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 Introduction to Continuous Phase Modulation (CPM) related work
e Motivation of research

» Signal models and complexity reduction principle

« Joint timing and phase error detector (TED & PED)

» Effect of large frequency offsets on TED and PED

* Performance analysis metrics and bounds

e Simulation results

» False lock recovery using reduced complexity detector
configurations

e Conclusions and future work
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Why CPM?

— Power and bandwidth efficient.
— Easy to use with low-cost PAs.
Problems with CPM

— Receiver complexity.

— Receiver synchronization.

—Motivation for using Pulse Amplitude Modulation (PAM)

— Linearize CPM,; first proposed for binary CPMs in the well-known paper by
Laurent.

— Reduce receiver complexity by discarding low-energy PAM pulses.
— Recover symbol timing using simple algorithms.

INFORMATION
& TELECOMMUNICATION
TECHNOLOGY CENTER

The University of Kansas



¥y oy,
—@—- ot

KU

nT')

p(t; )

h,

\

g(1)

ot
/ (+)dr

exp{ ()}

; o(t; o)

2

s(t; ) = Aexps j2zh ) e q(t—iT)
=0

«f(t) is the frequency pulse, it has a finite duration of L symbol
times and an area of 1/2.

q(t) is the time-integral of f(t)

h is the modulation index, it is typically a rational number
a,, are drawn from an M-ary alphabet
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 The phase can be grouped into two terms since q(t) = 1/2 for t>LT:
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* Since the modulation indexes are rational numbers, h=k/p, we can
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- Subset the largest amplitude pulses to reduce the number of matched
filters (MF)

- Reduce number of trellis states in the detector
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» Received signal model in AWGN channel

N-1
r(t) =e’ %Zzbk,igk(t_f_rrs)"‘w(t)
s k=0 i

*Coherent detection
- Symbol detection using the Viterbi algorithm (VA)
- Decision-directed timing recovery

- Decision-directed phase recovery
* Noncoherent detection

- Symbol detection using the Viterbi algorithm

- Decision-directed timing recovery without explicit phase
iInformation

Note:

- Timing and phase recovery uses decisions from the receiver.
- Symbol detection and signal recovery are based on maximum
likelihood principle.
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» Metric increment in VA for sequence detection
Lo—1

Z—o: Re{yi (€ ’(Zi—t' r)e”’ }= 0 O0<t<L,T,

« PAM-based TED is given by ¥;(C..¢_..7)e” = > bwiX,(7)

kekrep
Lo—1

where the TED increment ) Re{y;(c;,¢,_.,7)e ?}=0
i=0

« PAM-based PED is given by z(c,. ¢, .7)e " = D bkix; (7)

kekpep
Lo-1 _~
where the PED increment Y Im{z,(c;,¢,_,,7)e ’}=0
i=0

7+(i1+Dy )T

MF bank filter output X, ; (¢) = j r(t)e g, (t -z —iT,)dt

T+HIT;
and 1<D, <L+1
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Note:

- Matched filters estimate data symbols through VA implementation.
- Derivative matched filters generate TED Error hence timing estimate.

A discrete-time differentiator approximates the derivative.
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 Frequency offset on the order of the symbol rate 1/Ts

- A non-data-aided (NDA) frequency recovery is done before attempting symbol
sequence, timing and phase recovery. A Frequency Difference Detector (FDD) is
employed for this purpose.

- Timing recovery without the explicit recovery of phase (noncoherent) is more

suitable as phase recovery is still difficult due to the average residual frequency

jitterv
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» We use modified Cramer-Rao bound (MCRB) to establish a lower bound on the
degree of accuracy to which 7,6 and v can be estimated.

1 1 1
- Normalized MCRB - timing 7z *MCRB () =g 5z e,
where C_ =E{«,’}=(M?-1)/3 for uncorrelated data symbols
special cases : 1) LREC: C; =C e =1/(4L)
2) LRC: C; =Cgc =3/(8L)
- Normalized timing error variance Tizxof = Tiszar{?[n]—f}

S S

1 1
X
L, E./N,

- MCRB — phase MCRB(¥) = 5

- Phase error variance o ;Var{é[n] -6}

3 1
272 E /N,

- MCRB - frequency T, x MCRB(v) =

- Normalized frequency error varianceT? x o’ =T? xVar{y[n] - v}
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* Phase Locked Loop (PLL) Considerations
- Error detector outputs are refined into suitable offset estimates

- The loop bandwidthBT, is an important parameter determining the
performance of the synchronizers.

* Timing PLL
- First order timing PLL implementation refines the TED output €.[n] after
every T,, 7[n]=7[n-1]+y.e.[n] PLL step sizeis 7. = L‘E—TTS

« Phase PLL "

- The new phase estimate from the PLL is obtained as d[n] = d[n - 1] + y,£[n]
- First order PLL with no carrier frequency offset and <[] =¢,[n]
- Second order PLL with residual carrier frequency offset
¢[n]=<¢n-1]+ (K1+ K2)x ,e,[n] - K2x ,e,[n-1]
K1 and K2 are proportional and integration constants respectively
* Frequency PLL
- First order frequency PLL refines FDD output after everyT, as

v[n]=v[n-1]+y,e,n] PLL step size is 7, = 2.

v's
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» S-Curve identifies the stable lock points

- These are the zero-crossing positive slope points on the curve.
- We want the such a point at zero error, otherwise it is a false lock point

- Decision directed M-ary TED and PED have false lock points
- FDD is NDA, therefore, free of false lock points.

» S-curve for TED

- S(5.) =[E, /T, Ele.[n]| 5.}

whered, =7-7 s tlmlng offset
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S-curve for PED

- S(5,) = JE. /T, E{e,[n]| 5,

where 5, =0-6 is the phase offset

Amplitude

*S-curve for FDD

- 8(51/) =4 Es /Ts 'E{ev[n] | 51/}

where §, =v-vis the frequency offset
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» Binary GMSK system with Gaussian pulses
(Gaussian Minimum Shift Keying)

KU

M=2, 4G, h=1/2
- Optimal PAM based detector
- Trellis state = 16
- 8 single-h MFs/Pulses

T T T I
— Laurzni Decomposition of SPM
—— Selzcion of PAM Puses

- Reduced complexity detectors chosen for this example
- 4 state detector with L' =2
- | & | e |5 |Kpen| = 2 MFs/pulses.
- | k|2 MFs and | k1 |=|xpe0| =1 pulse.
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*Timing error variance with no carrier frequency offset

Mormalized Timing Error Variance
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Mormalized Timing Error Variance

*Timing error variance with a large carrier frequency offset
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Phase Error VWariance

*Phase error variance with no carrier frequency offset
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Frequency Error Wariance
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*Frequency error variance with a large carrier frequency
offset
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*BER with no carrier frequency offset

BER
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*BER with a large carrier frequency offset
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* M-ary CPM system with partial response

] IR OO RO SO OO T -

M=4, 2RC, h=1/4

- Optimal PAM based detector
- Trellis state = 16 ;
- 12 single-h MFs/Pulses

k-]

ar

A5

k]

1
] as 1 1.5
Heormalzed Time 6T

Reduced complexity detectors chosen for this example
- 4 state detector with L’ =1
- |k |= Krep |5 ‘KPED‘ =2 MFs/pulses.

- K:2 = =
| I MFs and| xep |=|xpe0| =1 pulse.
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Mormalized Timing Error Wariance

*Timing error variance with no carrier frequency offset
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Mormalized Timing Error Variance

*Timing error variance with a large carrier frequency offset
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FPhase Error Variance

*Phase error variance with no carrier frequency offset
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Frequency Error Variance

*Frequency error variance with a large carrier frequency

offset
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*BER with no carrier frequency offset
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*BER with a large carrier frequency offset
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* PAM based reduced-complexity CPM detectors provide very good tracking
characteristics under no carrier frequency offset.

» Coherent and noncoherent detection can be done based on PAM based
detectors. The noncoherent detectors are worse by about 2-3 dB in BER under
all practical requirements and under no frequency offset condition.

 With a frequency offsets on the order of 10~* of the symbol rate, the performance
of PAM based detectors does not suffer deterioration in terms of tracking
accuracy and BER.

» With the carrier frequency offset on the order of the symbol rate, noncoherent
detection outperforms coherent detection in terms of tracking accuracy and BER.

* Noncoherent detection allows further simplification of the receiver structure by
alleviating the need for a second stage of frequency recovery.
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» M-ary partial response CPM systems suffer from false lock problems during
signal acquisition.
» Under false lock, the synchronizers settle at incorrect timing and phasing
instants rendering poor BER, timing and phase error variance.

* NDA auxiliary lock detectors
remove false locks but has a
longer acquisition time.

CPM (M=4, 3RC, h=1/2)

Metric Value by Simulation | Theoretical
BER 0.2808 0
Timing Variance | 0.5007 x 107° | 0.0511 x 107

Phase Variance 0.0397 0.0006

/ Phase Estimates

Timing

T T T T T T
CPM, Phase estimate(f)
CPM, Timing estimate(t) | |

| 1 | | | 1 | | |
1000 2000 3000 4000 5000 6000 7OOO 8000 9000 10000
Number of symbols

Due to the variable lengths of the PAM filter components, PAM based
configurations can deal with this problem more effectively than its conventional
CPM counterpart.
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False lock recovery ... contd.

» S-curves for M-ary CPM (M=4, 3RC, h=1/2)

Amplitude

KU

: Coherent CPM
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Number of correct locks

MNMumber of correct locks

x10°
| | | | ] ] ] | |
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| | | |
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Number of symbols need to lock 10’
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— T T T [ T T T T [ [ T T
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_“w I I : : | | | |
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Number of correct locks

Number of correct locks
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False lock recovery ... contd.

* Observations

- CPM (M=4, 3RC, h=1/2), conventional and PAM based with 1 pulse
noncoherent TED with B, T, =5x10°during initial acquisitions.

No Frequency Offset Noncoheren conventional | Noncoherent PAM |Kpgy | = |
No. of Simulations 10° 10°
No. of False locks 10° 30
False lock probability l 0.0003
Lock state No lock Conststent over 0. of symbols
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Conclusion

- Synchronizers provide a comparable performance against
conventional CPM receivers.

- Under a large carrier frequency offset, a PAM based receiver in
noncoherent mode offer similar performance as its CPM counterpart

- A novel method of decision-directed false lock recovery for PAM based
CPM receivers.

* Future work
- Joint phase and timing recovery in wireless fading channels.

- Possibility of different PAM based error detector configurations for
acquisition and tracking stages.
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