
Building a Reliable Multicast ServiceBuilding a Reliable Multicast Service
based on based on

Composite ProtocolsComposite Protocols

Sandeep Subramaniam

Master’s Thesis Defense
The University of Kansas

06.13.2003

Committee:
Dr. Gary J. Minden (Chair)
Dr. Joseph B. Evans
Dr. Perry Alexander

2

Outline

• Motivation
• Composite Protocol (CP) Framework
• Design of a composable service – multicast example
• Implementation of service over Ensemble
• Testing and Performance Evaluation
• Summary & Future Work

3

Basic definitions

• Protocol component
– Single function entity that embeds minimal protocol functionality
– E.g. checksum, reliable-delivery, fragment

• Composite protocol
– Collection of protocol components arranged in orderly fashion
– E.g. An IP-like composite protocol would consist of forwarding,

fragment and checksum protocol components.

• Composable service
– Collection of 2 or more co-operating composite-protocols.
– E.g. multicast consists of multicast routing, group management and

replication of data

4

Advantages of Composite Protocols

• Protocols implemented as collections of single-function
components
– Reusability
– Flexibility
– Aid in formal verification, building correct protocols.
– Customization , fine tuned protocol stacks
– “Properties-in Protocol-out”

5

Motivation

• Motivation for composable service
– Apply the composite protocol approach to wider range of protocols

• Data and control plane protocols
• demonstrate feasibility and applicability
• Expand the library of protocol components

– Address issues of inter-protocol communication
• Building a network service addresses all above needs.
• Reliable multicast service chosen as an ideal example

– 3 co-operating protocols operating in tandem
• Reliable replication of data (multicast forwarding)
• Multicast routing
• Group management

6

Composite Protocol Framework

TSM RSM

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

Composite
Protocol Y

Composite
Protocol X

ENDPOINT B

Packet
 Memory

Packet
 Memory

Packet
 Memory

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

G
lo

ba
l M

em
or

y

RSM

RSM

TSM

TSM

TSM RSM

RSM

RSM

TSM

TSM

TSM RSM

G
lo

ba
l M

em
or

y

RSM

RSM

TSM

TSM

TSM RSM

RSM

RSM

TSM

TSM

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

7

Design of a Composable Service - Steps

• Decomposition
– Identify key functional entities in the monolithic counterpart.

• Specification of protocol components using AFSMs
– Represent each component as a pair of SMs (TSM & RSM)
– Specify local, SLP, packet and global memory requirement
– Identify data and control events

• Building the stacks
– Linear composition to yield composite protocol

• Deployment
– stacks to place on a particular network node

• Global memory objects for inter-stack communication

8

Step 1 - Decomposition (Multicast Service)

• Multicast routing based on DVMRP
• Group Management based on IGMP
• DVMRP

– Neighbor Discovery
– Route Exchange
– Spanning Tree
– Pruning
– Grafting

• IGMP
– Join/Leave

• Data
– Multicast Forwarding
– Reliable Multicast
– In-order Multicast

9

Step 2 – Specification

• Each functional component has to confirm to CP specs.
– Independent of other components

• Each protocol component specification consists of
– Pair of AFSMs – TSM and RSM
– Memory requirements

• Packet memory – bits on the wire or component header
• Local memory – maintaining local state information
• SLP Memory - memory local to the stack but pertaining to packet
• Global memory – external memory requirements

– Events:
• Data: packet arrival from component above/below
• Control : timers , application-component interaction

• Specify assumptions and parameters

10

Building the Stacks – Step 3

• Group related components into composite protocol -
linear composition

• Try re-using existing components

Multicast Routing

Pruning

Spanning Tree

Route Exchange

Neighbor Discovery

Fragment

Checksum

Grafting Reliable Multicast

Unicast Forward

Application

Multicast Forward

TTL

Fragment

Checksum

Replicator

Reliable Multicast

Join_Leave

Fragment

Checksum

Application

Group Management

TTL

Multicast Forward

Replicator

Application

Fragment

Checksum

Basic Multicast

11

Building the Stacks - Stack Ordering

• Determine the order of stacking among components
• Does order matter ?
• Property – Oriented

– Layer N provides a property to Layer N+1
– Order of component determines stack behavior
– E.g. reliable multicast stack

• Control – Oriented
– Components in stack are independent
– Layer N does not provide specific property to Layer N+1
– Order may affect performance not stack behavior
– E.g. multicast routing stack

Multicast Routing

Pruning

Spanning Tree

Route Exchange

Neighbor Discovery

Fragment

Checksum

Grafting

Reliable Multicast

Unicast Forward

Application

Multicast Forward

TTL

Fragment

Checksum

Replicator

Reliable Multicast

12

Deployment – Step 4

C1

C3

L2 L3

L1

S

C2

Multicast core
 router

Multicast leaf
 router

end hosts

Multicast routing
 stack

Group management
stack

Multicast data
 stack

13

Inter-stack Communication - Global Memory

• Addresses the issue of cross-
protocol communication

• Acts as a repository for data
shared among different stacks.

• Accessible to all components of
all composite protocol instances
at that endpoint

• Scope and extent greater than
any single protocol accessing it.

• Functional interface for
read/write

• Responsible for initialization
and maintenance of shared info

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

Packet
 Memory

Packet
 Memory

Packet
 Memory

SLP SLP

SLP SLP

SLP SLP

SLP SLP

G
lo

ba
l M

em
or

y

RSM

RSM RSM

TSM

SM

TSM

SM

SM

TSM

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

14

Global Memory – Features

• Separation of Protocols and Data Management
– Independence between protocols and global memory data management
– Protocol component expresses requirements for global memory access

through its external functions
– Protocols that write to /read from global objects need not agree on internal

data format

• Functional Interface
– Access to shared data only through write/read functional interfaces
– Encapsulates shared data
– Hides internal representation of global memory object

Global
Memory
object

WRITE

READ

WRITE

READ

15

Global Memory - Features

• Synchronization
– Each object solely responsible for providing synchronized access

to its shared data
– Synchronization not delegated to users of the shared object.
– Access control mechanism is implementation specific
– Semaphores or other mechanisms can be used

• Extensibility
– Object definition can be extended
– Internal data structures / external functions can be added
– Backward compatibility easily maintained

16

Implementation

• Overview of Ensemble
• Global Memory Implementation
• Operational overview of service
• Protocol Interaction through global memory

17

Ensemble

• Group communication system developed at Cornell
• Used as base framework for building composite protocol
• Reasons:

– Written in OCaml functional programming language, aiding for
formal analysis of code

– Ensemble uses linear stacking of layers to form stack
– Event handlers executed atomically
– Unbounded message queues between layers
– Provides uniform interface
– Support for dynamic linking of components , adding/removing

components from stack at run-time

18

Multicast Global Memory Objects

• Neighbor Table
– Stores 1-1 mapping between an interface and neighbor discovered

on that interface

• Routing Table
– Repository for unicast routes
– Metric and next-hop information for each route prefix stored

• Source Tree
– Maintains spanning tree for each multicast source in the n/w
– Contains list of dependent downstream neighbors for each source

19

Multicast Global Memory Objects (contd)

• Prune Table
– Contains core and leaf interface prune-state information for each

(source/group) pair in the n/w
– Interfaces can be in 3 states : un-pruned/pruned/grafted

• Group Table
– Stores current list of group members on each leaf interface
– Updated when members join/leave groups

20

Global Memory – Linux Shared Memory

• Shared memory – fastest form of IPC
– Single chunk of memory shared by 2 or more processes

• Steps in creating a global memory object
– Specify read/write functional interface using CamlIDL
– Implement functions using Linux shared memory system calls
– Handle concurrency issues by using semaphores
– Dynamically link global object with stacks at run-time

21

Functional Interface in CamlIDL

• CamlIDL
– stub code generator
– generates C stub code required for Caml/C interface based on IDL

specification
• Neighbor Table

– Write
• void write_ntable([in] struct ntable_entry ntable[], [in] int num)

– Read
• [int32] int getNeighborForInterface([in,int32] int intf)

struct ntable_entry {
int32 intf_addr; // interface IP address
int32 nbor_addr; // neighbor IP address
};

22

Multicast Service – Operational Overview

• Initialization

H1

A

C D

B

H2

1

32

1.1

3.2

3.1

2.2

2.1

1.2 Intf Nbor
1.2 1.1
2.1 2.2
3.1 3.2

Intf Nbor
1.1 1.2

Intf Nbor
3.2 3.1

Intf Nbor
2.2 2.1

Net Met Nhop
1 0 1.1
2 1 1.2
3 1 1.2

Net Met Nhop
1 0 1.2
2 0 2.1
3 0 3.1

Net Met Nhop
1 1 2.1
2 0 2.2
3 1 2.1

Net Met Nhop
1 1 3.1
2 1 3.1
3 0 3.2

Net Dn Nbors
1 2.2,3,2
2 1.1,3.2
3 1.1, 2.2

G1

G1

G1

G1

prune

src grp intf st
1.1 G1 2.1 P

3.1 U
1.2 U

prune

src grp intf st
1.1 G1 2.1 P

3.1 P
1.2 U

pr
un

e

G1

G1

graft

src grp intf st
1.1 G1 2.1 G

3.1 P
1.2 U

gr
af

t

• Routing stack runs

• Neighbor Table updated

• Routing Table updated

• Source Tree updated

• H1, H2 joins group G1
• A multicasts to group G1
• H1 leaves G1
• H2 leaves G1
• H1 joins G1 again

23

Protocol Interactions thru Global Memory

Neighbor
Table

Routing
Table

Source
Tree

Prune
Table

Group
Member

Table

Neighbor
Discovery

Spanning
Tree

Route
 Exchange

Pruning

Grafting

Multicast
Forwarding

Global Memory
objects

Join
Leave

Global
Memory
object

WRITE

READ

WRITE

READ

Functional Interface

Unicast
Forwarding

Write access

Read access

Routing stack

Data stack

Group Mgmt
Wait

RPF
check

Multicast Forwarding - RSM

2,5

1 3

10,11 7

4

Leaf Intf
Check

Intf
Loop

GroupMem
Check

6
8

Dnstream
Check

7

RTable

PruneTable

SrcTree
Grp

Table

No leaf
intfs Group

member
exists No Group

member

Prune
Table

9

24

Performance Evaluation – Test Setup

• 15 node test network
• Ensemble test applications

similar to ping, ttcp used
• Metrics

– Stack/Component latency
– One-way end-to-end latency
– Basic Multicast Throughput
– Reliable Multicast Throughput
– Join/Leave latency

• Performance Improvement
Factors
– Native-code ocamlopt

compiler instead of byte-
code ocamlc

– Reducing global memory
lookups , use of caches

– Order of guards

• Pentium III 800 MHz
• 256 MB RAM, 20 GB HDD
• 100 Mbps NICs
• RedHat 7.1, Linux 2.4.6
• OCaml v3.06, native code

25

Stack Latency vs. Message Size

• 5 runs of 1000 pkts each
• Global memory lookup 1 in

100 pkts
• Stack latency increases with

message size due to
checksum component

 Stack Latency vs Msg Size

0

20

40

60

80

100

120

140

160

0 2 00 40 0 6 00 8 00 10 00 120 0 14 00

Msg Size in bytes

La
te

nc
y

in
 m

ic
ro

-s
ec

s

Router

Sender

Receiver

STACK
Mcast_Fw d
Fragment
Checksum
Replicator

(averaged for 1000 pkts, 5 runs each)

26

Throughput vs. Message size

• 5 runs , 1000 pkts
each

• Receivers 4 hops from
source

• Sharp decrease after
1300 bytes due to
fragmentation

• Stack A uses IP
fragment

• Stack B uses fragment
component

Throughput vs Msg Size
Averag ed o ver 4 receivers , each 4 ho ps fro m multicas t source

fo r 10 00 packets and 5 runs

0

5

10

15

2 0

2 5

3 0

3 5

4 0

4 5

5 0

0 2 0 0 4 0 0 6 0 0 8 0 0 10 0 0 12 0 0 14 0 0 16 0 0 18 0 0

M s g s iz e in b yt e s

Th
ro

ug
hp

ut
 in

 M
bp

s

Stack A
Stack B

Stack A
Mcast
Repl

Stack B
Mcast
Frag
Chk
Repl

27

Reliable Multicast Throughput vs. Error rate

• 5 runs, 1000 packets each
1000 bytes

• Receivers 4 hops from source
• Random_Drop component

simulated link-error rate
• Receiver-initiated NACK

scheme used for Reliable
component

Reliable Multicast Throughput

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12

% Error Rate

Th
ro

ug
hp

ut
 in

 M
bp

s

Average Throughput

Averaged over 4 receivers , each 4 hop s from mult icas t so urce
fo r 100 0 p ackets , p acket s ize 100 0 b ytes

Rel_Mcas t
Mcas t_ Fwd
Ucas t_ Fwd
Frag
Checksum
Rnd_ Dro p
Rep licato r

STACK

28

Other metrics

• Component Latencies at sender
and receiver nodes

• Join and Leave latencies

Join Latency
(milli-seconds)

1 405
2 458
3 535

Prune
Depth

Timer (seconds)
Query 0.1
Graft 0.1
Prune 0.1

Leave Latency : 146 ms

Msg Size MCAST FRAG CHKSUM REPL
Node bytes

Sender 1000 26.09 8.23 20.49 7.61
Receiver 1000 3.26 3.37 19.41 5.04

(in micro-seconds)

Component Latencies

Sender rate : 10 pkts/sec

29

Comparison with Linux IP Multicast

• Mrouted 3.9 evaluated
on same test network

• Iperf tool used to
measure end-to-end
throughput

• Composite multicast
just worse by a factor
of 2-3.
– SM execution adds

overhead
– Strict layering in

framework prevents
pointer arithmetic
on buffers

– Ensemble is a user-
level program

Mrouted vs Composite Multicast Throughput
Averaged over 4 receivers each 4 hops aw ay from multicast source

for 1000 packets and 5 runs

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

Packet size in bytes

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Mrouted Throughput
Composite Multicast

30

Summary

• Novel approach for building network services from
composite protocols

• Demonstrates applicability and feasibility of composite
protocol approach to data-plane and control-plane
protocols.

• Addresses challenging issue of inter-stack communication
using global memory

• All components and global memory objects implemented
and tested for both functionality and performance

31

Future Work

• The multicast service can be extended to support multi-
point to multi-point model

• Implement complex multicast protocols like MOSPF/ PIM
• Security and network management protocols
• Improve performance
• Deployment of service on an active network

32

Questions ?

	Building a Reliable Multicast Servicebased on Composite Protocols
	Outline
	Basic definitions
	Advantages of Composite Protocols
	Motivation
	Composite Protocol Framework
	Design of a Composable Service - Steps
	Step 1 - Decomposition (Multicast Service)
	Step 2 – Specification
	Building the Stacks – Step 3
	Building the Stacks - Stack Ordering
	Deployment – Step 4
	Inter-stack Communication - Global Memory
	Global Memory – Features
	Global Memory - Features
	Implementation
	Ensemble
	Multicast Global Memory Objects
	Multicast Global Memory Objects (contd)
	Global Memory – Linux Shared Memory
	Functional Interface in CamlIDL
	Multicast Service – Operational Overview
	Protocol Interactions thru Global Memory
	Performance Evaluation – Test Setup
	Stack Latency vs. Message Size
	Throughput vs. Message size
	Reliable Multicast Throughput vs. Error rate
	Other metrics
	Comparison with Linux IP Multicast
	Summary
	Future Work
	Questions ?

