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Abstract 
 
Two-photon excitation (TPE) is a modern technology with applications in microscopy 

and spectroscopy that has gained a great amount of attention in recent years. This 

technique is the best suitable to analyze thick tissues and live animals as it works in 

the near-infrared (NIR) region. 

 

In this work we implement and evaluate a two-photon setup that allows the shifting of 

the working wavelength over a wide range using the soliton self-frequency shift 

(SSFS) effect. The shifter is implemented using a pulsed fiber laser and a photonic 

crystal fiber (PCF). We also include a numerical evaluation of the dependency of the 

fiber shift on the input average power and the fiber length. 

 

A semi-analytical model is proposed to investigate the characteristics of the SSFS in 

optical fibers. SSFS in two different types of fibers were evaluated and the results 

agree very well with those of numerical simulations. We show that when the 

frequency shift is small enough, it is inversely proportional to the fourth power of the 

initial soliton pulse width. However, with large frequency shift, this fourth power rule 

needs to be modified.  

  

We finally show the first two-photon images obtained at the University of Kansas. 
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Chapter 1: Introduction 
 

1.1 Motivation 
 
Every day one is bombarded with press releases covering new discoveries in areas 

such as DNA analysis and molecular analysis. Many of these new technological 

breakthroughs are achieved thanks to the use of powerful microscopy instruments that 

rely heavily on lasers [Sch01]. In this work we investigate innovative technologies 

that open the doors for the improvement of existing instruments as well as of our 

understanding of these phenomena. 

 

1.2 Two-photon microscopy and wavelength-
tunable pulsed laser sources 

 
 

When using florescence microscopy, the pump’s photons are absorbed by the target 

substance which then emits a photon in a longer wavelength. Different species are 

labeled with different fluorescent dyes that emit in different wavelengths. 

Recognizing a dye is equivalent to recognizing the targeted molecule.  

 

A particular technique that has growing interest in the scientific community is the 

two-photon laser scanning microscopy (TPLSM), where two photons from the pump 

are absorbed simultaneously to generate one signal photon. This techniques allows 

higher penetration lengths (you can see deeper into the object) and higher resolution 
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(you can see smaller objects) than conventional confocal microscopy instruments 

[Den90].  

 

A classical fluorescence microscopy instrument includes a solid state pulsed laser. 

These devices are not only expensive, but also difficult to manipulate and not suitable 

for field operation. In recent years, all-fiber pulsed laser based in fiber amplifiers have 

become commercially available. These lasers are compact, easy to operate and easy to 

translate.  Their output power has consistently increased during the past two years 

[Nel97].   

 

In a photonic crystal fiber (PCF), air-holes are located around the core [Bja03]. These 

air structures have several designs for different applications. A very common 

implementation is characterized by its very high nonlinear index. Thanks to this high 

non-linear parameter and due to the stimulated Raman scattering (SRS), as high-

power short pulses propagate along the fiber, an optical soliton is formed. The 

soliton’s central frequency is then shifted to lower values [Nor02]. 

 

Fundamental optical solitons are pulses that do not change their shape while 

propagating along an optical fiber [Agr03].  Raman solitons are formed from the 

breaking of a high power pulse and have the characteristic of shifting their frequency 

as a function of their pulse width [Bea87]. The soliton self-frequency shift (SSFS) 

was first discovered by Mitschke et al in 1986 [Mit86]. At the same time, Gordon 
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[Gor86] formulated how the frequency shift inversely depends on the fourth power of 

its width. However, this formulation does not take into account the fiber losses and 

the frequency dependency of the fiber parameters. As the pulse changes its central 

wavelength, the fiber group-delay dispersion, nonlinear parameter, effective area and 

attenuation can vary considerably, modifying the fourth power rule [Gor86]. 

 

In this work we introduce a simple semi-analytic method to model SSFS in optical 

fibers. By taking into account the fiber wavelength dependent attenuation, dispersion 

and nonlinearity, we show that the SSFS becomes less sensitive to the input pulse 

width when this width is narrow enough and the fourth power rule needs to be 

modified for many practical applications. The results of semi-analytic calculations are 

found to be in good agreement with numerical simulations using the split-step Fourier 

method. Our results also indicate that the fourth-power rule predicted in [Gor86] is 

accurate when the wavelength shift is small and the fiber loss is negligible. 

 

Thanks to the SSFS, we were able to implement a highly wavelength-tunable pulsed 

fiber laser that delivers femtosecond pulses to a two-photon microscope. The 

wavelength tunable capability was achieved by introducing a PCF in the light path. 

The two-photon images shown in this work were the first ones performed at the 

University of Kansas [Nor02]. 
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1.3 Organization 
 

This Thesis is organized as follows: Chapters 2 to 5 introduce concepts such as 

nonlinear effects in optical fibers, optical solitons, short pulses fiber lasers and 

photonic crystal fibers. This work also includes extensive references for further study 

of these topics. 

 

In Chapter 6 we study the propagation of a short pulse in an optical fiber, particularly 

in a PCF. We show numerical results for different input powers and fiber lengths and 

contrast some of these simulations with experimental data. 

 

A detailed analysis of the SSFS phenomenon is done in Chapter 7, where the semi-

analytical method is introduced. The results are also contrasted with numerical data 

and with the analytical model in [Gor86]. 

 

In the last chapter we briefly describe a two-photon microscopy system and we show 

the recorded images. These experiments were performed at Dr. Carey Johnson’s 

laboratory at the Department of Chemistry of the University of Kansas.   

 

Finally we present our conclusions and describe possible future works. 
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Chapter 2: Nonlinear Effects of Optical 
Fibers 

 

2.1 General Analysis 
 

The propagation of an electromagnetic field along an optical fiber is generically 

described by Maxwell´s Equations [Agr01] from which we deduce the wave equation: 

( ) ( ) ( )
2

2

02

2 ,,1,
t

trP
t

trE
c

trE
∂

∂
−

∂
∂

−=×∇×∇
rrrr

rr µ   (2.1.1) 

Where E
r

 is the electrical field, P
r

 the induced polarization, ε0 is the vacuum 

permittivity, µ0 the vacuum permeability and 
00

1
εµ

=c  is the speed of the light in 

vacuum. Although the relationship between E
r

 and P
r

 will normally require a 

quantum-mechanical study, many times a phenomenological relationship can be 

applied: 

( ) ( ) ( )( )K
rrr

M
rrrr

+++= EEEEEEP 321
0 : χχχε    (2.1.2) 

Where χ(j) is the jth order susceptibility, generally a tensor of rank j+1. The term j=1 

represents the linear relationship; it affects the refractive index and the attenuation 

coefficient of the fiber. The second order susceptibility, responsible for second order 

harmonic generation, is negligible for SiO2 and thus is not present in optical fibers. 

The third order susceptibility, χ(3), is responsible for phenomena such as third order 
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harmonic generation, four-wave mixing and nonlinear refraction (Kerr effect). In this 

last effect, the intensity dependency of the refractive index is reflected as: 

( ) 2

2

2
,~ EnnEn

rr
+=⎟

⎠
⎞⎜

⎝
⎛ ωω     (2.1.3) 

Where n(ω) represent the linear contribution and n2 is the nonlinear-index, related to 

χ(3).  

 

If we include the nonlinear effects, the induced polarization is obtained by adding two 

terms: the linear contribution  ( )( )trPL ,
rr

 and the nonlinear contribution ( )( )trPNL ,
rr

: 

( ) ( ) ( )trPtrPtrP NLL ,,,
rrrrrr

+=     (2.1.4) 

The linear and nonlinear contributions are related to the electrical field by: 

( ) ( ) ( ) ( )∫
∞

∞−

−= '',', 1
0 dttrEtttrPL

rrrr
χε     (2.1.5) 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫
∞

∞−

−−−= 321321321
3

0 ,,,,,, dtdtdttrEtrEtrEtttttttrPNL
rrrrrr

M
rr

χε  (2.1.6) 

A simplified analysis consists of considering the nonlinear term as a small 

perturbation to the total polarization. In that sense, we should first find the solution 

for the electrical field in a linear medium.  

 

Following the analysis in [Agr01], we consider only the wave equation for the field in 

the propagation axis (z): 

( ) ( ) ( ) ziim
z eeFArE βφρωω ±=,~ r    (2.1.7) 
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Where zE~  is the z component of the Fourier transform of the electrical field, A is a 

normalization constant, β is the propagation constant and m an integer. The solution 

for the field dependency on ρ is well known and given by Bessel functions [Agr01]. 

  

2.2 Nonlinear Pulse Propagation 
 

Nonlinear effects in optical fibers are particularly important when considering the 

propagation of short pulses (from 10ns to 10fs). While these pulses travel through the 

fiber their shape and spectrum are affected not only by nonlinearities, but also by 

group-delay dispersion. 

 

Considering (2.1.1) and (2.1.4) we build the wave equation that considers both linear 

and nonlinear effects: 

2

2

02

2

02

2
2 1

t
P

t
P

t
E

c
E NLL

∂
∂

+
∂

∂
=

∂
∂

−∇
rrr

r
µµ        (2.2.1) 

In order to solve this equation, we will make several simplifications. Firstly, we will 

consider that the nonlinear effect is a small perturbation of the linear solution. 

Secondly, we will assume that the optical field maintains its polarization along the 

fiber length; consequently, we can use scalar magnitudes. Thirdly, we will consider 

that the optical field is quasi-monochromatic, which means that 
0ω
ω∆ <<1. Finally, we 

will take a slowly varying envelope approximation for the field and we will find a 

solution using the variable separation method: 
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( ) ( ) ( ) zi
z ezAyxFrE 0

00 ,~,,~ βωωωω −=−
r    (2.2.2) 

Where  is the slowly varying of z pulse envelope and β( ω,~ zA ) 0 is the wave number 

to be determinate by solving the eigenvalues equation.  

  

Equation (2.2.1) can be transformed to the Helmholtz equation, 

( ) 0~~ 2
0

2 =+∇ EkE ωε      (2.2.3) 

 Here we generalize the definition for the field permittivity as 

( ) ( ) ( ) NLεωχωε χχ ++= 1~1     (2.2.4) 

Where NLε  summarizes the nonlinear contribution to the dielectric constant: 

( ) ( )trEtrP NLNL ,, 0
rrrr

εε≈     (2.2.5) 

( ) ( ) 23
4
3 , trENL

rr
χχχχχε =      (2.2.6) 

The dielectric constant and the diffraction index are related by: 

( ) ( ) ( ) 2

02

~~
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

k
in ωαωωε     (2.2.7) 

Where ( )ωα~  has a similar definition as ( )ωn~  in (2.1.3). All the material parameters 

are normally complex magnitudes. It is important to observe that we are considering 

the induced polarization as an instantaneous event, and so we are neglecting the 

contribution of delayed effects such as molecular vibrations (especially the Raman 

Effect). 
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The dielectric constant can now be approximated by considering the nonlinear 

contribution as a small perturbation of the linear effect: 

( ) ( ) ( ) nnnnn
k

iEnn ∆+≈∆+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= 2

2

~
22

2

0

2
2

ωαωε   (2.2.8) 

Using (2.2.2) for solving the Helmholtz equation (2.2.3) when a permittivity like 

(2.2.8) is considered, we get the following equation for the slowly varying envelope 

A(z,t): 

AAiA
t
Ai

t
A

z
A 2

2

2
2

1 22
γαβ

β =+
∂
∂

+
∂
∂

+
∂
∂    (2.2.9) 

This equation is known as the nonlinear Schrödinger (NLS) equation. The fiber 

parameters in this equation are related to the perturbation of the diffraction index 

introduced in (2.2.8). The term 1/β1 represent the Group Velocity, β2 the Group-

Velocity Dispersion (GVD) and the nonlinear parameter γ is defined as: 

effcA
n 02ωγ =      (2.2.10) 

Where the parameter Aeff is known as the effective core area and is defined as: 

( )

( )∫ ∫

∫ ∫
∞

∞−

∞

∞−
⎟
⎠
⎞⎜

⎝
⎛

=
dxdyyxF

dxdyyxF
Aeff 4

2
2

,

,
   (2.2.11) 

In order to evaluate it, we need to consider the modal distribution for the fundamental 

fiber mode. If we approximate F(x,y) by a Gaussian distribution, we can express: Aeff 

= πw2, the width parameter w is a half of the Modal Diameter Field (MDF).  
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2.3 Chromatic Dispersion 
 

The main source of group-delay dispersion for short pulse propagation along an 

optical fiber is the chromatic dispersion which represents the wavelength dependency 

of the diffraction index, n(ω). Mathematically, the effects can be understood by 

expanding the mode-propagating constant β in a Taylor series: 

( ) ( ) ( ) ( ) K+−+−+== 2
02010 2

1 ωωβωωββωωωβ
c

n   (2.3.1) 

Where: 

( K,2,1,0
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

m
d
d

m

m

m
ωωω

ββ )   (2.3.2) 

The dispersion parameter D is defined as: 

2

2

22
1 2

λ
λβ

λ
π

λ
β

d
nd

c
c

d
dD ≈−==    (2.3.3) 

Dispersion is normal when D<0 and anomalous when D>0. An important parameter 

is the zero-dispersion wavelength, where D=0.  

 

As a pulse propagates along the fiber, chromatic dispersion causes different 

wavelength to travel at different speeds. The effect at the output is a broadening of the 

initial pulse, without changing the amplitude spectrum. 

 

10 



The second order dispersion ( )3β  is related to the slope of the D(λ) function. A short 

optical pulse will have a broad optical bandwidth and the second order dispersion 

should normally not be neglected. 

 

Other sources of dispersion are waveguide dispersion, multimodal dispersion and 

polarization mode dispersion (PMD) [Agr01]. 

  

2.4 Nonlinear effects 
 

The effects of the instantaneous nonlinear response of an optical fiber are summarized 

on the right hand side of the NLS equation (2.2.9). In this section we are going to give 

a short description of them, where the first three phenomena (SPM, XPM and FWM) 

are elastic processes, as no energy is exchanged between the fields and the medium. 

The last two effects (SRS and SBS) are inelastic, in which the optical field transfers 

part of its energy to the nonlinear medium. The NLS equation will be modified in 

Chapter 6 in order to include SRS. 

 

2.4.1 Self Phase Modulation (SPM) 

 

Self Phase modulation (SPM) refers to the self-induced phase shift experienced by an 

optical field during its propagation in optical fibers [Agr01]. 

The intensity-dependent nonlinear phase shift ( )NLφ  can be described by: 
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2
2

2 ELnNL
r

λ
πφ =     (2.4.1) 

Where L is the fiber length and E
r

 the module of the electrical field at the working 

wavelength. 

 

Generally SPM brings a broadening of the amplitude spectrum and thus a stretching 

of the pulse in time domain. The final result depends on the frequency chirp of the 

original pulse as detailed in [Agr01]. 

 

2.4.2 Cross Phase Modulation (XPM) 

 

Cross Phase Modulation (XPM) refers to the nonlinear phase shift induced by other 

fields, having a different wavelength, direction, or polarization state: 

( )2
2

2
12 22 EELnNL +=

λ
πφ     (2.4.2) 

In this case the term depending on 1E
r

 is the SPM as in (2.4.1) and 2E
r

 represent the 

external field. 

 

XPM is responsible for asymmetric spectral broadening of co-propagating optical 

pulses. 

2.4.3 Four Wave Mixing (FWM) 
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When several optical signals at different frequencies propagate along the fiber, the 

total electrical field is equal to the vectorial addition of each individual field. The 

resulting optical intensity will have new components as a result of the cross products 

in the module calculation.  

 

For example if three optical frequencies (f1, f2 and f3) interact in a nonlinear medium, 

they will give rise to a fourth frequency (f4), where: 

3214 ffff −+=     (2.4.2) 

 

FWM is responsible for inter-channel crosstalk in a WDM communication system. 

 

2.4.4 Stimulated Raman Scattering (SRS) 

 

Raman Scattering is an inelastic process where a photon of the incident field (called 

pump) is absorbed and reemitted again, via an intermediate electron state, in a lower 

frequency. The excess energy and impulse is dissipated as a phonon (vibrational 

energy) into the material. This process can be combined with stimulated emission 

where the new photon has the same frequency and momentum as an incident signal 

photon. Consequently, through SRS, pump photons are progressively destroyed while 

new photons, called Stokes photons, are created at a down-shifted frequency that 

correspond to the signal photon. Figure 2.1 shows the scheme of the process. 
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2 x hυs hυp 
hυs 

hυp - hυs 

hυp  
hυs 

 

 

Figure 2.1: Stimulated Raman Scattering, two incident photons, one representing the signal (υs) and 
the other representing the pump (υp). At the output the signal is amplified, the energy loss is h(υp- υs). 

 

A less probable phenomenon is the emission of an anti-Stoke photon which has 

higher energy that the incoming pump. In this study, we will mainly focus in the 

generation of Stokes photons through SRS. 

 

SRS has applications in amplification of optical communication signals and 

spectroscopy. As a vibrational contribution, the SRS has a delayed response 

characteristic for each material. 

 

The relationship between the pump and the signal power (Ip and Is) can be described 

as: 

spR
s IIg

dz
dI

=      (2.4.3) 

Where gR is the Raman gain that can be measured experimentally. The Raman gain 

bandwidth is very wide (around 13THz) and thus the effect is particularly important 

for large bandwidth signal (very narrow pulses in time domain). 
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SRS is only visible when the pump power exceeds a certain threshold level 

(typically ). WPth
p 1≈

Spontaneous Raman Scattering occurs when a Raman photon is generated from a 

pump photon but without any relationship with the signal. This effect is normally 

considered as noise. 

 

2.4.5 Stimulated Brillouin Scattering (SBS) 

 

This effect is very similar to the previous one, but in this case an acoustic phonon is 

generated only in the backward direction. SBS has higher but narrower gain (less than 

100MHz) then SRS. In optical communication systems, SBS will limit the total 

amount of power in the fiber. Because it only propagates in the backward direction 

and due to its very narrow gain, we will not consider SBS in this work. 

 

2.5 Split Step Fourier Method 
 

Equation (2.2.7) can only be solved numerically. The preferred method is the  “Split 

Step Fourier Method”, where dispersion and nonlinear effects are solved separately in 

time domain the first one and in frequency domain the last one [Agr01]. 

 

The fiber is chirped in small sections, where the dispersion is considered along each 

segment, while the nonlinear operator is only applied at each segment’s middle point. 
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This method is implemented by the simulation software VPItransmissionMaker in 

which the numerical results of this work are based [VPI05]. 
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Chapter 3: Optical Solitons 
 

In this chapter we will give an overview of optical solitons, describing its historical 

origins and some fundamental properties. We will also cover some soliton categories 

of particular interest for this work. 

 

3.1 Solitons in Physics 
 

Solitons, also known as “solitary waves”, have been the subject of intense studies in 

many different fields, including hydrodynamics, nonlinear optics, plasma physics and 

biology [Agr03]. 

 

The first observation of a solitary wave was in 1834. John Scott Russell, a Scottish 

naval engineer, was riding a pair of horses along a narrow channel when he observed 

a wave that would continue its course without apparent change of form or speed.   

 

When working in nonlinear optics, solitons are classified as temporal or spatial 

depending if they maintain their shape while propagating or if they are confined to the 

transverse plane (orthogonal to the propagation direction). In this work we will only 

consider temporal solitons which are formed thanks to compensation of the group-

delay dispersion by the self phase modulation (SPM). 
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3.2 Fiber Solitons 
 

Temporal Solitons in optical fibers were first predicted in 1973 [Agr03], and have 

several applications in the field of optical communications.  

 

The goal is to find a solution for the NLS equation (that we will call soliton solution), 

in which the input pulse maintains its shape as it propagates: ( ) ( ) .,0, ztAtzA ∀=  

 

We can re-write equation (2.2.8), without considering fiber losses, using the soliton 

variables: 
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Where T0 is a temporal scaling parameter (normally the input 1/e intensity pulse 

width) and 2
2

0 βTLD =  is the dispersion length. The time variable (τ) travels at the 

group velocity.  The resulting equation for silica fibers is: 
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The sign of the dispersion parameter plays an important role in determining the 

soliton solution. For normal dispersion (β2>0), optical fibers can support dark solitons 
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where the pulse has zero amplitude at its center. Consequently, in order to support 

bright solitons, the GVD needs to be anomalous (β2<0).  

 

Using the inverse scattering method we can find a soliton solution for (3.2.4) which 

has the following expression for its initial pulse envelope: 

( ) ( )ττ hNu sec,0 =      (3.2.5) 

Where the parameter N is the soliton’s order and is related to the input pulse and the 

fiber parameters as: 
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In a hyperbolic-secant pulse as in (3.2.5) we can relate its 1/e intensity pulse width 

(T0) and its Full Width Half Width pulse width (TFWHW) as: 

( ) 00 763.121ln2 TTTFWHW ≈+=      (3.2.7) 

For a Fourier-Transform (FT)-limited pulse the product of frequency uncertainty and 

temporal uncertainty is minimized. For these pulses all the information is located on 

its amplitude. The Frequency and time width are related as: 

2
1

=∆∆ tω      (3.2.8) 

Which for a sech2 pulse it can be re-written as: 

315.0=∆ FWHWTυ     (3.2.9) 

Normally, standard solitons are unchirped in the absence of Stimulated Raman 

Scattering (IRS) and consequently they are transform-limited. However, the chirp-

free nature is not ensured when their spectrum shifts because of IRS [Agr03]. 
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3.3 Fundamental Soliton 
 

The fundamental order or first order temporal soliton correspond to the N=1 case. It is 

the only solution that maintains its shape in every moment. The pulse shape is given 

by: 

( ) 2sec),( iZehZu ττ =      (3.3.1) 

The fundamental soliton condition can also be understood as the solution where the 

nonlinearity (particularly the SPM) compensates the fiber dispersion in every point 

along the fiber. Thus, the dispersion length (LD) and the nonlinear length 

( ) are always equal. ( ) 1
0

−= PLNL γ

  

3.4 Higher Order Solitons 
 

When N>1 in (3.2.5), we have a higher order soliton. Instead of maintaining its shape 

over the entire fiber, higher order solitons have a periodical behavior in the z direction 

with period [Agr03]: 

2

2

2

2
0

0 222 ββ
ππ FWHW

D
TT

Lz ≈==     (3.4.1) 

 

3.5 Soliton Interaction 
 

The presence of other pulses in the neighboring perturbs a temporal soliton simply 

because the combining optical field is not a soliton solution of the NLS equation. This 
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phenomenon is called soliton interaction and can cause the pulses to come closer or 

move apart in time domain. 

 

Soliton interaction is critical for high speed soliton communication systems. In our 

case, it occurs between the fundamental and the high order solitons in the fiber. 

 

3.6 Loss-Managed Solitons 
 

In section 3.2 we found a soliton solution for the NLS when the fiber had no loss. In 

more general case, while propagating a soliton will lose part of its energy. 

Consequently, the pulse will broaden as the SPM is weakened and can no longer 

counteract the GVD. 

 

Optical Amplifiers can be used for compensating fiber losses. Two techniques have 

been proposed: the Lumped Amplification, where optical amplifiers (generally EDFA) 

are placed periodically along the fiber, causing a sort of average compensation effect; 

and Distributed Amplification which provides nearly lossless fibers by compensating 

losses locally at every point. This objective is achieved by using Raman Amplifiers 

[Mol85]. In both solutions the location and gain of the amplifiers are key design 

parameters. 
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3.7 Dispersion Management Solitons (Average 
Solitons) 

 

Dispersion management is widely used in WDM systems by employing specially 

designed fibers. Optical solitons benefit from this technique as power losses can be 

overcome by modifying the dispersion parameter in order to satisfy (3.2.6).  

 

Fundamental solitons can be maintained in a lossy fiber if its GVD decreases 

exponentially as: 

( ) ( ) zez αββ −= 022     (3.7.1) 

Fibers with such a GVD have been fabricated and are called Dispersion-Decreasing 

Fibers (DDF). Their main characteristic is the reduction of the core diameter along 

the fiber length. A disadvantage of DDF is that the average dispersion along the fiber 

links is normally large. 

 

Another solution for compensating the fiber losses by dispersion management 

consists of using a dispersion map. In this case, a map period is formed by a 

concatenation of a positive dispersion fiber and a negative dispersion fiber. Even 

though the local dispersion does not agree with (3.7.1), the average dispersion over a 

map period does.  

 

At first sight, normal dispersion fibers (D<0) do not support bright solitons and this 

solution should not work. Nevertheless, it has been shown that when the map period 

22 



is a fraction of the nonlinear length, nonlinear effects are relatively small and the 

pulse evolves in a linear fashion over one map period. In this case the SPM is 

compensated by the average dispersion. As a result the solitons’ peak power, width 

and shape will oscillate periodically [Agr03]. 

 

Long distance transmission of an average soliton has been demonstrated by [Gri00]. 

In that experiment a 10-GHz pulse train propagated along a 28000 km re-circulating 

loop with near zero average dispersion. The dispersion map consisted of 100km of 

dispersion-shifted fiber (D= -1.2ps/nm/km) and 7km of standard fiber (D= 16.7 

ps/nm/km). Amplifiers were placed every 25km. 
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Chapter 4: Short Pulsed Fiber Lasers 
 

Fiber lasers have been available since 1961 [Agr201] as an alternative for solid state 

short-pulses lasers. As in any laser, we can identify three main components: an optical 

cavity, a pump and a gain medium (that performs the population investment). 

 

Since 1989, Er+3 doped fiber-lasers have kept most of the attention as they can be 

used on the 1550nm telecommunication windows. Other rare earth materials, such as 

Yb+3 or Nd+3, are used for high power lasers. 

 

The first fiber lasers were continuous-wave (CW), but since the late 80s pulsed lasers 

have been built using a mode locking technique. 

 

This chapter will give a quick review to some basic laser concepts and to solid state 

lasers. We will then show some typical configurations for fiber lasers. 

  

4.1 Short Pulsed Cavity Lasers 
 

It could look contradictory, a priori, to generate ultrashort pulses with a laser source, 

because of the frequency selection imposed by the optical cavity. Normally, these 

cavities will allow oscillations in a few very narrow frequency domains around the 

discrete resonance frequency: Lqcq 2=υ  (q is an integer, c the speed of light and L 
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the optical length of the laser cavity) [Rul03]. Consequently, it can not deliver 

ultrashort pulses while working in its usual regime.  

 

In order to obtain a pulsed laser, the cavity needs to work on the multimode regime, 

where all the longitudinal modes of the laser (where the unsaturated gain is greater 

than the cavity losses) exist simultaneously. The time distribution of the laser output 

depends essentially on the phase relationship between the different modes.    

 

4.2 Mode-locking 
 

While operating in a multimode regime, there is usually a competition between modes 

to be amplified by stimulated emission from the same atoms, molecules or ions. This 

contest brings fluctuation on the output instantaneous intensity, where the worst 

scenario is a totally random noisy signal.   

 

By organizing the mode competition, the mode-locking technique tries to obtain 

periodic pulses at the output of the laser source; in frequency domain, the problem 

could be formulated as finding constant relative phases between modes.  

 

Mode-locking will normally be achieved by inserting a nonlinear material in the 

cavity. In time domain, as the wave travels back and forward into the cavity, each 

time it goes through the nonlinear material, the stronger fields will be considerable 
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more amplified than the weaker fields. If the conditions are well chosen, the situation 

can arise to have all the energy concentrated in one single pulse.  

There are two major classifications of mode-locking: passive and active. However, in 

some occasions a self-locking process is possible, if the following conditions are 

fulfilled: 

- The pulse regime is favored over the CW regime. 

- The overall system possessing the property of shortening the pulses 

(normally by Kerr effect). 

- Some mechanism initiating the self-locking process (for example knocking 

the table or randomly moving some element in the cavity). 

 

4.2.1 Active Mode-locking 

 

Active mode-locking consist of modulating the amplitude of each longitudinal mode 

by changing the cavity losses or the gain of the amplifying medium through an active 

element introduced inside the fiber cavity. The first effect can be achieved by using 

an acoustic-optical crystal and the second by pumping the medium with another 

mode-locked laser. 

 

4.2.2 Passive Mode Locking 
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If an absorbing medium with a saturable absorption coefficient (normally a liquid dye 

solution) is placed inside the cavity, the combination of this material and the saturable 

amplifying medium leads to the natural mode-locking of the laser. This process is 

called passive mode locking which has no external monitoring or feedback circuit. 

 

The pulse reaches its final shape when it becomes self-consistent in the cavity, which 

means, when it keeps the same shape after a round trip.  

 

The main problems with passive mode locking are: first, there are many compatible 

pairs of saturable absorbing and amplifying media with the right properties. Secondly, 

the output pulses are not very powerful and their wavelength is not easily tunable. 

 

The hybrid method tries to take the best from the two previous ones in order to obtain 

a wider choice of wavelengths and powers. In this case, the saturable absorber is 

introduced inside a cavity with an external modulator, making it easier to obtain sub-

picoseconds pulses than the classical active mode-locking.  

 

4.3 Solid State Laser 
 

A Solid State Laser uses a solid crystalline material as the gain medium and is usually 

optically pumped. They should not be confused with semiconductor or diode lasers 

which are also ‘solid state’ but are almost always electrically pumped. 

 

27 



In recent years, most of the work in the field of ultrashort light pulse generation have 

been based on the development of titanium-doped aluminum oxide (Ti:Al2O3, 

Ti:sapphire) as a gain medium. The emission band of these lasers is centered in the 

red region (~750nm) and can be tuned as much as 200nm [Rul03]. 

 

Even though active or passive mode-locking can be implemented, self-mode-locking 

has shown to be the best choice. Normally a Kerr lens acts as the nonlinear medium in 

order to achieve the locking property. The laser may need an additional external 

cavity to improve its stability. Figure 4.1 shows a typical setup for a Ti:sapphire laser. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Ti:Sapphire laser setup with Argon CW pump and self-mode-locking. Fig 3-23 [Rul03]. 

 

The pump source can be an argon-ion CW laser (normally of about 10W of CW) or a 

diode pumped green emitting laser. The length of the crystal is in the order of 1cm. 

These kinds of lasers can generate 10fsec pulses at repetition rates of around 80Mhz. 
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4.4 Fiber Lasers 
 

A quick overlook to figure 4.1 shows that Solid State lasers have several 

mechanically adjustable optical elements that make it difficult for a commercial 

implementation outside the optical table.  

 

A fiber amplifier can be converted into a laser by placing it inside a cavity designed 

to provide optical feedback. In this case the cavity is formed by optical fibers, 

couplers and mirrors, the doped fiber acts as the gain medium, and a CW diode laser 

as pump. 

 

The selection of the pumping laser for a fiber laser will depend on the dopant and the 

laser threshold for the system. Pumping schemes can be classified as three-level, four-

level or up-conversion lasers [Agr201].  

 

Fiber lasers have the following advantages:  

- Simple doping procedure. 

- Low loss and high efficiencies. 

- Pumping by compact and efficient diodes. 

- An all-fiber device minimizing the need of mechanical alignments. 

- Mode-locking, simplified thanks to the long interaction length. 

- Lower cost  
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Erbium doped fiber lasers work in the 1550nm region, which is ideal for long 

distances transmission. However, and thanks to the use of Periodically Poled Lithium 

Niobate (PPLN) waveguides, efficient 780nm lasers are feasible through frequency 

doubling [Arb97].  

 

Nonlinear effects, such as XPM and SPM, play a central role in the operation of a 

fiber laser, especially in the achieving of mode-locking. Dispersion causes the 

broadening of the output pulse. 

 

Fiber lasers can be configured for active or passive mode-locking, where the second 

option is normally simpler and cheaper. Two cavities designs are relevant: ring cavity 

and linear Fabry-Perot cavity. We will describe them in the next sections. 

 

4.4.1 Ring Cavity Fiber Lasers 

 

A simple ring fiber laser is shown in Figure 4.2, where the isolator works as the 

nonlinear medium. The repetition period is equal to the time needed to complete one 

round over the ring.  
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Figure 4.2 All-fiber ring-laser. An isolator works as a polarizer in the forward direction and blocks 
the light propagation in the reverse direction [Nel97]. 

 

In a passive mode locking configuration, the pulse shortening is performed by the 

coherent addition of self-phase modulated pulses, thus it is very fast. We explain this 

process in Figure 4.3; a pulse with arbitrary polarization is elliptically polarized by 

the use of a polarizer and a quarter-wave plate. The nonlinear medium will cause the 

pulse peak to rotate its polarization more than the pulse’s edges. The last two 

elements (a half-wave plate and an output polarizer) filter the low intensity 

components, making the overall effect a stretch of the original pulse. The input and 

output polarizers are adjustable, and will be useful for the starting process. 

 

 

 

 

Non Linear 
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Figure 4.3 Pulses Shortening in a Ring Fiber Laser [Nel97]. 
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Ideally, a passive mode-locked laser will evolve into a pulsed state on its own, 

without an external perturbation or trigger. This is called “self-starting”, where the 

pulses start up from the initial noise fluctuations.  A mode-locked state can only be 

achieved if the gain experienced by the fluctuation is long enough to allow it to 

complete a round trip within its lifetime [Nel97]. Lasers in a unidirectional ring 

configuration have shown to self-start easily with relative low powers. 

 

4.4.2 Fabry-Perot or Linear cavities 

 

Another configuration for fiber lasers are linear cavities, where the gain medium is 

placed between two high-reflecting mirrors. Alignment of these cavities is not easy as 

cavity losses increases rapidly with a tilt of the fiber end or the mirror. This problem 

can be solved by depositing dielectric mirrors directly onto the fiber ends.  

 

Dielectric coating can be damaged by the high power pump. Consequently, several 

alternatives exist including the use of WDM couplers, Bragg gratings or fiber-loop 

mirrors. 

 

Figure 4.4 shows a schematic for a fiber laser with a saturable Bragg reflector used 

both as one edge of the cavity and as the non-linear element that allows the passive 

mode-locking.  
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Figure 4.4: Schematic of a fiber laser where a Bragg reflector is used also for mode locking 
[Agra201]. 

 

Linear-cavity lasers will normally need between 10 to 100 times more powers than 

ring-lasers for self-starting. 

 

4.5 High Power Pulsed Fiber Lasers 

 

Single-mode fibers can not handle very high peak power signals due to their small 

fundamental mode area. In order to solve this problem, several techniques have been 

developed including cladding pumped lasers and cladding pumped holey fiber lasers.  

 

Multimode fibers (MMF) are well known for its large area, and thus are a feasible 

medium for high power fiber lasers (MMF can handle up to 30 times larger power 

than SMF). However, when using MMF there are several problems derived from the 

interaction between modes: multimode dispersion, mode coupling, an increase in 

generated amplified spontaneous emission (ASE) power noise, etc.  
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Ideally, we would like to preserve single mode propagation in the MMF. This could 

be checked by splicing a MMF in between two single-mode fiber filters and 

measuring the insertion loss as a function of the MMF length. For a silica fiber with a 

cladding diameter of 250µm and a core diameter of 50µm, single-mode propagation 

can be preserved over lengths shorter than 20m. Also, in such fibers mode-coupling is 

relative insensitive to fiber bends [Fer00].   

 

Figure 4.5 shows an experimental setup for a diffraction-limited passively locked 

(through a saturable absorber) MM fiber laser. In this case the pulse stretching is 

achieved by the use of two Faraday rotators and a fixed polarizer. 

 

Pump

Doped 
MM fiber

Partial 
reflection 

Faraday 
rotator 

Faraday 
rotator 

Saturable  
absorption  
mirror 

 
PPLN 

 
780 nm 
Output 

 

Figure 4.5: MM fiber oscillator side-pumped with a broad-area laser diode [Fer00].  A PPLN is 
introduced at the edge to frequency double the output signal. 
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Chapter 5: Photonic Crystal Fibers 
 

5.1 Fundamentals of photonic crystal 

waveguiding 

 

Photonic Crystal Fibers (PCF), also known as Microstructured Fibers (MF) or 

Microstructured Optical Fibers (MOF) [Bja03], represent one of the most active 

research areas in optics. Their main characteristic is the presence of a periodic or 

aperiodic structure (particularly air holes) in the core-cladding area of the fiber. 

Optical applications for periodic structures are well known in nature, a classical 

example are the colorful spots on several butterfly’s wings; as the insect moves them, 

we can appreciate the spots changing color [Bja03].  

 

One Dimensional (1D) periodic structures, or one dimensional photonic crystals (PC), 

are extensively used for important applications in optics, such as diffraction gratings, 

Bragg stacks, etc. 

 

Fiber optics and waveguides propagation usually relies on internal reflection or index 

guiding. However, PCF, which are a 2D array, normally rely on the bandgap effect. 

This phenomenon, similar to the recombination of a electron-hole pair in a 
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semiconductor, inhibits the electromagnetic field to propagate with certain 

frequencies, forming a bandgap. 

 

5.2 Classification of PCF 

 

Different applications of PCF have different requirements in the fabrication process. 

When observing its profile we can vary the number, size, form and position of the 

holes. For some applications it is also important to dope the core in order to dominate 

the attenuation and dispersion.  Figure 5.1 shows the most used terms and major 

classes of PCF. 

Photonic Crystal Fiber (PCF) 
Microstructured Fiber (MF) 
Microstructured Optical Fiber (MOF)

Main class I Main class II 
  
- High-Index Core Fiber - Photonic Bandgap Fiber 
- Index Guiding Fiber - Bandgap Guiding Fiber 
- Holey Fiber 

 

Figure 5.1: Classification of PCF [Bja03]. 
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Only the fibers on the Main Class II propagate thanks to the bandgap effect, while the 

rest are index-guiding fibers. 

HNL are especially relevant for this work. These fibers normally have few holes 

located in the cladding area and a very small (~2µm) core diameter. 

 

5.3 Modeling of microstructured fibers 

 
Two dimensional photonic crystals are the most studied case of periodical structures 

[Bja03]. Figure 5.2 shows an axial cut of a PCF where for simplicity a hexagonal 

representation is chosen. In this example we have a background material (normally 

SiO2) and cylinders of diameter d arranged in a hexagonal lattice with a period Λ. 

Most fiber parameters will depend on the factor d/ Λ. 

d

Λ

 

Figure 5.2: Geometrical characteristics of PCF. 

 

Cylinders normally contain just air, but eventually they can be filled with gasses or 

other substances in order to build an optical sensor. 
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When modeling a Photonic Bandgap Fiber, the full vectorial nature of the 

electromagnetic waves has to be taken into account. A simulation software developed 

by MIT is widely used by the research community [MIT04].  

 

On the other hand, when working with Index Guided Fibers, it is possible to apply the 

methodology developed for standard fibers by calculating an effective index for the 

cladding. The idea is to replace the PCF by an equivalent step-index fiber, where the 

core is pure silica and the cladding has a refraction index that considers the geometry 

of the PCF. The calculation of the core radius of the equivalent step-index fiber, as 

well as other numerical methods for modeling PCF can be found in the literature. 

[Bja03] 

 

When considering HNL-PCF, its Raman gain coefficient will vary from a standard 

fiber. There are two factors that affect this coefficient, first the smaller effective area 

(less than 10µm2). Second, the existence of air holes where no Raman Effect can 

occur. The numerical calculations for both parameters from the geometrical 

characteristics of the fiber are shown in [Fuo03].     
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5.4 Fabrication of photonic crystal fibers 

 

The idea of producing optical fibers with microscopy air holes goes back to the early 

days of optical fiber technologies. 

 

As in the standard fiber, PCF fabrication consists of two main steps: the preform 

production and the drawing process using a high temperature furnace in a tower set-

up. 

 

It is not desired to build a preform by drilling every hole in the bulk silica. However, 

the product is obtained by directly staking silica tubes and rods with a circular outer 

shape. Employing circular elements introduces additional air gaps in the fiber preform. 

These could be avoided by using hexagonal elements, but in that case the 

manufacturing process would be more complex.  For air core fibers, the center rod is 

replaced by capilar tubes that will break during the drawing process, forming an 

empty core structure. After stacking, the capilars and rods may be held together by 

thin wires and fused in an intermediate process, forming preform-canes. 

 

One of the main disadvantages of the stack and pull technique is the contamination of 

the glass elements. In recent years, other fabrication methods such as extrusion of the 

core preform have been introduced. 
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The drawing of PCF is done in conventional towers. In order to avoid the collapse of 

air holes due to its low surface tension, low temperatures are used (around 1900oC). 

The key element of this process is to keep the fiber regular structure from the preform 

up to the fiber dimension. 

 

5.5 Applications 

 

The most popular PCF are the High Nonlinear Fibers (HNL). They can achieve a high 

non-linear coefficient and a positive dispersion parameter in the visible region, 

allowing the formation of optical solitons. This effect is used to build highly 

wavelength-tunable fiber lasers, with short fiber lengths. HNL fibers are also used for 

supercontinuum (500 to 1700nm) generation, which has applications in metrology 

(frequency references), coherence tomography and spectroscopy. When the zero-

dispersion wavelength is shifted at 1550nm, HNL fibers are very attractive for 

telecom applications such as 2R Regenerators, multiple clock recovery, pulse 

compression, wavelength conversion and supercontinuum WDM sources. 

 

Double claddings PCF are of predominant interest in the context of high power 

devices. Normally the fiber is doped with rare-earth elements such as Yb3+ and Nd3+. 

These fibers have a high numerical-aperture, permitting an effective coupling of the 

pump power.  
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Air guiding fibers can be used as the active medium for optical sensors, where the 

core can be filled with the target gas or biological species. 
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Chapter 6: Experimental and Numerical 
Analysis of Soliton Self-Frequency Shift 
 

The goal for this Chapter is to build and simulate a wavelength shifter to be used in 

conjunction with a pulsed fiber laser as a pump for two photons microscopy. We will 

show the complete setup in Chapter 8. Similar systems were reported in [Nor99] and 

[Nor02]. However, there have been no reports of the use of these sources for two 

photon imaging. 

 

We will first introduce the experimental setup and show the resulting spectrums. We 

will then generalize the NLS equation in order to include the Raman scattering. 

Through the numerical analysis we will show the pulse evolution while propagating 

along the optical fiber.  

  

6.1 Experimental Results 

 

The experimental setup is shown in Figure 6.1. The pump is a pulsed fiber laser 

(IMRA Femtolite Ultra) which transmits 100fsec pulses in the 780nm wavelength at a 

repetition rate of 50MHz and a maximum output average power of 20mW. The non-

linear medium consisted of 7m HNL-PCF (Photonic Crystal Fiber NL-18-710). The 

fiber parameters are detailed in Appendix A. The fiber’s zero-dispersion wavelength 
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is 710nm. For the selected pump, the fiber is working at the anomalous dispersion 

region as needed to generate bright solitons.  

 

The power launched into the fiber was adjusted by mechanically misaligning the 

optical system. The signal at the output of the fiber was coupled into an optical 

spectrum analyzer (ANRO AQ6317B). 

 
PCF 

 780 nm 
fiber laser OSA Mechanic 

Translator 

Figure 6.1: Experimental Setup for a Wavelength-Tunable Pulsed Laser Source. 

 

When the incoming pulse has low average power, the chromatic dispersion is the 

predominant effect and the pulse is simply broadened when traveling trough the fiber. 

As we increase the input power, the SPM effect decreases the amount of total 

broadening of the original pulse. After exceeding the Raman threshold, the pulse will 

change its central frequency thanks to the SRS in a process known as pulse self-

frequency shift (PSFS) [Zys87]. 

 

After an initial stage of narrowing and when the incoming pulse exceeds a certain 

threshold (in our case 200µW of average power), the pump pulse brakes into two 

pulses by a phenomenon described by Zysset et al [Zys87] [Bea87]. The generated 

pulse is formed at the longer-wavelength side of the pump (also called Stokes bands) 
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and forms a fundamental soliton. The center wavelength of this soliton is shifted as 

the soliton propagates along the optical fiber. The shifting process is called soliton 

self-frequency shift (SSFS) and is a result of the SRS. The amount of frequency shift 

will depend on the pump peak power and the fiber length. Figure 6.2 shows the 

experimental spectrum obtained for the setup in Figure 6.1 while varying the 

launching power.  
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Figure 6.2: Experimental spectrums for a wavelength shifter where a mechanical translator is used 
to vary the input average power as shown in figure 6.1.Different colors correspond to different input 

powers. 
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We can observe in figure 6.2 that the fundamental soliton is shifted over 1µm, but a 

second order soliton is formed from the remaining power of the original pulse when 

the fundamental soliton is above 920nm. 

 

6.2 Generalized Non-Linear Schrödinger 

Equation 

 

In this section we will generalize the NLS equation in order to explain the 

experimental results of the previous section. Although equation (2.2.8) explains most 

of the common nonlinear effects in an optical fiber, it does not include the SRS which 

origins the SSFS. 

 

Intra-pulse Stimulated Raman Scattering is related to the delayed nature of the 

vibrational response of the SiO2 molecules. Thus, mathematically, we need to use the 

most general form for the nonlinear polarization given in equation (2.1.6) assuming 

the following functional form for the third-order susceptibility: 

( )( ) ( ) ( ) ( ) ( )321
3

321
3 ,, ttttttRtttttt −−−=−−− δδχχ   (6.2.1) 

Where R(t) is the normalized nonlinear response function. It includes both the 

electronic and the vibrational (Raman) contributions. Assuming that the electronic 

contribution is instantaneous, R(t) can be written as [Sto89] [Sto92]: 

( ) ( ) ( ) ( )thftftR RRR +−= δ1     (6.2.2) 
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Here fR represents the fractional contribution of the delayed Raman response to the 

nonlinear polarization and hR(t) is the Raman response function which is responsible 

for the Raman gain whose spectrum is given by: 

( ) ( ) ( )[ ]ωχ
ω

ω ∆=∆ RRR hf
cn

g
~

Im3

0

0

    (6.2.3) 

The Raman gain can be found experimentally as shown in [Sto92]. The real part of  

 is found by using the Kramers-Kronig relations. Figure 6.3 shows the 

temporal variation of h

( ω∆Rh
~ )

R(t) and Figure 6.4 shows a typical Raman gain for a SiO2 fiber. 

We should note that hR(t) becomes nearly zero for pulses wider than 5ps. 

 

 

 

 

 

 

 

 
 

 

Figure 6.3: Raman Response Function [Agr01]. 
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Figure 6.3: Normalized Raman Gain for a SiO2 fiber. The maximum value is at THz2.13=∆υ  
(equivalent to nm7.26=∆λ ) when the central frequency is 780nm [VPI05]. 

 

A common analytical approximation for the Raman response function is: 

( ) ( ) ( 12
21

2
2

2
1 sin2 τ

ττ
ττ τ teth t

R
−+

= )      (6.2.4) 

The parameters τ1 and τ2 are adjustable for a good fit to the experimentally known 

gain spectrum. The generally accepted values are: τ1=12.2fsec, τ2=32fsec and fR=0.18. 

 

By considering equation (6.2.1), the new expression for the nonlinear Schrödinger 

equation is generalized to include the Raman scattering as: 
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(6.2.5) 
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The accuracy of this equation is verified by showing that it preserves the number of 

photons during the pulse propagation if the fiber losses are set to zero (α=0). The 

pulse energy is not conserved as part of the pulse energy is absorbed by the silica 

molecules (Raman scattering is inelastic). These nonlinear losses are included in 

(6.2.5).  

 

For pulses wide enough to contain many optical cycles (widths>>10fsec), we can use 

a Taylor-series expression for the pulse envelope: 

( ) ( ) ( ) 222 ,',', tzA
t

ttzAttzA
∂
∂

−≈−     (6.2.6) 

Another simplification consists on defining the first moment of the nonlinear 

response function as: 
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The result in the Schrödinger equation is: 
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 (6.2.8) 

In this case the time frame moves with the pulse at the group velocity: 

ztztT g 1βυ −≡−=      (6.2.9) 

Equation (6.2.5) is the most generic NLS formulation where the complete solution 

can only be found numerically using, for example, the Split-Step Fourier Method as 

explained in Chapter 2.  
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6.3 Numerical Analysis  

In order to understand the experimental results obtained in section 6.1 we will 

numerically solve equation (6.2.5) for different input powers and fiber lengths. 

The numerical calculations were done using the software VPItransmissionMaker 

[VPI05] where the numerical parameters are detailed in Appendix B. The fiber 

parameters are the same as in the experimental setup and are shown in Appendix A. 

 

As it was already mentioned, when the input optical average power exceeds 200µW, 

the original power is breaking into two pulses creating an optical soliton. Figure 6.5 

shows the numerical simulation of the formation of this soliton over the “wide” pump 

pulse in time domain. 
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Figure 6.5: Soliton formation from the original pump pulse through pulse break-up. The input 
pulse was 300µW of average power and 0.5m of HNL-PCF. 

 

While propagating along the fiber, the new pulse (a soliton) is shifted in frequency. 

The Soliton Self-Frequency Shift (SSFS) was first observed by L.F.Mollenauer, et al. 

[Mol85] and analytically described by Gordon [Gor86]; this will be detailed in 

Chapter 7. The magnitude of the wavelength shift is dependent upon the fiber length 

and the pump power. These two dependencies will be studied in this section.   
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The first analysis consists of studying the time (Figure 6.6) and spectrum (Figure 6.7) 

characteristics at the output of 7m of HNL-PCF when the average input power is 

modified. 

 

 

-20 0 20 40 60 80 100
Time (psec)

1500µW  

1200µW  

1100µW  

1000µW  
900µW 

 
800µW 

 600µW 
500µW 

 400µW 
300µW  
200µW 

 

Figure 6.6: Time domain Characteristics of the output from a 7m HNL-PCF for different input 
average power. 

 

Soliton formation in a HNL-PCF was first predicted by Reid et al in [Rei02]. In our 

simulation, the fundamental soliton is generated when the input average power is 

200µW and the second order soliton when it is 800 µW, which agrees with equation 

(3.2.6). After the soliton is generated it rapidly shifts its central wavelength. 
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Figure 6.7: Wavelength Shift for different Input Average Power in a 7m HNL-PCF. 

 

It can be observed in the time domain analysis (Figure 6.6) that the fundamental 

soliton is delayed with respect to the pump pulse. This delay has two components: the 

group delay dispersion and the delayed nature of the Stimulated Raman Scattering. If 

we suppose a dispersion parameter of D = 68 ps/nm/km and a bandwidth of 10nm, the 

delay due to the linear dispersion would be: psT 5007.01068 =××=∆ . Consequently, 

the delay shown in figure 6.6 is mainly due to the Raman Effect. 
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Figure 6.7 shows that it is possible to build a wavelength shifter without second order 

generation in the range of 780 to 920nm. Further shift is possible if we filter these 

lower wavelength components. 

 

Figure 6.8 shows how the wavelength shift evolves when we vary the input average 

power for 3m and 7m of HNL-PCF. This study was done by [Nor99] for a 

polarization maintaining fiber. For low input power the group delay dispersion 

dominates and there is no soliton formation. As the power increases, the fundamental 

soliton is formed and shifts its central wavelength linearly until it reaches a saturation 

behavior. This is caused by both the fraction of power taken by the second order 

soliton and the wavelength dependency of the fiber parameters. The effect of the fiber 

parameters on the soliton self-frequency shift is analyzed in Chapter 7. 
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Figure 6.8: Wavelength Shift and Input Average Power for 3m and 7m HNL-PCF. 

 

When the input power reaches certain limit, we can observe the formation of a 

supercontinuum (SC) [Ort02]. This phenomenon consists on the considerable spectral 

broadening of optical pulses and has applications in the fields of optical 

communications, metrology and coherence tomography [Ort02]. The origin to the SC 

generation in HNL-PCF is related to the split of higher-order solitons into several 

pulses with different red-shifted central frequencies. The non-solitonic pulses 

maintain a phase relationship that causes the SC radiation [Por03]. Figure 6.9 shows 

the numerical spectrum after applying a 5mW pulse to 7m of HNL-PCF, where a SC 

is generated. 
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Figure 6.9: Supercontinuum generation after applying 5mW pulses to 7m of HNL-PCF. 

 

In figure 6.8 we can also observe that the difference between the wavelength shifts for 

3m and 7m of fiber is very small. By studying the dependency of the wavelength shift 

on the fiber length, we will also understand how the pulse evolves as it propagates 

through the fiber. We perform a numerical simulation for a HNL-PCF varying its 

length form 0.1m up to 7m. The results are shown in figures 6.11 to 6.14. In the first 

section of the fiber, the chromatic dispersion and the self phase modulation (SPM) 

compete between each other causing the narrowing of the original pulse. After the 

soliton is formed through the break-up process, it starts shifting its central wavelength. 

As it propagates, the soliton suffers the effects of fiber losses and changes on the 
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wavelength-dependent fiber parameters. The consequence of the presence of fiber 

losses can be summarized as follows: as the peak power decreases, the width of the 

soliton increases in order to maintain the fundamental soliton relationship. The 

overall effect is a decrease on the wavelength shift slope as the fiber length increases. 

Figure 6.10 shows the time characteristics as a function of the fiber length; we 

observe the pulse attenuation and the pulse broadening. 
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Figure 6.10: Time domain characteristics for different HNL-PCF lengths and an input average 
power of 500µW. The soliton is form after propagating along over 0.5m of fiber and then is 

attenuated and broadened. 

In the next two figures we show the evolution of the wavelength shift and the 

soliton’s pulse width as a function of the fiber length where both cases agree with the 

results of [Nor99] for a polarization maintaining fiber.  
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In Figure 6.11 we can verify the saturation behavior of the wavelength shift as we 

increase the fiber length. In the case of an input signal of 1mW average power, a 

second order soliton is formed soon after the fundamental soliton. The second order 

soliton has a lower peak power that gives a lower shift but it also has saturation 

behavior as a function of the fiber length. 
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Figure 6.11: Wavelength Shift and Fiber length for a HNL-PCF and different input average powers. 
For 1mW, we show the 1st and 2nd order soliton shift.  

 

From Figure 6.11 it can be seen that a higher power pump pulse will produced a 

narrower soliton. In the next chapter it will be demonstrated that a narrower pulse 

width will cause a longer wavelength shift. As the pulse propagates along the fiber, its 
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pulse width is increased in order to maintain the fundamental soliton condition. In 

figure 6.13 we show how the soliton order is maintain around N=1 as explained in 

[Sto92].  
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Figure 6.12: Soliton Pulse width and Fiber Length for a HNL-PCF. 

 

We will finally compare the numerical spectrum and the experimental data for 7m of 

HNL-PCF detailed in section 6.1. The Input optical power is modified by optical 

misalignment as shown in figure 6.1. Figure 6.14 shows the good agreement between 

the wavelength shift observed in our experiments and the shift predicted by the 

numerical analysis 
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Figure 6.13: Soliton order N and fiber length. Circles represent the values for an input average 
power of 500µW and the diamonds for 300 µW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Numerical and Experimental Results Wavelength Shifts for the setup in figure 6.1. 
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Chapter 7: Analytical Analysis of Soliton 
Self-Frequency Shift 

 

Solitons have been introduced in Chapter 3 as a solution for the NLS equation that 

preserves the pulse shape as it propagates. In this section we are only going to 

consider fundamental order solitons. 

 

Stimulate Raman Scattering will cause a pulse mean frequency to shift toward lower 

values while propagating in an optical fiber. In the special case of an optical soliton, it 

is possible to formulate an analytical expression for this shift as a function of its pulse 

width. However, this expression is only valid while the fiber parameters stay constant 

while the pulse is shifting its central frequency. 

 

In this chapter we take a close look at the analytical theory formulated by Gordon 

[Gor86] and experimentally confirmed by Mitschke and Mollenauer [Mit86]. We will 

then introduce a semi-analytical method for calculating the SSFS when the fiber 

parameters are not constant and we will contrast it with numerical calculations for 

different fibers. 
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7.1 Analytical Model 

 

Shifts of the mean soliton frequency can only be caused by frequency-dependent 

losses or gain in the fiber. The Raman scattering will amplify the lower frequency 

components (acting as the signal) at the expense of the higher-frequency parts (acting 

as the pump). 

Optical Solitons are the solutions of equation (3.2.4) that will not change its shape 

while propagating. That normalized equation needs to be generalized in order to 

consider the Raman scattering effect in a similar form as in equation (6.2.5): 

( ) ( ) ( ) ( ) ( )∫ −+
∂

∂
−=

∂
∂

− 2
2

2

2
1 susfdsuu

Z
ui ττ

τ
ττ   (7.1.1) 

In this expression we are neglecting the electronic vibrational contributions and all 

other nonlinear dispersive terms, f(s) represent the normalized fractional Raman 

response function: ( ) ( )shfsf RR= , where f(-s)=0 (due to causality) and . ( )∫ = 1dssf

 

The Fourier Transform expression for a fundamental soliton as in equation (3.2.5) is: 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Ω

==Ω ∫ Ω

2
sec

2
1~ πττ τ heudu j     (7.1.2) 

Where ( 00 T)ωω −=Ω  is the frequency deviation in soliton units and 0ω  the mean (or 

central) frequency of the pulse. We can now represent equation (7.1.1) in the 

frequency domain (FT): 
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∂

Ω∂
− 22 ~

2
1~

susfdsuFTu
Z
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ]22 **~ τττ ufFTustusfdsuFT Ω=−∫   (7.1.4) 

We introduce the function ( ) ( )[ ] ( )∫ Ω==Ω siesfdsfFT τχ that has the nature of a 

susceptibility due to the conditions on f. Returning to our analysis for the NLS 

equation in frequency domain and using the Fourier transform properties for the 

convolution and the complex conjugate: 

( ) ( ) ( ) ( ) ( ) ( )'''~'~'''''~''~
2
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*2 Ω+ΩΩΩΩΩ−ΩΩ+ΩΩ−=
∂
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Z
uj χ   (7.1.5) 

The complex function ( ) ( ) ( )Ω+Ω=Ω ''' χχχ j  verifies the Kramers-Kronig relations. 

Its imaginary part can be related to a loss coefficient that we will call the Raman 

attenuation coefficient ( R )α . To find this relationship, we split the spectrum of our 

pulse in two components: the pump (up) and the signal (us). The first one is 

considered as a single frequency, constant amplitude signal and the second one is 

only a small perturbation: 

( ) ( )tueutu s
ti

p
p += Ω−      (7.1.6) 

( ) ( ) ( )Ω+Ω−Ω=Ω spp uuu ~~ δ     (7.1.7) 

Substituting (7.1.7) in (7.15), where we only consider the terms proportional to the 

pump power and the imaginary part on the right-side terms, we get: 
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s uu
Z

u
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We finally obtain an expression for the nonlinear Raman attenuation coefficient: 
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( ) ( ) ( )[ ]∫ Ω=Ω−Ω−=Ω sj
pR esfdsIm2''2χα    (7.1.9) 

After finding a frequency-dependent attenuation, we would like to obtain its 

relationship with the central frequency shift. In order to proceed, we will first define 

the mean frequency deviation of the soliton as: 

∫ ΩΩ>=Ω< 2~udπ      (7.1.10) 

This magnitude is normally zero, when considering a fundamental soliton. We would 

like to evaluate its derivative with respect of the Z position: 
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Considering the module relationship: ( ) ( )u
dZ
duu

dZ
du

dZ
ud ~~~~
~

**
2

+=  and equations (7.1.5) 

and (7.1.9), we find the expression: 
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dZ
d

Rαπ  (7.1.12) 

When we are in the presence of a fundamental soliton, its Fourier Transform satisfies 

equation (7.1.2). We also need to consider the following integral relationship: 

( ) ( ) ( )aaaxhaxhdx sinh22sec2sec =−+∫   (7.1.13) 

We should recognize by their definitions that a change in >Ω<  corresponds to a 

change in the central frequency 0ω . We finally arrive to the expression: 
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Where we relabeled '  as . 'Ω Ω
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We now need to get an expression for the Raman loss from its definition in equation 

(7.1.9). The time varying Raman response function is related to the Raman Gain by 

equation (6.1.3), which has been experimentally measured by Stolen et al [Sto89] 

[Sto92]. The resulting relationship is: 

( ) ( ) ( 00
2

22
2

TRTg
n RR ππ

π
)λα Ω=Ω−=Ω    (7.1.15) 

Where R is the Raman loss spectrum normalized to the peak value, gR in cm/W, n2 in 

cm2/W and λ in cm. If we express the pulse width in picoseconds, 02 Tπυ Ω−=  

represents the frequency displacement in terahertz. 

 

If we would like to convert equation (7.1.14) into an expression for υ, we need to 

convert soliton’s variables back to real variables. Considering equations (3.2.1) and 

(3.2.2): 
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This leads us to a units converting coefficient: 3
0

2 2 cTD πλ . The most general 

expression for the frequency shift is: 
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Where λ, D, c and T0 are in units of centimeters and picoseconds.  

 

In a particular case, we can approximate the R(υ) function by a linear function: 

( ) ( )
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0 2
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T
CTRCR

π
πυυ Ω

=Ω⇒=     (7.1.19) 

Where the constant C (in 1/THz) is a fiber-dependent constant that can be calculated 

from its Raman gain. This approximation has been verified as accurate by Stolen et al 

[Sto89] [Sto92]. 

 

To evaluate the integral in equation (7.1.19) we consider the following formula: 
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Thus obtaining the expression: 
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Again, the constant K is a fiber-dependent parameter. 

 

If we consider the following example: λ=1.5x10-7cm, D=1500 psec/cm2 and 

( ) ( )υυ 2.13492.0=R , we get the expression: 
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The dependency on the fourth power of the pulse width can be understood as follows. 

First a factor of -2 represents the dependency on the soliton’s peak power, which is 

expressed in equation (3.2.6). Second, a factor of -1 due to the relationship between 

the frequency displacement and the soliton’s spectral width and finally, a factor of -1 

due to the linearization of the Raman loss as detailed in (7.1.19). 

 

7.2 Limitations of the previous analytical model. 

 

The theory detailed in the previous section published by Gordon [Gor86] has been 

experimentally corroborated by Mitschke and Mollenauer [Mit86], when using 

single-mode polarization preserving fiber. The pulses widths varied from 420 fsec to 

45 psec. In those experiments, the maximum frequency shift was 2THz which is 

equivalent to 16nm.  

 

We should make it clear under what hypothesis equation (7.1.21) is valid. First, while 

working with soliton units, we are assuming that the fiber dispersion and nonlinear 

parameter have no wavelength dependency; this is reasonable for a single mode fiber 

with small wavelength shifts as in [Mit86]. Second, the fiber was considered to have 

no loss (αs=0), which is also reasonable for a single mode fiber (αs=0.25 dB/km). The 

effect of fiber losses over a soliton was studied in section 3.6. The final hypothesis 

was that the nonlinear loss αR was linearized in (7.1.19). 
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In recent years, the use of new and powerful pulsed lasers as well as highly nonlinear 

fibers, such as the HNL-PCF presented in Chapter 5, make it possible to have 

wavelength shifts larger than 100nm. Several wavelength tunable pulsed lasers have 

been reported in both 1550 – 2000nm and 780 – 1000nm regions [Nor02] [Nor99].  

 

For these amounts of wavelength shifts, we should no longer consider constant fiber 

parameters such as dispersion and nonlinear coefficient. Moreover, in fibers such as 

HNL-PCF, the attenuation coefficient could be as high as 200 dB/km and should not 

be neglected. Consequently, the fourth power rule does not stand.   

 

7.3 A semi-analytical method for soliton self 

frequency shift in an optical fiber. 

 

When considering a generic lossy fiber, with wavelength variable dispersion and 

nonlinear coefficient, the analytical analysis goes back to the generalized NLS 

equation (6.2.5). The only possible action is to numerically evaluate this equation 

with tools like VPI Transmission Maker [VPI05]. However, because femtosecond 

level pulse widths are usually used, very wide bandwidth is required in the numerical 

simulation and the process is generally very time-consuming. Another drawback of 

numerical simulation is that it does not directly show the effects of various physical 

mechanisms behind the results.   

 

67 



We propose a semi-analytical method to investigate the characteristics of soliton self-

frequency shift (SSFS) in optical fibers. This method is useful to significantly 

increase the speed of calculation compared to numerical simulations, while 

maintaining excellent accuracy. SSFS in two different types of fibers were evaluated 

and the results agree very well with those of numerical simulations.  We show that 

when the frequency shift is small enough, it is inversely proportional to the fourth 

power of the initial soliton pulse width. However, with large frequency shift, this 

fourth power rule needs to be modified.   

 

7.3.1 Semi-Analytic Method Formulation 

 

We consider a generic formulation where all fiber parameters can be wavelength 

dependent: D(λ) and γ(λ) and αs(λ). In order to obtain a semi-analytical solution, we 

truncate the fiber into short sections as shown in Figure 7.1. Within each section, a 

fixed signal wavelength can be assumed and fiber parameters at this specific 

wavelength can be used. 

 

 

 

 

 

 

 

Figure 7.1: Semi-analytical method for SSFS in an optical fiber. Pp is the peak power of the pulse. 
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The optical frequency of a soliton passing through a short fiber section from z to 

z+∆z can be expressed using equation (7.1.21) as: 

( ) ( ) ( )( ) ( )
( )

z
zT

zzD
Kzzz

o

∆−=∆+
4

2λλ
υυ     (7.3.1) 

As SSFS is a non-elastic effect, in addition to the frequency shift, the peak power (Pp) 

of the pulse also changes after passing through the short section. This peak power 

change is caused by three major effects, namely, fiber attenuation, pulse width change 

and energy loss of each photon due to the red-shift of the wavelength. The nonlinear 

Raman attenuation was studied in section 7.1. However we could do a simpler 

analysis if we consider the average effect over the central frequency. 

 

We can calculate the fundamental order soliton energy as: 
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  (7.3.2) 

When the pulse travels along the fiber, it changes its energy as a consequence of the 

quantum loss: 

( )
( )

( ) ( )
( ) ( )

( )
( )zNh

zzNh
zTzP

zzTzzP
zE

zzE

p

p

υ
υ ∆+

=
∆+∆+

=
∆+

0

0

2
2

   (7.3.3) 

Where N is the total number of photons and h the Plank’s constant. We find then a 

simplified expression for the nonlinear Raman attenuation: 
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( )
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p υ
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0     (7.3.4) 
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If we also consider the fiber losses, the pulse peak power at the output of the short 

fiber section is: 

( ) ( ) ( )
( )

( )
( )zzT

zT
z

zzezPzzP zz
pp ∆+

∆+
=∆+ ∆−

0

0))((

υ
υλα    (7.3.5) 

Assuming a fundamental soliton is maintained when pulses propagate along the fiber; 

the soliton’s peak power is also related to its width by equation (3.2.6) that can be 

rewritten as: 

( ) ( )
))(())((2

))((
2

2
0 zz

zcDzTzPp λγλπυ
λ

=     (7.3.6) 

Combining the last three equations, an expression of pulse width at z + ∆z can be 

obtained as:  
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Where )(/)( zzczz ∆+=∆+ υλ is the wavelength of the pulse at the output of the fiber 

section which can be obtained by equation (7.3.1); ))(( zzD ∆+λ , ))(( zz ∆+λγ  and 

))(( zz ∆+λα are the dispersion nonlinearity parameter and fiber attenuation, 

respectively, evaluated at this new wavelength.  

 

Figure 7.3 shows the block diagram for the semi-analytical method. With the 

parameters of a soliton pulse known at the input, equations (7.3.5) and (7.3.7) can be 

used together to calculate the central frequency and the pulse width of the wavelength 

shifted soliton at the output of a short fiber section. These parameters can in turn be 
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used as the input to the next fiber section. SSFS characteristics of a long fiber can be 

obtained by dividing the fiber into short sections and repeating this calculation section 

by section, along the fiber. Because the transfer function of each fiber section 

described by equations (7.3.5) and (7.3.7) is analytical, the calculation is 

straightforward and fast. In addition, since the wavelength of the optical pulse at 

different fiber sections may be very different due to SSFS, precise fiber parameters at 

each section can be used corresponds to the exact signal wavelength at that section. 

This assures the accuracy of the calculation.  

 

The Matlab code of the implementation for the method is attached in Appendix C. 
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section.  
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(z=z0)  
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and fiber parameters at 
z=z0

Pulse peak power and 
pulse width at z=z0+∆z 
calculation using (7.3.5) 
and (7.3.7).

 

 

 

 

 

 

 

 

 

Figure 7.2: Block diagram for the semi-analytical method. Each segment is considered to have 
constant fiber parameters; at the edge of each span the pulse peak power and pulse width is 

calculated and used as the input for the next span. 

 

7.3.2 Results and Discussion. 

 

In order to evaluate the accuracy of our semi-analytical model, the results were 

compared with those of numerical simulations using VPI Transmission Maker [VPI05] 
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where the split-step Fourier method was used. Two fibers were used, a polarization 

maintaining fiber (PMF) and a HNL-PCF. All the fiber parameters are shown in 

Appendix A and the numerical parameters in Appendix B. 

 

In the first case, we consider 100m of PMF (3M FS-PM-7811) as used in [Nor99]. 

The wavelength of the input soliton pulse is set at 1550nm. Soliton frequency shift 

versus input optical pulse width is shown in Fig.7.3, in which, results of semi-

analytical calculation represented by triangles agree well with those obtained by 

numerical simulations represented by open circles. The figure also shows the 

evolution of the exponent x that relates the SSFS and the pulse width as: 

xT −∝∆ 0υ      (7.3.8) 

 

In equation (7.1.21) x was 4, representing the fourth power rule. This is verified for 

pulses wider than 100fsec, which agrees with the experimental work of [Mit86] where 

pulses wider than 420fsec were used. 
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Figure 7.3: Frequency shift versus pulse width for a 100m PMF in log scale (left). The stray line 
represents the analytical result in (7.1.21), triangles represent the complete semi-analytical solution 
and circles represent the numerical results.  The figure also shows the difference on the exponent x 

from the analytical value of 4(right). 

 

When the pulse is shifted to a longer wavelength, it is broadened due to the higher 

dispersion. This behavior explains the saturation in the frequency shift for narrow 

pulses. It needs to be mentioned that when the pulse width is narrower than 20fs, the 

nonlinear Schrödinger equation (6.1.5) is no longer accurate because the narrowband 

approximation fails [Agr01] which is beyond the scope of this work. 

  

The fiber loss in this case is only 0.26dB, and thus has not an important impact in the 

overall behavior. 
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The second fiber tested was a HNL-PCF (Photonic Crystal Fiber NL-18-710) which 

parameters are shown in Appendix A.  

In Figure 7.4 we show the numerical results of the SSFS as a function of the pulse 

width for different fiber lengths. In every case we verify the saturation behavior for 

narrow pulses. 
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Figure 7.4: SSFS for a HNL-PCF with different fiber lengths in log scale. For very short fibers 
(0.1m) the shift is small enough to maintain the linear characteristic; however, for longer fibers we 

can see the saturation effect.   

  

In this case, while the pulse propagates through the fiber, we should not only consider 

the increase of the chromatic dispersion, but also the decrease of its nonlinear 

parameter and the high attenuation. The overall effect is a decrease of the peak power 

of the pulse; as the soliton tries to maintain its fundamental relationship as in equation 

(7.3.6), the pulse will also be broadened. 
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Figure 7.5 shows the frequency shift versus soliton pulse width in 10m of HNL-PCF 

calculated by semi-analytical model (triangles) and numerical simulations (open 

circles). The impact of fiber losses in PCF can not be neglected as it can take values 

up 200 dB/km. To illustrate this effect, soliton frequency shift calculated without 

fiber loss is also plotted in figure 7.5 (squares) for comparison. Similar to what 

happened in the polarization maintaining fiber, the exponent x is equal to 4 at a 

relatively wide pulse width and is reduced significantly when the pulse width is 

narrower than 100fs.  
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Figure 7.5:  Frequency shift and pulse width for a 10m HNL-PCF in log scale (left). The strait line 
represents the analytical result (7.1.21), squares the semi-analytical solution with no losses, 

triangles the complete semi-analytical solution and circles the numerical result.  The figure also 
shows the difference on the exponent x from the analytical value of 4 (right). 

 

If we consider figure 7.4 for a fixed initial pulse width and different fiber lengths 

(vertical direction), we can also observed a saturation behavior. Figure 7.6 shows an 
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example of the wavelength shift as a function of the fiber length, for the same HNL-

PCF, for different pulse widths calculated with semi-analytical model (continuous) 

and numerical simulations (circles). The results clearly show the saturation in the 

frequency shift at long fiber lengths as has been demonstrated experimentally [Nor99].  

The discrepancy between the semi-analytical model and the numerical simulation 

when the pulse width is narrower than 40fs is attributed to the effect of higher order 

dispersion, which is not included in the semi-analytical model. This discrepancy was 

not evident in the previous plots as we were using log scale. 
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Figure 7.6:  Wavelength shift and fiber length for a PCF for different soliton pulse widths. Circles 

represent the numerical data. 
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In all the cases, there is also agreement between the semi-analytical solution and the 

numerical solution in both the output peak power and the output pulse width. The 

output fundamental order of the soliton from the numerical solution was verified. 

 

As a conclusion for this chapter, the analysis introduced in [Gor86] needs to be 

modified when considering large frequency shifts and fiber with no-constant 

parameters. The semi-analytical method introduced agrees with the analytical 

formulation for relatively wide pulses and with the numerical solution in every case. 

This method does not include the effect of the higher order dispersion. 
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Chapter 8: Short Pulsed Lasers 
Applications for Two Photons 
Microscopy 

 

Femtosecond pulses lasers serve as a source for fluorescence microscopy. In this 

technique, fluorescent dyes are attached to the target molecule (normally a protein) by 

covalent labeling strategies. Once attached, the dyes will absorb the incident light at a 

particular wavelength and emit photons at a known longer wavelength. Fluorescence 

could be used to determinate presence or absence of the specific species, to 

determinate concentration, to perform imaging, to study dynamic characteristics, etc. 

[Sch01] 

 

A common implementation consists of a one-photon confocal microscope, using a 

Ti:Sa pulsed laser as the pulse source. In recent years two-photon microscopy has 

emerged as the selected method for fluorescence microscopy in thick tissues and live 

animals. The main difficulty in building a two-photon instrument is the cost of the 

laser source as well as the expertise needed to maintain a solid-state laser. The 

introduction of a high-power fiber laser allows overcoming both limitations. 

 

In this chapter we will first give a short overview to one and two-photon microscopy, 

detailing the differences between both methods. Then, we will introduce our 

experimental setup and finally show different two-photon images. 
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8.1  One-Photon Confocal Microscopy 

 

In a one-photon confocal microscopy system the excitation from the pulsed laser is 

directed into a microscope objective and focused on the sample. This technique gives 

a diffraction-limited spot of approximately 0.5 µm in diameter. [Sch01] 

Detector 
pin-holePhoto 

detector 

Lens 

Lens 

Focal plane 

Beam 
splitter 

Lens 

Out of focus

Fluorescently 
labeled tissue 

3-demensional translation stage 

Laser 
source 

Figure 8.1: A Scanning Laser Confocal Microscope Setup. The sample is moving in the three 
dimensions in order to obtain a 3D image. A pin-hole is introduced in front of the detector for 

improving the system’s resolution. 
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Figure 8.1 shows a typical setup where the energy from one absorbed photon gives 

rise to the generation of one fluorescent photon.  

 

We can identify several problems with confocal microscopy. First, the receiving 

signal will include light from structures above and below the focus plane, limiting the 

system’s resolution. A common solution to overcome this background is to introduce 

a pin-hole near the detector; in this case we have a loss of signal at the receiver and 

thus it may be needed to increase the pump power. Nevertheless, the pin-hole will not 

help to reject the scattered excitation light from the target volume. In this case very 

narrow bandpass filters may be needed as fluorescence and pump signals are close in 

frequency domain. 

 

The second problem that we can identify is related to the wavelength range where this 

instruments works. Normally used fluorescence dyes (or fluorophores) will absorb in 

the UV-Visible region and will emit at longer wavelength. An example of emission 

and absorption spectrum for a family of such dyes is shown in Figure 8.2.  
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Figure 8.2: Absorption and emission spectrum of the Alexa-series one-photon fluorescence dyes. 

 

Working in the UV-Visible region has three major problems: first, tissue cells have 

very high absorption coefficient at these wavelengths, thus the penetration depth is 

reduced and the possibility of photo-damage living cells increases. Second, 

fluorophores are easily bleached when excited by a visible light. Finally, it is difficult 

to build appropriate optical elements such as lenses and beam splitters [Den90].  

 

8.2 Two Photons Microscopy 

 

The simultaneous absorption of two photons by an atom or molecule in a single event 

was first predicted in 1931 [Xu95] and was called Two-Photon Excitation (TPE). 

However, it was only recently that two-photon laser scanning fluorescence 

microscopy was demonstrated. In this method, the sample is illuminated with light of 

a wavelength approximately twice the peak absorption wavelength of the fluorophore 

82 



in use. For example a dye absorbing at 400nm will be excited by two photons at 

800nm.  

 

As TPE is a second-order process, the number of photons absorbed per molecule per 

unit of time (Nabs) by means of TPE depends on the square of the incident optical 

power ( I(t) ) [Xu95]: 

( ) ( ) ( )∫=
V

abs trItrCdVtN ,, 2 rr
δ     (8.1) 

Where ( )trC ,
r  represents the dye concentration and δ the two-photon absorption cross 

section. Measuring the two-photon absorption cross section is usually difficult and it 

will vary from the one-photon cross section. Consequently, if for example we take the 

dyes in Figure 8.2, their two-photon absorption spectrum will not be the same as in 

the figure. 

When working in TPE, we can neglect the effects of photo-bleaching because the 

target volume is very small and only a small number of dyes would be affected. 

Taking a large time scale, we can assume that the dye concentration is constant. 

Consequently, we can consider that the time and space components of the pump 

intensity can be separated as: ( ) ( ) ( )rStItrI
rr

0, = , where ( )rS
r  is unitless. Equation 8.1 can 

be rewritten as: 

( ) ( ) ( )∫=
V

abs rdVStICtN
r22

0δ     (8.2) 

This result can be used to find the time-averaged number of fluorescence photons 

[Xu95]: 
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Where the factor 1/2 reflects that two absorbed photons are needed to generate one 

fluorescence photon, the term ( )
( ) 2

0

2
0

><

><

tI
tI  is a measure of the second order temporal 

coherence of the pump and should be a constant (normally named g), φ is the 

fluorescence quantum efficiency of the dye and η2 the efficiency of the measurement 

system at the collecting wavelength. The square dependency of the two-photon 

absorption on the pump power means that this phenomenon can only occur over a 

very small volume around the focus point. Thus, the resolution of the instrument is 

improved over the one-photon excitation and there is no need to use a pin-hole at the 

receiver. 

 

Another advantage of two-photon based imaging is that biological tissue has 

considerable less scattering and absorption in the NIR wavelength. Consequently, the 

penetration depth is increased and the probability of photo-damage reduced [Den90].   

 

8.3 Experimental Acquisition of Two-Photon 

Images 

A classical setup for obtaining a two-photon image will still utilize a pulsed Ti:Sa 

laser source. As we mention in this thesis, there are several advantages when using a 

fiber based pulsed laser instead.  
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Working in collaboration with Dr. Carey Johnson’s lab, we performed two 

experiments. First we obtained two-photon images using a pulsed fiber-laser emitting 

at 780nm as the input pump. Then, we obtained a two-photon image shifting the 

pump’s central wavelength to 920nm using a Photonic Crystal Fiber as demonstrated 

in Chapter 6. In this second experiment, we do not need any filter at the output of the 

wavelength shifter as there was not second order soliton generation and the pumping 

pulse (after being dispersed by the fiber) was too broad to generate TPE. 

 

The experimental setup is shown in Figure 8.3; when working at 780nm, the 7m PCF 

was removed from the optical table. We utilized a Nikon TE2000 microscope with a 

100X objective lens and equipped with a 2D piezo-electric scanning stage; the z-

dimension translation was achieved by manually moving the objective lens.  

 

The sample was composed of fluospheres with 24nm of diameter that were doped 

with a fluorescence material. The spheres were immobilized in a 3% agarose solution 

at a concentration of 5nM. With these small samples, we were able to measure the 

diffraction limit of our instrument when we identify a signal of 310nm of 1/e2 

diameter. 
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Figure 8.3: Experimental setup for acquiring a two-photon image. The PCF was removed when 
working of the 780nm region. The pictures shows the fiber-laser used for the experiment (IMRA 

Femtolite Ultra) and compares it size with a classical Ti:Sa laser. 

 

 

In Figure 8.4 we show a two-photon 2D image of a fluosphere taken in the radial 

dimension when using the original pump laser at 780nm.  Figure 8.5 shows the radial 

intensity profile for the same sample. These were the first two-photon images 

recorded at the University of Kansas. 

 

Figure 8.6 and 8.7 show the same results but when the pump laser is shifted to a 

longer wavelength using the HNL-PCF. There is no previous record available in the 

literature of a two-photon image in this wavelength using a fiber laser. 
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Figure 8.4: Two-photon image of a fluosphere using a 780nm pump laser. 

Figure 8.5: Radial intensity profile for a fluosphere using a pump laser at 780nm. 
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Figure 8.6: Two-photon image of a fluosphere using a shifted pump laser to 920nm. We can observe 
one sphere in the middle of the image and an aggregate in the upper right. 
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Figure 8.7: Radial intensity profile for the fluosphere at the center of figure 8.6. 
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8.4 Other applications 

 

The optical setup shown in figure 8.3 can be adapted to perform a variety of 

fluorescence based experiments that are out of the scope of this work. 

 

First, we consider the two-photon fluorescence correlation spectroscopy (TPFCS). In 

this technique, fluorescence fluctuations caused by the diffusion of molecules through 

the focal area are detected and analyzed by autocorrelation or cross-correlation 

functions. Applications include concentration assays, measurements of mobility, 

reaction kinetics, detection of co-localization of proteins and high throughput 

screening [Sch01].  

 

Coherent anti-Stokes Raman scattering (CARS) is a nonlinear Raman process in 

which two pump beams (at frequencies ωp and ωs respectively) are mixed in a sample 

to generate a signal at the anti-Stoke frequency of ωas=2ωp-ωs. By using CARS we 

can obtain high-quality three-dimensional images. A normal setup will include two 

different (and expensive) pulsed lasers. However, a small change in our setup would 

allow performing the experiment with a single pump. This objective represents 

several challenges such as the stretch of the pulse spectrum and the synchronization 

of the two beams. 

89 



CONCLUSIONS 

In this work we studied the propagation of short optical pulses along a high nonlinear 

photonic crystal fiber. We observed and simulated the formation of Raman solitons 

and their frequency shift as a function of the fiber length and the input average power. 

A wavelength-shifter was built and its experimental spectrum compared with the 

numerical simulation results. 

 

A semi-analytical method for the dependency of the soliton self-frequency shift on its 

initial pulse width was introduced as a generalization of the fourth power rule 

introduced in [Gor86]. The method agrees well with numerical results and behaviors 

predicted in the literature. It also agrees with the analytical result in [Gor86] for small 

frequency shifts and no fiber losses. This work was submitted for publication and the 

resulting paper is shown in Appendix D. 

 

The wavelength-shifter was introduced in a two-photon microscopy setup to obtain 

the first two-photon images at the University of Kansas. The central frequency of the 

pump laser was then shifted to obtain an image in a different pump wavelength. There 

is no evidence in the literature of any previous successful implementation of this last 

experiment. 
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As a consequence of the work detailed in this thesis, a NSF proposal was submitted 

for the acquisition of a new laser source and microscope to build a permanent two-

photon instrument.  
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FUTURE WORK 

Future work related to this master thesis can be focused in two areas. First, the 

analytical formulation of the relationship between the pulse-breakup process and the 

formed Raman soliton’s peak power. This analysis, in combination with the soliton 

self-frequency shift, will allow obtaining an analytical relationship between the 

frequency shift and the input pump average power.  

 

In an experimental phase, a new laser source and a permanent setup will allow to 

perform two-photon images, even simultaneously acquiring different colors. It will 

also permit the realization of TPFCS and CARS analysis. This last technique 

represents some technology challenges as pulse spectrum stretching and pulse 

synchronization [Che93]. 

 

The availability of a width-varying and power-varying laser source would allow the 

experimental verification of the semi-analytical method introduced in this work. 
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GLOSSARY 
 

ASE – Amplified Spontaneous Emission 

CARS – Coherent anti-Stokes Raman Scattering 

CW – Continuous Wave 

DNA – Deoxyribose Nucleic Acid 

DDF – Dispersion-Decreasing Fiber 

EDFA – Erbium Doped Fiber Amplifier 

FT – Fourier Transform 

FWHW – Full Width Half Width 

FWM – Four Wave Mixing 

GVD – Group Velocity Dispersion 

HNL – High Nonlinear 

MDF – Modal Diameter Field 

MF – Microstructured Fiber 

MM – Multimode 

MMF – Multimode Fiber 

MOF – Microstructured Optical Fiber 

NIR – Near Infrared 

NLS – Nonlinear Schrödinger equation. 

PC – Photonic Crystal 

PCF – Photonic Crystal Fiber 
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PMD – Polarization Mode Dispersion 

PMF – Polarization Maintaining Fiber 

PPLN – Periodically Poled Lithium-Niobate 

PSFS – Pulse Self-Frequency Shift 

SBS – Stimulated Brillouin Scattering 

SC – Supercontinuum 

SMF – Single Mode Fiber 

SPM – Self Phase Modulation 

SRS – Stimulated Raman Scattering 

SSFS – Soliton Self Frequency Shift 

TPE – Two-photon Excitation 

TPFCS – Two-Photon Fluorescence Spectroscopy 

TPLSM – Two-Photon Laser Scanning Microscopy 

UV – Ultra-Violet  

WDM – Wavelength Division Multiplexing 

XPM – Cross-Phase Modulation 
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APPENDIX A: Optical Fibers 
Characteristics 

 

• Crystal Fibre NL-18-710 

 

This nonlinear photonic crystal fiber has a zero dispersion wavelength at 710nm. 

Figure A.1 shows an axial profile and Table A.1 its main parameters as given by the 

manufacturer. 

 

  

 

 

 

 

 

 

Figure A.1:  Crystal Fibre NL-18-710 axial profile (http://www.crystal-fibre.com) 
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λ (nm) D (ps/nm/km) D slope (ps/nm2/km) γ (W-1 km-1) α (dB/km)

710 0 0.58 139 190 

600 -142 1.70 171 210 

800 68 0.59 122 170 

1000 148 0.25 92 130 

1550 185 -0.08 49 80 

Table A.1: Crystal Fibre NL-18-710 Parameters (http://www.crystal-fibre.com) 

 

Other fiber parameters: 

• Core diameter (average): 1.8±0.1µm. 

• Pitch (distance between cladding holes): 2.1±0.1 µm 

• Air Filling Fraction in the holey region: >90% 

• Width of struts holding the core: 70±10 nm 

• Diameter of holey region: 21±0.5 µm 

• Diameter of outer silica cladding (OD): 125±1 µm 

• Coating diameter (single layer acrylate): 230±5 µm 

 

In Figures A.2 through A.4 we plot the wavelength dependency of the fiber´s 

parameters. 
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Figure A.2: Attenuation Parameter (α) for Crystal Fibre NL-18-710. The circles represent the 
values on Table A.1, the rest of the values were calculated by linear interpolation. 

 

 

 

 

 

 

 

 

 

Figure A.3: Nonlinear Coefficient (γ) for a Crystal Fibre NL-18-710. The circles represent the 
values on Table A.1, the rest of the values were calculated by linear interpolation. 
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Figure A.4: Dispersion Coefficient (D) for a Crystal Fibre NL-18-710. The circles represent the 
values on Table A.1, the rest of the values were calculated by linear interpolation. 

 

• 3M FS-PM-7811 

 

This is a polarization-maintaining fiber with a small core area in order to achieve a 

large nonlinear index. 

 

The fiber parameters are: 

 

• Operating Wavelength: 1550nm. 

• Mode Field Diameter: 5.5 µm. 

• Dispersion parameter: 1.177 s/m2. 

• Dispersion slope at 1550nm: 80 s/m3. 
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• Dispersion Law: ( )75 1055.110877.11 −− ×−×+= λD  in [ps/nm2], where λ is in [cm]. 

• Nonlinear Parameter: ( )110044.0 −− ⋅= mWγ . 

• Attenuation Typical at 1550nm: kmdB /6.2=α . 

• Birefringence: . 4107 −×
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APPENDIX B: VPI Models and Numerical 
Parameters 
 

The numerical simulations in this Thesis were performed using the software VPI 

Transmission Maker [VPI05]. It is a graphical programming software that includes an 

important library of optical components. In our study we just needed to model 

different pulses propagation through different fibers, so the simulation model was 

very simple. The simulation model is shown in Figure B.1 and the principal 

numerical parameters in Table B.1. 

 

Figure B.1: VPI Model used for simulations. 
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Parameter Value 

Time Windows 40ps (*) 

Frequency Bandwidth 204.8 THz 

Bit Rate Default 1/40 x 1012 bps 

Table B.1: Numerical Parameters. 

(*) for very small frequency shifts, this value was increased to 80ps or 160ps. 

The parameters’ values in an xml format are shown next for each type of fiber. 

 

1) Photonic Crystal Fiber Simulation Parameters: 

i. Global Parameters: 

<?xml version='1.0' encoding='UTF-8' ?> 
<!DOCTYPE SAVEDSTATES> 
<SAVEDSTATES master="PhotonicCrystalFiberThesis.vtmu"> 
<STATEVALUE unit="s" category="Global" label="TimeWindow" value="4e-
11" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Global" label="InBandNoiseBins" 
value="OFF" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Global" label="BoundaryConditions" 
value="Periodic" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Global" label="LogicalInformation" 
value="ON" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Global" label="SampleModeBandwidth" 
value="204.8e12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Global" 
label="SampleModeCenterFrequency" value="384.615e12" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Global" label="SampleRateDefault" 
value="204.8e12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="bit/s" category="Global" label="BitRateDefault" 
value="1/4e-11" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="PulsedLaser" 
label="PulseCenterFrequency" value="384.615e12" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="W" category="PulsedLaser" label="AveragePower" 
value="5e-3" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="PulsedLaser" label="RepeatitionRate" 
value="50e6" __key="value" type="float"></STATEVALUE> 
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<STATEVALUE unit="s" category="PulsedLaser" label="To" value="100e-
15" __key="value" type="float"></STATEVALUE> 
</SAVEDSTATES> 
 
 

ii. Fiber Parameters: 

 
<?xml version='1.0' encoding='UTF-8' ?> 
<!DOCTYPE SAVEDSTATES> 
<SAVEDSTATES master="UniversalFiberFwd.vtmg"> 
<STATEVALUE unit="" category="Physical" label="NumberOfFiberSpans" 
value="1" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="m" category="Physical" label="Length" value="0.1" 
__key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="AttenuationDescription" value="AttenuationFile" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="dB/m" category="Physical" label="Attenuation" 
value="0.2e-3" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="AttFilename" 
value="Attenuation710.txt" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Physical" label="ReferenceFrequency" 
value="PulseCenterFrequency" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="DispersionDescription" 
value="DispersionFile" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="s/m^2" category="Physical" label="Dispersion" 
value="16e-6" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="s/m^3" category="Physical" label="DispersionSlope" 
value="0.08e3" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="DispersionFilename" 
value="Dispersion710.txt" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="RamanScattering" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="RamanFilename" 
value="RamanNew.txt" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="RamanAdjustmentFactors" value="0.5" __key="value" 
type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="SpontaneousRamanScattering" value="No" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="RamanFraction" 
value="0.17" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="K" category="Physical" label="Temperature" 
value="300.0" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="s/(m^1/2)" category="Physical" 
label="PMDCoefficient" value="0.1e-12/31.62" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Physical" label="CorrelationLength" 
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value="50.0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="NonlinearDescription" 
value="NonlinearFile" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="m^2/W" category="Physical" label="NonLinearIndex" 
value="8.2e-19" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="NonLinearFilename" 
value="NonLinear710.txt" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CoreAreaDescription" 
value="CoreAreaParameter" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="m^2" category="Physical" label="CoreArea" 
value="1.77e-12" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CoreAreaFilename" 
value="" __key="value" type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="OverlapIntegralFilename" value="" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="EventLossDescription" 
value="EventLossParameter" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="dB" category="Physical" label="EventLoss" 
value="0.0" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="EventLossFilename" 
value="" __key="value" type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" label="FreqResolutionNB" 
value="25e9" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" label="FreqResolutionSFB" 
value="25e9" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" 
label="GridReferenceFrequency" value="PulseCenterFrequency" 
__key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" 
label="SpectralDiscretizerDescription" value="FixedFrequencies" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" 
label="NoiseCenterFrequency" value="PulseCenterFrequency" 
__key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" label="NoiseBandwidth" 
value="10e12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="dB" category="Numerical" label="AccuracyGoal" 
value="0.01" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" 
label="IterationAccuracyFactor" value="10.0" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="InitialStepSize" 
value="0.01" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="MinimumStepSize" 
value="0.005" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" label="SplitStepType" 
value="Symmetric" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="MaxStepWidth" 
value=".1" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Numerical" label="MaxPhaseChange" 
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value="0.5" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="MeanStepWidth" 
value="1.0e3" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="WidthDeviation" 
value="100.0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="PolarizationAnalysis" 
value="Scalar" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="NoisePolarization" 
value="Unpolarized" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="DistortionPolarization" value="Unpolarized" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="NonlinearAdjustmentFactors" value="1.0 1.0 1.0 1.0 0.5" 
__key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="WidthRandomNumberSeed" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="ScatteringRandomNumberSeed" value="0" __key="value" 
type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="FreezeWidth" value="0" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="FreezeScattering" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="CorrelationScatteringFactor" value="0.0" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="BirefringenceProfile" 
value="None" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="BirefringenceFileDataType" value="RotationMatrices" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="BirefringenceInputFilename" value="" __key="value" 
type="inputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="BirefringenceOutputFilename" value="" __key="value" 
type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="LikelihoodRatiosFilename" value="" __key="value" 
type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="FieldAnalysis" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="SkipFieldAnalysis" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="SPM_EC" value="Yes" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="XPM_EC" value="Yes" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="XPM_MC" value="Yes" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="IntraBandRaman" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="InterBandRaman" 
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value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="HigherOrderNLEffects" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="NoiseBinInteractions" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="DistortionInteractions" value="Yes" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="Options" value="" 
__key="value" type="string"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="PowerPlotPoints" 
value="101" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="LogFilename" value="" 
__key="value" type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ConserveMemory" 
value="No" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="NoiseRandomNumberSeed" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="Active" value="On" 
__key="value" type="enumeration"></STATEVALUE> 
</SAVEDSTATES> 
 
 

iii. Pulse Parameter: 

 

<?xml version='1.0' encoding='UTF-8' ?> 
<!DOCTYPE SAVEDSTATES> 
<SAVEDSTATES master="TxPulseSechOpt.vtmg"> 
<STATEVALUE unit="Hz" category="Physical" label="SampleRate" 
value="SampleRateDefault" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="bit/s" category="Physical" label="BitRate" 
value="BitRateDefault" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Physical" label="EmissionFrequency" 
value="PulseCenterFrequency" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="W" category="Physical" label="PeakPower" value="! 
&quot; expr {AveragePower} / ({RepeatitionRate} * {To})&quot;" 
__key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="s" category="Physical" label="FWHM" value="!&quot; 
expr {To}*2* sqrt( log(2) )&quot;" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CenterPosition" 
value="0.5" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Physical" label="InitialPhase" 
value="0.0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Physical" label="Azimuth" value="0" 
__key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Physical" label="Ellipticity" 
value="0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PreSpaces" value="0" 
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__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PostSpaces" value="0" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PRBS_Type" 
value="PRBS" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="MarkProbability" 
value="0.5" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PRBS_Order" value="7" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="MarkNumber" value="7" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CodeWord" value="" 
__key="value" type="intarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="InputFilename" 
value="" __key="value" type="inputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" label="ExcessPulseSlots" 
value="3" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="RandomNumberSeed" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="OutputFilename" 
value="" __key="value" type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ControlFlagReset" 
value="Continue" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ControlFlagWrite" 
value="Overwrite" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="OutputDataType" 
value="Blocks" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ChannelLabel" value="" 
__key="value" type="string"></STATEVALUE> 
</SAVEDSTATES> 
 
 

2) Polarization maintaining fiber parameters: 

 

i. Global Parameters: 

 
<?xml version='1.0' encoding='UTF-8' ?> 
<!DOCTYPE SAVEDSTATES> 
<SAVEDSTATES master="PhotonicCrystalFiber31.vtmu"> 
<STATEVALUE unit="s" category="Global" label="TimeWindow" value="80e-
12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Global" label="InBandNoiseBins" 
value="OFF" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Global" label="BoundaryConditions" 
value="Periodic" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Global" label="LogicalInformation" 
value="ON" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Global" label="SampleModeBandwidth" 
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value="204.8e12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Global" 
label="SampleModeCenterFrequency" value="193.1e12" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Global" label="SampleRateDefault" 
value="204.8e12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="bit/s" category="Global" label="BitRateDefault" 
value="1/80e-12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="PulsedLaser" 
label="PulseCenterFrequency" value="193.1e12" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="W" category="PulsedLaser" label="AveragePower" 
value="5.5e-3" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="PulsedLaser" label="RepeatitionRate" 
value="48e6" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="s" category="PulsedLaser" label="To" value="100e-
15" __key="value" type="float"></STATEVALUE> 
</SAVEDSTATES> 
 
 

ii. Fiber Parameters: 

 
<?xml version='1.0' encoding='UTF-8' ?> 
<!DOCTYPE SAVEDSTATES> 
<SAVEDSTATES master="UniversalFiberFwd.vtmg"> 
<STATEVALUE unit="" category="Physical" label="NumberOfFiberSpans" 
value="1" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="m" category="Physical" label="Length" value="0.1" 
__key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="AttenuationDescription" value="AttenuationParameter" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="dB/m" category="Physical" label="Attenuation" 
value="2.6e-3" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="AttFilename" 
value="AttenuationL01.txt" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Physical" label="ReferenceFrequency" 
value="PulseCenterFrequency" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="DispersionDescription" 
value="DispersionParameters" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="s/m^2" category="Physical" label="Dispersion" 
value="1.177e-5" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="s/m^3" category="Physical" label="DispersionSlope" 
value="0.08e3" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="DispersionFilename" 
value="DispersionL01.txt" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="RamanScattering" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="RamanFilename" 
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value="&quot;$BNROOT/data/UFM/RamanGain.dat&quot;" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="RamanAdjustmentFactors" value="0.5" __key="value" 
type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="SpontaneousRamanScattering" value="No" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="RamanFraction" 
value="0.17" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="K" category="Physical" label="Temperature" 
value="300.0" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="s/(m^1/2)" category="Physical" 
label="PMDCoefficient" value="0.1e-12/31.62" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Physical" label="CorrelationLength" 
value="50.0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="NonlinearDescription" 
value="NonlinearIndexParameter" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="m^2/W" category="Physical" label="NonLinearIndex" 
value="2.6e-20" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="NonLinearFilename" 
value="NonLinearL01.txt" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CoreAreaDescription" 
value="CoreAreaParameter" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="m^2" category="Physical" label="CoreArea" 
value="23.76e-12" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CoreAreaFilename" 
value="Area710.txt" __key="value" type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" 
label="OverlapIntegralFilename" value="" __key="value" 
type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="EventLossDescription" 
value="EventLossParameter" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="dB" category="Physical" label="EventLoss" 
value="0.0" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="EventLossFilename" 
value="" __key="value" type="inputfilearray"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" label="FreqResolutionNB" 
value="100e9" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" label="FreqResolutionSFB" 
value="100e9" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" 
label="GridReferenceFrequency" value="PulseCenterFrequency" 
__key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" 
label="SpectralDiscretizerDescription" value="FixedFrequencies" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" 
label="NoiseCenterFrequency" value="193.1e12" __key="value" 
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type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Numerical" label="NoiseBandwidth" 
value="10e12" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="dB" category="Numerical" label="AccuracyGoal" 
value="0.01" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" 
label="IterationAccuracyFactor" value="10.0" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="InitialStepSize" 
value="1000.0" __key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="MinimumStepSize" 
value="1.0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" label="SplitStepType" 
value="Symmetric" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="MaxStepWidth" 
value="1.0e3" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Numerical" label="MaxPhaseChange" 
value="0.05" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="MeanStepWidth" 
value="1.0e3" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="m" category="Numerical" label="WidthDeviation" 
value="100.0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="PolarizationAnalysis" 
value="Scalar" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="NoisePolarization" 
value="Unpolarized" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="DistortionPolarization" value="Unpolarized" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="NonlinearAdjustmentFactors" value="1.0 1.0 1.0 1.0 0.5" 
__key="value" type="floatarray"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="WidthRandomNumberSeed" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="ScatteringRandomNumberSeed" value="0" __key="value" 
type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="FreezeWidth" value="0" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="FreezeScattering" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="CorrelationScatteringFactor" value="0.0" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="BirefringenceProfile" 
value="None" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="BirefringenceFileDataType" value="RotationMatrices" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="BirefringenceInputFilename" value="" __key="value" 
type="inputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="BirefringenceOutputFilename" value="" __key="value" 
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type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="LikelihoodRatiosFilename" value="" __key="value" 
type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="FieldAnalysis" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="SkipFieldAnalysis" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="SPM_EC" value="Yes" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="XPM_EC" value="Yes" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="XPM_MC" value="Yes" 
__key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="IntraBandRaman" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="InterBandRaman" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="HigherOrderNLEffects" 
value="No" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="NoiseBinInteractions" 
value="Yes" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" 
label="DistortionInteractions" value="Yes" __key="value" 
type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="Options" value="" 
__key="value" type="string"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="PowerPlotPoints" 
value="101" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="LogFilename" value="" 
__key="value" type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ConserveMemory" 
value="No" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="NoiseRandomNumberSeed" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="Active" value="On" 
__key="value" type="enumeration"></STATEVALUE> 
</SAVEDSTATES> 
 
 

iii. Pulse Parameters: 

 
<?xml version='1.0' encoding='UTF-8' ?> 
<!DOCTYPE SAVEDSTATES> 
<SAVEDSTATES master="TxPulseSechOpt.vtmg"> 
<STATEVALUE unit="Hz" category="Physical" label="SampleRate" 
value="SampleRateDefault" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="bit/s" category="Physical" label="BitRate" 
value="BitRateDefault" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="Hz" category="Physical" label="EmissionFrequency" 
value="PulseCenterFrequency" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="W" category="Physical" label="PeakPower" 
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value="!&quot; expr {AveragePower}/({RepeatitionRate}*{To})&quot;" 
__key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="s" category="Physical" label="FWHM" value="!&quot; 
expr {To}*2* sqrt( log(2) )&quot;" __key="value" 
type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CenterPosition" 
value="0.5" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Physical" label="InitialPhase" 
value="0.0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Physical" label="Azimuth" value="0" 
__key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="deg" category="Physical" label="Ellipticity" 
value="0" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PreSpaces" value="0" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PostSpaces" value="0" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PRBS_Type" 
value="PRBS" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="MarkProbability" 
value="0.5" __key="value" type="float"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="PRBS_Order" value="7" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="MarkNumber" value="7" 
__key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="CodeWord" value="" 
__key="value" type="intarray"></STATEVALUE> 
<STATEVALUE unit="" category="Physical" label="InputFilename" 
value="" __key="value" type="inputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Numerical" label="ExcessPulseSlots" 
value="3" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="RandomNumberSeed" 
value="0" __key="value" type="int"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="OutputFilename" 
value="" __key="value" type="outputfile"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ControlFlagReset" 
value="Continue" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ControlFlagWrite" 
value="Overwrite" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="OutputDataType" 
value="Blocks" __key="value" type="enumeration"></STATEVALUE> 
<STATEVALUE unit="" category="Enhanced" label="ChannelLabel" value="" 
__key="value" type="string"></STATEVALUE> 
</SAVEDSTATES> 
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APPENDIX C: MATLAB CODE 
 

In this appendix we include the Matlab code for the semi-analytical method for the 

SSFS described in Chapter 7. 

 

%------------------------------------------------- 
% Roque Gagliano 
% Semi-analytic method for soliton propagation in an optical-fiber 
 
%------------------------------------------------ 
%------- Fiber Parameters 
lambdao=780e-9; %  Initial Cetral Wavelength in m 
 
% loading files with arbitrary parameters: 
 
load DispersionL01.txt  
load AttenuationL01.txt 
load NonLinearL01.txt 
 
lambdax=DispersionL01(:,1)*1e-9*1e2; % Wavelength in cm 
Dy=DispersionL01(:,2); % Dispersion profile in psec/nm/km 
Do=interp1(lambdax,Dy,lambdao*1e2,'linear'); % Initial dispersion in psec/nm km 
 
alfao=AttenuationL01(:,2)./(10*log10(exp(1))); % loss parameter in 1/km 
lalfao=AttenuationL01(:,1)*1e-9*1e2; % Wavelength in cm 
 
gamma0=NonLinearL01(:,2); % nonlinear coef in 1/(Wm) 
lgamma=NonLinearL01(:,1)*1e-9*1e2; 
 
Gammao=interp1(lgamma,gamma0,lambdao*1e2,'linear'); % Nonlinear Parameter in 
1/(Wm) 
Length=10; % Length in m 
 
Corr=1.5; % Fiber dependent Parameter Set to 1.5 
 
%------------------------------------------------ 
%-------  Initial Soliton Parameter 
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c=3e8; % m/s 
To=[20:4:300]*1e-15 ; % Initial Soliton width (sec) 
vo=c/lambdao; % Initial Frequency (Hz) 
Po=(lambdao.^2).*(Do*1e-6)./(Gammao*2*pi*c*(To.^2)); %Initial Peak Power for 
Soliton 
 
%------------------------------------------------ 
 
 
Spams=1000; % Number of spans that the fiber is choped 
 
for j=1:length(To) 
     
% Initialization 
T(j,1)=To(j)*1e12; % To in psec 
l=Length/Spams*1e-3; % Spam Legnth in km 
lambda(j,1)=lambdao*1e2; % Units is cm 
v(j,1)=vo*1e-12; % Initial frequency in Thz 
D(j,1)=Do*1e2; % Initial dispersion in psec/cm2 
P(j,1)=Po(j); 
 
for i=1:Spams, 
    dv(j,i)=-((lambda(j,i).^2).*D(j,i)*133.58*Corr./(T(j,i).^4))*l; % Frequency Shift in 
THz 
    v(j,i+1)=v(j,i)+dv(j,i); 
    lambda(j,i+1)=(c./(v(j,i+1)*1e12))*1e2; % New lambda in cm  
    D(j,i+1)=interp1(lambdax,Dy,lambda(j,i+1),'linear')*1e2; % Dispersion in 
psec/cm2 
    alfa(j,i+1)=interp1(lalfao,alfao,lambda(j,i+1),'linear'); % Attenuation in 1/km 
    Gamma(j,i+1)=interp1(lgamma,gamma0,lambda(j,i+1),'linear'); 
    T(j,i+1)=((lambda(j,i+1)^3).*D(j,i+1))./(Gamma(j,i+1)*2*pi.*c.*P(j,i).*exp(-
alfa(j,i+1)*l).*lambda(j,i).*T(j,i))*1e12; % T in psec 
    P(j,i+1)=(lambda(j,i+1)^2).*D(j,i+1)./(Gamma(j,i+1)*2*pi*c.*T(j,i+1)^2)*1e12; 
end 
end 
 
% Resuls display 
 
disp(T(:,1)) 
disp(P(:,1)) 
disp(T(:,Spams)*1e3) 
disp(P(:,Spams)) 
disp(-(v(:,Spams)-v(:,1))*1e3)  

117 



APPENDIX D: Submitted Publication 
 

Some of the results of the work done for this Master Thesis were included in the 

following article submitted for publication at OSA Optics Letters in April 2005. 

 

Semi-analytical model of soliton self-frequency shift 
in an optical fiber 

 

Roque Gagliano Molla, Student Member, IEEE and Rongqing Hui, Senior Member, 

IEEE 

 

Department of Electrical Engineering and Computer Science 

The University of Kansas, Lawrence, KS 66045 

 

 

Abstract:   

A semi-analytical model is proposed to investigate the characteristics of soliton self-

frequency shift (SSFS) in optical fibers. SSFS in two different types of fibers were 

evaluated and the results agree very well with those of numerical simulations.  We 

show that when the frequency shift is small enough, it is inversely proportional to the 

fourth power of the initial soliton pulse width. However, with large frequency shift, 

this fourth power rule needs to be modified.   

 

Index Terms— Optical propagation in nonlinear media, optical soliton, Raman 
scattering.  
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I. Introduction 

Soliton self frequency shift (SSFS) in optical fiber is due to the Stimulated Raman 

Scattering (SRS). Once the pulse optical power level, the chromatic dispersion and 

the fiber nonlinearity satisfy a well-known soliton condition, the Raman-shifted 

optical pulses will be transformed into wavelength-shifted solitons and the amount of 

SSFS can generally be adjusted by changing the power level of the optical pulses [1].   

In recent years, new advances in high-power femtosecond fiber lasers and highly 

nonlinear optical fibers have made SSFS more practical to obtain wavelength tunable 

optical pulses. Because of its potential applications in optical communications and 

biomedical imaging where wavelength tunability is desired, SSFS has been 

investigated extensively. Experiments of SSFS in both 1550 – 2000nm and 780 – 

1000nm wavelength regions have been reported [2, 3] and the results have been 

analyzed both analytically and numerically.  

The analytical formulation of Gordon [4] predicted that, the amount of SSFS ( )υ∆  

is inversely proportional to the forth power of the FWHW optical pulse width ( )τ  at 

the fiber input, that is, . This result successfully explained the 

experimental results reported in [1] where pulse width in the range of 420fs - 45ps 

had been used. Although reference [4] provides a nice simple formula which predicts 

the general behavior of SSFS, several effects were neglected such as fiber attenuation 

and wavelength dependency of dispersion and nonlinearity. In fact, due to fiber 

attenuation, the pulse peak power will be reduced and pulse width will be increased 

while propagating along the fiber. As a result, the frequency shift tents to saturate as 

demonstrated in [3]. In addition, as the central wavelength of an optical pulse shifts 

while propagating along the fiber due to SSFS, its behavior will be determined by the 

fiber parameters and the pulse energy at that specific wavelength. Because the amount 

of SSFS is typically larger than 100nm, the wavelength dependent nature of 

chromatic dispersion and nonlinearity may play important roles and they have to be 

taken into account in theoretical calculations. On the other hand, numerical simulation 

using split-step Fourier method has been proven to be effective and accurate to model 

4, =∝∆ − xxτυ
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the effect of SSFS. It has been used to predict the amount of wavelength shift versus 

pulse optical power and pulse width. However, because femtosecond level pulse 

widths are usually used, very wide bandwidth is required in the numerical simulation 

and the process is generally very time-consuming. Another drawback of numerical 

simulation is that it does not directly show the effects of various physical mechanisms 

behind the results.   

In this letter, we demonstrate a simple semi-analytic method to model SSFS in 

optical fibers. By taking into account fiber attenuation and wavelength dependent 

dispersion and nonlinearity, we show that the SSFS becomes less sensitive to the 

input pulse width when this width is narrow enough and the fourth power rule 

predicted in [4] may need to be modified for many practical applications. The results 

of semi-analytic calculations are found to be in good agreement with numerical 

simulations using split-step Fourier method. Our results also indicate that the fourth-

power rule predicted in [1] is accurate when the wavelength shift is small and the 

fiber loss is negligible. 

 

II. SEMI-ANALYTIC FORMULATION 

Nonlinear optical pulse propagation in optical fibers can be modeled by an 

extended nonlinear Schrödinger equation (NLS) in which the effect of Raman 

scattering is included [5]: 
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Where A(z, t) is the pulse envelope. The left-hand side represents the linear effects, 

α is the fiber loss, β1 the group velocity, β2 and β3 the 1st order and the 2nd order 

dispersions, respectively. The right-hand side represents the non-linear effects, where 

γ is the nonlinear coefficient and R(t) is the response function that includes both the 

electronic and the vibration (Raman) contribution [6,7]: 
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( ) ( ) ( ) ( )thftftR RRR +−= δ1       (2) 

Where hR(t) is the Raman response function obtained from the Raman gain 

spectrum of the fiber, fR represents the fractional contribution of the delayed Raman 

response to nonlinear polarization. 

When we neglect the fiber attenuation and consider that all fiber parameters are 

independent of the wavelength, a closed-form analytical relationship between the 

soliton central frequency shift and its initial pulse width can be found [4]: 
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       (3) 

Where is the dispersion parameter in [ps/cm2
2 /2)( λβπλ cD −= 2], λ is the 

wavelength in [cm] and T0 = τ /1.763 is the pulse width in [ps]. The proportionality 

constant K is a fiber type- dependent parameter that is related to the value of the 

Raman Gain. Although this analytical solution is simple, its derivation was based on a 

single wavelength of the optical signal and therefore the wavelength dependency of 

fiber parameters was not considered. Equation (3) is accurate when the amount of 

pulse wavelength shift is small. In recently reported SSFS experiments, the pulse 

wavelength shift can be as high as several hundred nanometers [3]. In this case, fixed-

wavelength approximation is no longer valid and eq.(3) needs to be modified. 

Because different type of fibers may have very different wavelength dependency of 

their key parameters, D(λ) and γ(λ) and α(λ), therefore, a closed-form analytical 

solution may not be feasible. However, a semi-analytical formulation would be very 

useful to significantly increase the speed of calculation compared to numerical 

simulations, while maintaining excellent accuracy. 

In order to obtain a semi-analytical solution, we truncate fiber into short sections, 

within each section, a fixed signal wavelength can be assumed and fiber parameters at 

this specific wavelength can be used. The optical frequency of a soliton passing 

through a short fiber section from z to z + ∆z can be expressed as 

( ) ( ) ( )( ) ( )
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Where )(zυ is the pulse optical frequency and T0(z) is the pulse width at the input. 

D(λ(z)) is the fiber dispersion parameter at the wavelength λ(z).  As SSFS is a non-

elastic effect, in addition to frequency shift, the peak power of the pulse also changes 

after passing through the short section. This peak power change is caused by three 

major effects, namely, fiber attenuation, pulse width change and energy loss of each 

photon due to the red-shift of the wavelength. Therefore, the pulse peak power at the 

output of the short fiber section is: 

( ) ( ) ( )
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Where Pp(z) is the peak power at the input of the fiber section. Assuming a 

fundamental soliton is maintained when pulses propagate along the fiber, the soliton 

peak power is also related to its width by: 
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Combining equations (4 - 6), an expression of pulse width at z + ∆z can be obtained 

as:  
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Where )(/)( zzczz ∆+=∆+ υλ is the wavelength of the pulse at the output of the 

fiber section which can be obtained by equation (5); ))(( zzD ∆+λ , ))(( zz ∆+λγ  and 

))(( zz ∆+λα are the dispersion nonlinearity parameter and fiber attenuation, 

respectively, evaluated at this new wavelength. With the parameters of a soliton pulse 

know at the input, equations (5) and (7) can be used together to calculate the central 

frequency and the pulse width of the wavelength shifted soliton at the output of a 

short fiber section, these parameters can, in turn, be used as the input to the next fiber 

section. SSFS characteristics of a long fiber can be obtained by dividing the fiber into 

short sections and repeating this calculation section by section, along the fiber. 

Because the transfer function of each fiber section described by equations (5) and (7) 
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is analytical, the calculation is straightforward and fast. In addition, since the 

wavelength of the optical pulse at different fiber sections may be very different due to 

SSFS, precise fiber parameters at each section can be used corresponds to the exact 

signal wavelength at that section. This assures the accuracy of the calculation.  

 

III. RESULTS AND DISCUSSION 

In order to evaluate the accuracy of our semi-analytical model, the results were 

compared with those of numerical simulations using VPI Transmission Marker [8] 

where split-step Fourier method was used.  

First we evaluated SSFS in a 100m polarization maintaining fiber (3M FS-PM-

7811) with wavelength dependent dispersion ( )75 1055.110877.11 −− ×−×+= λD  in 

[ps/nm2], where λ is in [cm], and wavelength-independent loss and 

nonlinearity kmdB /6.2=α  and ( )110044.0 −− ⋅= mWγ .The wavelength of the input 

soliton pulse is set at 1550nm. Soliton frequency shift versus input optical pulse width 

is shown in Fig.1, in which, results of semi-analytical calculation represented by 

triangles agree well with those obtained by numerical simulations represented by 

open circles. The vertical axis at the right indicates the exponent x. This parameter x 

is equal to 4 when the pulse width is wide and the amount of frequency shift is small 

as predicted by Gordon [4]. However, with pulse width narrower than 100fs, the 

frequency shift becomes less sensitive to the pulse width and this slope can be 

reduced significantly depending on fiber parameters. In this calculation, since the 

fiber loss is only 0.26dB, for a 100m fiber-length, the impact in the results is 

negligible. It needs to be mentioned that when the pulse width is narrower than 20fs, 

the nonlinear Schrödinger equation (1) is no longer accurate because the narrowband 

approximation fails [3] and that is beyond the scope of this work. 

In order to show the effectiveness of this method, we also investigated SSFS in a 

10m long photonic crystal fiber (PCF) with zero-dispersion wavelength at 710nm 

[9,10]. The wavelength dependent fiber parameters are linearly interpolated from the 

data listed in table 1. The wavelength of the input soliton pulses used in the 
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calculation is 780nm. 

 

λ (nm) D (ps/nm/km) D slope (ps/nm2/km) γ (W-1 km-1) α (dB/km) 
710 0 0.58 139 190 

600 -142 1.70 171 210 

800 68 0.59 122 170 

1000 148 0.25 92 130 

1550 185 -0.08 49 80 

 
Table 1: Photonic Crystal Fiber NL-18-710 characteristics. 
 

Fig. 2, shows the frequency shift versus soliton pulse width in the PCF calculated 

by semi-analytical model (triangles) and numerical simulations (open cycles). 

Because of the high loss in PCF, its impact cannot be neglected. To illustrate this 

effect, soliton frequency shift calculated without fiber loss is also plotted in Fig.2 

(squares) for comparison. Similar to what happened in the polarization maintaining 

fiber, the exponent x is equal to 4 at relatively wide pulse width and is reduced 

significantly when the pulse width is narrower than 100fs.  

In all the cases, there is also agreement between the semi-analytical solution and 

the numerical solution in both the output peak power and the output pulse width. The 

output fundamental order of the soliton from the numerical solution was verified.  

Fig.3 shows an example of the wavelength shift as a function of the fiber length for 

different pulse widths calculated with semi-analytical model (continuous) and 

numerical simulations. The results clearly show saturation in the frequency shift at 

long fiber lengths as has been demonstrated experimentally [3].  The discrepancy 

between semi-analytical model and numerical simulation when the pulse width is 

narrower than 40fs is attributed to the effect of higher order dispersion, which is not 

included in the semi-analytical model 

 

IV. CONCLUSION 
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In this letter, we have introduced a semi-analytical method for the modeling of 

SSFS in optical fibers. Calculation using this model is fast and is provides a better 

understanding of the physical process involved. By comparing the calculated results 

with numerical simulations in two different fiber types, the accuracy of semi-

analytical modeling is verified. When frequency shift is small enough, exponent x is 

equal to 4, which agrees with previous works. 
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Figure captions: 

 

Fig. 1.  Frequency shift versus pulse width for a 100m PMF in log scale. The straight 

line represent the analytical result in [4], triangles the complete semi-analytical 

solution and circles the numerical results.  The figure also shows the difference 

on the exponent x from the analytical value of 4 

Fig. 2.  Frequency shift and pulse width for a 10m PCF in log scale. The straight line 

represent the analytical result in [4], squares the semi-analytical solution with no 

losses, triangles the complete semi-analytical solution and circles the numerical 

result.  The figure also shows the difference on the exponent x from the 

analytical value of 4. 

Fig. 3.  Wavelength shift and fiber length for a PCF for different soliton pulse widths. 

Circles  represent the numerical data. 
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Figure 1 
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Figure 2 
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Figure 3 
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