
© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Committee:
Dr. Jerry James (Chair)
Dr. Douglas Niehaus

Dr. Joseph Evans

Satyavathi Malladi

Masters Thesis Defense

Date: 15 Jan 2003

A Thread Debugger for Testing and
Reproducing Concurrency Scenarios

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
2

Outline of the presentation
� Overview of the problem
� Our solution
� Background
� Design and implementation of the thread debugger
� Recording and replaying execution
� Testing
� Related Work
� Conclusions and future work

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
3

Overview of the problem
� Definitive testing of concurrency scenarios
� Execution sequence of multithreaded programs inherently

nondeterministic
� Program behavior in different executions need not be the same
� Context switches, event ordering and synchronization are main reasons

� Mismatch between programming model and debugging model
� Capability to record, analyze and playback particular execution

sequences
� Software pattern needed over which definitive replay can be done

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
4

Our Solution
� Software pattern BERT used for building concurrent

software
� BERT is based on the Reactor pattern
� Reactor provides event de-multiplexing framework

� Events captured by the Reactor
� Event can be I/O completion, timer expiration or signal

� Concurrent software built using the BERT uses a user
level thread library(Bthreads)

� Bthreads uses the many-to-one model

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
5

Solution (Contd…)

� Bthreads library provides capabilities for user specified
context switching and locking the scheduler

� GNU debugger (GDB) extended to provide the capability
to debug software written using the Bthreads library

� Capability to record events of interest provided within the
thread library

� Capability to replay an execution sequence illustrated in
the debugger

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
6

Background
� Challenges in debugging multithreaded

programs
� Execution control interleaves between the threads
� Threads may voluntarily suspend and resume

execution or they might do it as a result of events
like signals

� Order of interleaving between threads partially
determined by synchronization between the threads

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
7

Background (Contd…)

� Limitations of conventional debuggers
� The debugger does not have sufficient information to

display the state of threads and other synchronization
primitives.

� It might be necessary to forcibly suspend the execution
of a thread and resume some other thread.

� This is not possible in case of many thread libraries.

� There is no information about threads waiting on
synchronization objects.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
8

Process Control
� Ability to inspect a running process and alter its

execution
� Key ability needed in debuggers

� Debuggers need to have access to the address
space of the process

� Tracing process - debugging process
� Inferior process - process being debugged

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
9

Process Control (Contd…)

� Operating system has to provide the means to
achieve process control

� Many Unix based systems provide two
mechanisms for process control:
� proc file system
� ptrace system call

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
10

Process Control (Contd…)

� proc file system
� Each running process represented by a collection of files
� Tracing achieved by accessing the files representing the inferior

process
� read, write, lseek, poll, and ioctl system calls used to modify these

files
� Directives passed to the kernel when writes are performed on

these virtual file system files
� Directives indicate what action is to be applied to the inferior

process

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
11

Process Control (Contd…)

� Ptrace system call
� Tracing process calls ptrace with arguments identifying the

inferior process and specifying the controlling action to be
applied

� Kernel inserts the tracing process as the parent when it uses the
ptrace system call

� Tracing process calls the wait system call to receive the stopping
event information

� Upon the receipt of a signal, the wait system call returns
� Based on the reason for which wait returned, the appropriate

controlling action can be taken by the tracing process

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
12

GDB Architecture
� Process control mechanism used is ptrace system call
� Breakpoints are inserted by swapping the instruction at the breakpoint

location with trap instruction.
� Supporting different debugging targets

� target_ops structure
� Each target has its own target_ops structure
� Targets stacked in strata

� GDB support for debugging threads
� GDB provides a generic framework for debugging threads of any thread

library.
� All information generic to any thread library is stored in the data

structure thread_info.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
13

� Operations that are target thread library specific are implemented
separately for each thread library

� The debugger should be aware of the thread library internals to
provide the necessary debugging information to the user

� The Thread Debug Interface(TDI) used by the debugger to
communicate with the thread library

gdb TDI
Thread
Library

GDB Architecture (Contd…)

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
14

Implementation
� The target specific operations for the Bthreads

library need to be implemented
� Attach
� Detach
� Wait
� Resume
� Transfer memory
� Fetching and storing registers

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
15

� Attach
� Attach debugger to an existing process.
� ptrace system call used with PTRACE_ATTACH as the

requested operation

� Detach
� Detaches from a process to which the debugger is

already attached .
� The ptrace system call is used with PTRACE_DETACH as

the requested operation.

Implementation (Contd…)

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
16

� Resume
� Resume the execution of the process.
� Process might be resumed in either single step mode or

continued
� Xfer Memory

� Used to transfer memory between process address
space and gdb address space

� Thread alive
� TDI used to query about the state of a particular thread

to determine whether it is alive.

Implementation (Contd…)

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
17

� Fetching and storing registers
� The registers for the current running thread are

obtained from the kernel. The registers for all other
threads are obtained from the TDI.

kernel

user
TDI gdb

Threads not presently
running

Process

Currently running thread

Implementation (Contd…)

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
18

� Wait
� Wait for any threads to stop due to the delivery of a

signal.
� Depending on the reason for which the thread stopped, the

appropriate action is taken by the debugger.

� There are several events in the thread library that the
user is interested in.

� Thread creation event
� Thread death event

Implementation (Contd…)

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
19

gdb

Thread library

Create thread
Fill event buffer
Call dummy routine

Dummy routine

thread_create

TDI Event Buffer

1.Obtain the address
of the dummy routine.
2.Set a breakpoint at the
dummy routine.
3.When the breakpoint
is hit, read the information
from the event buffer.

Set breakpoint

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
20

� Mutex info
� Obtains information about the existing mutexes
� TDI used to obtain this information

� Name
� Mutex state
� Mutex type
� Owner
� List of threads waiting on mutex

� Condition variable info
� Obtains information about the existing condition variables
� TDI is used to obtain this information

� Name
� List of threads waiting on the condition variable

Implementation (Contd…)

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
21

Testing and reproducing
concurrency scenarios

� Testing a hypothesis using specified thread
interleaving

� Recording and replaying an execution
sequence

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
22

Testing a particular hypothesis

� The user might want to test the program by
specifying context switches at desired locations.

� Procedure for testing a particular hypothesis:
� Set a breakpoint at the place where a context switch is

desired.
� Switch to the desired thread using the switchtothread()

function which is provided by the thread library.
� Call switchtothread(threadid)

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
23

Recording Events
� Causes of non-determinism

� Context switches taking place due to the expiration of the scheduling
timer

� External signals

� Capability to record context switches and signals provided
within the thread library.

� Information needed while recording context switches and
signals:
� Program Counter (PC)
� Count
� Signal

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
24

Recording Events (Contd…)

� A basic block is a group of hardware instructions
which are always executed together.

� The basic block information is generated by the
gcc compiler when a program is compiled with
the –ax flag.

� The information about the basic block and count
is stored in the address space of the process.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
25

Replay using the debugger
� The signal SIGPROF is responsible for scheduling to take

place. Hence this signal is prevented from being delivered
to the process.
� handle SIGPROF nopass

� Condition breakpoints are set in the following way:
� Break pc if block == blk && count == cnt

� When the breakpoint is hit, the scheduling needs to take
place.
� Signal SIGPROF

� This causes SIGPROF to be delivered to the process.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
26

Replay (Contd…)

� In case the event is a signal event, then the
appropriate signal is delivered using the signal
command.

� This is repeated until all the events in the
recorded log are exhausted.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
27

User Interface Extensions
� The following commands were added to GDB:

� info mutex: This command is used to obtain all the attributes
associated with the mutex variables in the program.

� info conditionvariable: This command is used to obtain all the
attributes associated with the condition variables in the program.

� runtcl <tcl-script> : This command is used to run a tcl script from
the gdb command line.

� gdb ‘commands’ command was used to attach tcl scripts to
breakpoints.

� Scripts written for visualization purposes.
� Scripts written for producing user specified interleaving.
� Scripts written for automatic replay of recording scenarios.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
28

� Two threads try to acquire two locks in
different order

Thread 1:

Acquire Lock A

Acquire Lock B

Thread 2:

Acquire Lock B

Acquire Lock A

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
29

Testing
� Correctness testing of debugger
� Correctness testing of recording and replaying execution

sequences
� Case1:

� 5 threads are created and in each thread there is a while loop that
iterates for 20,000 times.

� The context switch events are recorded.About 50 context switching
events took place in different runs.

� All the context switching events could be exactly replayed from the
debugger.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
30

Testing (Contd…)
� Case 2: Dining philosophers problem

Algorithm:
� Each philosopher thinks, then picks up the right fork and then left

fork.Eats and places back both the forks.
The program is run several times for different number of
philosophers. When deadlocks occur they are replayed from the
debugger.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
31

Conclusions
� A thread debugger is built which can debug programs

using the Bthreads library.
� A recording mechanism is provided in the thread library

for the context switching events and signals.
� The mechanism to replay context switching events and

signals is provided.
� Using the debugging tool along with the replay tool, more

definitive testing of concurrent software under
development is made possible.

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
32

Related Work
� SmartGDB
� KDB
� Mach Debugger
� ODB
� DejaVu
� ML thread debugger

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
33

Future Work
� Reproducing I/O
� Sophisticated visualization tools
� Reproducible execution of Nachos
� Running User-mode Linux on Bthreads to give

reproducible operating system activities
� Extending the concept of reproducibility to distributed

systems

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
34

Acknowledgements

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
35

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas
36

