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Outline

• Motivation
• Composite Protocol (CP) Framework
• Design of a composable service – multicast example
• Implementation of service over Ensemble 
• Testing and Performance Evaluation
• Summary & Future Work
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Basic definitions 

• Protocol component
– Single function entity that embeds minimal protocol functionality 
– E.g. checksum, reliable-delivery, fragment

• Composite protocol 
– Collection of  protocol components arranged in orderly fashion  
– E.g. An IP-like composite protocol would consist of forwarding, 

fragment and checksum protocol components.

• Composable service
– Collection of 2 or more co-operating composite-protocols.
– E.g. multicast consists of multicast routing, group management and 

replication of data
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Advantages of Composite Protocols

• Protocols implemented as collections of single-function 
components
– Reusability
– Flexibility 
– Aid in formal verification,  building correct protocols.
– Customization , fine tuned  protocol stacks
– “Properties-in Protocol-out”
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Motivation

• Motivation for composable service
– Apply the composite protocol approach to wider range of protocols 

• Data and control plane protocols 
• demonstrate feasibility and applicability 
• Expand the library of protocol components

– Address issues of inter-protocol communication 
• Building a network service addresses all above needs.
• Reliable multicast service chosen as an ideal example

– 3 co-operating protocols operating in tandem 
• Reliable replication of data (multicast forwarding)
• Multicast routing 
• Group management 



6

Composite Protocol Framework
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Design of a Composable Service - Steps

• Decomposition
– Identify key functional entities in the monolithic counterpart.

• Specification of protocol components using AFSMs
– Represent each component as a pair of SMs (TSM & RSM)
– Specify local, SLP, packet and global memory requirement
– Identify data and control events 

• Building the stacks 
– Linear composition to yield composite protocol

• Deployment
– stacks to place on a particular network node

• Global memory objects for inter-stack communication
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Step 1 - Decomposition (Multicast Service)

• Multicast routing based on DVMRP 
• Group Management based on IGMP
• DVMRP

– Neighbor Discovery
– Route Exchange
– Spanning Tree
– Pruning 
– Grafting

• IGMP
– Join/Leave

• Data
– Multicast Forwarding
– Reliable Multicast
– In-order Multicast 
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Step 2 – Specification 

• Each functional component has to confirm to CP specs.
– Independent of other components 

• Each protocol component specification consists of
– Pair of AFSMs – TSM and RSM 
– Memory requirements

• Packet memory – bits on the wire or component header
• Local  memory – maintaining local state information
• SLP Memory  - memory local to the stack but pertaining to packet 
• Global memory – external  memory requirements

– Events: 
• Data: packet arrival from component above/below
• Control : timers , application-component interaction

• Specify assumptions and parameters
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Building the Stacks – Step 3

• Group related components into composite protocol -
linear composition

• Try re-using existing components 
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Building the Stacks - Stack Ordering 

• Determine the order of stacking among components
• Does order matter ?
• Property – Oriented 

– Layer N provides a property to  Layer N+1
– Order of component determines stack behavior 
– E.g. reliable multicast stack 

• Control – Oriented 
– Components in stack are independent
– Layer N does not provide specific property to Layer N+1
– Order may affect performance not stack behavior
– E.g. multicast routing stack 
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Deployment – Step 4 
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Inter-stack Communication - Global Memory 

• Addresses the issue of cross-
protocol communication

• Acts as a repository for data 
shared among different stacks.

• Accessible to all components of 
all composite protocol instances 
at that endpoint

• Scope and extent greater than 
any single protocol accessing it.

• Functional interface for 
read/write 

• Responsible for initialization 
and maintenance of shared info
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Global Memory – Features 

• Separation of Protocols and Data Management
– Independence between protocols and global memory data management
– Protocol component expresses requirements for global memory access 

through its external functions 
– Protocols that write to /read from global objects need not agree on internal 

data format

• Functional Interface
– Access to shared data only through write/read functional interfaces
– Encapsulates shared data
– Hides internal representation of global memory object
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Global Memory - Features

• Synchronization
– Each object solely responsible for providing synchronized access

to its shared data 
– Synchronization not delegated to users of the shared object.
– Access control mechanism is implementation specific 
– Semaphores or other mechanisms can be used 

• Extensibility 
– Object definition can be extended 
– Internal data structures / external functions can be added
– Backward compatibility easily maintained
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Implementation 

• Overview of Ensemble 
• Global Memory Implementation
• Operational overview of service 
• Protocol Interaction through global memory 
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Ensemble 

• Group communication system developed at Cornell
• Used as base framework for building composite protocol
• Reasons:

– Written in OCaml functional programming language, aiding for 
formal analysis of code

– Ensemble uses linear stacking of layers to form stack
– Event handlers executed atomically
– Unbounded message queues between layers
– Provides uniform interface
– Support for dynamic linking of components , adding/removing 

components from stack at run-time
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Multicast Global Memory Objects 

• Neighbor Table 
– Stores 1-1 mapping between an interface and neighbor discovered 

on that interface

• Routing Table
– Repository for unicast routes 
– Metric and next-hop information for each route prefix stored

• Source Tree
– Maintains spanning tree for each multicast source in the n/w
– Contains list of dependent downstream neighbors for each source
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Multicast Global Memory Objects (contd)

• Prune Table 
– Contains core and leaf interface prune-state information for each 

(source/group) pair in the n/w
– Interfaces can be in 3 states : un-pruned/pruned/grafted

• Group Table
– Stores current list of group members on each leaf interface
– Updated when members join/leave groups
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Global Memory – Linux Shared Memory 

• Shared memory – fastest form of IPC 
– Single chunk of memory shared by 2 or more processes

• Steps in creating a global memory object 
– Specify read/write functional interface using CamlIDL
– Implement functions using Linux shared memory system calls
– Handle concurrency issues by using semaphores 
– Dynamically link global object with stacks at run-time
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Functional Interface in CamlIDL 

• CamlIDL 
– stub code generator 
– generates C stub code required for Caml/C interface based on IDL 

specification
• Neighbor Table 

– Write
• void write_ntable([in] struct ntable_entry ntable[], [in] int num)

– Read
• [int32] int getNeighborForInterface([in,int32] int intf)

struct ntable_entry {
int32 intf_addr; // interface IP address
int32 nbor_addr; // neighbor IP address
};
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Multicast Service – Operational Overview

• Initialization

H1

A

C D

B

H2

1

32

1.1

3.2

3.1

2.2

2.1

1.2 Intf Nbor
1.2 1.1
2.1 2.2
3.1 3.2

Intf Nbor
1.1 1.2

Intf Nbor 
3.2 3.1

Intf Nbor 
2.2 2.1

Net Met Nhop
1 0 1.1
2 1 1.2
3 1 1.2

Net Met Nhop
1 0 1.2
2 0 2.1
3 0 3.1

Net Met Nhop
1 1 2.1
2 0 2.2
3 1 2.1

Net Met Nhop
1 1 3.1
2 1 3.1
3 0 3.2

Net Dn Nbors
1 2.2,3,2
2 1.1,3.2
3 1.1, 2.2

G1

G1

G1

G1

prune

src grp intf st
1.1 G1 2.1 P

3.1 U
1.2 U

prune

src grp intf st
1.1 G1 2.1 P

3.1 P
1.2 U

pr
un

e

G1

G1

graft

src grp intf st
1.1 G1 2.1 G

3.1 P
1.2 U

gr
af

t

• Routing stack runs

• Neighbor Table updated

• Routing Table updated
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Protocol Interactions thru Global Memory
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Performance Evaluation – Test Setup

• 15 node test network
• Ensemble test applications 

similar to ping, ttcp used
• Metrics

– Stack/Component latency 
– One-way end-to-end latency
– Basic Multicast Throughput 
– Reliable Multicast Throughput
– Join/Leave latency

 

• Performance Improvement 
Factors
– Native-code ocamlopt

compiler instead of byte-
code ocamlc

– Reducing global memory 
lookups , use of caches

– Order of guards

• Pentium III 800 MHz
• 256 MB RAM, 20 GB HDD
• 100 Mbps NICs
• RedHat 7.1, Linux 2.4.6
• OCaml v3.06, native code
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Stack Latency vs. Message Size

• 5 runs of 1000 pkts each
• Global memory lookup 1 in 

100 pkts
• Stack latency increases with 

message size due to 
checksum component
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Throughput vs. Message size 

• 5 runs , 1000 pkts 
each

• Receivers 4 hops from 
source

• Sharp decrease after 
1300 bytes due to 
fragmentation

• Stack A uses IP 
fragment

• Stack B uses fragment
component
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Reliable Multicast Throughput vs. Error rate

• 5 runs, 1000 packets each 
1000 bytes

• Receivers 4 hops from source
• Random_Drop component 

simulated link-error rate
• Receiver-initiated NACK 

scheme used for Reliable 
component
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Other metrics

• Component Latencies at sender 
and receiver nodes

• Join and Leave latencies

Join Latency
(milli-seconds)

1 405
2 458
3 535

Prune 
Depth 

Timer (seconds)
Query 0.1
Graft 0.1
Prune 0.1

Leave Latency : 146 ms

Msg Size MCAST FRAG CHKSUM REPL
Node bytes 

Sender 1000 26.09 8.23 20.49 7.61
Receiver 1000 3.26 3.37 19.41 5.04

(in micro-seconds)

Component Latencies 

Sender rate : 10 pkts/sec
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Comparison with Linux IP Multicast 

• Mrouted 3.9 evaluated 
on same test network

• Iperf tool used to 
measure end-to-end 
throughput

• Composite multicast 
just worse by a factor 
of 2-3.
– SM execution adds 

overhead
– Strict layering in 

framework prevents 
pointer arithmetic 
on buffers

– Ensemble is a user-
level program
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Summary

• Novel approach for building network services from 
composite protocols

• Demonstrates applicability and feasibility of composite 
protocol approach to data-plane and control-plane 
protocols.

• Addresses challenging issue of inter-stack communication 
using global memory

• All components and global memory objects implemented 
and tested for both functionality and performance
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Future Work

• The multicast service can be extended to support multi-
point to multi-point model

• Implement complex multicast protocols like MOSPF/ PIM 
• Security and network management protocols 
• Improve performance 
• Deployment of service on an active network



32

Questions ?
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