which is known as wipe (in short, Wipe and slide 

transitions work by sliding a new shot into the existing shot [87]).  
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Depending on the order and generated pattern, wipes are divided into many categories 

some of which are listed and described in this section. 

• Vertical Wipe is the most common type of wipe during which the transformation 

either initiates on the left hand side of transition starting frame and terminates on the 

right hand side of transition ending frame or vice versa. Figure 2.11 presents an 

example of such transition. 

• Horizontal Wipe follows exactly the same pattern as vertical type except it initiates 

by changing the top pixels of transition starting frames and terminates by changing 

the bottom pixels of transition ending frames or vise versa. 

• Diagonal Wipe follows exactly the same pattern as horizontal and vertical wipes with 

the exception that the transformation starts from one of the four corners and ends on 

the opposite side. 

• In-Out Wipe is based on the same idea as previous wipes with exception that the 

change initiates or terminates at the center pixels of transition starting or ending 

frame respectively. If it initiates at the center pixels, it is called to be an in-out wipe 

and an out-in wipe otherwise. These two types also enjoy a diverse variety, some of 

which are presented in figures 2.12 and 2.13. Figure 2.12 presents a vertical in-out 

wipe combined with the graphical effect of an opening door. In this case the door 

wipe splits the existing shot in two and slides the pieces to each side, revealing the 

next shot behind the door. Figure 2.13 presents a circular in-out wipe. 
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• Iris is a type of wipe very similar to the one presented in figure 2.13 with exception 

that usually either the first or the second shot is a monochrome shot (it has the same 

relationship with wipe transition type as fade transition type has with dissolve 

transition type). Use of the iris transition was popular in silent films, but it is not used 

as often in modern filmmaking. This transition appears as a shape closing in on a 

scene, or opening outward to the screen's edges [87]. 

 

Fig. 2.11. Presents a vertical wipe. 
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Fig. 2.12. Presents a special effect wipe. 
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Fig. 2.13. Presents a circular wipe. 

 

Due to the existence of numerous variations and the spatial characteristic of wipes, they 

cannot be presented through a specific mathematical model. Thus, other methods in video 

and image processing are utilized to identify these transitions. The most popular wipe 

detection techniques are edge and motion detection methods. Many researchers have used 

these two methods or have proposed other specialized and distinct algorithms for 

conducting this task. Among these research work are [30], [49], [74], [81], and [114]. 

Many wipes with complicated patterns can be labeled as graphical transitions depending 

on the specifications against which the detection process is carried out. Figure 2.14 

presents an example of such wipe transition. 
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Fig. 2.14. Demonstrates a graphical transition example. 

 

Graphical Transition 

Similar but to a higher extent than wipes, a diverse and large set of transitions can be 

labeled as graphical transitions. This transition type can be defined as a type of transition 

which is compiled through the use of effects, computer graphics as well as other 

transitions in combination with the frames from the surrounding shots leading to a frame 

by frame transformation solution for converting one shot to the next.  

The recent improvements of editing software in the past decade and attractiveness of 

these transitions have increased their use in many types of video especially in sport 

games, sport shows, commercials and some movies. As a result, their further study is 

necessary.   
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Mathematical model based techniques might prove very accurate for some variations, fail 

for others, or cannot be executed due to the lack of such model. Hence it is recommended 

that a learning algorithm ([63]) or a direct comparison method (chapter 3 and 4) to be 

used. Though, regardless of the technique, these transitions can prove difficult to detect 

and therefore to obtain the best detection quality, they should be considered in a case by 

case basis. Hence some of the main types of these graphical transitions are listed and 

described at this point. 

• Blinds transitions are based on the real life blinds. Just as vertical and horizontal 

window blinds expose the outside world (or a different room) when their individual 

parts are twisted upward or sideways [87], transition blind will expose the frames in a 

new shot.   

• Morphing is usually used in movies to transform one image (object) into another. 

Morphing or tweening is an animation technique that based on starting and ending 

shapes the algorithm creates the in-between frames while using mathematical 

equations to control the movement of key points in the parent shapes during the in-

between frames. If this technique is used globally on all pixels of bordering frames of 

two adjacent shot, then it is a video shot transition. However, it is rarely used for this 

purpose. 

• Special Effect is a diverse group of transitions. For example if the last frame on the 

first shot burn or shatter away into the next shot [87]. Other effects in this category 

include but are not limited to swirling, ripple effect, and rolling fog. These transitions 

also are not limited to 2D. Having 3D transition adds excitement to the video and 

therefore used in many types of videos such as documentary shows for kids to keep 
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them interested. For example the last frames of the first shot can fold or bend into a 

cube or sphere and role, bounce or fly off the screen, revealing the frames of the 

adjacent shot. 

Graphical transitions are only limited to ones’ imagination, making them the most 

difficult type of transition to detect. Besides existence of numerous variations, similarities 

of some of these transitions to object motions or other transitions and effects, make the 

detection task even more complicated to not only detect them but also to avoid detecting 

them as other transitions mistakenly. Figures 2.15 to 2.18 present some examples of 

graphical transitions. 

 

Fig. 2.15. Demonstrates a graphical transition example. 



  48

 

Fig. 2.16. Demonstrates a graphical transitions example. 
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Fig. 2.17. Demonstrates a graphical transition example. 
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Fig. 2.18. Demonstrates a fade like graphical transition which is combined with fast camera 
movement. 

 

2.3.3. Conclusion 

In this section, we reviewed the different types of transitions providing the reader with 

mathematical models, examples (figures), list of subcategories, and detailed description 

of each when appropriate. It is important to learn about all these different types of 

transitions even if one does not attempt to detect all of them. This is due to the fact that 

some of these transitions such as graphical transitions can cause confusion for the 

temporal video segmentation algorithms which are meant to detect other types of 

transitions and eventually leading to a poor performance. 

The next topic of interest is the way video frames are converted into numerical and 

statistical stream which is the most desirable format for processing through use of 

computers. 
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2.4. Representation 

The first step in all temporal video segmentation algorithms is to extract different features 

of video, representing it in a numerical or statistical format. Another technique is also 

required to represent the measure of difference or the similarity metric between to image 

sequences. Some of the attributes and features used in this stage include but are not 

limited to color, shape, texture, luminance, edges, motions, and DCT coefficients. The 

future detection and classification stages are directly influenced by the representation 

stage and therefore extraction of appropriate features is of great importance. 

2.4.1. Segmentation based on Pixel (Spatial) Differences 

Pixel differences technique is one of the simplest schemes in video shot boundary 

detection research. The idea behind it is that the differences of pixel values in consecutive 

frames are low unless those frames are located in or on the boundaries of a transition such 

as cut, fade, or dissolve. These algorithms basically count number of the pixels that have 

a difference in value above a threshold. If this total is above a second threshold then a 

shot boundary is detected. 

[49], [94], and [116] are among pixel differences based research work. Hampapur, et. al. 

[49] computed chromatic images. These images are obtained by dividing the difference 

pixel values in gray level of two frames by the pixel values of the second frames. Then 

they show that during dissolves and fades, the chromatic image takes on a reasonably 

constant value. They also used similar technique for detecting wipes. Regrettably, this 

technique is very sensitive to camera and object motion. 



  52

Zhang, et. al. [116] used similar technique for representation purposes. However as the 

first step they reduced the camera motion and other noise in the data by applying a 3x3 

averaging filter. The algorithm was slow and hence they used a threshold tailored to the 

input sequence. 

Shahraray [94] approached the problem by dividing the images into twelve regions and 

using a matching process similar to the one used to extract the motion vectors from an 

image pairs. Basically, for each region in the first image, the best match was found in the 

neighborhood of the same region in the next image. Then the weighted sum of the region 

differences provided the image difference measure. As the next step, a cumulative 

difference measure for consecutive image differences was measured which eventually 

was used to detect the gradual transitions in the video stream. 

Even though pixel difference based techniques are the easiest detection methods to 

implement, they are not used widely since they are too sensitive to object and camera 

motion and can require a long processing time. 

2.4.2. Segmentation based on Statistical Differences 

The idea behind statistical differences schemes is very similar of that in pixels differences 

methods. In statistical differences the algorithm compares the statistical measures of 

pixels in different image regions. [16], [22], [51], [48], [58], [68], [73], [83], [100], and 

[109] are among the literature which include statistical based techniques. 

Kasturi et. al. [58] developed an algorithm based on the mean and standard deviation of 

the gray levels in regions of the image. This method is claimed to be slow due to 
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complexity of statistical formulas. It also introduces too many false positives in the end-

results, perhaps due to the use of gray levels. 

Miadowicz [73], use “color moments” in their analysis. Color moments are basically the 

mean, standard deviation, skew, and center of gravities for the three primary color 

channels, red, green and blue. 

Similar method as [73] was used by Tahaghoghi, et. al. [100]. They used a moving 

window to analyze the statistical features of frames in each possible window. A cut was 

detected if there was a big change in data while moving from one frame to the next. Their 

cut classification method can be summarized as follow. 

I. At each time instance, t, the difference between f(t) and f(x) for ],[ wtwtx +−∈∀  

is calculated: 

)()(),( xftfxtd −=   where  ],(),[ wtttwtx +∪−∈  (2.3) 

II. The values of d(t, x) are sorted in a decreasing order. 

III. If there were no frames from the first half of the window in the first 
2

)12( +⋅ w  of 

the sorted distance values (the top-ranked frames) then a cut had occurred at time 

instance, t. 

Unlike Tahaghoghi’s method, Liu et. al. [68] used eigenspace (introduced in [22]) 

method along with temporal statistics modeling. Eigenspace method has also been used 

in many other fields and applications such as data compression [48], feature extraction 

[109], and object recognition [83]. Liu detected shot boundaries by comparing the 
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difference between the current frame and a model trained from multiple previous frames. 

Their final results showed improvements compared to so-called direct differencing 

methods (methods which use first order derivatives of video stream frames). The 

eigenspace used in this paper can also be used to model many other representation 

streams such histogram differences. 

2.4.3. Segmentation based on Histogram Differences 

Histograms are the most common method used for shot boundary detection research. 

Many variations of histogram based algorithms exist such as gray level and color 

histograms. These techniques use the images from two consecutive frames in a video 

stream; if the bin-wise difference between the generated histograms for each image is 

above a threshold, a shot boundary is assumed [16]. 

Many researchers have employed histograms in their analysis and experiments, [16], [63], 

[68], [75], [84], [99], and [105]. O’Toole, et. al. [84] used a “cosine similarity measure” 

for histogram comparison whereas Liu, et. al. [68] used histograms as the features for 

generating an eigenspace model of previous frames which was later used in video 

boundary shot detection. Swanberg, et. al. [99] used gray level histogram differences in 

regions. Similarly, Boreczky, et. al. [16] implemented three different variations of 

histogram-based techniques, simple histograms, region histograms, and running 

histograms based techniques. In simple histograms technique, a 64-bin gray-scale 

histogram over the entire frame was computed and the difference measure is the sum of 

the absolute bin-wise histogram differences. If the histogram difference between 

consecutive frames exceeds a pre-defined threshold then a shot boundary was declared. 
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The region histogram based technique is very similar to the simple histogram. The 

different is in use of two thresholds and different regions. In [16] each frame was divided 

into 16 blocks in a 4x4 pattern. Then they calculated a 64-bin gray-scale histogram for 

each region. Similar to the previous technique the histogram differences were computed 

for each region between consecutive frames. A shot boundary was declared if the number 

of region differences that exceeded the difference threshold was greater than the count 

threshold. 

The final histogram method in [16] was the running histogram based technique. Similar 

algorithm was earlier used by Zhang, Kankanhalli, and Smoliar [116]. Similar to region 

histogram technique, two thresholds (high and low) are used here. First a 64-bin gray-

scale histogram over each image is computed. If the difference between consecutive 

frames exceeded the high threshold, a cut was declared. On the other hand, start of a 

gradual transition was marked if the histogram difference exceeds the low threshold. 

From this point on if the running different exceed the high threshold then the end of 

gradual transitions are marked. Otherwise if it drops below the low threshold for more 

than two frames, they stopped computing running differences. 

Unlike Boreczky’s work in which gray scale histograms were used, Lienhart [63] used a 

color histogram based technique. Lienhart let ),,( bgrpi  be the number of pixels of color 

red (r), green (g) and blue (b) in frame Ii which contain N pixels. Then each color 

component was discretized to 2B different values, resulting in [ ]12,0,, −∈ Bbgr . Note 

usually B is set to 2 or 3 in order to reduce sensitivity to noise and slight light, object as 

well as view changes. 
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The equation 2.4 is the color histogram difference CHDi between two color frame Ii-1 and 

Ii. 

Ueda, Miyatake, and Yoshizawa [105] also used a color histogram change rate to find 

shot boundaries. In [75] Nagasaka and Tanaka used compared various methods including 

statistics based on gray scale and color histograms in regions. 

The IBM research TRECVID-2001 video retrieval system [98] is based on IBM 

CueVideo program. This program extracts sampled three-dimensional RGB color 

histograms from video frames. They also use an adaptive threshold and a state machine to 

detect transitions. 

Histogram-based algorithms are easy to implement and have proved to be reliable method 

for detecting video shot boundary detection. Hence they are the most common method 

used. Though, over the years many new techniques have been developed which have 

superior detection rates than histogram based techniques in different circumstances.  

2.4.4. Segmentation based on Edge Tracking 

Using the edges of the objects and tracking them in a sequence of consecutive frames to 

detect transitions in those sequences is a common method, especially for detecting 

dissolves. [6], [63], [64], and [113] are among these works. 
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Edge Change Ratio 

Lienhart [63] defines edge change ratio (ECR) as follow. Let σn be the number of edge 

pixels in frame n, in
nX  and out

nX 1−  the number of entering and exiting edge pixels in frames 

n and n-1, respectively. Then equation 2.5 gives the edge change ratio ECRn between 

frames n-1 and n and it ranges from 0 to 1. 
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−=
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n

n
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n
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(2.5) 

Zabih, et. al. [113] approached video shot boundary detection by constructing an edge 

detection technique and later they compared this algorithm with histogram and chromatic 

scaling techniques. Their algorithm compared the number and position of edges in the 

edge detected images. Then the percentage of entering and exiting edges from one frame 

to another was computed. 

A big change in these percentage values indicated a shot boundary. Hard cuts are 

identified as isolated peaks. Dissolve and fades were recognized by looking at the relative 

values of the entering and exiting edge percentages; during fades in or fades out, the 

number of incoming or outgoing edges respectively pre-dominates; and during dissolve, 

initially the outgoing edges of the first shot protrude before the incoming edges of the 

second shot start to dominate the second half of a dissolve [63] (see figure 2.19). Finally 

they conclude by stating that their algorithm precision is higher than histogram-based 

techniques and it is less sensitive to motion than chromatic scaling. 
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Fig. 2.19. A Typical ECR patterns for (A) hard cuts, (B) fades and 
(C) dissolves. (See Lienhart [63]). 
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Lienhart [63] built his algorithm on top of the technique used by Zabih et al. [63]. He 

used Canny edge detector [20] to calculate the edges. He added many details to the 

algorithm presented in [63] and hence, his end-results are of higher precision and recall. 

In a pre-processing step he smoothes the ECR time series, however, his algorithm ignores 

the points in ECR time series which exceeded a pre-defined threshold. Then by further 

analysis of time series he distinguishes between various transitions. Lastly, he ran post-

process false hits detection algorithms. 

Edge-based Contrast 

Edge-based contrast is mainly used for dissolve detection. The idea behind edge-based 

contrast is to capture and emphasize the loss in contrast and/or sharpness to enable 

dissolve detection [63]. 

Lienhart implemented this technique in [63], and it was later used in the reliable dissolve 

detection system [64] and [66]. Similar to their edge change ratio algorithm, Canny edge 

detector [20] was used for calculating the edges. The proposed edge-based contrast 

algorithm had better hits and false hits rate for dissolve detection than the edge change 

ration algorithm of previous section. 

Similar Techniques and Other Edge Tracking Methods 

Rather than using edges in images, the next algorithm uses Information Path as the 

means for image comparison. Albanese, et. al. [6], introduced another method similar to 

the edge detection technique. Their algorithm focuses on identifying dissolve edits. The 

concept of Animate Vision (the visual biologic system capacity of quickly detecting 

interesting region of visual stimulus) [14], scanPoth [82], as well as Koch-Ullman 
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algorithm [60], based on Itti-Koch model [56] and [59] were used in [6] to generate 

multiple connected saliency points in each frame (image), or as they call it Information-

Path (IP). 

In [57] the authors developed an Information Path Matching algorithm which returns the 

similarity measure between two images. This measure of similarity along side of a 

thresholding technique was used to detect various transitions boundaries. 

The authors explain the dissolve transitions are harder to detect because the change in a 

dissolve is far more gradual than in an abrupt transition such as a cut. Hence 

Information–Path Matching algorithm can easily be adapted for cuts detection but not for 

dissolves detections. 

2.4.5. Segmentation based on Motion Analysis 

As mentioned before edge detection algorithm have proven reliable for detection of many 

types of transitions, especially dissolves. Motion detection algorithm can also be used for 

temporal segmentation of video. 

Motion research can be used in scene and shot boundary detection algorithms, for 

grouping shots that are taken in the same site [79], for video objects clustering and 

retrieval [80], and for video indexing [37]. [116], [16], [63], [18], [19], [105], [85], and 

[77] employ motion characteristics of video to detect shot boundaries. Other works in this 

area includes visual motion model [2], [96], camera work analysis [57], texture modeling 

[69], video tomography [5], [102], epipolar plane image analysis [15], and periodicity 

analysis [70]. 
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Video motion research has been an active area for the past decades. The research effort in 

this topic can be divided into two major groups, temporal motion segmentation [18], [77], 

and spatial motion segmentation [77]. Previous works demonstrate that motion analysis 

can improve the results of shot boundary detection algorithms considerably. For example, 

Lienhart et. al. [64] used the motion estimation algorithm that was suggested by Dufaux 

et. al. [31] to eliminate false positives that were caused by camera operations such as pan 

and zoom. Hence, in this section, besides temporal motion segmentation, other motion 

related topics are also briefly discussed. 

Spatial Motion Segmentation 

As explained in [77] temporal segmentation of image sequences expeditiously facilitates 

the motion annotation and content representation of a video, while the spatial 

decomposition of image sequences leads to a prominent way of reconstructing 

background panoramic images and computing foreground objects. 

The work on latter group can be subcategorized to sequential motion estimation [13], [55] 

and simultaneous motion estimation [28], [92], [106]. In the former subcategory, images 

are analyzed and after computation of a dominant motion, the pixels related to that 

motion are removed. This process is repeated iteratively until a terminal condition is met. 

On the other hand, in simultaneous motion estimation, as its name applies, multiple 

motion models compete for the support of pixels and these pixels in turn influence the 

estimation of model parameters [77]. 

Yoon, DeMenthon, and Doermann [111] proposed two techniques for detecting critical 

events. Both methods work on compressed domain of MPEG video. To obtain the 
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portions of video where important events were occurring, a “curve simplification” 

method was used. The second method was a “blob tracking” technique in which the 

trajectories of moving blobs along frames were obtained. 

Temporal Motion Segmentation  

Thus far, past spatial motion research was briefly discussed. This section reviews the 

earlier work on temporal motion segmentation, and how temporal motion analysis and 

other similar techniques used to detect video shots boundaries. 

Bouthemy, et. al. [18] worked on a temporal segmentation method. They employed the 

affine motion parameters to describe dominant camera motions. By using these 

information, their algorithm detected the shot boundaries. 

Ueda, et. al. [105] calculated motion vectors from block matching and used this to detect 

whether or not a shot was a zoom or a pan and they stored these information as a 

description of the cut. Similar work as [105] was performed by Zhang, et. al. [116]. 

Boreczky et. al. [16] developed a motion compensated pixel differences algorithm. In this 

algorithm three thresholds were used. They divided each frame into twelve blocks in a 

4x3 pattern. Block matching with a 24 by 18 search window was used to generate a set of 

motion vectors and a set of block match values They used those values to drive a match 

value. A cut was defined if the value exceeded a threshold, and they use the low and high 

thresholds to detect the gradual transitions. The algorithm in [16] is based on the work 

done by Shahraray [94]. 
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Bruno and Pellerin’s approach [19] is based on linear prediction of motion wavelet 

coefficients which is calculated directly from two successive frames. The idea behind this 

concept is as follow. When transitions occur, the brightness constancy assumption (which 

is used to predict motion) fails (the brightness constancy assumption states that the image 

brightness is a simple deformation of the image at any given time).  

Joly, et. al. [57] construct what they call X-ray image (derived by projecting the 

intensities along given lines which result in xt- or yt-plane in the image sequence) then 

they use Hough transform to search for a particular patterns in them. 

The MPEG-1 bit stream may also be directly exploited for camera motion 

characterization. For more information refer to the Segmentation using Compressed Data 

section or to [85] and [110]. 

2.4.6. Segmentation based on Transforms and Frequency Domains 

This section presents the literature review on temporal video segmentation research based 

on different transforms and frequency domains. Depending on transforms or frequency 

domains used these works are divided into individual sections. 

• Fast Fourier Transform (FFT) Coefficients. Fourier was first published in 1822 by 

Jeane Baptiste Joseph Fourier in France [11]. FFT uses both complex and real 

numbers as well as both sin and cosine waves to represent an image. Miene et al. [74] 

use two metrics in spatial domains and one in frequency domain by using FFT 

coefficients calculated from a grayscale version of the frames (images) for the basis 

of their comparisons. They calculated the sum of the real-part of lower frequencies 
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and the sum of the appropriate imaginary parts. The final value used was the sum of 

absolute differences of the real- and the imaginary- part for each consecutive frames 

pair. 

• Discrete Cosine Transforms (DCT) Coefficients. Similar to FFT, in DCT both 

complex and real numbers can be used. Cooper et. al [27] calculated the low-order 

DCT coefficients for each frame. Then they evaluated the similarity of each frame to 

the surrounding frames. A cut was identified if the frames before and after the current 

time instance had a high similarity to past and future frames respectively but low 

similarity across the boundary.  

• Other Work in Frequency Domain. Porter et al. [88] developed a system for BBC 

Wildvision; as they mentioned two predominant features of wildlife films are that 

they contain potentially significant object motion and that a new shot is often taken of 

the same scene but from a different angle. They argue that these types of scenes have 

similar intensity distribution. Hence, histogram based methods are not a good choice 

even though that they can be robust in presence of motion. As a result they pursued a 

motion-based algorithm. Their technique can be summed up in two steps: they first, 

calculate the normalized correlation between blocks of 32 X 32 in two adjacent 

frames. Then they locate the correlation coefficient with the largest magnitude. The 

first step could not be done in spatial domain since it is prohibitively expensive. 

Hence, they performed it in frequency domain. 
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2.4.7. Segmentation based on Compressed Data  

The methods discussed so far are mainly based on uncompressed data. Similar techniques 

can be used on compressed data. These topics are discussed in more details later on in 

this section. 

MPEG is a defined international standard for a compressed video bit-rate. It includes 

many powerful and efficient compression algorithms, such as different motion 

compensation modes. The compression task is perform through elimination of temporal 

and spatial redundancies within the image [72].  

The use of compressed data is advantageous since video databases are often available in 

compressed formats. Hence direct processing of the MPEG bit-stream is a major stake 

[18]. On the other hand, the disadvantage is that using encoded features directly can 

result in lower accuracy. Hence, many other published papers such as [33] aimed at 

reducing error rates in detections while using MPEG video. Among other research work 

in this field are [25], [27], [34], [10], [72], and [95]. 
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Fig. 2.20. Illustrates the original frames (large images) and their respective DC 
frames. 

 

These methods are based on the features that are available in the compressed format such 

as DCT coefficients, macro blocks, or motion vectors. Figure 2.20 shows two examples 

of regular frames and respective DC frames. Since in MPEG format DCTs are generated 
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by dividing the images (frames) into an 88×  grid, the DC image is 
8
1  of the original 

image. 

The histogram based frame difference measurements in MPEG videos can vary 

systematically even for identical frame transition types depending on their relative 

position within a group of pictures. Ewerth, et. al. [34] proposed a method for solving 

this problem. They analyzed the characteristic of histogram based difference 

measurements of MPEG DC frames. 

Meng et. al [72], proposed an algorithm mainly for scene change detection. Among 

boundary shots they mainly focused on dissolves. The detection is carried out with a 

partial decoding of the compressed bit-stream.  

In [85], Patel and Sethi computed the image intensity histograms using the DC 

component of DCT related to I-frames. Similar work was performed by Yeo and Liu in 

[110] with exception that they used P- and B-frames to compute the image intensity 

histogram from DCT. In these methods the MPEG-1 bit stream was used directly for 

camera motion characterization, using motion vectors related to P- and B-frames. 

The problem with these methods is that they are not resilient to presence of mobile 

objects of significant size. The problems with these technique is that as is stated in [16], 

the block matching performed as part of MPEG encoding selects vectors based on 

compression efficiency and thus often selects inappropriate vectors for image processing. 

Hence, these approaches are not resilient to the presence of mobile objects of significant 

size. 
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2.4.8. Segmentation based on Audio Track 

Audio track provides another valuable source for input data. [91] used the audio track to 

categorize speech, silence, music and noise. [76] used audio track for speakers 

identification which are very interesting. These research can be used for temporal 

segmentation of video. [17], [44] and [107] are among research which have used audio 

track in one way or another. Audio track was not used in our research and hence it is left 

to the readers to investigate this topic further. 

2.4.9. Other Methods 

So far in this section the more common video representation techniques were discussed. 

This section presents the less common and more specialized representation techniques 

used in previous temporal segmentation research. 

• Segmentation based on Hausdorff Distance. Zabih et. al [114] uses a method based 

on Hausdroff distance and edge detection algorithm results. Further investigation is 

left to the reader since this topic is too specific and is not used in our research. 

• Segmentation based on Self- and Cross-Similarity. Cooper et. al. [26] introduced a 

new method for scene boundary detection. Unlike many existing approaches they 

avoid using histograms and rather they use self-similarity and cross-similarity among 

various frames of the video to detect the transitions between videos. Authors argue 

since they do not use histogram information their system makes minimal assumptions 

which is an essential requirement for numerous applications. 

The work in [26] can be summarized in a few sentences as follow: First they compute 

cosine similarity matrix to be used to compute correlation along diagonal of similarity 
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matrix with Gaussian checkerboard kernel. Then they locate peaks via analysis of the 

first and second differences of the output signal and finally label peaks as scene 

boundaries. 

2.4.10. Conclusion 

In this section a diverse set of techniques used for video representation was discussed. 

Video representation is the initial stage for any video temporal segmentation algorithm 

and it directly influences the methods used in the future stages, namely detection and 

classification stages. These stages are described in more details in the subsequent sections. 

2.5. Detection 

Detection is the next major step in temporal video segmentation algorithms. Detection 

can be described as the method for discovering boundary shots – usually regions with 

significantly distinctive data – in the video representation or in the measure of difference 

curve of two image sequences. The most common detection method is through applying 

different types of thresholds. As it is mentioned in [84], two conflicting points exist for 

accurately segmenting videos using thresholds and they are as follow: 

• The need to prevent detection of false shot boundaries, by setting a sufficiently 

high or low (depending on the data) threshold level so as to insulate the detector 

from noise. 

• The need to detect subtle shot transitions such as dissolves, by making the 

detector sensitive enough to recognize gradual transformations. 
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Fig. 2.21. Illustrates the four possible types of thresholds. 

 

Threshold can be categorized into four groups. As figure 2.21 illustrates, thresholds are 

either global or local, and each of these two groups can be divided to adaptive or static 

thresholds. 

• Global Threshold refers to the limitation applied to the input stream as a whole. If 

these limitations are applied through consideration of statistics extracted from the 

input data, then it is said to be adapted to the input data. Otherwise it is said to be a 

random threshold. Random thresholds should be avoided if possible. Their use 

becomes necessary only if a threshold must be used and if a prior knowledge of these 

statistics is not in hand. Random thresholds are also called static thresholds and 

global thresholds are also called fix threshold. 

• Local Threshold refers to the limitation applied to a smaller segment of input stream. 

If these localized limitations are applied through consideration of statistics extracted 

from the input data for the corresponding segments, then it is said to be adapted to 

that segment of input data. Otherwise it is said to be a random threshold. And as 

mentioned before, random thresholds should be avoided if possible. 
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Local and global adaptive thresholds are discussed in further detail in the subsequent 

sections. 

2.5.1. Global Adaptive Threshold 

Global thresholding is among the easiest method for distinguishing between the real 

transitions and potential false positives. Yet since it is an overall limit forced over the 

entire video data (or a very large portion of video), it is error prone.  

Earlier in this chapter, past literature was reviewed from representation perspective. The 

video representation or measure of difference between to image sequences is used to 

detect the shot boundaries. Figure 2.22 (b) is the graph of dissimilarity measure against 

time. The spikes represent the shot boundaries (mainly cuts) while the other part of the 

video stream represents normal frame pairs or regions of low activity. 

 

Fig. 2.22. (A) Presents the distribution curves for shot boundary and not shot boundary sets. (B) 
Presents the graph of dissimilarity measure against time. 
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Figure 2.22 (a) illustrates the density function against dissimilarity measure. As can be 

seen in this chart, not a shot boundary curve is narrow (occupying the low dissimilarity 

measures section) and stretched vertically (occurs more often), whereas the shot 

boundary curve is wider and stretched horizontally. As this points out it is impossible to 

divide shot boundaries and not shot boundaries into two distinct well defined groups 

using a global threshold. However, the difference between a well defined and slightly off 

threshold can be drastic. This is mainly caused because the mean of not a shot boundary 

curve is very close to the threshold. 

Global thresholds are mainly used for abrupt transitions detection, though a single fix 

threshold was used in [84], [114] to detect all types of transitions. Some other algorithms 

use combination of thresholds to detect gradual transitions in addition to abrupt ones. A 

global threshold was also used in by O’Toole and et al. [84] to detect shot boundaries; 

their experimental results show that the detection rate can vary by up to 20% even for the 

same type of video content if such threshold is used. 

The global thresholding technique cannot be improved too much since it is a rather 

simple method, however prior studies of data and other modifications to the algorithm 

can prove effective. The first technique is to perform prior analysis of the video content 

and based on that utilize multiple thresholds in our experimentation. This technique was 

also used by OToole, et. al. [84]. Another method for improving adaptive global 

thresholds, is using more than one dissimilarity metric (measure of difference). The two 

metrics should not be too similar to each other or this method will not add too much 
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value to the detection algorithm and it will rather cause unnecessary complications. 

Figure 2.23 demonstrate use of two distinct features. 
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Fig. 2.23.  Demonstrates features space for two features extracted from the 
video. 

 

Various experiments point out the fact that having a general upper or lower limit on data 

is one of the main reasons behind higher than expected false positive and miss rates. 

Yusoff et al. [112] point out that global or so-called “single decision” threshold can be 

consistently grossly over- or underestimated when applied to video material with 

distinctive characteristics, such as sports events or cartoons. Lienhart takes this one step 

farther by stating that it is impossible to find a single global threshold that works with all 

kinds of video material, henceforth, global thresholds should be avoided [65]. 

Consequently, much research has focused on usage of adaptive local thresholds. 
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2.5.2. Local Adaptive Threshold 

Use of a local adaptive threshold will help to overcome the inaccuracies of the global 

threshold. These thresholds analyze a smaller data range (data within a sliding window). 

Hence better results are attainable since each proposed threshold is built around and 

adapted to the local data. Figure 2.24 demonstrate a very localized adaptive threshold. 

Most variations of local adaptive thresholds are based on the following methods. At each 

time instance, t, the local neighborhood is marked by a temporal sliding window of size 

2w+1 centered on t. Only the data related to the current window is analyzed at each time 

instance. An abrupt transition, and starting or ending of a gradual transition are identified 

if the statistics at points in question do not follow a certain set of conditions. [74], [98], 

[100], [103], [110], and [112] follow this logic.  

 

Fig. 2.24.  Illustrates use of two localized adaptive threshold (white curves) against input stream 
(yellow curve). 
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Miene et al. [74] proposed a simple adaptive threshold in which they find the maximum 

value of frames dissimilarity measurements and at each stage they define the threshold to 

be a certain percentage of maximum number. 

%K  Max   Threshold ⋅=  (2.6) 

They use dissimilarity measurement and threshold along side of a Fast Fourier Transform 

(FFT) and YUV features to detect cuts and wipes.  

In [110] a local thresholding method was proposed. The authors identify the transitions in 

a sliding window if all the following conditions are met: 

I. The value at time instant t is the maximum value inside the window. 

)()( xftf ≥     where   ],[, wtwtxt +−∈∀  (2.7) 

II. The maximum value is greater than the second largest value in the window by 

a factor of threshold2.  

)()()( 21 xftfthresholdtf ≥⋅≥    where   ],[,, 2 wtwtxtt +−∈∀  (2.8) 

Truong et al. [103] uses a method similar to [110] with additional conditions in the 

second half. In their algorithm a transition is declared if the following conditions hold. 

I. The value at time instant t is the maximum value inside the window. 

)()( xftf ≥    where   ],[, wtwtxt +−∈∀  (2.9) 
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II. The maximum value is greater than the second largest value in the window, 

f(t2) by a factor of threshold2.  

)()()( 21 xftfthresholdtf ≥×≥  

(i.e. 1
2

1 )(
)( threshold

tf
tfratio ≥= ) 

where      ],[,, 2 wtwtxtt +−∈∀  

 

(2.10) 

22 )(
)( threshold

ctg
ctfratio ≥

+
+=  

(2.11) 

 

where g(t) is the mean of all the other frames of the window, not considering 

the frame in the time instance t. If ratio2 exceeds the threshold2 in value then a 

cut is detected, whereby the condition II (a) will also be true. 

The constant c is added to the ratio calculation in order to deal with freeze 

frames. These frames make the determination of a good adaptive threshold 

difficult since they cause the discontinuity to be near zero. 

Tahaghoghi et al. [100] proposed a different method for adaptive thresholding. Their 

algorithm is as follow. 

I. At each time instance, t, the difference between f(t) and f(x) for 

],[ wtwtx +−∈∀  is calculated: 

d(t, x) = | f(t) – f(x) |    where   ],(),[ wtttwtx +∪−∈  (2.12) 
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II. The values of d(t, x) are sorted in a decreasing order. 

III.  If there were no frames from the first half of the window in the first 
2

)12( +⋅ w  

of the sorted distance values (the top-ranked frames) then a cut had occurred 

at time instance, t. 

Yusoff et al. [112] described three models for setting a threshold with regard to 

dissimilarity-density chart in the previous, global threshold, section. In their paper, they 

suggest a method that dynamically changes the threshold based on dissimilarity measures 

from the previous and next few frames. Since the threshold will be near the mean of not a 

shot boundary curve, it is important to use static information related to that curve in 

calculation of the threshold. The mean of the curve, Mnsb, and its variance, Vnsb, used in 

[112] to adaptively set the detection threshold. The shot boundary curve is assumed to be 

stationary. 

Similar to the previous adaptive thresholds, they use a sliding window as well. To 

estimate the threshold and the curves dynamically at each time instance, t, they use only 

the statistics derived from the windowt. This method along side various assumptions lead 

to various models for defining the threshold.  

• Constant variance model assumes the distributions are unimodal, shot boundary 

curve values in the intersection of two curves density functions can be ignored 

(since mean of not a shot boundary curve varies over a small enough range and 

the shot boundary curve is sufficiently wide), and finally, the distributions are all 

stationary (except for not a shot boundary curve mean). 
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In other words, they use the mean of not a shot boundary curve and add an offset, 

k1, to it to obtain the value for the threshold. 

Threshold = Mnsb + k1 (2.13) 

They determine k1 value through experimentation of training set (video material 

and truth data). 

• Proportional variance model is similar to constant variance model except Vnsb is 

assumed to vary with Mnsb
2. 

Threshold =  k2 . ( Mnsb ) (2.14) 

Similar to k1, k2 is also determined through experiment. 

• The Dugad model is the last method they used. It is based on the work done in 

[32] which is described next. 

The authors also performed experiments to discover the effects of window size on 

different algorithms used. Although the trend is not universal, increasing window size 

tends to increase the accuracy of the shot detection, and then will eventually decreases 

after a specific point [112]. This experiment showed that histogram comparison and 

likelihood ratio work best with a small window size while motion estimation method had 

unpredictable performance but it improved for larger window sizes. 
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Fig. 2.25.  Demonstrates desirable values for high and low thresholds. 

Dugad et al. [32] method also can be explained by using the dissimilarity-density chart 

(figure 2.25). To dynamically estimate a threshold they use a sliding window with time 

instance, t, in the middle of the window. The means and standard deviation on the left 

and right of t are calculated. 

nsbnsb VkMThreshold ⋅+= 3  (2.15) 

During their experiment, they estimated value of 3 for a low threshold and 5 for a high 

threshold to be used as k3. If the dissimilarity measurement for t was greater than high 

threshold then a shot change was declared, else if it was greater than low threshold then 

they used a likelihood ratio to investigate the matter further. If dissimilarity measure was 

less than low threshold then shot boundary was not declared. 
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Past experiments shown, transition detection and classification accuracy improves if 

adaptive localized thresholds are used instead of previously explained global thresholds. 

However, adaptive thresholds also introduce limits that cannot be used universally for all 

types of input video stream and transitions. 

2.5.3. No Thresholds 

Based on statistical behavioral studies of frame differences, [47] points out that a 

threshold that is appropriate for one type of video data may not yield acceptable results 

for another type. Hence, even employing adaptive thresholds can result in an undesirable 

margin of error. Therefore, over the years, new detection and classification techniques 

which are threshold-free, parameter-less or model-free have been proposed. Most of them 

do not have detection stage and they only focus on representation and classification 

stages. The use of threshold becomes unnecessary if a learning, clustering, or similar 

methods are used in classification stage. These techniques are discussed in Classification 

section. 

2.5.4. Conclusion 

As discussed, identifying the right thresholds is very crucial issue. Algorithms with well-

behaved threshold definitions or related algorithms will have a much greater hit rate over 

miss rate ratio and their false positive count is much lower than the other algorithms. 

Hence, in this section many detection methods were discussed in detail. The next major 

step in temporal video segmentation is classification which is also the topic of next 

section. 
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2.6. Classification 

Classification can be described as the method for labeling or categorizing the boundary 

shots (the regions with significantly varying data) that were previously detected in video 

representation or measure of difference curve. Many types of classification exist and they 

are discussed in detail in this section. 

2.6.1. Classification based on Direct Analysis 

Abrupt transitions (namely cuts) are easier to detect and classify than gradual transitions 

since they are a sudden change between two consecutive frames. Hence, it represents an 

isolated and sharp pulse in the video representation or measure of difference curve while 

the gradual transitions will only represent a mild change in the representation curves (see 

figure 2.6). Many papers and research work such as [114] have used this fact to classify 

the cuts. 

More common gradual transitions such as fades and dissolves, on the other hand, are 

identified as a gradually increasing picks. Zabih et al. [114] used edge detection and edge 

pixel analysis to distinguish between fades and dissolves. They pointed out that during a 

fade in number of entering shot edge pixels is a lot higher than the number of edge pixels 

in the existing shots, and vice versa for fade out. On the other hand, during a dissolve the 

frames which have same number of entering edge pixel as their exiting edge pixels. 

During the first half of dissolve the number of entering (appearing) edge pixels surpass 

the number of exiting (disappearing) edge pixels, and vice versa for the second half. 

Classifying wipes has proven to be a more challenging task than either fades or dissolves. 

Unlike latter transitions which cause a gradual change in pixel values over time, wipes 
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cause a sudden change in pixels values and a sequential change in pixels spatial 

distribution over time (see wipe section under transitions overview for more details). 

Hence, wipes can be classified through analysis of video representation or measure of 

difference as well as spatial distribution of entering (incoming) and exiting (outgoing) 

shots. The following works have aimed at detecting and classifying wipes: [30], [49], 

[74], [81], and [114]. 

Zabih et al. [114] have also attempted to classify simple wipes (horizontal and vertical 

wipes) by looking at the spatial distribution of entering and exiting edge pixels. They do 

this by recording the edge pixels and analyzing their spatial distribution while computing 

the edge change ratio fraction. To detect the wipes they divide the images (frames) into 

two vertical and two horizontal halves. 

During a left-to-right wipe, the change in pixels values take place in the left hand side of 

frames during first half of the wipe. Similarly, the changes take place in the right hand 

side of the frames during the second half of the wipe.  

During a top-to-bottom wipe, the change in pixels values take place in the top half of 

frames during first half of the wipe. Similarly, the changes take place in the bottom half 

of the frames during the second half of the wipe. 

During wipes, there are no patterns between the number of entering and exiting edge 

pixels as there was in case of fades and dissolves. Hence, the relative differences between 

the number of entering and exiting edge pixels is small. This is because the changing 

pixels only occur in a limited strip in the image. 
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Motion is the other representation technique that is commonly used as basis of 

comparison for wipe classification.  

2.6.2. Classification based on Clustering 

Classification step can be replaced by a clustering technique. Clustering does not require 

pre-defined classes whereas classification methods do require the classes to be predefined. 

In clustering techniques, the items are divided into different groups and classes one by 

one as they are analyzed. Many papers suggested the use of clustering methods to avoid 

the lower performance caused by introduction of thresholds. This way, they overcome the 

need for a training stage and the problem of parameter estimation [36]. The work in 

clustering include but is not limited to [36], [42], [46], and [80]. 

Gao et. al. [42] used a fuzzy clustering technique in combination with spatial differences 

and histogram differences for representation, to avoid use of any thresholds. They argue 

that a clear distinction between the two classes cannot be made and hence they introduce 

a fuzzy c-means algorithm. 

Unlike [42], Ewerth, et. al. [36] avoid use of any fuzzy variations for clustering. They 

argue that fuzzy clustering does not prevent thresholding completely and rather it shifts it 

to the defuzzyifying stage. Hence they suggest a different clustering method to perform 

temporal video segmentation without the need for any thresholds and as they claim 

without use of any parameters. They use a c-means algorithm to divide the items into cuts 

and non-cuts groups and after a class membership optimization stage present their final 

results. 
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2.6.3. Classification based on Learning 

Over the years, much research has been carried out in the field of machine learning and 

many related techniques are the results of these works. This section provides a brief 

overview for most of different types of learning techniques and a more details overview 

for a few of them. These techniques can be used for video boundary shot detection and as 

another method for preventing thresholds. The details are not discussed since learning 

algorithms are not the topic of this research. Below is a list of these learning methods: 

• Case Base Reasoning (CBR) – is a context based method. It is based on syntax 

rather than numbers. Hence it is not used in video processing. Refer to [104] for 

more information. 

• Support Vector Machines (SVM) – is discussed later on in this section. 

• Neural Networks (NN) – more information can be found [40], [66] and other 

related papers. 

• Linear Vector Quantization (LVQ) – [66] used this technique as a learning 

algorithm for detecting and classifying dissolves. However the author of this 

document was unable to find out more about this technique. 

• Bayes Classifier – is a classification method used in many different areas. More 

information regarding this technique can be found [41], [66] 

• Hidden Markov Models (HMM) – is discussed later on in this section. 

Support Vector Machines (SVM) 

Support vector machines are usually used when each item (class) in the data set contains 

many attributes. For example in [39], each compound (class) in the data set had 
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thousands of features (attributes) which were reduced to two hundreds to reduce the 

algorithm run time. [39] and many other papers have used [23] provided SVM algorithm. 

[23] offers a library for support vector machine. The algorithm is not the most advanced 

algorithm; however it has proven to work great for many different data sets as is shown in 

[39]. 

Hsu, et. al. [52] have put together a library for Support Vector Machine (SVM) methods 

and in their paper they describe the process that will give the best possible results if 

followed. They mentioned that SVM works very well for cases where there are not many 

attributes presenting each class. In such a case, there needs to be a pre-processing feature 

selection algorithm where it identifies a subset of attributes and uses those in SVM 

algorithm. Figure 2.26 represents the screen shots for the web interface of a simple 

version of SVM, provided by Hsu, et. al. [52] for classification of 2D feature spaces 

using SVM. It demonstrates the results from running the SVM algorithm for three 

distinguished groups (figure 2.26 (b)), and the results from running the SVM for three 

more realistic groups where there cannot be a clear border between each (figure 2.26 (c)). 

Chua et al. [24] proposed a unified approach to detect cuts and gradual transitions by 

using temporal multi-resolution approach through applying wavelet transform to frame 

dissimilarity measures. They use histogram differences and coarse representation of 

MPEG motion vectors. As the first step, they detect candidates from the set of local 

maxima and then they use an adaptive thresholding technique. As the last step, they use 

SVM via active learning to find the active hyper-plane that separates cuts and non-cuts. 
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Fig. 2.26. (a) Represents initial three input data sets (b) SVM 
result for well distinguishable sets (c) SVM result for a more 
realistic case with sets overlapping. In such a case, not all the 
items will be located in their SVM determined regions.  

 

[78] presents yet another research which aims at detecting dissolves by using support 

vector machines.  

Hidden Markov Model (HMM) 

By using HMM there will no longer exist a need for any types of thresholds, which is a 

plus since threshold based techniques usually have higher numbers of false negatives in 

the final outcome. HMM framework allows any number of features to be included in a 

feature vector. 
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Boreczky, et. al. [17] use hidden markov models (HMM) for temporal video 

segmentation. Their HMM is consisted of the following states: shot, fade, dissolve, cut1, 

cut2, zoom, and pan. Two states for cuts are used to avoid mislabeling them as short 

gradual transitions. Each state in the model was connected to the other states and a 

probability was assigned to each connection. From the shot state it is possible to go to all 

the other states other than cut2, however, from the transition states and global motion 

states it is not possible to go to any other state rather than back to shot state. All states 

except cut1 and cut2 can loop to themselves (number of self-loops represent the length of 

shot, transition, or motion depending on the state). Cut2 can be accessed only by cut1 

state and cut1 can only access shot with a probability of one. 

The authors calculate three features (measure of difference) and use them as the basis for 

their model. First feature they use is the gray-level difference between two adjacent 

frames. Second feature is the audio distance based on the acoustic difference in intervals 

before and after the frames. And finally, an estimate of object motion between the two 

frames. They calculated the values for transition probabilities by using a standard 

algorithm for training hidden Markov model parameters, namely Baum-Welch algorithm 

which was presented in [89]. As the final step they performed segementation by using the 

Viterbi algorithm (a standard technique for segmentation and recognition using HMMs) 

which was also presented in [89]. 

2.6.4. Conclusion 

In this section, classification and labeling stages of various video shot boundary detection 

algorithms were discussed. Most of the reviewed methods are based on various modeling 
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techniques. Using model based techniques have been improved over the years; however, 

for each type of transition, they require a new model and consequently a new scheme. 

Hence, it is very difficult to use above techniques for edits such as wipes and graphical 

transitions which have many different variations. Hence considerable amount of research 

has been dedicated to use of learning or clustering methods which were described earlier 

in this section. The next section covers the last stage in temporal video segmentation 

process flow. 

2.7. Pre- and Post-Refinement Methods 

Video shot boundary detection is a problem that has been extensively researched, but 

achieving highly accurate results continues to be a challenge [97]. Lienhart concludes his 

paper, [63], by claiming that all detection algorithms are influenced negatively by global 

and local motion in the video. He goes on by suggesting future approaches should 

concentrate particularly on identification of local and global motion. 

Even detecting the simplest transitions (namely cuts) can prove difficult in a noisy video 

stream comprised of the effects pointed out in the introduction section. Lienhart [63] 

argues that his algorithm 5% false hits rate is caused by dark or very dynamic scenes with 

strong object motion, blasts or fast camera pans.  

Most videos contain one or more of the false positive causing effects. For example, Porter, 

et. al. [88] system for BBC Wildversion was produced while having object motion in 

mind. As they argue, wildlife films have significant object motions. Hence, many 

researchers have developed pre and post detection techniques to prevent or detect false 
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alarms and missed items. Many post-refinement methods have been proposed over the 

years such as the ones mentioned in [33], [29], [63], [64], [71], [103], and [113]. 

2.7.1. False Positive (False Alarms) 

Based on [116], [113], [63], [88], [71], [33], [29], [84] and our research main sources of 

false positives are as follow: 

• Object motion, especially 

o fast moving objects (figure 2.27), 

o close to camera object movements (figure 2.28). 

• Global camera motion (see Basic Camera Operations section), 

o zoom ins and outs, 

o panning, and 

o fast camera motion. 

• Sudden change in pixel intensities and image luminance due to 

o camera flash (figure 2.29), 

o shinny objects (figure 2.30), 

o lightning,  

o blasts, 

o poor video quality, or 

o simply change in brightness (figure 2.31). 

• Existence of MPEG various frame types (I, P and B). 

• Multiple identification of a single gradual transition. 

• Graphical transitions or computer generated effects such as morphing. 
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• Captions and overlays (see figure 2.32) such as 

o movies overlaying opening credits on top of a scene, and 

o news overlaying location of reporter in the beginning of story. 

• Split-screen technique such as 

o ticker-tape, and 

o interviews. 

• False positive causing effects for fade such as 

o Wide screen black bands (figure 2.33), and 

o Channel Logo (figure 2.34). 

• 3D motion of 2D object (figure 2.35 and 2.36). 

• Sudden Appearance of objects (such as magic shows). 

• Monochrome objects or views (such as sky). See figure 2.37. 

• Wipe false positives causing effects (such as shot of a door opening). See figure 

2.38. 

• High Level of activity (i.e. occurrence of too many transitions and effects in close 

proximity). 

• Overlapped shots (i.e. shot generated through an overlapping process similar to 

dissolve generating process). See figure 2.39. 

• Andy Sequence 

An example of split-screen interview is when the anchor-person and background stays 

fairly static while a small window displays another event which switches among different 

reporters. The events in the small window trigger a large change in features (measures of 



  91

difference) and consequently result in a false positive since in reality the main window 

has not changed. 

Above effects are discussed in many literature such as [37], [71] and [114]. [71] proposed 

a method based on average shot length and other statistics to deal with these effects 

whereas [114] discussed the difference between overlays and transitions. 

 

Fig. 2.27.  Presents an example of a false positive causing effect: Fast moving object. 
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Fig. 2.28.  Presents an example of a false positive causing effect: Close to camera object motion. 

 

 

Fig. 2.29.  Presents an example of a false positive: Photography camera flash. 
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Fig. 2.30.  Presents an example of a false positive causing effect: Shinny object. 

 

 

Fig. 2.31.  Presents an example of a false positive causing effect: Sudden change in brightness. 
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Fig. 2.32.  Presents an example of a false positive causing effect: Overlay dissolve. 

 

 

Fig. 2.33.  Presents an example of a false positive causing effect: Existence of wide screen bands. 

 

 

Fig. 2.34.  Presents an example of a false positive causing effect: Channel logo. 
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Fig. 2.35.  Presents an example of a false positive causing effect: 3D 
motion of 2D object. 

 

Fig. 2.36.  Presents an example of a false positive causing effect: 3D motion of 2D 
object. 
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Fig. 2.37.  Presents an example of a false positive causing effect: Frames including the sky resemble 
blue monochrome frames. 
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Fig. 2.38.  Presents an example of a false positive causing effect: Shot of an opening door. 
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Fig. 2.39.  Presents an example of a false positive causing effect: Overlapped shots. 

 

Prevention 

False positive prevention refers to the methods used before each major stage of temporal 

video segmentation algorithms and specifically intended to reduce the number of false 

positives. Most of these methods directly deal with input data manipulation. 

One method which can be used is smoothing. Smoothing technique similar to those used 

in digital image and signal processing algorithms can be applied to video input stream to 

reduce amount noise in the video representation or the measure of differences curves. 

Normalization is another method which can be used for this purpose. Similar to 

smoothing methods normalizations directly affects the values in the input stream. 



  99

Normalization stage insures that the different data used will have similar range and 

follow the same distribution curve. 

Zabih, et. al. [114] suggest that avoiding methods such as sub-sampling will help to 

prevent some of the false positives. In algorithms based on compressed data, similar 

problems exist. In those algorithms, the false positives can be avoided without a need for 

major modifications to the algorithm through introduction of specialized methods for 

false positive prevention or detections. Further investigation of this topic is left to the 

reader since compressed data are not used in our research. 

Other methods for false positive preventions include but are not limited to analysis of 

video at multiple resolutions [24], prior detection of significant camera and object 

motions [94], and use of motion vectors [16]. 

Detection 

False positive detection refers to the methods used after temporal video segmentation 

algorithm execution and specifically intended to reduce the number of false positives by 

identifying them in the final output and eliminating them. 

Lienhart [64] used the motion estimation algorithm that was suggested by Dufaux et. al. 

[31] to eliminate false positives that were caused by camera operations such as pan and 

zoom. 

Truong el al. [103] suggest a simple histogram based algorithm for detecting false 

positive. They basically take two arbitrary frames, one from the preceding and one from 

the following shots of the transition in question. If these frames difference is less than a 
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empirically determined threshold then the previously proposed boundary is marked a 

false positive. 

Lienhart [63] proposes a technique for dissolves false positives. As a post-processing step, 

his algorithm iterate through all the dissolve candidates. The internal frames of each 

potential dissolve are removed, leaving only the boundaries of preceding and succeeding 

shots. Then the result is processed through a cut detection algorithm and if it was detected 

as a cut then it is marked as a true positive. His method has improved the final results 

significantly (especially in one experiment false positives rate was reduced from 8500% 

to 400%). 

He improves his dissolve false positive detection technique even further in [64] by using 

the motion estimation method that was previously proposed by Dufaux and Konrad in 

[31]. Lienhart compares the dissolve candidates with frames containing significant 

camera motions. If they had 
3
2  of their frames in common then the dissolve was marked 

as a false positive. Keep in mind that even this algorithm itself is not error-prone. To 

prevent some of the problems, Lienhart suggest integrating the camera motion parameters 

with the detection algorithm instead of using it in a post-processing stage. 

Ewerth, et. al. [33] and [34] suggest a method for detecting false positives in their MPEG 

based cut detection algorithm without reducing the recall rate. The main reason for a false 

alarm is existence of many frames in MPEG format (I, B, and P) – for more information 

about MPEG refer to Segmentation based on Compressed Data section earlier in this 



  101

chapter. They suggest using a normfactor which will take into account the different types 

of frames in MPEG. 

Dailianas et al. [29] suggest two algorithms for dealing with false positives. The first 

compares the current frame with the k preceding and k succeeding frames and replacing 

the current value with the local minimum if some condition was not met. The second 

algorithm employs a simple moving average window technique. 

The first step in Lu and Tan’s post-refinement method [71] is to detect “small shots” by 

choosing a low threshold in the detection algorithm. These shots are basically falsely 

detected shots or the shots that are caused by false positive causing effects that were 

mentioned earlier. After detecting these shots, they merge them together or to the 

adjacent shots. 

As their second step, they look at the histogram pattern of shot boundary candidates. If 

the patterns of preceding and succeeding shots of transition candidate follow the correct 

distribution pattern then a shot boundary is declared; else if the succeeding continued the 

same pattern as the previous one then it was declared as false positive. 

As Zabih et. al [114] mention the overlays can be similar to a cut in a sense that they 

suddenly appear and disappear, or they can emerge and fade away in a similar fashion as 

fades or dissolves, however they do contain more data than transitions. Zabih et al. use 

this fact to detect captions using edge detection techniques as measure of differences and 

Haudorff distance similar to the one used in [54] to detect captions as well as scene 

breaks. Huttenlocher, et. al.  [54] incorporates the probability of a false match to better 
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locate the true false positives. Also there has been specific works by researchers such as 

Lu et. al. [71] for post-refinement of temporal segmentation results. 

2.7.2. False Negative (Missed Items) 

Based on [71], [29] and our research main sources of false negatives are as follow: 

• Very long gradual transitions. 

• Very short gradual transitions. 

• Close proximity to other transitions or effects. 

• Resemblance of bordering frames of two adjacent shots in terms of 

o luminance (and brightness level), 

o colors used, and 

o color distribution. 

• Black and white video input streams. 

• Camera on/off effect (figure 2.40). 

 

 

Fig. 2.40.  Presents an example of a false negative causing effect: 
Camera on/off effect. 
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Prevention 

False negative prevention refers to the methods used before each major stage of temporal 

video segmentation algorithms and specifically intended to reduce the number of false 

negatives. Most of these methods directly deal with input data manipulation. 

The major technique for preventing false negative is avoidance of any threshold 

applications. Thresholds, especially the global and random thresholds, are the main 

source of false negatives in the algorithms which utilize them. Beside thresholds, similar 

techniques as described in false positive prevention section can be used to eliminate 

completely or decrease number of false negatives. 

Earlier works such as Dailianas et al. [29] concluded that use of a local threshold (rather 

than global) approach to reduce the number of false negatives, however nowadays this is 

a fact. 

Detection 

False negative detection refers to the methods used after temporal video segmentation 

algorithm execution and specifically intended to reduce the number of false negatives by 

identifying them in the original input stream while considering the final output. 

Lu, et. al. [71] proposed to detect false negatives through a sequential detection on all the 

frames within a shot. They first obtain the color histogram for each shot and partitioning 

it into two equal segments. Then two feature distributions are approximately estimated 

using each segment. To detect false negatives, they examine the first- and second-order 

finite differences (as was proposed in [1] and [86]) of the log-likelihood ratios. 
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Although in the recent years new ideas are proposed for dealing with false negatives, less 

works are done for dealing with false-negatives during a post-processing step than false 

positives. This is because false negative elimination is achieved through main algorithm 

enhancements. 

2.7.3. Conclusion  

To this end, no algorithm exists for perfectly detecting all types of transitions in an 

arbitrary input video stream. Hence, over the years many pre- and post-procedures were 

developed to decrease the consequence of the false causing effects. These methods 

discussed in this section have significantly improved the end results of video boundary 

detection algorithms. 

2.8. Surveys and Other Resources 

Numerous research and papers, [4], [11], [16], [24], [29], [61], [63], [64], [65], [75], 

[103], [113], and [116] have surveyed, compared and contrasted, or used various methods 

for video boundary shot detection. 

Lienhart [63] has compared four different methods, Color Histogram Differences, Edge 

Change Ratio, Standard Deviation of Pixel Intensities and last but not least Edge-based 

Contrast. 

Although many published methods of detecting shot boundaries exist, it is difficult to 

compare and contrast the available techniques. This is due to several reasons. Firstly, full 

system implementation details are not always published and this can make recreation of 

the systems difficult. Secondly, most systems are evaluated on small, homogeneous 
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sequences of video. These results give little indication how such systems would perform 

on a broader range of video content types, or indeed how differing content types can 

affect system performance [84]. 

As a result, National Institute of Standards and Technology (NIST) annually holds a 

conference called TrecVid during which different participants’ algorithms are measured 

against the same data and in the same circumstances. The conference then ranks different 

algorithms distinguishing the superior ones in each field. 

2.9. Conclusion 

Study of existing techniques should always be the first step for any research. This way 

the researchers will be improving the previous works of others rather than reinventing the 

wheel all over again. In this chapter, existing research and related previous work on basic 

camera operations, transitions, video representation, detection, classification, and false 

detection and prevention techniques were discussed. 

Many temporal video segmentation algorithms fail to accurately detect all the transitions 

in a general video stream even after use of false detection and prevention methods. Hence, 

temporal video segmentation is still an open topic. Next chapters discuss our research 

performed to solve some of the existing problems in this area. 
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3. Direct Comparison based on Predefined Examples 

The literature review in the field of video temporal segmentation and its related fields 

was presented to the reader in the preceding chapter. In this chapter we will discuss the 

first algorithm suggested by the author. 

Two different algorithms were implemented and tested for temporal segmentation and 

they are as follow:  

1. Direct Comparison based on Examples Collections 

2. Direct Comparison based on Adaptive Examples 

In this chapter, the first method is discussed in detail. We describe our second method in 

the following chapter. The subsequent chapter provides the reader with our results and 

evaluations. 

3.1. Introduction 

Although video shot boundary detection has been a known problem for over a decade, it 

has become a very active research area in recent years. This is mainly due to the fact that 

video shot boundary detection acts as the basis for all other video processing research 

such as scene detection, video indexing and retrieval, and commercial detection. 
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Hence, much research has focused on improving the final detection outcome through 

usage of different techniques. The reasons for lower than expected outcome were 

reviewed in the literature review chapter. 

This chapter presents a detailed explanation of the design and implementation of our new 

temporal segmentation algorithm. The final results of experimentation and testing as well 

as information about the input files discussed in the futures chapters. 

3.2. Suggested Algorithm 

In order to detect video transitions such as cuts, fades and dissolves, we compare 

predefined examples of these transitions to the video stream to locate new cuts, fades and 

dissolves. Thus, no explicit mathematical models are used in our novel example-based 

approach. 

The goal in this project is to implement an algorithm which is independent of all 

transition models. In other word a unified algorithm that is used to detect all types of 

transition as well as any other false causing effects (see chapter 2 for a list of false 

causing effects, namely false positives) or camera operations. 

This chapter includes design and implementation of the proposed video shot boundary 

detection algorithm. 

3.2.1. Design 

In this section, the system design requirements are discussed. As mentioned in the last 

chapter, there are three main stages in a temporal video segmentation system. Figure 1.1 
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represents a general process flow for all the temporal segmentation algorithms; although 

this process flow can differ in details from one algorithm to the next.  

Like many algorithms our technique follows a slightly different process flow. Figure 3.1 

represents the detailed process flow diagram for predefined example based algorithm. 

 

Fig. 3.1. Visualizes the detailed process flow for method 
based on predefined examples 
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In the representation stage we begin by extracting numerical features that characterize 

the video input stream and our predefined examples. Then a method is required to 

compare each time instance of the input video stream with the predefined examples. This 

step is known as measure of difference calculation. 

After calculating the measures of difference for a series of time instances, the data are 

sent to detection algorithm for further analysis. In this stage, the regions of interest or the 

potential candidates for shot boundaries are identified. Only these data are used during 

classification and future stages. This way we avoid unnecessary calculations on the fit 

values that contain no transitions or effects of interest. In our algorithm, classification 

and detection stages are combined. In other words, the label of the best matched example 

is assigned to the current window. 

In the final stage the detected and classified results are optimized. This section will 

improve the quality of detection by adjusting the boundaries of detected transitions and 

by identifying the duplicate detections and removing one of them. 

These steps are discussed in details in the succeeding implementation section. 

3.2.2. Implementation 

In this section, the system implementation requirements are discussed in detail for 

temporal segmentation based on predefined examples. The implementation stage is 

divided into the following sections: 

• Representation 

• Detection 
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• Classification 

• Optimization 

• False Detection and Prevention 

Representation 

Video representation and measure of difference calculation are the initial and essential 

component of any video shot boundary detection techniques. This section includes 

information regarding example sets, as well as these two components. 

Examples Set 

Examples are the center piece of this algorithm. If proper numerical features are extracted 

from the video then these characteristics will most likely form groups such as those 

represented by figure 3.1 when plotted. An example set can be formed by taking some 

number of examples from each of these groups which are of interest to the research and 

using them as the representatives of those groups. 

 

Fig. 3.2. Demonstrates the basic idea behind classification and clustering techniques. 
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The example set includes not only examples of transitions (such as cuts, dissolves, fade 

ins, fade outs, morphing, and graphical transitions), but also includes effects that cause 

false positives (such as high motion sequences or camera pan and zoom effects). See 

figures 3.3 and 3.4 for more details. 

 

Fig. 3.3. Sample cut, fade in, fade out, and dissolve sequences. 
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Fig. 3.4. Sample camera pan and zoom sequences. 

 

Example set is the center piece of our algorithm. Nevertheless, our research is based on 

direct analysis of examples. Hence, employing high-quality example sets is of high 

importance in this research. What is high-quality example set? In this section this 

question will be answered by explaining the characteristics of a high-quality example set 

for video shot boundary detection. 

There are two main properties which come to mind when thinking about 

transitions/effects example set, quantity as well as quality of examples. 
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Quantity of Examples 

Quantity of examples directly affects the performance and detection results. Having more 

examples require more space and processing time. On the other hand, having too few 

examples results in insufficient number of examples which leads to undesirable results. 

Quantity leads to a more desirable outcome if and only if the quality of the examples 

increases. 

Quality of Examples 

What are the qualitative characteristics of a high-quality example set? To answer this 

question, different characteristics of transitions and effects of interest have to be studied. 

Below we discuss some of these characteristics: 

• Example Duration (length): Transitions and other effects in a typical video 

stream have a wide variety of different lengths. Thus, including examples of 

different length in our example set is important.  

• Example Type: Video streams use different combinations of transitions. Hence it 

is important to a wide variety of examples such as: cuts, dissolves, fade-ins, fade-

outs, morphing, pan and zoom. 

• Video Type:  Past experiment has revealed that different type of video (such as 

sport events, news, cartoon, commercials, and so on) contain different type of 

effects and transitions. Hence, examples of different type of videos have to be 

considered. 

• Balance: This factor directs the bias among transitions due to unevenly 

distributed number of examples (in other words, the quality decreases if there 
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exists considerably more number of examples for one transition or effect than 

there is for others). 

• Color Variety: Our input video stream may contain a wide variety of colors. 

Hence our examples should represent this diversity. If during a transition example 

red color intensity drops from high to low then there should be another example 

for which the red color intensity rises from low to high (similar examples are 

needed for all possible combinations of red, blue and green color intensities). 

• Combined Transitions: Besides having examples of single transitions, it is also 

necessary to have examples of combined transitions such as fade out followed by 

cut. This also requires the detection and classification algorithm to be adapted to 

support such examples. 

Video Representation 

Instead of using sequence of images to represent video we use series of statistical 

properties which are extracted directly from video for each frame in the image sequence. 

To represent each image in statistically, the first step is to extract the primary color bands 

(red, green and blue) for each frame. Figure 3.5 demonstrates this fact. 
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Fig. 3.5. An original image and the extracted three primary color 
channels images 

 

After extracting the RGB components from original image, the statistical information 

such as mean (MR, MG, MB) standard deviation (SR, SG, SB), skew  (KR, KG, KB), center of 

gravity (MxR, MxG, MxB, MyR, MyG, MyB) and its related statistical data (SxR, SxG, SxB, SyR, 

SyG, SyB, KxR, KxG, KxB, KyR, KyG, KyB) for each color component can be calculated. These 

statistical properties are referred to as color moments and they are summarized in Table 

3.1. 
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Table 3.1. Organizes the twenty seven moments in an easy to 
understand fashion 

 

Statistics: Color Intensities 

Color Intensities used as the basis for generating the nine basic statistics: the mean, M, 

standard deviation, S, and skew, K, of the three primary color intensities are calculated 

for each image (frame). Following this paragraph are the equations and descriptions of 

these statistics: 

• Mean – tells us the degree of brightness for average color intensity of the image. 
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• Standard Deviation – tells us how wide the object the color distribution curve is 

(see figure 3.6 a). 

[ ]∑ −=
xy

ctMctyxI
N

ctS 2),(),,,(1),(  (3.2) 

• Skew – tells us how lop sided the color distribution curve is (see figure 3.6 b). 
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Fig. 3.6. (a) Demonstrates the distribution curve and the fact that standard 
deviation affects the width of distribution curve. (b) Demonstrates a 
lop sided distribution curve; the lop sidedness can be calculated using 
skew. 

 

Statistics: Center of Gravity 

If the image has a uniform distribution of colors then the center of gravity simply 

becomes the center of the image. On the other hand, if the pixel intensities for each 
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component are separately used as weights for x and y positions during mean calculation, 

then the final result will be the center of gravity of that color component. This fact can be 

presented through the following equations: 
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As is pointed out by the above equations, the center of gravity is calculated for both x- 

and y- components of Cartesian coordinate system or image. Hence, together with the 

statistics from color intensities, there are twenty seven numbers which represent each 

image. The figures 3.7, 3.8, and 3.9 provide a visual for center of gravity calculation 

process. 
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Fig. 3.7. Represents the center of gravity, or weighted mean of 
position, for each of the three primary color components. 

 

 

Fig. 3.8. Points out that pure color white consists of equal amount 
of red, green and blue, and also the fact that center of 
gravity for each color component does not necessarily 
have to lie within the area with the highest intensity. 
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Fig. 3.9. Illustrates the center of gravities for each of the three color components in 
real life picture. 

 

Temporal First Order Difference of Statistical Data 

The twenty seven values as described in the last section are referred to as raw color 

moments. These statistical values are dependent on color components. In other words, as 

can be seen in figure 3.10 if the first cut (during which values of red and green 

components decrease and value of blue component increases while moving from first 

shot to the second shot) is in examples set and the second cut (during which values of red 

and green components increase and value of blue component decreases while moving 

from second shot to the third shot) is in the input video stream the resulting fit value or 

measure of difference for these two cases will be lower than expected. 
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Fig. 3.10. (Top) demonstrate raw moments presentations for two variations of cut (during the first 
cut values of red and green components decrease and value of blue component increases 
while moving from first shot to the second shot. During the second cut values of red and 
green components increase and value of blue component decreases while moving from 
second shot to the third shot). (Bottom) demonstrates the first order derivative of raw 
moments of the top section. 
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To overcome this problem we suggest two solutions. The first solution is to assure the 

examples set contain all possible examples with all the possible cases of RGB band 

behavior (with each component increasing or decreasing). This approach improves the 

algorithm but more examples mean slower algorithm. Hence, the second method is more 

desirable. 

The second solution is to use the temporal first-order difference (derivative) of statistical 

information. In our algorithm, raw moments are used along with the absolute value of the 

temporal first order frame by frame differences (or their first derivative) as basis for 

measure of difference calculation. First order derivative of raw moments are calculated by 

subtracting the statistical values of the current time instance, t from the values of the next 

time instance, t+1 (Figure 3.11). 

 
Fig. 3.11. Visualizes the process of calculating the first order derivative of 

raw moments. 

 

Measure of Difference 

As discussed in the last chapter, twenty seven values per frame (image) are used to 

represent the video in a numerical format. The next step is to measure the difference 

between transition examples and video input stream. These differences are then used as 

basis for detection and classification. 
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The following formula was used to calculate the measure of difference between the video 

input stream and each of the transition examples. 
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p is the power attribute; if a power of one is used then the minimum absolute error (MAE) 

is calculated. If a power of two is used then a minimum square error (MSE) is calculated. 

α and β can be used to control the effect of derivatives versus raw moments. I represents 

number of moments used in measure of difference calculation and F represents number 

of frames in the current example (window). 

Unlike [64] which uses a transition synthesizer system to generate examples of the same 

size, our set of examples are of varied length. Hence, at each time instance, t, we analyze 

the image sequence in a dynamic-size sliding window of length n which starts from 
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position t where n is the length of the current transition example in figure 3.12 the 

squares with dotted lines represent this sliding window. 

During analysis the windows image sequence at each time instance t are compared 

against all examples in the examples set. For each window-example pair, a fit value is 

generated using the statistical features. For each time instance t the example with the best 

fit value is saved and then sent to our detection and classification systems. 

This process results in about N X M matrix of fit values where N represents the number 

of frames per minute (normally 1800) and M represents the number examples. See the 

figure 3.13 for visual of these values. Figure 3.14 demonstrates the same fit values but in 

that figure the values are sorted for each window (frame). Figure 3.16 demonstrates the 

same fit values as figure 3.13. It also shows the best fit values graph and labels for some 

of the transitions. 

Figure 3.15 displays only the best fit values for each window in the same minute as 

figures 3.12 and 3.13  In this case derivatives are used to calculate the measure of 

difference between examples and video streams and that is the reason behind high values 

near transitions. This fact becomes clearer when we explain why cuts go up, down and 

then up again. 

Figure 3.17 explains why cuts follow a specific pattern in best fit value graph (figure 

3.15). While reviewing figure 3.17, keep in mind that fit values are calculated by 

subtracting the derivative values of all the frames in the current example from the frames 

in the current video stream window. 
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Fig. 3.12. Provides a visual for the process of calculating fit values 
by using variable length sliding windows. 
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Fig. 3.13. The following settings were used in equation 3.10 to generate the above fit values matrix: 
Derivatives (raw moments weight was set to zero and derivatives weight to one), Original 
data (versus normalized data), Power of one, Moment weights of one, Unsorted 

 
 

 
Fig. 3.14. The following settings were used for equation 3.10 to generate the above fit values matrix: 

Derivatives (raw moments weight was set to zero and derivatives weight to one), Original 
data (versus normalized data), Power of one, Moment weights of one,  Sorted (for each 
input stream frame the example fit values were sorted). 

 
Fig. 3.15. Represents the best fit values for each window for one minute of input data 
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Fig. 3.16. The fit values image and the best fit values graph with labels for the 

transitions and effects. 
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Fig. 3.17. Illustrates why cuts follow a specific pattern in best fit value graph of figure 3.15. This 

figure presents a step by step visual for calculating the fit values (measure of difference) 
for a cut example and the sliding window as it moves across a cut. 

 

As the last step for data representation, a common method is used to normalize the data. 

This method is described in details in the succeeding section. 
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Data Normalization 

The image sequences in the examples and video streams may have a very different range 

of feature values (i.e. different means, standard deviation and skew). This can cause 

calculation problems or difficulties later on. To correct for this, we normalize raw 

moments (derivatives do not need to be normalized) by linearly scaling both set of 

features by using equation 3.11. 
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where 

• ifm ,′ = The moment i after normalization for frame number f 

• ifm , = The moment i before normalization for frame number f 

• ifm ,′ = The desired mean for moment i and frame number f 

• im = The overall mean for moment i 

• if ,σ ′ = The desired standard deviation for moment i and frame f 

• iσ = The overall standard deviation for moment i 

As pointed out by equations 3.11 to linearly normalize the distribution curves first the 

mean needs to be moved (which moves the distribution curve) and then the standard 

deviation is changed (which modifies the range of data). In this equation, values of 

ifm ,′ and if ,σ ′ are defined by the researchers. In our algorithm, the mean was moved to zero 

and the standard deviation was moved to ten. im  and iσ were calculated using as much 
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input video stream as possible. These four values preferably should be the same for both 

examples and video stream normalizations.  

This process gives both sets of features in examples and video stream the same mean and 

standard deviation values. Figure 3.18 shows the distribution curves for an arbitrary data 

set before and after normalization.  

 
Fig. 3.18. Illustrates the distribution curves for arbitrary data set before and 

after normalization 

 

 
Fig. 3.19. Demonstrates the fit values image before normalization 

 

Figure 3.19 represents the fit values matrix (image) before normalization using power of 

one and derivatives to calculate the fit values. Figure 3.20 on the other hand is the same 

representation after normalization. 
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Figure 3.20 represents the data after normalization. These data produced a brighter image 

since the fit values have a smaller range. 

 
Fig. 3.20. Demonstrates the fit values image after normalization 

 

This section as described the normalization technique which was utilized in this research. 

Although many other normalization techniques do exist, they are not used here and hence 

are not discussed at this time. 

Detection and Classification 

As described previously the detection and classification steps are combined. In this 

section, we discuss these two steps in details. 

Detection 

Detection refers to the process of data analysis leading to the discovery of regions of 

interest corresponding to the potential candidates for video shot boundaries.  

Many detection techniques were reviewed in chapter two. In this approach, we decided to 

use a local adaptive threshold to find the regions of interest. This threshold is simply is 
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based on the mean and standard deviation of the current window as well as the mean of 

the current minute. See equation 3.12. 

The detection consists of two stages. In the first stage, for each window in the video 

stream the best example (the one with the smallest fit value depending on the data) is 

selected. Then in the second stage, regions with minimal activities are discarded by using 

an adaptive localized threshold. 

ifif Kmthreshold ,, σ⋅+=  (3.12) 

where i is the moment index (0 to 27) , K is the factor used to modify the threshold and 

• =ifm ,  the mean of fit values for the frames in each window with starting frame f 

• =if ,σ  the standard deviation of fit values for the frames in each window with 

starting frame f 

The goal was to have an adaptive threshold that discards majority of uninteresting frames 

which does not introduce any false negatives and/or a high number of false positives at 

all the same time. However even usage of a localized adaptive threshold proved to 

introduce false negatives and also required adjustments for different types of video 

(depending on the degree of the noise and number of transitions/effects per twenty 

frames). Figure 3.21 shows an example of a cut that is missed even if an adaptive 

localized threshold is used. Even though the graph shows a distinguishable jump from the 

first shot to the second, the magnitude of the change is still low enough to lead to 
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confusion and mislabeling of this cut as motion or as in our case being discarded all 

together by the threshold. 

 
Fig. 3.21. Demonstrates the raw moments graph and the image 

sequences for a cut that was missed during detection 
process. 

 

Classification 

In our algorithm classification is part of the detection process. When we find the best 

example at time t, the transition/effect type (label) of this example is assigned to the 

current window. Thus, no additional work is necessary to classify the potential 

transition/effect in question. This is a major benefit of this approach.  

After the detection and classification stages many problems will still stay unsolved. For 

example the size of transitions assumed to be the same as the same as the length of the 

best example match which is not necessary true. The second problem arises since a 

threshold technique is used. Because of threshold there can exist multiple detections for 

one transition. To avoid these problems another step is proposed, optimization. 
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Optimization 

Optimization is the last step in temporal video segmentation based on direct predefined 

examples. In this step the location of the transition, length of the best fit example and 

other gathered data is used to calculate a good estimate for the boundaries of the 

transitions. 

Optimization is also used to clean up the final results. For example, as you can see in 

figure 3.22 it is possible a single transition to result in multiple detections. This can be 

detected and fixed with a simple algorithm which considers the distance of each 

transition with the neighboring transitions and also considers the activities in the 

surrounding environment. 

 
Fig. 3.22. Demonstrates an adaptive threshold localized for one minute of data. 

 

The duplicate detections can be prevented by finding the local maximum for each group 

of frames which are labeled as regions of interest. Figure 3.22 shows the regions of 

interest above the global threshold (red line). 

3.3 Conclusion 

In this section, we discussed the first proposed novel algorithm for temporal video 

segmentation based on predefined examples. This approach combines detection and 

classification stages. The results and further discussions for this algorithm can be find in 
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the experimental results chapter of this document. The next chapter, discusses another 

novel algorithm which is based on adaptive examples rather than predefined examples 

and it addresses the shortcomings of the algorithm discussed in this chapter. 
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Chapter 4 
 
Direct Comparison based on Adaptive Examples 
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4. Direct Comparison based on Adaptive Examples 

Previous chapter introduced the first approach for temporal segmentation of video based 

on examples. This chapter introduces another novel method which is designed to 

compensate for the shortcomings of the previous method. 

4.1. Introduction 

The first algorithm had many weaknesses which could not be easily directed without 

avoiding complexity. In the next chapter the issues which lead to these shortcomings are 

discussed. Due to these problems a new method is designed and implemented which has 

a higher performance than the previous method as well as many other algorithms which 

were discussed in Chapter 2. 

This chapter reviews the design and implementation stages of the new technique, 

however the readers are recommended to review the design and implementation sections 

of the technique discussed in the previous chapter since the two algorithms share many 

similarities (specifically in representation section). Hence, some of the topics will no 

longer be discussed in this chapter. 
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4.2. Assumptions 

All the definitions provided in this document such as sections on cuts, fades and dissolves 

of chapter 2 act as assumptions around which this research has been implemented. This 

section provides the list of assumptions used while implementing this method. 

While dealing with dissolves and other gradual transitions, pinpointing the exact 

boundaries is difficult since even human eyes cannot distinguish between beginning and 

ending frames belonging to transitions and the adjacent frames of adjacent shots. 

Therefore in our algorithm and many algorithms described in chapter 2, as long as the 

detected transition overlaps with the actual transition, a match (true positive) is declared. 

The first assumption is that fades are longer than three frames long. One frame long fades 

do not exist. Two and three frame long fades have either a sudden change (figure 4.1) 

similar to cuts or are incomplete fades (change in brightness). Hence three is the smallest 

window that is used for fades.  

The first assumption on cuts is that if a cut is immediately succeeding or preceding 

another gradual transition (namely fade) then the two transitions are counted as one. The 

goal should be to detect either one of the two (more desirably the fade). This is being 

treated as a special case of fade (figure 4.2). 

Another interesting and fairly common transition is a cut followed by a series of 

monochrome frames which is also followed by another cut. If there are less than five 

monochrome frames in between the two cuts then this sequence is considered as one 

transition (i.e. at least one of cuts have to be detected). If the monochrome shot is longer 
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then it is treated as a normal shot (figure 4.3). Similar logic is followed if there exist two 

cuts in very close proximity which are separated by a short shot rather than monochrome 

frames. 

In many cases there exists a sudden zoom such as the one in figure 4.4. This effect is 

considered as a cut since the camera has made a sudden transition and it looks as 

intermediate frames have been moved. 

If a graphical transition such as the one in figure 4.5 (frames 1644 to 1652) is detected as 

a fade depending on how well it resembles an actual fade then it can be marked as a false 

positive. The one in that figure will not be labeled as such since it is very similar to an 

actual fade. 

In many shots there exist situations such that the text on the screen changes. For example 

the text fade, dissolve or suddenly changes to another text (figure 4.6). If the text is part 

of a bigger picture then it is not suppose to be detected as a transition. However if it is the 

main object in the shot without any other object (for instance with white background) 

then since it follows the definition of corresponding transitions, it will not be labeled as 

false positive if detected as a transition. 
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Fig. 4.1. Illustrates an unacceptably short fade which is succeeding a special effect. 
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Fig. 4.2. Illustrates a fade followed by a cut. 

 

Fig. 4.3. Illustrates a cut followed by monochrome frames 
followed by another shot. 
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Fig. 4.4. Illustrates a shot which contains a sudden zoom. 

 

Fig. 4.5. Illustrates a region of high activity as well as a graphical transition which is a 
potential false positive for fade detectors. 
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Fig. 4.6. Illustrates a sudden change in text. 

 

4.3. Goals 

The goals behind the different algorithms in this research are to achieve the following 

properties: 

• Real Time – This program is designed in a way to minimize the execution time, 

so data can be processed as quickly as it is generated. In other words, when 

analyzing one minute of data the execution time does not exceed one minute. 

• Generality – One of the main goals of this research was to create a general 

technique free of any specific models or algorithms which can be easily extended 

to other transitions or effects. 

• No Threshold – The idea of no threshold is one of the center pieces of this 

research. Not having a threshold will remove the problem of threshold selection 

and should decrease the number of false negatives by a great number. 

• Multilevel Property – This property means a hierarchical structure is used during 

design and implementation stages. In a multilevel system, each stage takes the 
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input of previous stage and after analysis it forwards its own output along with its 

inputs to the next stage. Multilevel property allows to easily incorporating other 

data representation or methods into different stages of algorithm. Also as 

algorithm progresses there will be more data for analysis available to the future 

algorithm. 

4.4. Design 

The first step in design is to identify the problems with the previous method. In the first 

method, the idea was to use predefined examples set containing a large number of 

examples. The problem is that having a large enough examples set which contains all the 

possible variations of transitions and effects can drastically effect the performance of 

algorithm (mainly in terms of time). The main advantage for having large number of 

examples is that it removes majority of false negatives. However having many examples 

of transitions will also introduce many false positives since the probability of examples 

matching with motions or areas of higher activity (with no transition) rises. 

Hence, rather than using predefined examples, a new method based on adaptive examples 

is introduced. Adaptive examples are based on the context in which transition has 

occurred. This fact eliminates the need for a large number of predefined examples, 

quality dilemma and the trade off between quality and performance. Figure 4.7 illustrates 

the process flow diagram for this algorithm. 

At the first sight the second algorithm is very similar to the previous method however 

closer look reveals otherwise. The representation stage in the new method does not need 
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any predefined examples preparation and instead before calculating the measure of 

difference it will generates adaptive examples. 

Since the new method only works on raw moments, the need for calculating first order 

derivatives is eliminated. Also, normalization is not necessary for the new method since 

adaptive examples are used. 

Another change in the new process flow is that the detection process is shorter since the 

new method does not use any thresholds (a great advantage over other techniques). The 

detection is basically done by introduction a new group or normal group. This group 

represents the frames within the shots in contrast to frames within transitions 

(neighboring a cut or within gradual transitions). The classification and optimization 

stages remain the same as the previous method. The next section discusses above topics 

in more details. 
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Fig. 4.7. Illustrates the process flow for main component of the algorithm based on 

adaptive example or transition/change detector. 

 



  148

4.5. Detectors Implementation Details 

4.5.1. Representation 

Representation step is consisted of capturing the video stream, calculating the statistical 

information (raw moments), calculating the adaptive examples and finally calculating the 

measure of difference between each of the adaptive examples and each of the video 

streams windows. The first two topics are not discussed in this chapter since they have 

been discussed in details in the previous chapter representation section. The remaining 

topics are discussed later on in this section. 

In the previous algorithm, the examples required to be predefined. Doing so introduces 

problems which can be partially addressed through normalization, addition of many new 

examples and using many other algorithms in parallel but not only these solutions will 

not help to fix the problem fully rather they also introduce other problems such as 

slowing down the algorithm drastically and resulting in an unacceptable performance 

level (unacceptable number of false positives). Hence, a novel solution is needed and 

adaptive examples are the major players in the suggested solution. 

The previous algorithm requires covering all the possible variety of transitions and effects 

in order to avoid introducing large number of false negatives. On the other hand, a large 

number of examples introduce many false positives and will drastically increase the 

execution time (in the new algorithm the only variation needed is examples of different 

size while detecting gradual transitions). 

The solution to this dilemma is adaptive examples. They, not only provide an adapted 

example for each instance of sliding window, but also remove the need for having tens of 
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thousands of examples. This way, both quality of detection (lower number of false 

negative and positives) and the execution time improve considerably. 

Adaptive Examples 

Similar to the previous method, the new algorithm is based on sliding window idea. For 

each frame (except the starting frames) there is one fit value per window. Depending on 

the type of transition different sizes of sliding window are used and partitioned 

differently. Some of the partitions are used to create the adaptive example and the rest are 

used as potential candidates for transitions. In the future sections we discuss how 

adaptive examples are created for each of the primary transitions and for normal (or 

examples of no activity or transition) groups. Figure 4.8 demonstrates a potential 

candidate and its corresponding generated adaptive example. 

One main factor in the new algorithm is that either varied length windows are examined 

or one fix length is required for all type of transition. This fact eliminates the window 

size as a parameter. Hence, this algorithm not only has no thresholds it is also parameter 

free. 
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Fig. 4.8. Illustrates a selected potential candidate and its corresponding generated 
fade adapted example. 

 

Cut 

As is demonstrated in figure 4.9 the window is divided into three partitions which are 

labeled, A, T, and B while generating the adaptive example and calculating the measure 

of difference for cuts. Note that A and B have to be half of T in size since they are 

merged to create the adaptive example and then compared against T frame by frame to 

calculate the measure of difference. 

The adaptive example was first produced by simply merging partitions A and B. Since 

the adapted example is generated using the surrounding context of T, it matches the 

potential candidate very closely for all twenty seven moments. 



  151

In cuts all twenty seven moments are used since the adaptive examples can easily be 

generated by merging the moment value stream from A to the value stream from B 

partition. 

 
Fig. 4.9. Illustrates the process of extracting potential candidate 

and generating a cut adaptive example while T partition of 
the window is centered on a cut transition. 
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Fig. 4.10. Illustrates the process of extracting potential candidate and 

generating a cut adaptive example while T partition of the 
window is over a region of no activity (regions containing minor 
object motions). 

 

Figure 4.10 represents the same settings as figure 4.9 with the exception of sliding 

window been located over a normal group rather than a cut. These figures are discussed 

further in the upcoming measure of difference section. Also discussed in that section is 

the complications cut transitions have compared to gradual transitions due to not having 

any actual length. To address that problem a specialized technique is developed to 

distinguish cuts from normal frames. 

Dissolve 

As pointed out in chapter 2, dissolves are the most difficult transitions for detection 

(among the three primary transition types). This fact is mainly due to dissolve detectors 

mistakenly detect cuts, fades as well as other transitions and effects. Hence, the new 
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algorithm is designed to first identify all the cuts and fades with a high degree of recall 

and precision and then it uses these results to distinguish dissolves. ). 

 

Fig. 4.11. Illustrates the process of extracting potential candidate 
and generating a dissolve adaptive example while T 
partition of the window is centered on a dissolve 
transitions. 

In dissolve detector, only the first six moments are used whereas all twenty seven are 

used for cuts. This is due to the fact that dissolve adaptive examples cannot be simply 

extracted by merging two partitions. New equations need to be derived for each type of 

statistical data (mean, standard deviation, and skew) which calculates the moment values 

of adaptive examples by using already calculated statistical data of A and B partitions. 

This method is much faster than first creating synthetic dissolve examples and then 

extracting all the twenty seven moments. On the other hand, due to the complexity of 

mathematical formulas the skew cannot be derived and hence is not used in dissolve or 
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fade detectors. The statistics from center of gravity are also not used since they are data 

dependent and hence cannot be defined. 

Figure 4.11 illustrate the process of generating adaptive examples for dissolve detector. 

In this process, the window is divided into three equally sized partitions, A, T and B. A 

and B are used in equations 4.1 to 4.6 to generate the new values for adaptive examples. 

The equations 4.1 to 4.3 are used for calculating the first three moments (means for each 

of the primary colors). The second set of equations (4.4 to 4.6) are used for calculating 

the moments three through six (standard deviations of the primary colors. 

RitRitRit BAM ,,,,,, )1( ⋅−+⋅= αα  (4.1) 

GitGitGit BAM ,,,,,, )1( ⋅−+⋅= αα  (4.2) 

BitBitBit BAM ,,,,,, )1( ⋅−+⋅= αα  (4.3) 
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where ,*,itM  and ,*,itσ  represents the generated mean and standard deviation for adaptive 

examples and R, G, B subscripts represent the three primary color channels, t represents 

the frame number (time) and i represents the current moment. 
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As reader can notice the derived equations (see Appendix A) for standard deviation are 

slightly differ from the equation used. The last expression is ignored since in a long term 

it will add up to zero since it can take both positive and negative values. 

Fade 

Fade is a specific variation of dissolve. Hence the dissolves equations (equations 4.3 to 

4.6) are also used in fade detectors. Fades are generated by using a normal shot and a 

monochrome shot. If the monochrome frames are leading the frames from the normal 

shot then the transition is a fade out. Otherwise the transition is called to be a fade in. A 

complete fade is consisted of both of these sections as can be seen in figure 4.12. 

Fade Out 

Figure 4.12 demonstrates the process of producing a fade out adapted example. The 

window is divided to two parts, A and T. A is used to create the adapted example. So it 

has to be the same size as T. 

To use the dissolve equations another shot is necessary. The other shot is created by using 

previously stored monochrome frames. It is generated by repeating the monochrome 

frames to create a shot which has the same length as partition A. The set of monochrome 

frames should contain frames of different colors (in our algorithm different varieties of 

white and black monochrome frames were used). 
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Fig. 4.12. Illustrates the process of extracting potential candidate and 
generating a fade out adaptive example while T partition of the 
window is centered on a fade out transition. 

 

Fade In 

The only difference between fade out and fade in is the order in which the monochrome 

frames appear. In fade in the monochrome shot leads the normal shot. Hence two 

modification to fade out algorithm make it possible to achieve desirable results for fade in 

using the same algorithm. 

The first modification is to switch the order of windows. As can be observed in figure 

4.13 instead of partition A, partition B is used (i.e. the partition used in example 

generation and partition T are swapped). This modification is needed to make sure the 

algorithm conform to the definition of fade in. Although to completely follow the 
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definition of fade in the order of alpha had to also be changed. The variable alpha will be 

set so the effect of monochrome shot increases in time. 

 

Fig. 4.13. Illustrates the process of extracting potential candidate and 
generating a fade in adaptive example while T partition of the 
window is centered on a fade in transition. 

 

Normal 

Introduction of normal groups is another center piece within the adaptive example itself. 

Having normal groups allows the algorithm to avoid use of thresholds and to 

implementation of a novel method which achieves high quality results. 

The window is divided into A and T partitions. A is directly used for generating the 

example and T is used as the potential candidate. While generating adaptive examples for 

normal groups, large windows have to be avoided since the window has to be localized; 
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otherwise, it is possible for each window to contain more than one transition, leading to a 

higher number of false detections. At the same time, the window has to be large enough 

to detect any major changes in the image sequence of partition T. Also, A partition has to 

be the same size as T partition. 

Generating the normal groups is rather simple. The task basically ends by dividing the 

window to A and T partitions (see figure 4.14). Partitions A and T are used directly to 

generate examples and to present the potential candidate correspondingly.  

 

Fig. 4.14. Illustrates the process of extracting potential candidate and 
generating a normal adaptive example for gradual 
transitions detector while T partition of the window is over a 
region of no activity (regions containing minor object 
motions). 
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Conclusion 

In this section, the various sliding windows were discussed for different possible 

transitions which were of interest to this research. In the next section, calculating measure 

of difference (fit values) is looked at. 

Measure of Difference 

After having adaptive examples and potential candidates in hand, the task of calculating 

the measure of difference becomes straightforward. This section is divided into two parts; 

the first part discusses the task of calculating measure of difference for gradual transitions 

and the second part talks about the measure of difference for abrupt transitions. 

Gradual Transitions and Their Normal Groups 

In gradual transitions, calculating the measure of difference for the potential candidate 

and adaptive example is as simple as finding the sum of the differences of the moments 

used to represent these two image sequences for all the frames. Then the sum is used to 

calculate the average with respect to total number of moments as well as total number of 

frames in the T partition of the window. 

This average value is also called the fit value which is a representation for how well the 

current window matches the adaptive example (i.e. how closely the frames in the window 

resemble the frames in a specific type of transition such as cut, fade or dissolve). 
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Abrupt Transitions and Their Normal Groups 

As mentioned before, in some cases the process of generating fit values need to be 

specialized to direct some of the complications introduced by abrupt transitions. In this 

section, both the problem and the proposed solution are discussed. 

Problems 

The problem is introduced by the fact that the abrupt transitions lack an actual size. If the 

gradual transitions adaptive examples (figure 4.14) are also used in detecting cuts then 

some of the underlying relations among different possible fit values of normal groups 

(regions of low activity) and cuts (represented as a sudden change between two frames) 

will not hold. These fit values relationships are discussed later on in this section. As 

demonstrated in figures 4.8, 4.9, 4.14 and 4.15, there are four possibilities and they are as 

follow: 

1. If the window is on a region of activity (namely on a cut) and the algorithm is 

generating the normal group adaptive examples (Cn). 

2. If the window is on a region of activity (namely on a cut) and the algorithm is 

generating the cut adaptive examples (Cc). 

3. If the window is not on a region of activity (namely on a cut) and the algorithm is 

generating the normal group adaptive examples (Nn). 

4. If the window is not on a region of activity (namely on a cut) and the algorithm is 

generating the cut adaptive examples (Nc). 

Each of these four situations will generate a fit value. These four fit values are labeled Cn, 

Cc, Nn and Nc respectively. When the window is on a cut then Cc should be less than Cn 
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since the minimum value is defined to be the best matched. On the other hand, when the 

window is on a normal (no activity) region Nn should be less than Nc. 

These two conditions are sufficient for gradual transitions, however since cuts do not 

have an actual size the second condition (Nn < Nc) does not hold true most of the time. 

This fact is due to value of Nc being very similar to Nn. The first condition (Cc < Cn) 

was met since only A partition is used while generating adaptive examples for normal 

groups. 

As shown in figure 4.15 the adaptive examples for situation 3 (Nn) and situation 4 (Nc) 

both lack any great change; henceforth in many cases fit value for situation 4, Nc, drops 

below the fit value for situation 3, Nn causing the second condition to break. This fact 

results in an excessive number of false positives and it cannot be solved by simply 

adjusting the window size. Therefore a specialized method is required which is discussed 

in the subsequent section. 
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Fig. 4.15. Illustrates the similarity between situation 3 and 4 (i.e. 
lack of any great change in situation 4). 

 

Proposed Solution 

The first suggested solution is to increase the window partition size lower limit while 

generating cut adaptive examples. Doing so will cause the partitions A and B to span a 

more diverse set of frames. Hence the average scores or fit values will increase. However 

this method will not work since doing so will increase number of false positives by an 

unacceptable amount. Similarly decreasing the lower limit on normal groups will result in 

unacceptable number of false negatives. Hence another solution becomes necessary. 

To design a universal solution to this problem, not only Cc-Cn and Nc-Nn relationships 

have to be analyzed but also Cc-Nc and Cn-Nn relationships. Cc has to be less than Nc 
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(Cc < Nc) and Nn has to be less than Cn (Nn < Cn). The relationship between Cn and Nc 

is meaningless and of no interest to this research. Figure 4.16 demonstrates the 

relationship between the four possible pairs of fit values discussed above. 

 

Fig. 4.16. Illustrates the main relationships which must 
hold in order for any suggested solution to work 
universally (in all circumstances). 

 

Fig. 4.17. Illustrates the process of extracting potential candidate and 
generating a normal adaptive example for abrupt transitions 
detector while T partition of the window is over a region of 
no activity (regions containing minor object motions). 
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Fig. 4.18. Illustrates the process of extracting potential candidate and 
generating a normal adaptive example for abrupt transitions 
detector while T partition of the window is centered on a cut. 

 

The proposed universal solution (a solution which works for all circumstances) is to use 

the center of partition T (potential candidate). As illustrated in figures 4.8, 4.9, 4.14 and 

4.15 the center of T is repartitioned and the center partitions are labeled as TC1 and TC2 

respectively. Each of these partitions is one frame long. 

Figure 4.18 illustrates the normal groups sliding window for cut whereas figure 4.18 

illustrates the same settings with exception of sliding window being on a transition 

(namely cut) rather than over a region of low activity. 

The difference between average of the moments of TC1 and TC2 is noted by label Dc. Dc 

is very large if there exist a cut (or a large jump due to another type of transition or effect) 

which is centered in the middle of sliding window partition T. Dc is used along with the 
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original fit value (as described in gradual transition) to achieve all four main relationships 

of figure 4.16. Equations 4.7 and 4.8 are used while generating the cut and normal group 

adaptive examples (Fv represent the original fit value similar to the one discussed in 

gradual transition adaptive examples sections). 

• When expecting regions of low activity (i.e. generating adaptive examples for 

normal groups) 

01.0+
=

Dc
FveNewFitValu  (4.7) 

• When expecting cuts (i.e. generating adaptive examples for cuts) 

1+
=

Dc
FveNewFitValu  (4.8) 

These equations are discussed in detail under the further discussions section. 

Extremely Sensitive Change Detector (ESCD) 

In previous sections, we discuss why equations 4.7 and 4.8 actually work. Usage of the 

mentioned equations is named Extremely Sensitive Change Detector (ESCD). The goal of 

this section is to explain ESCD technique and convince the reader that it guarantees the 

four main relationships which are presented in figure 4.16 to hold in majority of 

situations. 

ESCD is the reason why adaptive examples generation process as well as no threshold 

technique work for abrupt transitions. 
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The division operation is at the center of ESCD algorithm. Specifically the properties of 

division that state: if the denominator is smaller than one then the results will be larger 

than numerator and vice versa (if denominator is equal to one the result will be equal to 

the numerator). These properties can be used to raise the value of Cn and Nc considerably 

so all the four main relationships to hold (see figure 4.16). 

Before discussing the reasons why the four main relationships hold, the equations 4.7 and 

4.8 need to be discussed further. As mentioned in the previous section, Dc is very large 

when there exists a cut centered in the middle of partition T (in most cases many times 

larger than 1) and very small when T partition is over a region of low activities (less than 

1). 

Incorporating the properties of divide and the topics of previous paragraph helps us to 

achieve our goal. In the case when nothing is happening (when window is over a region 

of low activities) Dc will be less than 1 which will cause the original fit value, Fv, to 

increase in value noticeably if divided by Dc. 

Obviously the increase in Fv value is not an acceptable and therefore the denominator is 

incremented only by 0.01 when expecting a region of low activities (0.01 is just to ensure 

the value does not go to zero and it is small enough to not effect the four main 

relationships in anyway and it is fixed, meaning it does not have to be adjusted for 

different types of video or environments). Also Fv for normal is smaller than the Fv value 

for cuts. All these lead to new fit values for Nn and Nc such that Nn is less than Nc (Nn < 

Nc). 
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In case when something is happening (when window is over a region containing 

transitions, effects or even distinct motion), large value of Dc will be plugged into cut 

equation (4.8) causing the original fit value, Fv, to drop noticeably (in this case, Fv is also 

large in value but still smaller than Dc due to the fact that more context is used while 

calculating Fv). 

Keep in mind that the denominator of cut equation is incremented by one. On the other, 

hand since only A partition is used in normal groups calculation, Fv (for when expecting 

group of low activity) is very small. This fact is compensated for by a large Dc value 

which leads to a very small final fit value. Therefore the new equations will not effect the 

relationship between fit value for cut and normal in this case (Cc < Cn). 

The previous paragraphs explained the technique used to compensate for the 

complications of cut when generating adaptive examples. They also explained why the 

relationship Cc-Cn still holds even after applying the new equations. The upcoming 

paragraph will explain why the secondary relationships (Cc-Nc and Cn-Nn) hold as well. 

Cut equation will result in a higher value when there is no activity compare to when the 

window is over a region of high activity (Cc < Nc). This is because original Fv in when 

there is activity is less than the Fv when there is no activity (the denominator is ignored 

here since it the same in both cases). Similar logic leads to the following relationship:   

Nn < Cn (i.e. the secondary relationships were also true before the new equations were 

applied; the relationships also preserved afterward since for both relationships the 

equations share the same denominator). 
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4.5.2. Detection and Classification 

The detection and classification stages are very simple since majority of work has been 

done in the representation stage. 

Using adaptive example generators and ESCD eliminate the need of any thresholds. 

Hence the detection step is only consisted of one step which is to finding the minimum fit 

value (the best match adapted example). If the minimum value is calculated using a 

normal adaptive example then the frames in T is labeled as normal and be ignored in 

future steps. 

Classification on the other hand is consisted of two sections. The first part is the same as 

detection stage. The second part is basically taking the label (and other necessary 

information) from the best matched example and applying it to all the frames in the 

sliding window T partition. 

More details can be found under Overlapping Windows Frame Scoring System section 

later on in this chapter. 

4.6. Implementation Details – Second Level Algorithms 

At this point the reader should have a good understanding of low level details which are 

the underlying techniques in this research. This section contains the implementation 

details for higher level techniques, providing a bigger picture of the system. 

4.6.1. Detectors 

Figure 4.20 represents a high level implementation diagram for this algorithm. The first 

step is to capture the video stream and extract the twenty seven moments for each frame 
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within the video stream. These moments then are received as input by individual 

detectors. 

 

Fig. 4.19. Illustrates the high level process flow for the 
second algorithm. 

Notice that the output of cut is sent to both fade and dissolve and output of fade is sent to 

dissolve. These inputs result in a lower detector complexity for fade and dissolve since 

they are used for false positive elimination task in each of these detectors. 

At the end the results are stored and analyzed separately. This does not cause any 

problems since the fade and cut algorithms are used in the succeeding detectors and since 

no dissolve will be marked as fade by mistake due to the clear distinction between their 

definitions. 
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Cut 

Cut detector is the most complicated among the three detectors since it is the first 

detector to be executed. Hence no finalized detections results exist to be used as input. 

Cut detector is executed first since in general they are the easiest transition to detect 

compare to dissolves and fades. 

Since frames moments are the only inputs, cut detector uses ESCD techniques for cuts of 

length four and eight as well as a dissolve gradual transition detector (GTDD) algorithm. 

 

Fig. 4.20. Illustrates the high level process flow for cut detector. 

 

In figure 4.20, C4 and N4 indicate that ESCD is designed for detecting cuts of length four. 

C8 and N8 indicate that ESCD is designed for detecting cuts of length eight. Similarly, D 
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and NG indicate that the dissolve and normal groups for gradual transitions are used in 

GTDD. 

The results from all three detection scheme is forwarded to parallel analyzer and then 

parallel analyzer output is forwarded to X/V analyzer and its output to false positive 

detector. These stages are discussed later on in this chapter. 

Fade 

Fades are executed second (see figure 4.19) since they are harder than cuts and easier 

than dissolves to detect. Also because fade detector does not detect the dissolves and the 

fact that dissolve detector can detect fades by mistake.  

Figure 4.21 is very similar to cut detector process flow of figure 4.20. The first step in 

fade detector is fades gradual transition detection (GTDF) during which the potential 

frames are marked as fade. 

The second stage is monochrome frame detection. The detector designed for this task 

detects and labels all the monochrome frames within the video stream by using a set of 

previously collected statistics for different varieties of monochrome frames. 

The detection stream from each of these detectors is sent to parallel analyzer. These 

streams are analyzed along with finalized detection results from cut detector. Parallel 

analyzer outputs fades detection stream which then sent to fades positive detector for 

further analysis. These sections are discussed in details later on in this chapter. 



  172

 

Fig. 4.21. Illustrates the high level process flow for fade detector. 

 

Dissolve 

Dissolve follows the same process flow as fade with exception of running GTDD instead 

of GTDF and does not require any monochrome frame detector (see figure 4.22). It also 

uses the finalized detection results of both cut as well as fade detectors. 



  173

 

Fig. 4.22. Illustrates the high level process flow for dissolve detector. 

 

4.6.2. Techniques 

To achieve the goals discussed earlier in this chapter, many novel techniques had to be 

proposed and implemented. Some of these techniques, namely Adaptive Examples and 

Extremely Sensitive Change Detector have been discussed in the earlier sections of this 

chapter. The section focuses on the remaining of these techniques such as parallel 

analyzer, X/V analyzer and false positive detector. 

Overlapping Windows Frame Scoring System 

This section will describe the techniques used to find the best fit example for each of the 

frames in the video stream. Figure 4.23 illustrates the execution process at time t. 
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Fig. 4.23. Illustrates the high level process flow for cut detector. 

 

The top section (of figure 4.23) represents the results after execution of normal group 

algorithm. Since normal groups are the first algorithm executed, the label N (normal) is 

assigned to all the frames in T partition of the window. 

On the second part the cut algorithm is executed. The cut algorithm results in a smaller fit 

value since the T partition of the window is located over an actual cut; hence all the 

previously labeled frames in the current T partition are relabeled as C. 

At this point, the first iteration of cut detector ends and the second iteration starts. In 

other words, both windows (for normal group and cut) will move forward by one frame 

and the same procedure will be repeated for time instance t+1. Keep in mind that at time 

t+1 the label of the first frame of T partition in time t cannot be changed any more (i.e. 

the first frame in each window will not be changed, once the algorithm moves to the next 

frame). 
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In gradual transitions this scoring technique is used with various window sizes since 

gradual transitions exist in different sizes. Conversely for normal groups and cuts only a 

specific size window is used. This size is fixed and does not have to be changed for 

different type of video. 

In case of cuts, the size of partitions needs to be as small as possible because windows 

which have bigger context (more frames) introduce more noise. A partition size of two or 

less is not appropriate since cut is defined as a sudden change between two frames. Hence 

the window size has to be bigger than two. Size three also introduces a problem since 

three is an odd number the partition will have twice as much information about one shot 

as it will have for the other one which in returns leads to poor performance. As a result 

the cut will cause bias in calculation for one of the shots. Henceforth the cut algorithm 

will use a partition size of four. 

 

Fig. 4.24. Visual for detection streams of cut (with partition size of eight). 

 

However, in cut detector ESCD is executed twice. During the first run, it uses partition 

size of four. The second time, it uses the partition size of eight which introduces twice as 

much context to each partition (the detection streams are illustrated in figures 4.24 and 
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4.25). More contexts results in a slightly different detection stream which is used in 

parallel analyzer to better detect cuts (see figures 4.25 and 4.26). 

Parallel Analyzer 

Parallel analyzer, as the name suggests is stage in which the data from different detectors 

are all analyzed in parallel (at the same time). Main advantage of this technique is that it 

does not use any complicated pattern recognition algorithms. 

Parallel analyzer simply iterates through the video stream (all the labels) and groups the 

consecutive repetitions of labels of interest other than normal frames (label N). Figure 

4.25 provides the visuals for the cut and dissolve detection streams which are used in 

parallel analyzer of cut detector. 

 

Fig. 4.25. Visual for detection streams of cut (with partition size of four) 
and dissolve detectors. 
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In the rest of this section, the parallel analyzer for cut, fade and dissolve detectors are 

discussed. 

Cuts 

The parallel analyzer for cuts receives three different detection input streams which were 

generated in cut detector (see figure 4.20). These streams compensate for the lack of any 

finalized detection results. Three detection streams inputs are as follow: 

1. GTDD output stream 

2. C4 (cut with partition size of four) output stream 

3. C8 (cut with partition size of eight) output stream 

 

Fig. 4.26. Visual for detection streams of cut (with 
partition size of four) and dissolve detectors. 
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The number of cuts and dissolves in figure 4.26 and all the similar future figures are not 

the exact numbers used in the algorithm. Different sizes are used to visualize the process 

and aimed to help the reader to gain a better understanding of the process.  

In figure 4.26, the first two streams (dissolve and C4) are used to group the frames related 

to each potential transition (region of interest). C8 stream is used as another measure 

while deciding the type of transitions for each group. Next paragraph explains why each 

of these streams is used. 

Dissolve detection stream (GTDD output stream) provides another basis for comparison 

in parallel analyzer. It helps to distinguish between abrupt and gradual transitions. Cut 

(of size eight) provides another detection stream which was generated by using twice as 

much context as cuts of size four (leading to a similar output stream, another basis for 

comparison in parallel analyzer). 

If there is a gap (frames labeled N) between two groups and it is smaller than the 

permitted limit (three frames) then that gap is ignored and the groups are merged into one 

group). 

Table 4.1 contains the if-statements used to distinguish between various possible groups 

(Cs), (Ds), (Vs), (Xs) and (Ns). Ds identify the regions of the video which include 

transitions, effects and motions and they are ignored by labeling them as N. Xs and Vs 

represents the uncertainty groups discussed later on. Ns present the regions of low 

activity in the video stream (the regions which formed a group due to motion or effects). 
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Names of most variables used in Table 4.1. are self-explanatory except a few which are 

explained here: 

• cutWinSize is the size of the partition (it is set to four during the first iteration and 

to eight during the second iteration). 

• lastIndexInsideIf is the index of the last frame in the current group as the 

algorithm iterates through the groups. 

 

Table 4.1. Presents the if-statements used in parallel analyzer to label the different groups. 
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The labeling section (table 4.1) is followed by boundary determination for both detected 

transitions (cuts) and other groups (X, V, D and N). This process simply takes place 

through adjusting the group boundaries slightly after brief analysis of fit values for the 

frames within the group. 

Fades 

Fades benefit from a simpler process flow since they use finalized results of cuts. The 

parallel analyzer of fade takes two detection streams as inputs (see figure). but the 

algorithm is divided into two sections. These sections are used to label groups as fade 

outs and fade ins. Table 4.2 represents the conditional statements used to identify and 

label groups as fade ins and table 4.3 present the conditional statements used to label 

groups as fade outs. 

 

Table 4.2. The conditional statements used for identification and 
labeling of fade ins. 
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Table 4.3. The conditional statements used for identification and 
labeling of fade outs. 

 

The groups which were identified and labeled as fade are compared against cuts finalized 

detection results. If a fade is in a close proximity of a previously detected cut then it is 

ignored (marked as N). 

 

Dissolves 

Dissolves use the cuts finalized detection results and unlike fades, there is only one type 

of dissolve. Hence dissolve algorithm is simpler than fade algorithm. Table 4.4 provides 

the if-statements used for identification and labeling of groups as dissolve.  

 

Table 4.4. Presents the conditional statements used in 
identification and labeling of dissolves. 
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After the potential groups are identified and labeled as dissolve, they compared against 

the previously finalized detection results of cuts and fades. If a detected fade is in close 

proximity of a previously detected cut or fade then it is ignored (marked as N). 

Uncertainty Groups 

The parallel analyzer in cut detector labels the groups that it is uncertain about as V and 

X. The V groups share more similarities with cuts whereas the X groups share more 

similarities with dissolves (although an X or V group can be a cut, a dissolve or neither of 

the two). As a result the uncertainty group analyzer is also called X/V analyzer. 

Using uncertainty groups will allow us to distinguish among the groups which are most 

likely true transitions and potential false positives. Hence in the future steps the 

algorithms do not need to analyze the detections (groups) which we are certain about. 

Fade and dissolve detectors do not require uncertainty groups since they have access to 

finalized results of the previously executed detectors. In these cases, if the new detection 

is near a previously detected transition (fade or cut) then it will be ignored. 

Variations of Uncertainty Groups 

In parallel analyzer the groups which do not follow the conditions that define a cut group, 

are labeled as X or V (uncertain). Figure 4.27 presents different possible causes for 

uncertainty groups. They are explained further below: 

A. The group size was shrunk. This problem occurs due to lack of sufficient 

amount of information in video representation stage. For example, the cuts which 
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are located between two frames with similar intensities and color distributions 

(see figure 4.28) will not clearly be presented by using the twenty seven moments 

and therefore the algorithm confuses them with object motions, hence Frame 

Scoring System described previously will not work as desired when dealing with 

the shrunk groups. 

B. The group size was enlarged. This problem can occur due to two reasons: 

1) Close proximity to other gradual transitions or Effects. If some effects 

such as transitions of overlays, change in brightness, or transitions in 

frames occur near a cut then the cut and the effect are merged. 

2) Two or more cut groups were merged. This situation occurs due to the 

following: 

a) The cut groups were too close to one another hence they were 

merged. 

b) The cut groups were separated but the group was merged due to 

GTDD output stream.  

 

 

Fig. 4.27. Example of a cut between two frames with similar intensities and color 
distributions. 
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Fig. 4.28. Presents different factors behind identification of 
a group as an uncertainty group. 
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 Classification Solution for Uncertainty Groups 

The goal of X/V analyzer is to deicide if an uncertainty group should be labeled as a cut 

(C) or as a normal group (N). It is structured in similar fashion as the parallel analyzer 

algorithm. The X/V analyzer and parallel analyzer can be merged into one step however 

doing so will add to the complexity of the algorithm and hence was avoided in this 

research. As the first step, each of the uncertainty groups is divided into subgroups by 

using the C4 frames as the only grouping criteria (see figure 4.29). 

As can be seen in figure 4.29 two techniques are used for grouping. The first uses only 

the labels of C4 whereas the second one uses the fit values of C4 output stream. Fit 

values are used to distinguish between C4 labels of one cut compared to the other in cases 

where the labels are merged and are not distinguishable from one another at the first sight. 

Keep in mind that the size of uncertainty groups does not play any rule in how these 

groups are divided. Similar to larger groups, the smaller ones are either separated into 

smaller groups or preserve their original length. 

After dividing each of the possible uncertainty groups into subgroups, a new label has to 

be assigned to each of these subgroups. The rest of this section focuses on the labeling 

task for each of the variations of uncertainty groups. 
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Fig. 4.29. Illustrates the regrouping techniques used in X/V analyzer. 
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Smaller Groups (A) 

The goal behind analyzing smaller groups is to distinguish the groups which were shrunk 

due to existence of motion or false positive effects from the real cuts such as the one in 

figure 4.27. X/V analyzer uses the C8 output stream for this task. A group can be labeled 

as a cut if there is sufficient number of C8 frames within that group.  

Larger Groups (B) 

The larger groups will be divided into smaller subgroups through the process illustrated 

in figure 4.29. If the problem is due to the close proximity of a cut to a gradual transition 

(B1) then it is directed through use of GTDD output stream. 

If the problem is due to the close proximity to other cuts (B2a) then it is easily solved 

through dividing the large groups by using the dissolve fit values (see figure 4.29). 

Otherwise if it is caused due to the complications with GTDD output stream (B2b), it is 

solved by using only cuts of length four as the grouping criteria. Each of these subgroups 

is discussed here. 

Smaller subgroups are handled using the same algorithm as smaller groups (see previous 

section). Similar to parallel analyzer, the X/V analyzer labels the perfect or near perfect 

size subgroups as cuts whereas the larger subgroups are distinguished from effects and 

transitions such as short gradual transitions through analysis of cuts (C4 and C8), and 

dissolve detection stream (also see assumptions section earlier in this chapter). 

If none of the conditions presented in the previous sections hold true then the subgroups 

and groups are labeled as M or L which are just another notation for normal groups. In 
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false positive detector label K serves the same purpose. Different labels are used to 

identify which step labeled the frame as normal. 

False Positive Detector 

The general causes of false positives were discussed in chapter 2. On the other hand, the 

more specific causes of false positives and the suggested solutions are topics of this 

section. 

Cut 

The False Positive Detector of cut detector performs two tasks: 

1. Removes the cut label of potential false positives without raising the false 

negative count above a permitted limit. 

2. Introduces a threshold which controls the tradeoff between FPs and FNs. 

These two steps are described in the rest of this section. 

FP Detection 

The main task of false positive detector, as the name implies, is to detect and eliminate 

false positives. In this detector, only the groups previously labeled as cuts are considered.  

After analysis the groups which have high probability of being false positive are re-

labeled as Ks (just another notation for normal groups). 

During the analysis stage of false positive detector, for each cut group, the average of the 

twenty seven moments is calculated for each frame. Then the frames are sorted with 

respect to the average values and the following value is calculated: 
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stotherLarge
1]-fIndextDiff[tDif=Val  (4.9) 

where  

• tDiff[tDiffIndex-1] represents the frame with the largest average value. 

• otherLargest is the average of the average values of the second and third frames 

with the largest average values. 

As described in the next, section this value is used along with a threshold to eliminate 

most of the false positives. 

Threshold as a Controller 

A threshold is applied to the values generated by equation 4.9 to provide a controller for 

adjusting the tradeoff between FPs and FNs. This directly effects the recalls and 

precisions values. Introduction of this threshold does not in any ways undermine the 

importance of not utilizing a threshold in the previous stages. The results of different 

thresholds are presented in the next chapter. 

Fades and Dissolves 

The gradual transition adaptive examples for when expecting a region of low activity, has 

a slightly larger T partition than the one used in cut adaptive examples for when 

expecting a region of low activity (see figures 4.13 and 4.14). This compensates for the 

large size of gradual transitions window size (since more context results in a larger Fv 

value). 
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Due to the simplicity of fade and dissolve detectors, many fades or cuts can be detected 

as dissolves, or cuts can be detected as fades mistakenly. The goal is to avoid these false 

positives without adding to the complexity of the algorithm. 

Therefore, instead of introducing new ESCDs or gradual transitions detectors (GTDs) 

similar to those in cut detector (figure 4.20), the finalized detection results are compared 

against the previously detected transitions (cuts or fades). If the new detection is within a 

specific predefined range from the previously detected transition then the new detection 

is relabeled as normal (i.e. it is ignored). 

This step is performed in parallel analyzer. Additional false positive detectors (such as 

the one in cut detector) can be easily added for each of the primary gradual transition 

detectors due to the multilevel property of our algorithm. 

Boundaries Determination 

If a group with perfect or near perfect size is labeled as a cut then the transition is most 

likely located in the center of that group (i.e. the two frames in the center of the group are 

used as boundaries of the detected cut). 

In case of larger and smaller cut groups, same techniques is utilized which obviously will 

account for a small amount of error. To decrease this amount, the fit values are used to 

adjust the boundaries of detected transitions. 

As for gradual transitions, transition boundaries are set to the boundaries of the 

representative groups. In some cases adjustments will help to locate the boundaries more 

precisely. 
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4.7. Conclusion 

The implementation and design details of the second algorithm, direct comparison based 

on predefined examples, were discussed in this chapter. Also discussed were the novel 

techniques used to meet the initial goals of this research. Then the next chapter includes 

the experimental results for different test cases and scenarios followed by the discussion 

and analysis of the results. 
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5. Experiments, Results and Discussions 

This chapter describes the evaluation techniques used in our research and the experiments 

we conducted to compare our two temporal segmentation algorithms. 

5.1. Introduction 

Recall and precision are the common techniques used to evaluate the results in the field 

of temporal segmentation. Thus, these techniques are used in our evaluation programs, 

providing a basis for comparison against other research works. 

Direct comparison based on predefined examples and direct comparison based on 

adaptive examples are the two techniques discussed in this chapter. These two algorithms 

share similar data preparation and evaluation techniques; hence only results and results 

discussions sections distinguish between the two. 

5.2. Input Data 

The algorithms were tested on one hour of video sequence obtained from a typical twenty 

four hours broadcast of CBS channel. The one hour is picked in the way to assure it 

contains video from the morning, afternoon, evening and night shows (different mix of 

video types). These video segments are picked in random and the commercials are not 

being ignored (commercials introduce high level activities which throws off many 

existing algorithms – see figure 5.1). Figure 5.1 illustrates 43 frames (from 726 to 769) 
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during which there exists three cuts (frames 726, 745, and 762) and four effects which 

resemble cuts (763,766, 767, and 768). 

 

Fig. 5.1. Illustrates 43 frames (from 726 to 769) during which there exists three cuts (frames 726, 745, 
and 762) and four effects which resemble cuts (763,766, 767, and 768). 

 

The video is captured by using digitizer hardware which stores the frames in JPEG 

formats of 160 X 120 resolutions as demonstrated in figure 5.1. The frames for each 

minute are grouped together and then equations 3.1 to 3.9 are used to extract the 

statistical information from each frame. These data are used to represent both the input 

video stream as well as examples. A detailed discussion on data preparation is presented 

to the reader in Representation section of chapter 3. 
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5.3. Truth Data and Truth Grabber Program 

The input data was viewed and manually segmented to locate the true positives of all cuts, 

fades, dissolves, and other transitions. This information is stored in truth files. 

The truth grabber program is used to prepare the inputs for the video segmentation based 

on predefined examples algorithm. It requires folders containing the video moments and 

optionally video files, as well as the truths files. Truth files contain the labels and exact 

boundaries for the actual transitions. The TruthGrabber program reads the truth file and 

depending on the truth data and user’s preferences it copies the statistical information 

into a main moments file (examples set) and copies the video files into specified folders. 

5.4. Evaluation Techniques 

Before discussing any evaluation methodologies, some of the common terminologies are 

described below: 

• True Positives (TP or x
correctN ) – are the items (transitions in this case) which 

exist in both truth data as well as the finalized detection results (i.e. the transitions 

which were detected correctly). 

• False Negatives (FN or x
missedN ) – are the items which exist in truth data but not in 

the finalized detection results (i.e. the transitions which are not detected). 

• False Positives (FP or x
falseN ) – are the items which do not exist in the truth data 

but are introduced in the finalized detection results (i.e. the false alarms). 
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• True Negatives (TN) – are the items which do not exist in the truth data and also 

are absent in the finalized detection results (i.e. all the frames that are not within 

any transition boundaries). 

When deciding if a TP occurs, we look at the beginning and the ending boundaries. If 

they are off by less than a specific number of frames (depending on the size and type of 

the transition in question) then a match is declared (the detection is labeled as a true 

positive). 

In reporting the experimental results, the common recall and precision measures of 

performance are exploited. These two measures as well as the utility are discussed in the 

future sections and used to evaluate system performance. 

To calculate the measures of performance the results of the automated detection 

(detection finalized results) were compared to those of manual segmentation (truth data) 

in order to find matching pairs. As mentioned before, the two boundaries as well as the 

labels for the truth data and automated detection results should match exactly in order to 

have a perfect detection. However in our evaluation program if the detected boundaries 

are off by a specific number frames (depending on length of transition) the detection 

results will still be labeled as true positive (i.e. as long as the detected transition overlaps 

with the manual detection of the same transition or is very close to the manual transition 

then it is labeled as a true positive). 

In the recall and precision definition, the superscript x represent the type of transition in 

question. For example if cuts are being analyzed x takes the value of ‘cut’. The subscript 
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m stands for manually detected transitions (truth data) whereas subscript a stands for 

automatically detected transitions. 

Below is the mathematical description of these measures (the recall and precision 

definitions are based on [84] and formulas based on [73]): 

• Recall – is the proportion of shot boundaries correctly identified by the system to 

the total number of shot boundaries presented. 
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• Precision – is the proportion of correct shot boundaries identified by the system 

to the total number of shot boundaries identified by the system. 
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where 

o x
correctN  (TP) has the same definition as in equation 5.1 and 
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• Utility – For comparison purposes many algorithms aggregate the recall and 

precision values. In this research, utility serves the same purpose. Utility is often 

referred to as f-measure in the information retrieval literature and it allows the 

researchers to objectively determine what set of parameters lead to the best 

performance possible. Equation 5.3 is how this aggregated value is calculated. 

ecisioncallUtility Pr)1(Re ⋅−+⋅= αα  (5.3) 

In equation 5.3 α  is used to control the degree of influence of either of recall or 

precisions. In our case the value of ½ is chosen for alpha which means the recall 

and precisions are considered equally. This in return, results in a more specific 

variation of equation 5.3 which is also known the mean (average) equation 

(equation 5.4). 

2
)Pr(Re ecisioncallUtility +=  

(5.4) 

The recall and precision are both equal to one in an ideal case (or 100% if expressed in 

percentage). A recall of one indicates that all the existing shot boundaries were identified 

correctly (both boundaries and the label were identified correctly). A Precision of one 

indicates that no false boundaries or labels (false alarms) will exist in the final results. If 

both are equal to one then the finalized detection results should be almost exactly the 

same as the truth data. 
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5.4.1. Performance Evaluation Program 

Performance evaluation program takes the finalized detection and truth data as input and 

after analysis it outputs the number of true positives, false positives and false negatives as 

well as recall, precision, and utility values. These data are used later on to perform a 

comparison on different methods used. 

In temporal segmentation the definitions for true positive, true negative, false positive 

and false negative which were provided earlier in this chapter need to be expanded upon. 

The size of abrupt transitions the size is two whereas in gradual transitions exist in 

different sizes. Hence, the false positive category can be divided into the following 

subcategories: 

• False Positives 

o Type A – are those items which are labeled as false positive because they 

are in correct range but have the wrong type. 

o Type B – are those items which are labeled as false positive because they 

did not exist in the truth data. 

o Type C – are those items which are labeled as false positive because they 

were detected already or a better match was found later on. 

The performance evaluation program is very flexible. This program requires minimal 

modifications to perform the following tasks: 

• It allows for one specific label to be ignored completely in either truth data or 

finalized detection data. 
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o For example if the finalized detection results contain all primary 

transitions (namely cuts, dissolves and fades) but the truth data only was 

gathered for cuts then dissolves and fades can be easily ignored by adding 

letters d, f and g into the to ToBeIgnore list (g represents fade in whereas f 

represents fade out). 

• It also allows for another type of ignore list, or false positive ignore list. If a label 

from truth data is added to this list then if a false positive occurs in close 

proximity from the transition/effect and if its label was added to this list then that 

false positive will not be counted as a false positive. 

o For example if an especial effect such as the one in figure 4.3 (frame 

numbers 1644 to 1652) occurs too often within the test data and every 

time it is detected as fade then it can be ignored. 

• It allows one type to be counted as another type. 

o  For example depending on the specifications one might need to consider 

both fade in and fade out as fade. 

• It allows Type C false positives to be ignored for all labels or for a specific label. 

5.5. Results 

In this section, the experimentation results from both algorithms, Direct Comparison 

based on Predefined Examples and Direct Comparison based on Adapted Examples are 

presented to the reader. As we will show our technique based on predefined examples, 

was not as successful as our technique based on adaptive examples. 
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5.5.1. Direct Comparison based on Predefined Examples 

In our experiment, we used 30 and 45 minutes of test data to calculate recall, precision 

and utility for all possible combinations of program options. First we considered raw 

moments versus derivatives. The next criterion of interest was amount of context taken 

into considerations (number of extra frames that were added to each example). Two cases 

were considered: having no frames and having five frames on each side. In this algorithm 

the extra frames are necessary since the examples are predefined and therefore it is 

necessary to have a few extra frames on each side providing information about the 

surroundings of each example. Finally we consider the effects of data normalization. 

Normalization is not needed for derivatives since derivatives are the difference values 

and hence they are near zero almost all the time except were there is a big change from 

one frame to another. 

Figure 5.3 present the experimentation results for 30 minutes of data. In this 

experimentation only the raw moments and no frame on each side is used. In the thirty 

minutes there were 494 transitions. In case of with normalization 247 transitions were 

detected correctly (true positives), 247 transitions were false negatives and 337 detections 

were false positives. On the other hand, in without normalization there were 215 true 

positives, 279 false negatives and 368 false positives. 

As the next step, 45 minutes of data was used in a comprehensive experimentation, the 

results of which are presented to the reader in figure 5.2. In this case, the best results were 

obtained when raw moments are used with 5 side frames and with normalization. The use 

of derivative did not yield desirable results. 
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Fig. 5.2. Presents the experimentation results for 45 minutes of data. 
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Fig. 5.3. Presents the experimentation results for 30 minutes of data. 

 

5.5.2. Direct Comparison based on Adaptive Examples 

In the direct comparison based on adaptive examples algorithm, each transition is 

calculated separately and then the results from all detectors are combined in a final stage 

(see figure 4.19) before being evaluated. The results from each of the detectors are 

evaluated and presented to the reader at this point. 

 Match 
(True Positives) 

False 
Alarm 
(False Positives) 

Missed 
(False Negative) Recall Precision Utility 

Cuts 578 20 34 94.44% 96.66% 95.55% 

Fades 41 3 0 100.00% 93.18% 96.59% 
Dissolves 57 40 3 95.00% 58.76% 76.88% 
Total 676 63 37 94.81% 91.47% 93.14% 

Table 5.1. Presents the final results of the second algorithm. 
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The table 5.1 represents the final results over an hour of data. Our results for both cuts 

and fades are excellent (over 95% utility), but our dissolve detection algorithm was not as 

precise and therefore the utility fell to 76%. The detailed experimentation results for each 

of the three primary transitions are discussed bellow. 

Cuts 

Our cut detection algorithm has only one parameter, a threshold that is used in the false 

positive detector and it acts as a controller for the trade off between false positives and 

false negatives. Table 5.2 contains all the TP, FP, FN, recall, precision and utility values. 

Figure 5.5 is the graph of utility values as a function of thresholds whereas figure 5.4 

represents the ROC chart which is used to visualize the recall and precision values for 

each of the different possible thresholds. The best results are obtained through selection 

of a threshold between 4.6 and 4.8. Threshold 4.6 was used to obtain the results presented 

in Table 5.1. 
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Table 5.2. Presents number of true positives, false negatives, false positives, as 
well as recall, precision and utility for different thresholds used in 
false positive detector of cut detector. 
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Fig. 5.4. Presents the recall and precision values for different thresholds used in false positive 
detector of cut detector as well as the ROC curve for the second algorithm. 

 

Fig. 5.5. Presents the utility values for different thresholds used in false positive detector of cut 
detector as well as the utility curve for the second algorithm. 
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Fades 

The experimentations results for fades are presented in Table 5.1. Similar to Cuts it is 

possible to introduce a threshold for cuts to control the trade off between recalls and 

precisions without affecting the utility if possible, but we did not explore this option. 

Dissolves 

The experimentations results for dissolves are presented in table 5.1. Similar to Cuts it is 

possible to introduce a threshold for dissolve to control the trade off between recalls and 

precisions without affecting the utility if possible, but we did not explore this option. 

5.6. Results Discussions 

This section contains the discussion and analysis of the results presented in the preceding 

section for both algorithms. 

5.6.1. Direct Comparison based on Predefined Examples 

The derivatives were expected to result in a more desirable outcome than raw moments. 

However that was not the case in our experiment. The outcomes were due to the fact that 

this algorithm was designed for raw moments and hence did not perform as well with 

derivatives. However further investigation is necessary. 

Normalization and amount of context used were the other criteria in our experimentation. 

As the results suggest, normalizing the data considerably improves the performance 

whereas using more context slightly raises the utility value. 

The main issue is the number of examples used. If the number of examples is low 

(especially if raw moments are used) then it is impossible to find a close match for all the 



  208

existing transitions. Hence a large number of examples are required to eliminate false 

negatives. 

However as results demonstrate, having more examples does not solve the problem 

completely. This fact is due to increase in possibility of detecting a transition when there 

is actually no transition (i.e. the number FP will increase). Hence the utility score will 

remain about the same. To avoid this problem, a lot of examples have to be used (i.e. 

example set should contain thousands or even more examples). 

Again having a lot of examples will also raise the execution time above an unacceptable 

limit, making it impossible for the algorithm to run in real time. Since the current 

algorithm takes a long time to execute, having a lot more examples is unacceptable. 

Therefore a completely different algorithm based on similar ideas is proposed. 

5.6.2. Direct Comparison based on Adaptive Examples 

As mentioned before the algorithm is parameter free because the values such as window 

size (such as cut window size) are either fixed for all types of videos or different possible 

sizes are used in the experimentation (such as dissolve window size). 

We have not used any threshold during the detection stage and rather introduced a single 

threshold on our false positive detection. This makes it possible to reach very good or 

decent (in case of dissolve) precision values while maintaining exceptionally high recall 

values. Review of other programs results, reveals that our algorithm’s performance has 

superiority over many other algorithms discussed in chapter 2 (However, this fact cannot 

be proven conclusively since different data sets were used for evaluation purposes. 
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After careful analysis of results presented in the Results section, one can divide the FPs 

and FNs into two groups:  the false items which are preventable by simple adjustments 

(such as changing FP/FN tradeoff threshold) and the ones which require major changes in 

the algorithm (such as introduction of new data representation or completely new 

techniques which will add to the number of inputs used in parallel analyzers). Figures 5.6 

to 5.11 demonstrate some of these cases. Most FPs in the finalized dissolve detection 

results were due to the fact that they were too close to the frames containing camera 

motion, high level of object motion, and high level of zoom. 

 

Fig. 5.6. Illustrates a scenario where the cut is between two frames with similar color intensities and 
distribution. 
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Fig. 5.7. Illustrates a scenario in which a person is closing the blinds, to be 
detected as a fade. 

 

Fig. 5.8. Illustrates a close to the camera object motion that was 
detected as a fade. 
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Fig. 5.9. Illustrates a graphical transition that was mistakenly labeled as dissolve. 
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Fig. 5.10. Illustrates a camera motion with zoom activity that was mistakenly labeled as dissolve. 
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Fig. 5.11. Illustrates a scenario which was missed by fade detector. It is caused due to the very 
lengthy and uncommon fade and the fact that the shots are in black and white. 
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Figures 5.12 presents example of a dissolve transition which was detected successfully 

whereas figure 5.13 present such example for a fade transition. 

 

Fig. 5.12. Illustrates a dissolve which was successfully detected. 
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Fig. 5.13. Illustrates a fade which was successfully detected. 

 
Figures 5.14 and 5.15 present examples of false positives which were detected and 

eliminated. They were eliminated in the parallel analyzer by comparing the inner 

detector detection streams with the previously detected transitions. 
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Fig. 5.14. Illustrates a scenario which was detected as a cut and also 
mistakenly as a dissolve but was corrected by the 
algorithm. 
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Fig. 5.15. Illustrates a scenario of high activity in which existence of too many cuts, change in 
brightness, motion and effects resulted in a FP (around frame 1715) in final dissolve 
detection results which was later fixed since it was too close to detected cuts. 

 

In utility graph (figure 5.5), the thresholds values between 1 and 2 will not affect the 

number of FPs and FNs in any ways. This is one way to detect FPs and FNs which can 

only be solved through introduction of new representation and/or a new technique rather 

through simple techniques. 

As mentioned before cuts and normal groups used a fixed window size while different 

sizes where used for gradual transitions. The reason is that the cuts do not have any actual 
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length since they are an abrupt change between two frames. Therefore at any given time 

(frame number) the upcoming cut will be detected by the larger windows first. The cut 

will also exit the larger sliding windows last (see figure 5.16). Hence, having different 

window sizes for cuts become irrelevant. 

 

Fig. 5.16. Illustrates usage of different window sizes for cuts. 

 

Another downside to using various lengths for cuts is that it causes the cuts of close 

proximity to merge and therefore be missed. It will also slow down the algorithm slightly. 

Therefore only two sizes are used in this algorithm and they are analyzed in parallel 

(window with partition size of four and eight – refer to previous section for more details). 

Another main advantage of the new algorithm is its low execution time which makes it 

possible to run in real time. Table 5.3 presents the execution times needed at each step for 

preparing and analyzing one minute of data. 

As can be seen in execution time table this algorithm requires less than a quarter of the 

permissible execution time for a real time method. This will allow for future expansions 

which is a big advantage compare to other techniques. 
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 Execution Time 
Statistical Data Preparation 1.0 seconds 
Cuts 2.1 seconds 
Fades 10.8 seconds 
Dissolves 0.3 seconds 
Total 14.2 seconds 

Table 5.3. Presents the time performance of the second algorithm. 

 

5.7. Conclusion 

This chapter provided the details on performance measurement and evaluation 

methodologies, some of the terminologies related to temporal segmentation research, the 

results of our experimentations and finally the discussion and analysis of the results. 

Next chapter presents a brief overview of major topics discussed in this document, 

suggestions and explanations for future works, the glossary of commonly used terms and 

finally the bibliography information. 
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6. Conclusions 

6.1. Summary 

This document presented a comprehensive survey of various works in the field of 

temporal segmentation of video (chapter 2). It also discussed the design and 

implementation details for two algorithms, one based on predefined examples (chapter 3) 

and the second based on adaptive examples (chapter 4). The latter algorithm was the 

centerpiece of this research and introduced many novel techniques and ideas such as 

adaptive examples, no threshold, parallel analysis, extremely sensitive change detector, 

uncertainty groups, layered architecture, and frame scoring system with overlapping 

window. The algorithms of chapter 3 and 4 were thoroughly tested and the 

experimentation results and the discussions of the results were presented in chapter 5. 

This chapter contains brief conclusion for Temporal Segmentation, and Future Work 

section in which future related research areas are emphasized and also future possible 

improvements to both algorithms are suggested. This section is followed by Glossary 

where some of the definitions unique to this document as well as some of the more 

commonly used definitions in the area of video segmentation are defined in one place for 

easy access. 
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6.2. Temporal Segmentation 

Temporal segmentation is the basis for many other video related research topics. After a 

comprehensive literature review and implementation of some simple shot detection 

methods, the need for a new technique became more obvious. In this document many 

advanced and novel techniques were presented all of which are described in chapter 3 and 

4. Our algorithms were tested on one hour of video obtained from a typical twenty four 

hours broadcast of CBS channel. It used the three primary color moments mean, standard 

deviation and skew to represent frames within a video. Direct Comparison based on 

Adaptive Examples method out performed many other algorithms for all three primary 

transitions (cuts, fades, and dissolves).  

6.3. Future Work 

This section provides ideas for expansion and improvements of the algorithms discussed 

in this document as well as suggestions for future approaches. 

6.3.1. Enhancements and Improvements 

This section provides suggestions for future enhancements and improvements of the two 

algorithms discussed in this document. 

Direct Comparison based on Predefined Examples 

Making future enhancements and improvements to this algorithm is difficult. One critical 

issue is the trade off between number of examples and execution time. Having too many 

examples leads to many unnecessary false positives whereas too few examples lead to 

many unnecessary false negatives. It is also difficult to modify the algorithm and still 

guarantee simplicity and generality. 
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Use of supplementary video representation techniques, is the main suggested 

improvement. This topic and other suggestions are discussed further in Other Suggestions 

section. 

Direct Comparison based on Adaptive Examples 

This section contains only the suggested ideas and improvements for the second 

algorithm, direct comparison based on adaptive examples. 

The fade detector can be improved on by finding the actual monochrome frames rather 

than predefining them. In other words, the monochrome frames detector has to be 

improved and tested thoroughly to ensure the detection of all monochrome frames. Use of 

the actual monochrome will result in more reliable fade adaptive examples, which leads 

to higher detection quality. 

The detection quality can also be improved by finding the exact location of the transitions. 

Currently the algorithm does not find the transitions boundaries as precisely as possible. 

For different situations, specific conditions have to be met to detect these boundaries as 

accurate as possible. 

The time performance of the second algorithm is very promising. Hence, it must be 

expanded upon so it allows analysis of real time input stream. As it is, the algorithm by 

itself only supports the analysis of one minute of data during each run. 

The last suggestion for the second algorithm is to provide a solution for the unusually 

long (longer than 40 frames) fades and dissolves. This algorithm also needs to precisely 

detect the transition boundaries. 
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Other Suggestions 

This section contains the suggested ideas and improvements which can be applied to both 

algorithms. 

One way to improve the detection quality is through introduction of new moments. In 

other words, more features have to be extracted from the video and provided as inputs to 

the algorithms. Two sets of numerical data are recommended: edge detection data and 

motion analysis results. Both of these techniques are reviewed in detail in chapter 2. 

Another option to consider is to combine different existing video representation 

techniques such as histogram, intensity and spatial differences [42]. 

Another useful resource, besides video image representation, is audio track. Audio track 

was not discussed in depth; however it deserves further considerations. 

Besides use of supplementary video representation techniques, higher detection quality 

can be achieved through further enhancements of false positive detector. These detectors 

can be enhanced via introduction of several specific algorithms for each of the various 

types of false positive causing effects. Some of the notable effects include overlays 

transitions, fast camera or object motion, close to camera object motion and change in 

brightness. 

Number of false positives can also be reduced through introduction of other transitions 

and effects detectors. For example many graphical effects and transitions are mistakenly 

labeled as cuts, fades and dissolves. This problem can be prevented by introduction of a 

graphical transitions detector. 
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6.3.2 Next Generation Algorithm 

One of the main goals of this thesis was to implement a general algorithm which detects 

all three types of transitions at the same time, an algorithm that can be expanded to other 

transitions and effects without the need for too many modifications. The first algorithm 

was designed to meet this goal, however due to various problems (mainly the tradeoff 

between number of predefined examples and execution time), it had to be discarded. 

Even though the second algorithm less specific than those based on mathematical models, 

it still requires each transition or effect in question to be analyzed separately. Hence, this 

section proposes a new method based on the second algorithm which meets the generality 

property. 

As suggested earlier the new algorithm has to consider all types transitions and effects at 

the same time. In other words, similar to the algorithm based on adaptive examples, many 

detectors have to be used to generate detection streams for each individual transition or 

effect in question. 

The distinction from the previous method is in fit values. The fit values have to be 

uniform, meaning they should be in the same range and unlike previous approach the 

same algorithm should be used for generating normal groups for gradual and abrupt 

transitions. 

Another issue arises while comparing fit values of cuts and shorter gradual transitions 

with fit values of longer gradual transitions and effects. Due to the length and object 
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motions, shorter transitions will have more desirable fit values, causing bias in the 

algorithm and therefore result in a lower performance level than expected. 

After fit values uniformity is achieved, a clustering technique, similar to those used in [42] 

and [46] should be applied to create different groups of transitions and identify the types 

of any future transitions. 

6.4. Contact Information 

Any questions, suggestions, and/or comments can be sent to the author via the following 

email address: 

rbyeganeh@gmail.com  

Any type of feedback is greatly appreciated and welcomed. 
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Appendix A 

Equations Derivations 

This section contains the derivation of the equations used in dissolve and fade detectors 

to generate adaptive examples. Consider equation bellow: 

]0...1[)1( ,,, ∈⋅−+⋅= ααα ititit BAI  

where I is the generated ith moment for adaptive examples for frame number t. A and B 

are ith moment of frame number f of A and B partitions of the sliding window when 

detecting dissolves. In case of fades, A and B represent one of A or B partitions as well as 

the synthetic monochrome shot. α  is the weight controlling the degree of influence for 

each of the two shots. )1( α−  is used so as the influence of the first shot decreases the 

influence of the second shot will increase. In the derivation bellow the following 

subscripts are used: 

• i represents the moment index (0 to 27). 

• t represents the frame number (time) 

• x and y represent the pixel location within the current image (frame) 

• R indicates that the following equations are for primary color channel red. 
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The derivation for mean of the new intensities (of the adaptive example) is demonstrated 

bellow: 
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The derivation for standard deviation of the new intensities (of the adaptive example) is 

demonstrated bellow: 
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Similar equations are used for blue and green primary color channels. As can be seen in 

the derivation above the last term in the standard deviation equation is ignored. This is 

because in a long run, the negative and positive values of that term add up to zero. 
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Appendix B 

Glossary 

-A- 

Adaptive Examples are examples which 

are produced using the localized data; 

localized meaning the data in the close 

proximity of data in question. 

Adaptive Threshold refers to those 

thresholds which are defined through use 

of statistics and features extracted from 

the input stream prior to execution of the 

main algorithm. 

Abrupt Transition are defined as a 

sudden change in the numerical 

representation of video stream; They are 

due to the discrete linkage of two 

adjacent shots. 

-B- 

-C- 

Classification refers to the process 

during which the potential candidates for 

a specific task, are labeled (assigned to 

different groups). 

Color Moments 

<See: Raw Color Moments> 

 

Complete Fade refers to a fade 

consisted of a fade in followed by a fade 

out with variable number of 

monochrome frames in the middle. 

Cut 

<See:  abrupt transition>  
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-D- 

Detection is one of the major steps in 

most of the video boundary shot 

detection and it refers to the process of 

input data (video representation as well 

as measure of difference data) analysis 

leading to regions of interest (potential 

candidates for video shot boundaries) 

discovery. 

Dissolve is a common variation of 

gradual transitions during which the 

transition from one shot to the next takes 

place by decreasing the effect of the first 

while increasing the effect of the second 

shot frame by frame.  

-E- 

Edit Frames are the set of images 

generated during the editing process. 

Most common edit frames are transitions. 

<Also See: Transition> 

 

-F- 

Fade is a common variation of dissolve 

in which one of the two shots is only 

consisted of monochrome frames. 

<also see: Fade In,  

Fade Out and  

Complete Fade> 

 

Fade In is a fade transition from a usual 

shot to a monochrome shot. 

Fade Out is a fade transition from a 

monochrome shot to a usual shot. 

False Negative (FN) is the label used 

for missed transitions, the actual 

transitions which were not detected. 

False Positive (FP) is the label used for 

the false alarms, the detected transitions 
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that are due to false positive causing 

effects. 

Feature is a measurement or set of 

measurements made from an image 

sequence. A feature can be a function of 

individual images in the sequence or 

some subset of images from sequence. 

-G- 

Generality means the same algorithm 

can be used for different purposes. In 

case of temporal segmentation, an 

algorithm that can detect various types 

of transitions such cuts, fades and 

dissolves. 

Global Threshold refers to those 

thresholds which are defined for the 

input stream as a whole or for a 

relatively large portion of input stream. 

Gradual Transition is a frames 

sequence constructed by usage of the 

frames from first shot, second shot 

and/or supplementary frames or effects 

which provide a steady and smooth 

conversion of one shot to its adjacent 

shot. 

Graphical Transition is a type of 

transition which is compiled through the 

use of effects, computer graphics as well 

as other transitions in combination with 

the frames from the surrounding shots 

leading to a frame by frame 

transformation solution for converting 

one shot to the next.  

-H- 

-I- 

Image is a digitized representation of a 

picture. An image has a number of 

discrete pixel locations and is 

represented by I(x, y) = (r, g, b) where x  

∈  [1...M], y ∈  [1...N]. (x, y) represents 

the location of a pixel within and image, 
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M x N represents the size of the image 

and (r, g, b) represents the brightness 

values in the red, green and blue bands 

respectively. 

Image Sequence is a set of images that 

are indexed by time. An image sequence 

is represented by E(x, y, t) = (r, g, b) 

where t represent the temporal index. 

-J- 

-K- 

-L- 

Local Threshold refers to those 

thresholds which are defined for a 

relatively smaller segment of the input 

stream. 

<also See: Global Threshold 

                  Adaptive Threshold 

                   Random Threshold> 

 

 

-M- 

Measure of Difference refers to the 

degree of dissimilarity between two test 

subject (in this case two frames or two 

video sequences). 

Monochrome Frame is a frame 

consisted of pixels of the same 

intensities. 

Monochrome Shot is a monochrome 

frames sequence with the same pixel 

intensities through out the shot. 

-N- 

Normal Group refers to the set of 

frames which belong to shots rather than 

transitions, effects or motions under 

question. 

-O- 

-P- 
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Precision is the proportion of correct 

shot boundaries identified by the system 

to the total number of shot boundaries 

identified by the system. 

-Q- 

-R- 

Random Threshold refers to those 

thresholds defined without any prior 

knowledge of data set. 

Raw Color Moments refer to the 

statistical (numerical) features that are 

directly extracted from image sequence. 

Recall is the proportion of shot 

boundaries correctly identified by the 

system to the total number of shot 

boundaries presented. 

-S- 

Shot is an image sequence which 

represents continuous action and appears 

to be from a single operation of the 

camera. 

Sliding Window is a technique used to 

analyze a sequence of data. It is a 

window which traverses the sequence in 

a specific order. 

<also See: Window> 

 

Spatial Transition is a gradual pixel by 

pixel space-wise localized change in 

pixel intensities of one shot during 

which the pixels in the ending frames of 

that shot give their place to the 

corresponding pixels in the 

corresponding frames of the upcoming 

shot which will eventually lead to a 

frame within the second shot. Examples 

are wipes and some of the gradual 

transitions. 

<also See: Temporal Transition> 
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-T- 

Temporal Transition is a gradual frame 

by frame space-wise global change in 

pixel intensities of one shot which will 

eventually lead to a frame in the 

upcoming shot. Examples are cuts, fades 

and dissolves. 

<also See: Spatial Transition> 

 

Thresholding refers to the process of 

applying one or more threshold on a 

given data stream. 

Transition is a sequence of frames (in 

case of gradual transition) or a sudden 

change (in case of abrupt transitions) 

which transforms or changes one frame 

to the next. 

True Negative (TN) are the transitions 

which were not detected as one and 

actually are not a transition. Basically 

TN can be calculated by subtracting 

number of all transitions from sum of TP, 

FP and FN numbers. 

True Positive (TP) is the label used for 

the detected transitions which were also 

marked as such in the truth data. 

-U- 

Uncertainty Group while classifying 

different groups or transitions, some of 

them cannot be clearly identified as a 

specific group due to the lack of proper 

video representation. Henceforth they 

are given a certain label and addressed 

later on within the algorithm. 

Utility is the weighted sum of recall and 

precision and it is used to evaluate 

programs performance. 

-V- 

Video is an image sequence which is 

generated by computing several shots by 
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a process called editing, also referred to 

as the final cut. 

Video Representation is the process of 

extracting different features of the 

images (frames) within a video. 

-W- 

Window is a subset of data sequence in 

question (in this case it is a subset of 

frames from the video sequence). 

Wipe is a type of gradual transition 

during which the first shot will spatially 

(pixel by pixel) transform into the 

second shot. It is a specific type of 

spatial transition since there should exist 

a specific order in which pixels of a 

frame in the preceding shot give their 

place to the pixels in a frame of the 

upcoming shot. This order yields a 

pattern in the video sequence which is 

known as wipe. 

-X- 

-Y- 

-Z-
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