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Abstract

The performance evaluation of Asynchronous Transfer Mode (ATM) networks has re-
ceived considerable attention from the networking research community. Most of the
relevant studies have been conducted using conventional methods such as discrete
event simulation software. This research presents an application of real-time and em-
bedded system techniques to create synchronized distributed proportional rate simu-
lations of ATM networks which execute substantially faster than equivalent sequential
discrete event simulations and show scaling tendencies superior to those of popular
parallel discrete event simulation implementations. In this work, KU Real-Time modi-
fications to the Linux operating system (KURT-Linux) were used to control proportion-
al rate distributed ATM network simulations. The simulation results from this system
are compared with simulation results for a specific set of experiments under alterna-
tive modeling methodologies and the speedup achieved using the Proportional Time
Emulation and Simulation (ProTEuS) platform are discussed.
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Chapter 1

Introduction

Asynchronous Transfer Mode (ATM) is now widely recognized as an important net-
working technology. By utilizing short (53 byte) fixed-length packets, called cells, ATM
sufficiently reduces the delay variance making it an appropriate network for an array
of integrated traffic types including voice, video and data. Because these various traf-
fic types typically carry with them fluctuating requirements for bandwidth, delay and
loss, unlike conventional IP networks, ATM provides quality of service (QoS) guaran-
tees that the network must provide for and manage. ATM provides high-speed net-
working at very low error rates and allows the coexistence of dissimilar traffic types in
a manner that is uniform, efficient and easily manageable.

It is our desire, as well as that of many others, to evaluate the performance of ATM
networks of significant size and complexity under varying conditions and architec-
tures. There are, of course, several approaches to solve this problem. One solution
is the use of conventional techniques, such as sequential discrete event simulation (S-
DES). Unfortunately, these simulations do not scale well in two important respects; the
size of the network and the length of simulated time. Another method to model com-
munication networks is through the use of parallel discrete event simulation (PDES); in
particular, the Time Warp paradigm, which is an optimistic parallelism technique[29].
However, it is well-known that Time Warp is subject to poor performance when the
computation is fine-grained, as it is in an ATM network simulation with small fixed-

length cells. That is to say, in such applications, Time Warp is not able to fully exploit



the advantages to which it is accustomed, due to the high overhead to computation
ratio.

The real problem is how to efficiently simulate large networks for long periods
of virtual (simulated) time. It is our contention, and that of many others, that faster
single processors are not adequate to offset the scaling of the simulation. Further, cur-
rent methods for parallelizing such simulations are not entirely satisfactory for some
simulated systems, including the particular networks which we want to study. Our
approach to improving performance is an innovative application of real-time and em-
bedded techniques producing a system that supports parallel simulations executing in

proportional time, named ProTEuS: Proportional Time Emulation and Simulation.

1.1 Motivation

There have been several efforts to solve this and related problems because of the de-
sire to evaluate systems, particularly large ones, without having to actually construct
them. Our motivating interest lies in the evaluation of large communication networks,
for which there are two principal simulation methods; sequential discrete event sim-
ulation and parallel discrete event simulation. Sequential discrete event simulation
tools include BONeS, OPNET and Extend, just to name a few[10, 36, 27]. The foremost
parallel discrete event simulation paradigm is the Time Warp mechanism, which has
been enacted in various forms, but notably in Georgia Tech Time Warp (GTW), from
the Georgia Institute of Technology[17].

We feel that there are four primary criteria for evaluating the performance of a

simulation:

1. Execution time: The total wall-clock running time of the simulation.
2. Verity: The faithfulness of the simulation model to the system being simulated.

3. Scalability: The degree to which the simulation scales in both the size of simulated

system and the length of simulated time.



4. Accessibility: The availability of the simulation environment and its associated

cost.

Sequential discrete event simulations do not scale well with respect to the size of
the network, nor with respect to the length of simulated time. Networks of significant
size become increasingly difficult to even model in sequential discrete event systems and
their size significantly affects the run-time of a simulation. They also carry with them
non-trivial cost implications and are generally not open source, both of which limit
their availability.

Time Warp techniques, which use optimistic concurrency control to parallelize sim-
ulations, are quite promising with regard to scalability. However, systems with sig-
nificant feedback cause interactions among distributed components that can result in
significant overhead due to frequent rollback, where the simulation regresses in time to
dispel a conflict and then resumes. To take advantage of concurrency and accommo-
date the memory requirements imposed by its high-overhead optimistic philosophy,
Time Warp systems generally require a high-end multiprocessor machine such as an
UltraSPARC or SGI, which are also quite expensive and limit their availability on a
practical level.

Moreover, neither discrete event simulators, nor Time Warp, are guaranteed to be
particularly faithful to the real system being simulated. That is to say that they are, of
necessity, an abstraction that requires the implementation of representations of system

code in the simulation environment.

1.2 Proportional Time Emulation and Simulation (ProTEuS)

ProTEuS is a network simulation solution designed to combat many of the potential
shortcomings of some of these alternative network simulation mechanisms. ProTEuS
uses real-time, distributed system and embedded system techniques to create synchro-
nized distributed proportional time simulations. In this work, the simulations of inter-
est are of communication networks in general, and ATM networks specifically.

Since the simulated system is distributed across any number of physical machines,



it is many times faster than conventional sequential discrete event simulation experi-
ments and shows scalability tendencies superior to those of Time Warp implementa-
tions. ProTEuS provides performance over a Network of Workstations (NOW) com-
paring favorably to that of GTW on a shared-memory multiprocessor. With the addi-
tion of virtual network device support, ProTEuS can map a simulated network onto
a set of physical network capable hosts almost arbitrarily. This renders mapping a
ProTEuS simulation onto a set of physical machines strongly analogous to mapping a
GTW simulation onto the physical processors of a shared-memory multiprocessor.

Furthermore, we use the real code, both system and application, that networks and
systems could, and often do, use. For example, ProTEuS ATM simulations use a real
operating system protocol stack and the ATM signaling support is the same as that
used in an off-board signaling architecture (Q.Port)[18, 19, 6]. Because it uses real sys-
tem networking code, it does not require the implementation of system code abstrac-
tions into a software simulator as is required in other discrete event simulators. As a
point of clarification, we are not trying to imply that ProTEuS abstracts nothing, but
rather that ProTEuS significantly decreases the scale and scope of the abstraction re-
quired to create our ATM network simulations. This reduction in the extent of abstrac-
tion provides an environment that is significantly more faithful to the system being
simulated.

Moreover, ProTEuS uses commercial off-the-shelf PC hardware running Linux at a
modest cost to run proportional time simulations of ATM networks. Because ProTEuS
runs on conventional PC hardware and software, when these resources are not be-
ing utilized for simulations, they can serve as everyday desktop PCs or support other
research endeavors. Likewise, all of the necessary software is free and open source, in-
cluding the real-time platform. ProTEuS maximizes accessibility through free software
access and modest hardware cost.

The next chapter discusses some of the related work in the area of discrete event
simulation, including the alternative solutions already mentioned. Chapter 3 is a de-
tailed look at the design and implementation of the ProTEuS system in general, and for

ATM simulation in particular. Chapter 4 presents an evaluation of ProTEuS as a viable



alternative for communication network modeling and evaluation. Finally, Chapter 5

provides some conclusions reached and some possible extensions to the system.



Chapter 2

Related Work

A considerable amount of research has been performed in the area of discrete even-
t simulation, especially in the areas of logic circuits and communication networks,
where many efforts have been made to produce a scalable, faithful, extendable and
easy to use simulation platform. Many fundamentally different approaches to solving
the same problem have been explored by these efforts, each resulting in varying de-
grees of overall success in each target area due to the vastly different properties of the
simulation methods and driving applications.

This chapter discusses several other efforts at solving this problem. Each solu-
tion generally falls into one of two categories; sequential execution for single-processor
workstations, or distributed execution aimed at shared- and distributed-memory mul-
tiprocessors. Although there are exceptions, in most cases of parallel execution, the
systems employ optimistic synchronization in an effort to let the simulation progress
as quickly as possible while detecting and correcting temporal violations, as opposed
to the conservative synchronization protocol utilized by ProTEuS, which avoids these
issues and their associated overheads by simply not allowing temporal violations to

occur.



2.1 Sequential Discrete Event Simulation

Sequential discrete event simulators tend to be a simple and common solution for the
simulation of small systems. In a typical implementation, the simulation has a single
event queue (an event generally consists of some data, a timestamp and a correspond-
ing action to perform) sorted in virtual timestamp order that is serviced by an event
dispatcher. Events are added throughout the simulation and the dispatcher stops ser-
vicing events from the event queue when either the queue becomes empty, or when
the virtual time clock reaches a specified stop time.

Unfortunately, because they run on a single processor, sequential discrete event
simulations do not scale well as the size of the simulation increases, and it is gener-
ally accepted that faster single processors are not sufficient to offset the increase in
computational demand as the simulation scales. Further, while the graphical nature
of many of these systems is generally appealing, specifying a simulation is not made
trivial by its nature. Nevertheless, sequential simulators certainly have their niche in
the simulation space and are more than adequate, and even superior, in a fair share of

circumstances.

2.1.1 BONeS

BONeS, the Block Oriented Network Simulator, is a sequential simulation platform
produced by Cadence Design Systems, Inc[10]. BONeS employs a graphical user in-
terface (GUI) that allows users to build networks using libraries of network elements
in a block-oriented manner. The system architecture is an abstract model that treats
the system as a collection of shared resources where users build hierarchical block-
s representing network elements. BONeS also allows users to create new elements
and optionally plug code into them, for example, to add Enhanced Proportional Rate
Control Algorithm (EPRCA) support for ATM Available Bit Rate (ABR) service to an
existing ATM switch model[48].

Cadence Design Systems, Inc. has recently ceased development of BONeS Model-

er and has subsequently reached agreements with Mil3, Inc., the creators of OPNET



Modeler, to provide support for BONeS customers and assist in moving them over to
OPNET Modeler.
Some information on BONeS can be found at http://www.cadence.com.

OPNET related information can be found at http://www.mil3.com.

2.1.2 OPNET

OPNET, the Optimized Network Engineering Tools, is a sequential discrete event sim-
ulation platform developed by Mil3, Inc[36]. OPNET provides detailed network mod-
eling capabilities and includes sophisticated tools for the collection, evaluation and vi-
sualization of simulation data and performance metrics. Like many others in its class,
it uses a GUI for model specification in a hierarchical, block-oriented structure. OP-
NET also allows users to import third-party libraries and provides APIs to standard
modeling languages. Like BONeS, OPNET makes it easy for users to create new sim-
ulation entities and insert sophisticated implementations in a familiar programming
environment.

More information on OPNET can be found at http://www.mil3.com.

2.1.3 Extend

Extend, developed by Imagine That!, Inc., is another graphically-oriented software
simulation platform[27]. Unlike other simulation platforms mentioned herein, Extend
that has the unique ability to model both discrete event and continuous time system-
s. Extend supports high user interaction with the simulation through its GUI, even
allowing the modification of parameters and the viewing of results while the simula-
tion is running. Extend is also hierarchical and block-oriented, which lends itself to
easy model organization and component re-use among simulations. Like many other
GUI based simulators, it also has excellent support for collection and visualization of
simulation results.

More information on Extend can be found at http://www.imaginethatinc.com.



214 Ns/VINT

Ns is a sequential discrete event simulator developed at the University of California
at Berkeley that is targeted specifically at network simulation, and is used most often
to simulate network transport protocols and queueing disciplines[8]. The Virtual In-
terNet Testbed (VINT) is a program at Lawrence Berkeley National Labs, Cal-Berkeley
and the University of Southern California aimed at producing improved simulation
tools and techniques for the research and deployment of Internet protocols that has
adopted Ns as its simulation platform and made many advances to it in the process.

Ns employs a split-level programming model; the simulation kernel, which is the
core set of simulation primitives that requires the highest performance, is implemented
in C++, and the definition, configuration and control of the simulation is implemented
in OTcl, which is an object-oriented variation of the Tool Command Language (Tcl).
Because of the frequency of their execution and stagnant nature, simulation primitives
are well suited for a compiled implementation, while highly fluid, and often iterative
simulation aspects such as setup and configuration, are much better served by a flexi-
ble and interactive scripting language, such as Tcl.

Ns includes a wide range of network protocols and queueing disciplines, including
many flavors of the Transmission Control Protocol (TCP), the User Datagram Protocol
(UDP), multicast protocols, Random Early Detection (RED), Explicit Congestion No-
tification (ECN), etc., and more are being contributed on a regular basis by the more
than 200 estimated institutions world-wide using Ns. Further, Ns has an emulation
mode, where stubs translate network packet contents and tunnel traffic between the
simulation and a real network[20].

Rather than parallelizing execution to improve simulation performance, Ns choos-
es to tune the simulation implementation and provide multiple layers of abstraction.
Of course, the potential cost of abstracting out detail is the accuracy of the simulation,
but that cost often depends on the particular scenario being simulated. The position
that Ns assumes is that abstraction can often result in significantly improved simula-
tion performance with negligible effects on accuracy. It is also worth mentioning, how-

ever, that while native Ns is sequential, the Parallel and Distributed Systems (PADS)



group at Georgia Tech University has done some work to parallelize some of the Ns
modules.
More information on Ns/VINT can be found at http://wwuw.isi.edu/nsnam/vint/.
More information on PADS at Georgia Tech can be found at http://www.cc.gatech.edu/
computing/pads/.

2.2 Parallel Discrete Event Simulation

Parallel discrete event simulation is one of several techniques to combat the scaling
limitations inherent in a single-processor system[21, 42]. By distributing the simulation
across multiple processors, one can very often achieve significant speedup in execution
time. The magnitude of that speedup, however, depends on many factors, including
the properties of simulated system itself, the number of processors over which the
simulation is distributed, the inter-processor communication overhead and the inter-
processor synchronization protocol.

One of the most fundamental rules of a discrete event simulation is that events
must be executed in order of non-decreasing virtual time. In a sequential system, this can
be enforced by a single event queue sorted in virtual timestamp order. In a parallel
simulation, it is complicated by the fact that execution on distributed processors must
be synchronized to prevent temporal violations. There are two fundamental methods
by which to synchronize a parallel computation; conservative and optimistic.

In a conservative protocol, first proposed by Chandy and Misra, events are execut-
ed strictly in virtual timestamp order, without exception[11]. In order to attain perfect
knowledge of pending events, each node in the system must have knowledge of every
other node that can potentially send it messages. These messages are typically stored in
FIFO queues; one for each point-to-point connection between two nodes. The queues
are serviced one event at a time, always selecting the queue whose head message has
the lowest logical virtual timestamp. This method prevents causality violations from
occurring and is a very lightweight protocol, but may unnecessarily impede a simu-

lation from progressing, which is a potential performance impact. Further, when the

10



selected queue is empty*, the protocol must block, waiting for a message from the asso-
ciated node because the absence of a message could be due to any number of causes
and the protocol has no way of knowing what timestamp the next arriving packet will
have. If a cycle of empty queues with minimal virtual timestamps occurs, deadlock
arises. One way to prevent deadlock, first suggested by Chandy and Misra, is through
the use of NULL messages, where nodes periodically send out virtual time updates,
even when no real messages are available. Of course, many other solutions have been
suggested as well, including the detection of and recovery from deadlock using meth-
ods such as token passing and termination detection[12, 39].

In an optimistic protocol, made popular by Jefferson’s Time Warp principle, events
are executed at the time of their arrival[29]. Optimistic protocols take advantage of
the fact that the most likely order of event arrival corresponds to non-decreasing order
in virtual time. When events do arrive out of order, often called straggler events, the
synchronization mechanism has to reconcile the violation, often through the rollback of
the simulation to some previous known-good state. To support the ability to restore
the simulation to a previous state, nodes keep lists of all messages sent and received
over a virtual time period. When a straggler arrives, the protocol “rewinds” its ex-
ecution to a time just previous to the straggler event’s virtual time by walking these
queues. In doing so, the node “undoes” all actions it performed erroneously and sends
anti-messages to any nodes to which it sent an erroneous event previous to the arrival
of the straggler. Upon completion, the node starts progressing forward in simulated
time again. Of course, this mechanism involves potentially sophisticated and costly
state-saving and conflict resolution implementations, which can have a significant per-
formance impact in systems on which it is invoked frequently. However, due to its
obvious performance impact, a great deal of research has been focused at optimizing
these mechanisms. For example, not all straggler messages actually result in a change
to the system state, so stragglers that do not alter the state of a node do not necessarily

need to result in a rollback. Moreover, if a node that is a target of an anti-message has

*When a queue is empty, its associated virtual timestamp is the virtual timestamp of the last packet
received on that queue, so an empty queue can be the selected queue even when there are non-empty
queues present.

11



already processed the offending event, the result is cascading rollbacks that can prop-
agate around the system and wreak havoc. Therefore, lazy cancellation, as opposed to
aggressive cancellation, waits until the the computation re-completes and only sends an
anti-message if the contents of the new message actually differs from the previous one,
avoiding unnecessary cascading rollbacks.

In any case, most researchers agree that parallel simulation techniques are abso-
lutely necessary to offset simulation scaling and a great deal of research effort has been

placed in their development.

221 GTW

Georgia Tech Time Warp (GTW), an optimistic parallel discrete event simulator from
the Parallel and Distributed Simulation (PADS) group at the Georgia Institute of Tech-
nology, is perhaps the most popular rendition of Jefferson’s Time Warp principle to
date[17, 23]. The primary design goal of GTW was to combat Time Warp’s well-known
performance issues when simulating fine-grained applications due to the overheads
associated with optimistic synchronization. It is well-known that state-saving over-
head and rollback costs dominate the performance of a Time Warp simulation. GTW
was explicitly designed to minimize these overheads and support efficient execution
of fine-grained discrete event simulations. While it is primarily intended for cache-
coherent shared-memory multiprocessors, GTW has also been employed in simula-
tions over a Network of Workstations (NOW).

A GTW simulation consists of a number of Logical Processes (LPs), generally one
per simulation entity, that communicate via timestamped messages. Execution is strict-
ly event-driven, such that all execution occurs in response to the reception of a message
and the initialization of each LP is responsible for generating the first event(s). LPs also
must inform the simulation kernel what portion of their state should be saved by the
state-saving mechanism. In automatic state-saving, the state information is saved by
GTW transparently to the user before each message is processed. In incremental state-
saving, the act of saving state is explicitly initiated by the user when desired. Because

this is a known performance bottleneck, a great deal of subsequent research has been
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done to further decrease the state-saving overhead for many applications.

All Time Warp implementations, GTW included, maintain Global Virtual Time
(GVT), which is essentially the minimum Local Virtual Time (LVT) of all LPs. The
significance of GVT is that it presents a limit in past time over which no rollback can
traverse, and therefore all state and data associated with events occurring before GVT
can be reclaimed by the system. The calculation of GVT can be initiated by any proces-
sor and involves each processor finding the minimum timestamp of all unprocessed
events and placing it into a global array. The last processor to do so calculates the
minimum and updates GVT.

Contrary to Jefferson’s initial intentions, each processor in a GTW simulation main-
tains a single pending event queue for all LPs on that processor, sorted in timestam-
p order, which allows GTW to find the unprocessed event with the smallest times-
tamp through a single dequeue operation. While this simplifies event processing and
GVT computation, it makes dynamic LP load balancing much more difficult*. Each
LP maintains its own queue of processed events, which includes the saved state infor-
mation and messages sent as a result of the event processing (if any) for use in case
of rollback. A process called fossil collection periodically cleans entries out this queue
when GVT advances past the timestamp of the events.

Ironically enough, most of the issues with Time Warp implementations occur as a
direct result of their optimistic nature. For instance, LPs that progress too fast in virtual
time tend to run out of memory because their processed event queue grows larger as it
progresses further past GVT. In an effort to reclaim memory, those processors will often
initiate a GVT calculation to advance GVT and trigger fossil collection. Any memory
reclaimed is typically exhausted quickly and a GVT calculation is initiated again. This
frequent GVT calculation, known as GVT thrashing, keeps the other LPs from pro-
gressing, which perpetuates the problem. To combat this issue and others, work has
actually been done to limit the optimism of LPs by blocking their advancement through
several mechanisms, in sort of a hybrid optimistic/conservative implementation[44].

ProTEuS, of course, eliminates these concerns by implementing a conservative syn-

*Dynamic LP load balancing is not supported by GTW at this time.
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chronization protocol where temporal violations are simply not allowed to occur, cir-
cumventing the need for optimizations associated with the high-overhead of optimis-
m.

The Telecommunications Description language (TeD) from the PADS group at Geor-
gia Tech University is a modeling framework for communication network simulation
that utilizes a parallel simulation kernel, though not necessarily GTW, to perform dis-
tributed simulations of communication networks, including ATM[7].

More information on GTW can be found at http://www.cc.gatech.edu/computing/pads/
tech-parallel-gtw.html.

2.2.2 WARPED

WARPED is an optimistic parallel discrete event simulation kernel based on Jeffer-
son’s Time Warp paradigm developed at the University of Cincinnati[33, 46]. It is an
object-oriented Time Warp library written in C++ that runs on shared- and distributed-
memory multiprocessors and has been ported to several operating systems and hard-
ware variations. Unlike many of the other systems mentioned herein, the initial goal of
WARPED was not to create a simulator for one or two specific driving applications, but
rather to create a simple, extendable and portable platform specifically for the research
of Time Warp mechanisms.

WARPED applications provide the simulation kernel class definitions of; (1) al-
1 Logical Processes (LPs), which are simulation entities that send and receive messages,
(2) the state associated with those LPs, which is needed for state-saving purposes im-
posed by the optimistic synchronization, and (3) their associated events, which are
communicated via inter-LP messaging services. Because of its object-oriented archi-
tecture, WARPED can mask nearly all details of the Time Warp implementation and
synchronization protocol from the user by default, but users can change this behavior
whenever necessary through the object-oriented mechanisms of inheritance and over-
load.

One area in which WARPED deviates from Jefferson’s original Time Warp presenta-

tion is that it allows LPs to be grouped into clusters. The advantage of such a scheme is
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that LPs in the same cluster can communicate directly, bypassing the message passing
system*, which is much faster than communicating through it. Therefore, frequent-
ly communicating LPs benefit from being grouped into the same cluster, perhaps at
the expense of load balancing in the simulation, which introduces one of many well-
known trade-offs in parallel distributed computing. Moreover, it is the responsibility
of a cluster to schedule the execution of the LPs within it, and although there may be
some advantage to doing so, LPs within a cluster are independent and are not coerced
into synchronizing with each other.

Some of the existing WARPED applications include KUE, a queueing model library,
which is in turn utilized by SMMP, a shared-memory multiprocessor simulation appli-
cation, and RAID, an IBM SCSI disk array simulation application. Much more sophisti-
cated WARPED applications include TyVIS, a VHDL simulator, and USSF, a large scale
simulation framework for communication network simulations[49].

As alluded to earlier, WARPED was created to facilitate research of the Time Warp
paradigm itself and a lot of work has been done investigating some of the well-known
Time Warp performance issues, such as state-saving and rollback[47]. This work in-
cludes lazy and dynamic cancellation, which address rollback and cascading rollback
caused by anti-messages, and periodic and dynamic check-pointing, which address
state-saving frequency and the associated overhead. Many of these schemes and others
not mentioned here are available in WARPED as compile-time and run-time options.

Another interesting optimization investigated in WARPED research is dynamic
message aggregation, which addresses the frequency of communication and its asso-
ciated overhead[13]. WARPED experiments with aggregating the messages generated
from a single Logical Process destined for the same recipient Logical Process over time
using fixed and sliding virtual time windows; all messages from node A destined for
node B within a virtual time window X are aggregated into a single message to re-
duce the overhead of communication. Serving the same purpose, but implemented in
a seemingly orthogonal manner, ProTEuS aggregates its inter-LP messages, but does

so across LPs, not time; all messages from nodes on host A destined for nodes on host

*WARPED uses the Message Passing Interface (MPI) for inter-cluster communication.
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B during epoch X are aggregated into a single message.

More information on WARPED can be found at http://www.ece.uc.edu/paw/warped.

2.2.3 ParSEC

The Parallel Simulation Environment for Complex Systems (ParSEC) is a parallel dis-
crete event simulator for shared- and distributed-memory multiprocessors developed
at the University of California at Los Angeles[4]. ParSEC is based on Maise, which is
a parallel simulation language previously developed at UCLA, and has the flexibility
to operate in sequential or parallel mode and with conservative or optimistic synchro-
nization in the latter[3]. It also includes visualization tools for specifying topologies,
simulation parameters, partitioning, etc.

One of the driving motivations in the design of ParSEC was the ability to minimize
the effort and time to migrate code between the simulation and working real-world
prototypes. Because ParSEC is built around a thread-based message passing kernel for
general purpose parallel programming (MPC) such translations are rendered seem-
ingly trivial. For instance, some ParSEC wireless protocol implementations have been
directly refined and inserted into the protocol stack of a network operating system.

One of the most intriguing features of ParSEC is its Ideal Synchronization Proto-
col (ISP) support, which can be used to measure the overhead of a synchronization
protocol. To calculate the ISP for a particular simulation, ParSEC runs the simulation
twice. The first simulation is synchronized using any of the available synchronization
protocols and is necessary only to create a detailed trace of the simulation execution.
In the subsequent simulation, ParSEC uses the trace from the first run to make syn-
chronization decisions. This gives ParSEC omnipotence regarding the order of event
execution and so the computation involved in conventional synchronization protocols
is bypassed, providing an ”“ideal” synchronization protocol measurement where the
decision regarding whether or not to process a message degenerates to essentially a
no-op. This measurement can be used to provide a straight-forward comparison of
candidate synchronization protocols against the optimal, and clearly segregates the

simulation time from the overhead involved solely in the synchronization protocol.
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Other flavors of parallel simulators that have been created from the ParSEC base in-
clude Mirisim, which is a parallel switch-level circuit simulator, and GlomoSim, which
is a parallel simulator for wireless and mobile networks[5].

More information on ParSEC can be found at http://may.cs.ucla.edu/projects/parsec/.

2.2.4 ParaSol

The Parallel Simulation Object Library (ParaSol) is an optimistic Time Warp based par-
allel discrete event simulator for shared- and distributed-memory multiprocessors de-
veloped at Purdue University[34]. While most of the PDES systems investigated herein
adopt the active-resource simulation model, where resources are represented by object-
s and customers by messages passed between those objects, ParaSol embraces the more
natural active-transition paradigm, where resources are objects and customers are pro-
cesses acting on those objects. Further, while ParaSol is primarily a parallel simulator,
it can also be modified to run in sequential mode, if so desired.

ParaSol uses the single-program multiple-data (SPMD) model to run simulations
over multiple processors. The same process (executable) runs on all processors par-
ticipating in the simulation, with each traversing different paths through it. A main
program contains one or more Logical Processes (LPs) associated with one or more
objects, and potentially many active-transition threads (customers). For example, each
cell in an ATM network simulation may be represented by an individual thread that
“moves” around the simulation between switches and hosts (objects).

ParaSol is based on, and depends on many of the features of, a run-time threads
library, primarily leveraging the Ariadne user-level thread package, also developed at
Purdue. Ariadne provides several interesting thread mechanisms, such as thread mi-
gration between processors, user-defined thread schedulers and thread check-pointing
and restoration. Of course, thread migration between processors is necessary for Para-
Sol to route active-transition threads to the processor hosting the object that the thread
is acting upon; i.e. getting a packet to the right queue in a IP router simulation, where
the queue object may be (is likely to be) hosted on a processor other than the one

the packet thread is currently executing on. Thread check-pointing and restoration is
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functionality required by the Time Warp optimistic synchronization and its associated
state-saving. The user-defined scheduling ability that Ariadne provides is key to the
performance of ParaSol, because it allows the scheduling of simulation threads to be
simulation aware; that is, the scheduler has unique knowledge of the simulation state,
allowing it to “optimize” scheduling in order to assist in avoiding optimistic PDES pit-
falls, such as temporal violation and the resulting rollbacks. ParaSol schedules threads
in virtual timestamp order to keep LPs from falling too far behind in virtual time, increas-
ing the rollback probability, or from getting too far ahead in virtual time, increasing the
risk of a phenomenon known as Global Virtual Time (GVT) thrashing, both of which
degrade overall simulation performance.

There are two interesting observations to be made here. First and foremost, we see
further evidence of the desire, or necessity, to limit the optimization of a Time Warp
simulation in many circumstances to avoid the consequences of optimism run ram-
pant. Secondly, we are beginning to see forms of specialized support for simulation
platforms; this time in the form of a tailored-to-fit user-level threads package. How-
ever, remember that user-level processes containing user-level threads continue to be
scheduled at the whim of the system scheduler, while ProTEuS provides system-level
real-time scheduling support to improve the performance of its simulations.

One of the drawbacks to the active-transition paradigm is the increased system
complexity. However the onus of this complexity is on ParSol itself, and is largely
hidden from the user. In fact, many researchers believe that writing applications for
an active-transition model is actually easier than writing applications for the active-
resource model. Some of the active-transition complications include the added state-
saving overhead created by having to save both objects and threads, as opposed to
just objects. This is an area that requires optimization effort due to the well-known
effects of state-saving on performance. Thread migration itself causes most of the com-
plicating issues, such as thread stack location consistency across processors, concerns
regarding thread stack size due to the potentially large number of threads, and impli-
cations on resource allocation (threads cannot allocate on the heap because the heap is

not transferred during migration)[43].
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It is further worth noting that through some of its unique characteristics and those
of Ariadne, ParaSol has the ability to dynamically load balance a simulation among
participating entities through the migration of entire LPs (both data and threads) across
processors; a quite useful mechanism in tuning performance.

More information on ParaSol can be found at http://www.cs.purdue.edu/research/PaCS/

parasol.html.

2.2.5 The Scalable Simulation Framework

The Scalable Simulation Framework (SSF) is a distributed simulation platform aimed
at, but not limited to, the simulation of large-scale communication networks that was
developed collaboratively by Dartmouth College, Rutgers University, and Cooperat-
ing Systems Corporation[16, 15]. DaSSF, the Dartmouth SSF simulation core imple-
mentation, is based on a previous parallel simulator developed at Dartmouth called
Nops, the Northern Parallel Simulator, both of which synchronize parallel execution
conservatively[41].

In essence, SSF is a self-contained object-oriented design pattern. It defines five
generic base classes; Entity, Process, InChannel, OutChannel and Event. Entities are sim-
ulation components and Processes implement the behavior of these components. In-
Channels and OutChannels are incoming and outgoing communication endpoints, re-
spectively, that can support unicast, multicast or bus-style communication. Events are
messages that implement information exchange among Entities, via InChannels and
OutChannels. These base classes provide a simple, generic and flexible foundation for
constructing many varied simulation models.

In order to take maximal control over the execution of its simulations, DaSSF imple-
ments its own user-level thread support at the source code level. That is, DaSSF models
are transformed into programs that do not use a conventional user-level threads pack-
age, but rather imitate multi-threaded execution in a single-threaded process. This
gives DaSSF complete control over the scheduling of its simulation entities and the
thread state-saving overhead, which helps it tune performance. However, as allud-

ed to earlier, this continues to be support at the user-level, leaving DaSSF subject to
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the impulse of the system, while ProTEuS utilizes real-time scheduling support at the
system-level.

One of the most intriguing aspects of DaSSF is its synchronization protocol, which
very closely resembles that of ProTEuS. DaSSF implements a conservative synchro-
nization protocol where processors synchronize periodically. Therefore, the synchro-
nization overhead is not directly dependent on the simulation model itself, but rather
on the chosen frequency of synchronization. DaSSF uses simulated transmission de-
lays to determine the size of this synchronization window*. On each processor, by set-
ting the synchronization period to the minimum of all simulated transmission delays
on links whose destination is on another processor, it can be assured that any message
sent from this processor in synchronization period N will not affect the destination
processor until at least synchronization period N + 1. Therefore, large transmission
delays allow DaSSF to synchronize less frequently, lowering overhead and generally
improving performance. Conservative synchronization in ProTEuS operates in a n-
early identical manner, also utilizing simulated network delays to allow a window of
synchronization. However, ProTEuS continues to checkpoint synchronization during
every epoch, while allowing violations within the limits of the window.

Because DaSSF is simple and generic, it is commonly augmented by adding lay-
ers of domain-specific standard components, called packages. For instance, SSENET,
which includes common networking components such as routers, hosts and network
links. Through the SSEEDBMS package, DaSSF provides self-configuration support for
very large simulation models through queries to a parameter database.

More information on SSF can be found at http://www.ssfnet.org.

2.2.6 Large Scale Distributed Real-Time Computation

This time-driven distributed computing model targeted at large scale distributed com-
putations was developed at the University of Kansas and is the logical predecessor to
ProTEuS[35]. The time-driven framework runs on commercial off-the-shelf hardware

that is essentially treated as an embedded system, where guaranteed resources are al-

*DaSSF requires a non-zero delay on all channels between processors.
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located to distributed real-time tasks. To facilitate low latency communication between
nodes, it uses an ATM network, which provides real-time transport services and qual-
ity of service (QoS) guarantees. The entire system runs on free software, including the
Linux operating system.

Computation proceeds in rounds, where each round consists of a task execution and
a margin. The task execution further consists of sub-tasks; receiving and processing mes-
sages from other nodes, computation and sending messages out to destination nodes.
In ProTEuS, the round is called an epoch, the task execution is called the computation time,
and the margin is called the slack time, but the only differences are in the terminology;
their respective purposes are one and the same. The system uses quantized time and
runs in lock-step, meaning that the duration of each round is the same on all nodes
and all nodes are kept in close temporal synchronization in real-time. Even house-
keeping tasks are scheduled in periodic administrative rounds where the nodes perform
clock synchronization, out-of-band communication with other nodes and update state
parameters based on measurements.

The system assumes that by the time the next round begins; (1) all nodes have com-
pleted the execution of the last round, (2) all nodes have sent any messages to their
appropriate destinations, and (3) those messages have been received by the destina-
tion. Therefore, the time-driven approach guarantees causality for events separated
in real-time by some minimal amount, delta, whose value is influenced by network
delays, execution times and clock synchronization across nodes. For those events not
separated in real-time by delta, ordering is not guaranteed. Therefore, the system sacri-
fices the ”100% logically correct” requirement in lieu of the ability to scale to very large
sizes and retain low latency on real-world interaction.

Further, because conventional clock synchronization implementations cannot suffi-
ciently synchronize both the phase and frequency of PC timers, this time-driven system
implements its own time-keeping, bypassing the standard RFC 1589 periodic time-
keeping method in the Linux kernel. Through the use of a low latency real-time net-
work such as ATM and by placing the time-keeping core mechanism as close to the PC

hardware as possible, it can achieve clock synchronization orders of magnitude better
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than conventional mechanisms.

To guarantee resources for tasks in the distributed computation, the system “tags”
preferred processes and a modified Linux scheduler gives preferential treatment to
those processes. This time-driven framework for distributed computation was in pro-
duction at the same time as KU Real-Time, so it could not take advantage of the analo-
gous functionality that KURT-Linux provides, but ProTEuS does.

One very interesting features of this system that has thus far eluded ProTEuSis that
it can dynamically adjust both the length of the round and the time-line offsets of each
node as a result of measurements such as loss (late message arrival), network delay,
execution times, etc. However, it has been shown that the system is, for all practical
purposes, limited to a round duration no smaller than 1ms, and whether or not this is
sufficient depends entirely on the granularity of the application. Furthermore, while
some applications will tolerate the less than 100% guarantee on correctness, others,
such as the simulation of an ATM network, will not.

This time-driven framework for large scale distributed computation, in the form
presented here, is no longer being actively developed and has been largely superseded
by ProTEuS. More information on ProTEuS can be found at http://hegel.ittc.ukans.edu/
projects/proteus/.
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Chapter 3

Implementation

3.1 Overview

To increase the efficiency of our proportional time simulations, we use real-time and
embedded system techniques. By essentially configuring a rack of Linux boxes as an
embedded system, we make the rest of the system and its services available to Pro-
TEuS simulations. Further, in attempting to execute fine-grained synchronous dis-
tributed calculations in the presence of ambient load, it becomes evident that a finer
level of timing and priority control is necessary. Consequently, we use real-time sup-
port to achieve fine-grained scheduling control to better dictate what processes will be
running and when. Real-time execution control helps us run the simulation at a sig-
nificant speed advantage over other methods and also allows the use of real systems,
thus avoiding the over-simplification suffered by some other simulation techniques.

We use KU Real-Time modifications to Linux (KURT-Linux), a firm real-time sys-
tem with increased temporal resolution, to control our distributed computation[52,
53, 25]. With temporal resolution increased to the microsecond level, KURT-Linux
adds simple real-time scheduling services and is capable of satisfying the firm real-
time performance constraints of many applications, including our proportional time
simulations[24].

The simulation is based on a basic virtual time interval which we represent in real-

time by an epoch of execution. In the case of an ATM network, this virtual time interval
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is the time required to transmit an ATM cell. In an IP network, it may be the time
required to process an MTU-sized* IP packet. Elements of the network simulation are
distributed across physical machines, which are essentially configured as embedded
components of the simulation, and real-time techniques are used to ensure that all
simulation elements execute each epoch at the same periodic rate and remain closely
synchronized.

The approach described here implements firm real-time ATM traffic management
and ATM cell switching at a rate proportional to the simulated line rate. As part of an
earlier project at the University of Kansas, a Rapidly Deployable Radio Network (R-
DRN), a simple best-effort software switch capable of switching ATM cells was devel-
oped through Linux kernel-level modifications[18, 19, 51]. Extensions to the software
switch for the work presented here have included Available Bit Rate (ABR) traffic man-
agement support in the form of both the Explicit Proportional Rate Control Algorithm
(EPRCA) and more recently, the Explicit Rate Indication for Congestion Avoidance
(ERICA)[40, 1, 50, 32]. The software switch has also been modified to allow both cell
and packet switching and now employs several output queueing disciplines. Efforts
are also underway to provide PNNI-capable signaling support with a modified version
of the Q.Port signaling software from Bellcore[45, 6].

To allow for arbitrary scaling of the network, we introduce the concept of virtual
network devices[51]. In virtual network devices, Virtual Circuits (VCs) and/or peer
Media Access Control (MAC) addresses are used to represent network connections
in a virtual network and connections in the virtual network are multiplexed across
these virtual interfaces. Also a byproduct of the RDRN project at KU, virtual network
devices were first utilized only as a very simple layer of “glue” to create continuity and
compatibility from the Linux ATM protocol stack to the ethernet device drivers in an
effort to provide transparent ATM over ethernet services. In our experience however,
the scope of virtual network devices goes far beyond their initial vision and this work
has made significant advancements in extending their utility in new contexts.

In a ProTEuS ATM simulation, all simulated network connections share virtual cir-

*MTU: Maximum Transfer Unit. The ethernet MTU is typically 1500 bytes.
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cuits across a real ATM network, while the traffic for all VCs in the simulated network,
Virtual Virtual Circuits (VVCs), is multiplexed onto the real VC supporting the net-
work connection in the simulated network. The virtual time line is divided into cell
times each of which is proportionally represented in real-time by an epoch, as can be
seen in Figure 3.1. The epoch must be long enough for the busiest physical host to
execute tasks for the portion of the simulated network that it supports.

Physical Host 1 Physical Host 2 Physical Host 3
Virtual Sourcesand Sinks Virtual ATM Software Switch Virtual Sourcesand Sinks

Routing Table

InP | InVC |OutP| OutvC

Virtual Host 1 Virtual Host 1

Virtual Host 2 Virtual Host 2
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Figure 3.1: The ProTEuS Architecture

Our approach to mapping a simulated ATM network simulation onto a set of phys-
ical hosts is depicted in Figure 3.1 for a simulated network containing 2N virtual ATM
hosts and one virtual ATM switch that is mapped onto three physical ATM-capable
hosts. The principle, however, is the same for any number of switches or hosts, both
virtual and physical. We certainly do not intend this figure to bias the reader into
believing that sources, sinks, and switches must be mapped uniformly onto physical
support machines as the figure suggests. The mapping of the simulated network onto

the physical network is, in reality, nearly arbitrary. The only known restrictions are im-
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posed by IP loopback when a virtual IP source and destination are on the same physical
host and the monolithic properties of a virtual ATM software switch. In general, a sin-
gle simulated entity cannot be split across physical hosts. The assistance of a real ATM
switch is used to allow arbitrary mapping of simulation entities and facilitates the scal-
ing of the simulation. Figure 3.1 also illustrates some of the more intimate subtleties of
virtual ATM devices and virtual ATM switches, including virtual and physical traffic
multiplexing and the impact of network interrupts, that will be discussed in detail in

Sections 3.4 and 3.5.

3.2 Real-Time Distributed Synchronous Computations

In general, the implementation of synchronous distributed computations using con-
ventional techniques limits their performance because conventional synchronization
methods are not integrated with the system scheduling; they restrict the computations
to a comparatively coarse temporal granularity and endure greater overhead because
they reside at the user-level. Moreover, while many fine-grain synchronous computa-
tions can be implemented correctly without using real-time support, other application
areas require it for correctness. For example, distributed virtual environments may
require real-time control to adequately control user experience, while in a broad appli-
cation area such as data collection, the necessity of real-time control will be determined
by the semantics of the application itself; some will require it, others will not. However,
even when real-time support is not required, our experience indicates that its use can
improve performance. In all cases, precise resource allocation and scheduling control
can make the distributed computations coexist with conventional computations more
gracefully and maintain efficient performance in the presence of non-real-time load.
The periodic nature of ProTEuS computations supporting network simulation nat-
urally leads to the notion of epochs, or periods, of execution. During epoch N, a compu-
tation with a single input and output consumes data produced by its supplier in some
previous epoch, N—§1, and produces data that will be consumed in some future epoch,

N + 87, by its consumer. As shown in Figure 3.2, each epoch consists of a computation
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interval (CT) and some amount of slack time (ST), whose purpose is to allow the data
expected from remote components to arrive before the subsequent epoch begins. Con-
sequently, the epoch time (ET) is the sum of the computation time and the slack time:
ET =CT + ST.

Computation Time (CT) Slack Time (ST)
T >

> Time

Figure 3.2: Structure of an Epoch

The computation interval in any given epoch N is itself partitioned into three seg-
ments as shown in Figure 3.3. The receive phase checks to see if all of the data that
is necessary to continue with the current epoch has arrived, specifically, the data from
epoch N — 9;. If it has not, then the epoch is skipped, or missed and will need to be re-
attempted at the next periodic invocation. If the necessary data has arrived, the com-
putation phase produces data for consumption by downstream components during an
ensuing epoch, specifically, epoch N 4 6,. The third and final phase of the computation
interval transmits the data produced to the destination component in preparation for

the ensuing epoch on the destination hosts.
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Figure 3.3: Structure of a Computation Interval

The §; represent potential delays between the production of data and its subsequent
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consumption and the choice of the §; values is largely dependent on the semantics of
the distributed application. Some applications will require the immediate consump-
tion of data (8; = 1). Others may use the 8; as a method by which to buffer transmission
delays and their variations on the network supporting the distributed computation. In
that case, the 8; may be set to maximize the probability that the necessary data has
arrived in time to be consumed, and may, of course, be unique for each physical net-
work link. Other applications may require specific §; values to serve a purpose in the
simulated system. For instance, the ATM network simulations presented herein utilize
d; to implement link delays in the simulated network.

The performance of distributed computations is largely dependent on the length of
the epoch, and more specifically, the amount of slack time during which data from up-
stream nodes often arrive. Epochs with too little slack time will increase the number of
missed epochs by increasing the probability that the necessary data has not yet arrived
by the time it is needed at the beginning of the next epoch. Epochs with too much
slack time will waste time unnecessarily waiting when they could be proceeding with
the next epoch. Larger slack times decrease the probability of a missed epoch, but also
increase the execution time of the distributed computation. The necessary slack time is
strongly influenced by the transmission delay and the transmission delay variance of
the supporting network over which the computation is distributed.

Further, different metrics have differing levels of significance for different driving
applications. The best length of an epoch and its slack time component will depend on

the relevant performance metrics of the application in question.

3.2.1 As a Basis for Distributed Simulation

At this point in the discussion, an obvious and necessary question arises, which is,
"Why implement network simulations as a synchronous distributed computation?” The an-
swer is manifest in the definition of a synchronous distributed computation. First and
foremost, distributing the simulation across physical machines eases scaling; faster sin-
gle processors are not sufficient to offset the scaling of the simulations. Further, the syn-

chronization of distributed components ensures correctness, circumvents the rollback
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problems associated with optimistic synchronization techniques such as Time Warp,
and generally reduces the overhead involved in maintaining optimism (discussed in
Section 2.2).

Of course, ProTEuS does not require real-time support to correctly simulate an AT-
M network, but real-time control makes the simulations more efficient. Because our
periodic computations are fine-grained themselves, to achieve efficiency, we require
scheduling granularities in the range of [1% - 10%] that of standard Linux. Conse-
quently, we use KURT-Linux which can, in general, provide scheduling accuracy on
the order of 10s of us.

Real-time control affords ProTEuS the ability to more closely and easily maintain
synchronization among distributed components. Although we have implemented an
explicit synchronization method through the use of sequence numbers and simple
handshaking, we are increasingly reassured through experimentation that such explic-
it synchronization is rarely necessary in ATM network simulations with sufficiently
large ;, but its ultimate necessity will depend on the semantics of the particular ap-
plication. While it is true that explicit synchronization ensures correctness, we can
increase performance by instead using real-time control which provides a reliable and
simple method for keeping distributed components executing at essentially the same
rate. Furthermore, because one of the motivations in our ATM simulations is the abili-
ty to use the user and system code that real networks and applications use*, we require
the ability to accurately and efficiently execute our simulation core in the presence of
non-real-time processes.

In general, our goal is the just-in-time production of results from epoch N — 1 in
order to execute epoch N (87 = 8, = 1). However, in the specific instance of commu-
nication network simulation, ProTEuS must simulate the transmission delay of each
network link in virtual time. When data arrives, it will often be forced to wait a num-
ber of epochs before being consumed by the simulation entities in order to simulate

a transmission delay in the simulated network. Therefore, the various §; associated

*Albeit properly virtualized. The code is the same, except in its notion of the passage of time (if any).
See Section 3.6 for more details.
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with each link in the simulated network will actually be functions of their simulated

transmission delay.

3.2.2 Performance Metrics

We have identified three performance metrics that we believe usefully characterize a

generic synchronous distributed computation and its efficiency:
1. Execution time: The total wall-clock execution time of the computation.

2. Utilization: The mean and variance of the CPU utilization of an epoch; that is, the

percentage of the epoch occupied by the computation interval.

3. Missed epochs: The number of times an epoch is not allowed to proceed due to

required data that is missing.

As alluded to previously, the importance of each of these metrics will, of course,
vary with the application semantics.

For instance, in a distributed virtual environment, such as Internet multi-player
games, the perceived realism of the game is the most important factor and the execu-
tion time is largely irrelevant; the game goes on as long as the players desire. In an
environment such as this, a lower frame rate with lower error rate is likely to have a
better look and feel than a faster frame rate with a high error rate. Therefore, maximiz-
ing the perceived frame rate, which is the actual frame rate minus the rate of missed
frames, is a metric that involves striking a balance between the number of missed e-
pochs and an acceptable epoch length.

Data acquisition, as another example, is typically driven by the desired accuracy of
the data that it is collecting. Therefore, a data acquisition application has the freedom
to vary the utilization and the number of missed epochs in order to meet some error
tolerance restriction set by the application, but will also be influenced by both the data
rate and the probability of loss. Therefore, in a data acquisition application, the design
of the control system is also a factor in the relevance of the metrics.

With the simple explicit synchronization protocol present in ProTEuS, the correct-

ness of its ATM simulations is not affected by the number of missed epochs. Rather,
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we would like to choose an epoch length that minimizes the total simulation exe-
cution time, regardless of the number of missed epochs. We may choose to miss a
greater number of shorter epochs to reduce the total execution time of the simulation.
If the decrease in the epoch time (AET = ET,1q4 — ETnew), multiplied by the initial,
larger number of epochs is greater than the increase in the number of missed epochs
(AME = MEew — MEq1q) times the new, shorter epoch time, then the net result is a

decrease in total execution time, improving performance.

if ((AET % Ngia) > (AME * ETe)) — Performance Improves

An important item to note here is that in an application where we are trying to
minimize the execution time, it is obvious that the system can move only as fast as
its slowest component. Therefore, a key part of tuning such a system is load balancing,
giving each distributed node supporting the distributed simulation, as far as possible,
the same amount of work to do in each epoch. This minimizes the computation time
component of the epoch which, in turn, reduces the epoch time.

Another item of consequence for any distributed computation is that the underly-
ing network supporting it plays an important role in the selection of system parameter
values and can significantly affect the performance of the computation. It is obvious
that the speed and accuracy of the supporting network affects the missed epoch rate,
which is one of several reasons that ProTEuS has chosen ATM as its initial support
network. Dropped, corrupted and/or late messages are certain to increase the number
of missed epochs and complicate the synchronization protocol. More reliable, faster
supporting networks can reduce the epoch time by reducing the necessary slack time.
Furthermore, the use of dual-processor hosts where one processor can be dedicated to
servicing interrupts can further improve performance by preventing interrupt service

from interfering with epoch progression.
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3.3 An Overview of ATM Available Bit Rate (ABR) Service

ATM defines four traffic classes which receive different priorities and quality of service
guarantees in the network. They are: Constant Bit Rate (CBR), Variable Bit Rate (VBR),
Available Bit Rate (ABR) and Unspecified Bit Rate (UBR).

CBR connections are guaranteed a certain bandwidth that is negotiated upon con-
nection establishment that remains firm for the duration of the connection and is typ-
ically used for real-time traffic with strict delay requirements. VBR connections are
guaranteed a sustained cell rate, but their source rate is permitted to vary with time
(burst) in compliance with a maximum burst size and is typically used for multime-
dia traffic. ABR uses the instantaneous available capacity in the network (bandwidth
unused by CBR and VBR) which varies over time based on network feedback and is
typically used for traffic such as WWW, or FTP sessions. UBR receives the remaining
best-effort service and is used by applications that are insensitive to delay and loss,
such as e-mail.

ABR connections can request a minimum bandwidth at connection establishment
that will be guaranteed by the network. These connections can use more than the min-
imum bandwidth insofar as it is available from the network. This requires constant
interaction between the network and the ABR sources in the form of feedback. There-
fore, a closed loop flow control mechanism has been defined involving the source, the
destination and the intermediate network (switches). As depicted in Figure 3.4, feed-
back information is conveyed to the source by means of special ATM cells designated
as Resource Management (RM) cells. The network elements provide the source with
information regarding congestion in the network and that information is used by the
source to vary its transmission rate. The structure of an ATM RM cell is depicted in
Figure 3.5 and the important fields are discussed in Sections 3.3.1 through 3.3.3.

It is these types of feedback loops, such as those present in ABR and TCP, that
can potentially cause trouble for Time Warp systems by increasing the probability of
rollback. For instance, ABR RM cell and TCP ACK feedback increases the number of
messages exchanged between distributed components. This interaction consequently

increases the probability of rollback which can, in turn, increase the simulation run-
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time. Furthermore, in our experience, feedback loops can also affect discrete event
simulation tools such OPNET and BONeS by encouraging users to introduce abstrac-
tions that can affect simulation results. For instance, we have encountered a series of
BONeS ABR models in which RM cells were not circulated through the network, but
rather RM cell feedback was accomplished through timer mechanisms based on round-
trip delays. Upon timer expiration, results were relayed to the sources, but no RM cells
actually circulated the simulated network[48, 40]. This caused significant disparity in
some of the simulation results compared to simulations in which real RM cells circulate
in the simulated network.

Table 3.1 contains a list of common ABR parameters, their meaning and default

values for reference in Sections 3.3.1 through 3.3.3.

Parameter | Meaning Default
ACR Allowed Cell Rate -
PCR Peak Cell Rate -
MCR Minimum Cell Rate 0
ICR Initial Cell Rate PCR
NRM Number of cells between forward RM cells 31
TRM Maximum Time between forward RM cells 100ms

MRM Minimum number of cells between forward RM cells 2
TBE Transient Buffer Exposure 16777215
CRM Number of missing, or in-flight, RM cells [%
CDF Cutoff Decrease Factor ]1—6

ADTF ACR Decrease Time Factor 500ms
RIF Rate Increase Factor ]1—6
RDF Rate Decrease Factor ]1—6

Table 3.1: Common ABR Parameters and Meanings

3.3.1 Source Behavior

In order to take advantage of available bandwidth and to avoid cell loss due to conges-
tion, ABR sources must periodically poll the network to retrieve information concern-
ing the current network state. It is the duty of the ABR source to generate and dispatch
RM cells. The following is an abbreviated list of ABR source behavior[1, 28].
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1. ABR sources always send at a rate less than or equal to the ACR. Further, the
ACR must lie between the MCR and the PCR.

2. ABR sources begin sending cells at the ICR and the first cell sent should be a
Forward RM (FRM) cell.

3. ABR sources should send a FRM cell every NRM data cells, or if the time since
the last FRM cell sent is greater than TRM. However, at least MRM other* cells

must be sent between FRM cells.

4. If no FRM cells have been sent after a period of ADTF, then the ACR should be
reset to the minimum of the ACR and the ICR and a FRM cell should be sent.
This is a use-it-or-lose-it policy intended to keep ABR sources from retaining stale

ACRs.

5. If CRM FRM cells have been sent without receiving any Backward RM (BRM)
cells, then the source rate should be decreased by the CDF, subject to the MCR.

6. Upon reception of a BRM cell, ABR sources should reset the ACR based on the
Congestion Indication (CI), No Increase (NI) and Explicit Rate (ER) information

from the received BRM cell as shown in Table 3.2.

NI | CI | New Allowed Cell Rate

0 | 0 | MIN(ER, ACR + PCR x RIF, PCR)
1 | 0 | MIN(ER, ACR)

X | 1 | MIN(PCR, ACR — ACR x RDF)

Table 3.2: Setting ACR Upon Backward RM Cell Reception

3.3.2 Switch Behavior

The principal responsibility of ATM switches is to monitor congestion on the switch

and provide feedback to ABR sources. Because of the bursty nature of VBR traffic, the

*Other cells are defined as either data cells or Backward RM cells
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instantaneous bandwidth available to ABR connections varies constantly with time
and may cause congestion and perhaps even cell loss. The goal of the network is to
keep ABR cell loss to a minimum while efficiently allocating the network bandwidth.

At the reception of a BRM cell, switches invoke a congestion control scheme whose
purpose is to place feedback information into the RM cell. However, congestion control
schemes are vendor-specific. That is to say that the scheme used and its implementa-
tion is at the discretion of the ATM switch manufacturer. Several congestion control
schemes have been proposed and they generally occur in three fundamental forms;
binary, explicit-rate and credit-based.

Binary feedback is feedback based on a binary condition, such as congested or not
congested. An early binary feedback mechanism used the Explicit Forward Congestion
Indication (EFCI) bit in the ATM header. The EFCI is a method by which congested
switches on the path from source to destination can notify the destination that con-
gestion was experienced (by setting the bit). Switches monitored their queue lengths
and set the EFCI when they exceeded a given threshold. Destinations monitored the
EFCI bit and sent RM cells back to the sources periodically where the source used an
additive increase, multiplicative decrease algorithm to adjust their source rates. Binary
schemes can be unfair however, because the penalized source(s) may not be the one(s)
causing the congestion.

It was also quickly noted that a binary feedback scheme would operate too slowly
in high speed networks and that an explicit-rate scheme would be faster and allow for
more flexibility. Rather than providing binary feedback, explicit-rate schemes provide
sources with an express rate at which to send cells. Explicit-rate schemes converge
faster than binary schemes and also make rate policing on the switch easier because
the policer can monitor RM cells for the rate to use in policing algorithms; the explicit
rate is one of the fields of an RM cell, which can be easily monitored by the policer.
Further, they are robust in the sense that RM cell loss does not significantly degrade
performance because the next RM cell to arrive will return the system to the correct
operating point.

The credit-based approach consists of per-link, per-VC window flow control. The
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receiver monitors queue lengths at each VC and determines the number of cells that
can be sent on that VC. This parameter, known as the credit, is the number of cells
that the sender may send. To prevent credits from being lost, bookkeeping is done to
detect cell loss on the VC and the receiver then reissues credits to compensate. One
problem with credit-based schemes is that each VC must reserve enough buffer space
to fill the link capacity even though the link is potentially shared by many VCs. This
can be resolved by adapting the number of credits issued in proportion to the activity
of a VC, but consequently introduces ramp-up delays.

In short, it is the responsibility of the switch to fill in the the ER, CI, and NI fields of
the BRM cells by some method, which is likely to vary from switch vendor to switch
vendor. One should note that explicit-rate is the official congestion control scheme
adopted by the ATM Forum, however, there have been many different explicit-rate
schemes proposed, none of which is discussed in detail here. The specific congestion
control schemes implemented in the Virtual ATM Software Switch are discussed briefly

in Section 3.5.4.

3.3.3 Destination Behavior

The primary role of destinations in an ABR connection is to turn-around the FRM cells
that it receives in an expeditious manner. This basically entails changing the direction
bit in the FRM cell, making it a BRM cell, and sending it back out on the VC on which

it was received. The following is an abbreviated list of ABR destination behavior[1, 28].

1. ABR destinations should monitor incoming data cells and store the EFCI bit from

the ATM header.

2. When a FRM cell is received, the destination should set the direction bit, making
it a BRM cell, and set the CI bit if the EFCI was set in the last data cell received.

3. In a fashion similar to that of switches, destinations may lower the ER in the RM

cell or set the CI and/or NI bits if it is experiencing internal congestion.

4. ABR destinations may generate a BRM cell without having received a FRM cell

in order to increase the responsiveness of the source. In this case, the destination
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should set the Backward Explicit Congestion Notification (BECN) and CI bits in
the RM cell.

3.4 Virtual Network Devices

Virtual network devices are a Linux kernel-level abstraction that creates what the sock-
et implementation in the kernel believes is an actual network device. When created,
virtual network devices are associated with physical network devices which can be
ethernet or ATM and these physical network devices carry the traffic for their associat-
ed virtual network devices. In this way, with potentially only a single physical network
device, the system can simulate traffic on an essentially unlimited number of virtual
network devices. Current support includes virtual ATM over physical ATM and virtu-
al ATM over physical ethernet, but efforts already exist to extend the concept to virtual
ethernet devices and Proportional Time Emulation and Simulation of IP networks.
Network devices in the Linux kernel are an abstraction intended to provide broad
coverage of both current and future networking devices. In that way, they are a slight-
ly specific example of the familiar device driver abstraction which is designed to suit
a vast array of PC devices. Their generic facade permits the ability to present the op-
erating system with a pseudo device that has the familiar form of a network device,
but whose implementation is completely dissimilar, acting as an intermediate network
device driver between the network protocol stack and the physical network device

drivers.

3.4.1 Architecture

Virtual network devices are implemented in the Linux kernel as a pseudo device driv-
er, /dev/vdev. This implementation technique is a popular one because it allows simple
and uniform user-level access to kernel implementations. User-level programs written
to create and configure virtual network devices do so chiefly through ioctl  calls on
the pseudo device. As shown in Figure 3.6, the virtual network device layer, which re-

sides between the Linux socket implementation and the device drivers of the physical
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network devices, consists of any number of configurable layers. This is an important
feature because it allows per-instance user-level configuration of virtual network de-
vice functionality and makes adding functionality to existing virtual network devices

simple, modular and unobtrusive.

User Space User Process(es)

Kernel Space Socket Implementation ,” | Configurable Layer 1

Configurable Layer 2

Virtual Network Device(s)

Physical Network Device(s) AN

Configurable Layer n

Figure 3.6: The Virtual Network Device Stack

The method by which virtual network devices insert themselves into the kernel
protocol stack is exceedingly simple. To all parts of the Linux kernel, with the exception
of the device drivers, a device is just an abstract object. Only the device drivers really
know the details of a particular device. Therefore, creating what the kernel will believe
is a network device simply requires instantiating the kernel structure used for the type
of network device being virtualized and registering the device with the kernel through
a provided API. This is similar to the way that physical network devices are registered
as well. During kernel boot, device driver initialization functions probe the PCI (or
ISA) bus looking for devices. When and if they find one, they, among other things,
allocate one of these kernel device structures, initialize it, and call a function to register
it with the appropriate kernel entity.

However, for virtual network devices, it is also necessary to “insert” the virtual
network device layer functionality between the socket implementation and the physi-
cal device drivers unobtrusively, which is accomplished by correctly setting some ap-
propriate function pointers. Most types of device structures in the Linux kernel have
an operations structure that contains function pointers for common device operations

such as open, send, close, etc. Rather than pointing these function pointers to the physi-
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cal device driver entry points, as is done for physical network devices, virtual network
devices point them into the analogous entry points in the virtual network device im-
plementation. Since each device has its own operations function pointers, virtual net-
work devices can insert the virtual network device stack into their kernel stack without
affecting the operation of the physical network hardware.

Likewise, the Linux kernel also provides the ability to intercept incoming traffic
on physical network devices destined for virtual network devices through the use of
function pointers. Ethernet packets can be tagged with a packet type to identify them
and ATM cells and packets can be identified by the virtual circuit on which they are
received, which allows virtual network device traffic to be routed to the necessary
virtual network device receive entry points and segregated from traffic on the physical
network devices.

The potentially complicated part of a virtual network device is the bookkeeping
associated with multiplexing and demultiplexing virtual device traffic on the physical
network devices and the emulation of physical device functionality, such as ethernet
fragmentation, ATM segmentation and ATM traffic shaping. Although for many appli-
cations, a truly abstract virtual network device implementation may be acceptable, for
ProTEuS network simulations, it is important that virtual network devices faithfully
perform many of the necessary aspects of a real network device to avoid the oversim-
plification suffered by many other alternative network simulation techniques.

To the protocol stack, virtual network devices look like network devices. To the
physical network devices, virtual network devices look like protocol implementations.
The real power of virtual network devices lies in the fact that from the protocol stack
entry point up, kernel and user-level entities are oblivious to the fact that the devices
are virtual; they do not know or care. Similarly, from the physical device driver entry
points and down, the physical devices have no idea that the devices are not actually

protocols.
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3.4.2 Virtual ATM Devices

Virtual ATM devices are a form of virtual network device that creates a pseudo ATM
interface that can be utilized as any physical ATM device, including supporting native
ATM applications and Classical IP (CLIP) over ATM. Further, virtual ATM devices are
also eligible to become Virtual ATM Software Switch ports, as discussed in Section 3.5,
and support exists for using either a physical ethernet device or a physical ATM device
as the physical support network. Although these are the only currently supported
physical network device types for virtual ATM, there is nothing magical about them
and virtual network devices in general can be associated with any physical network
device, or any physical communication device for that matter, for which the Linux
kernel has support.

Figure 3.7 depicts the virtual ATM device stack in the Linux kernel used by Pro-
TEuS ATM network simulations, which utilize both Segmentation and Reassembly
(SAR) and Proportional Time (PT) layers. However, as mentioned earlier, virtual de-
vices, ATM or not, can utilize any combination of available layers; we show this con-
figuration only as a common example. The ATM Adaptation Layer (AAL) layer is a
non-configurable layer that exists on all virtual ATM devices. The individual virtual

ATM layers are discussed in more detail in Sections 3.4.2.2 and 3.4.3.

User Space User Process(es)
Kernel Space Socket Implementation -
e AAL
Virtual ATM Device(s) SAR
. , N PT
Physical Network Devices S

Figure 3.7: The Virtual ATM Device Stack

When an application opens a virtual circuit on a virtual ATM interface, what is ac-
tually created is what can only be termed a Virtual Virtual Circuit (VVC). No resources

are allocated and no connection is established on the physical network in the conven-
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tional ATM sense. All reads and writes on these VVCs are multiplexed at the cell level

onto the virtual ATM interface.

3.4.2.1 Physical Network Device Support

When the physical network device is an ATM device, virtual ATM creates an AAL5
virtual circuit over which it will multiplex all traffic for the virtual device. Multiple vir-
tual flows (VVCs) among multiple virtual devices are multiplexed onto these physical
flows (VCs). Point-to-point connections in the ATM sense are created by VC pairings;
two virtual devices communicate point-to-point over a VC, emulating a physical ATM
connection (fiber).

As part of the virtual device configuration, the push function pointer for this virtual
circuit is set to the virtual ATM over ATM receive function rather than the default
Linux-ATM receive function. This is the hook from the receive side of the physical
device driver into the virtual device implementation. The push function is a Linux-
ATM specific implementation that is invoked when a cell on an AALQO VC or packet
on an AAL5 VC is received. Each virtual circuit has its own push function pointer,
allowing virtual ATM devices the redirection they need without disturbing normal
Linux-ATM functionality on other VCs.

When an AALS5 packet is received on a VC supporting a virtual network device,
the push function is executed, which passes the packet up the configured virtual device
layers. Each layer propagates the packet up the stack after any necessary processing
is done. For example, the SAR layer will hold cells on AAL5 VVCs until a completed
AALS packet has been successfully reassembled, at which time it will pass the reassem-
bled packet up to the next layer (See Section 3.4.2.2). Eventually, upon exiting the top
of the AAL layer shown in Figure 3.7, the push function for the virtual virtual circuit is
invoked, which is typically the default Linux-ATM receive function, which routes the
data back into the normal ATM protocol stack and socket implementation as if it was
received on a conventional virtual circuit.

If the virtual ATM device is configured with a Proportional Time layer (See Section

3.4.3), then multiple virtual ATM devices may share a VC on the physical ATM device.
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This option was implemented in an effort to reduce the number of network interrupts
suffered on a machine supporting many virtual ATM over ATM devices. The PT layer
performs the necessary multiplexing and demultiplexing based on peer Media Access
Control (MAC) addresses that are user-supplied upon virtual ATM device configura-
tion.

Likewise, when the physical device is an ethernet device, because ethernet and IP
are not connection-oriented, Virtual ATM creates a point-to-point connection in the
ATM sense by an association between peer MAC addresses. As with proportional time
virtual ATM devices, the destination MAC address for virtual ATM data is located in
the packet payload in order for the destination to demultiplex the cells and route them
to their appropriate destination virtual ATM devices.

Further, a new ethernet packet type is created that is used to identify ethernet pack-
ets generated by and destined for virtual ATM device implementations. Similar to the
ATM push function, packet type definitions in Linux contain a func function pointer,
which virtual ATM over ethernet devices set to the virtual ATM over ethernet receive
function. When a packet of this type is received on an ethernet device supporting a
virtual ATM device, the func function is executed, which hooks into the virtual ATM
device implementation and passes the packet up the configured virtual device layers.

At the point where the packet is passed from the particular virtual device receive
function up to the bottom layer of the virtual device stack, the implementation does
not depend on the physical device type. That is, the physical network supporting
virtual devices is transparent to the implementation of the configurable layers* and

they should have no need to know its intimate details.

3.4.2.2 Existing Configurable Layers

There are two virtual ATM layers that have already been implemented as part of pre-
vious work that provide important functionality that is utilized by ProTEuS ATM net-
work simulations[51]. They are the ATM Adaptation Layer (AAL) layer and the Seg-

*With the temporary exception of the Proportional Time layer which currently requires the physical
support network to be ATM.
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mentation and Reassembly (SAR) layer.

ATM Adaptation Layer (AAL)

The AAL layer is a layer that must be configured on all virtual ATM devices. In
short, it is the “glue” between the Linux-ATM protocol stack and the virtual device
implementation. It provides the entry points into virtual devices from the socket im-
plementation on the send side and out of the virtual devices back into the socket im-
plementation on the receive side. Aside from cementing the virtual device layer into
the kernel, the AAL layer also provides some clandestine housekeeping functions to

keep the Linux-ATM implementation happy.

Segmentation and Reassembly (SAR)

The SAR layer performs ATM segmentation and reassembly that is an essential
point of functionality in trying to faithfully emulate ATM interface card semantics,
which typically support this operation in hardware. The virtual ATM SAR layer sup-
ports the two most common ATM adaptation layers, AALO and AALS5.

In an AALQ connection, raw, 53 byte (48 byte payload) cells are sent and received,
but no other processing is done. In Linux-ATM, applications that open AALO connec-
tions can only read and write 52 byte buffers (an entire ATM cell, minus the Header
Error Check (HEC)). The application is responsible for filling in the entire ATM header
except for the HEC. This includes the Virtual Circuit Identifier (VCI), the Virtual Path
Identifier (VPI), the Cell Loss Priority (CLP), the Generic Flow Control (GFC), and the
Payload Type Indicator (PTI). The virtual ATM SAR layer inserts the one byte HEC and
passes 53 byte cells down the virtual ATM layer stack. When a ATM cell is received
on an AALQ connection, the SAR layer checks the HEC and discards the cell if an error
is detected. If not, it removes the HEC and passes the remaining 52 bytes up to the
application.

In AALS connections, applications read and write packets of variable length. The
SAR layer segments the packets into 48 byte payloads and attaches full ATM headers,
sending 53 byte ATM cells down the virtual ATM device stack. The last cell of an

44



AALS packet is marked as such in the PTI and contains an AALS5 trailer at the end of
the payload that includes, among other things, a packet length indicator. When cells
arrive on an AALDb connection, the HECs are checked and, if no errors are found, the
payloads are queued until the last cell of the packet is received. If an error is found,
the entire packet is discarded, including the cells that have yet to arrive that belong to
the erred packet. The length indication from the AALS trailer permits the SAR layer to
reassemble the error-free payloads into a variable length buffer matching the one sent

on the transmit side that is passed up to the application.

3.4.3 Proportional Time

Proportional Time is a configurable layer on a virtual ATM device that provides the
control structure for ProTEuS synchronous distributed proportional time ATM net-
work simulations. Current support is available for virtual ATM devices over physical
ATM devices only; efforts are ongoing for virtual PT ethernet and virtual PT ATM over
physical ethernet.

The Proportional Time layer is controlled by a real-time kernel thread that is in-
voked under KURT-Linux control on a static explicit real-time schedule that establish-
es the epoch time. The period of the real-time thread’s execution is predetermined and
set by the user when the kernel is switched into real-time mode. In general, the length
of the epoch should be long enough for the busiest physical host to complete all of the

tasks in each cell-slot for the portion of the virtual ATM network that it supports.

3.4.3.1 Synchronization

ProTEuS synchronization is accomplished through a very simple mechanism. During
each epoch, each host sends out a packet on every configured virtual circuit supporting
the simulation whether or not any data (ATM cells) needs to be transmitted or not. All
ProTEuS packets are timestamped with the epoch during which they were generated
and each physical host knows, through the setup of ProTEuS, how many packets to
expect per epoch (one per configured supporting virtual circuit).

If all of the packets from epoch N — &7 have arrived, then the epoch will proceed. If
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not, the epoch will be missed and it will be re-attempted during the next KURT-Linux
periodic invocation, presuming that the missing data has arrived in the meantime. As
alluded to in Section 3.2.1, in ProTEuS network simulations, there is a need to model
simulated transmission delays, so cells are often forced to wait in queues after they
have arrived. This circumstance allows ProTEuS the opportunity to raise the value
of & up to the minimum of the simulated link delays imposed on this physical host.
In other words, we can introduce a synchronization tolerance, where we will allow
epochs to proceed having not yet received all expected messages. However, because
the tolerance is the minimum of all simulated link delays, it does guarantee having
received all messages with a potential bearing on the current epoch.

This phenomenon is depicted in Figure 3.8 where a packet is generated by a remote
host in epoch N — 1. The packet is generally expected to arrive in epoch N, but a
simulated link delay of four epochs, allows the packet a window of valid epochs in
which to arrive. In this example, the packet actually arrives in epoch N + 2 and is
subsequently forced to wait in a queue until epoch N + 5, simulating its network link
delay*, at which time it is finally processed.

Packet generated Packet delivered
‘ Expected arrival Actual arrival ‘
I I

5 - 5 5
I . S T S S
N-1 ?—N—Nﬂ—Nﬁ—Nﬁ—Nﬁ—% N+5

Valid arrival interval for asimulated link delay of 4 epochs

> Time

Figure 3.8: Simulated Link Delays and Their Impact on Synchronization

The simplicity of the synchronization protocol is the principal reason that ProTEuS
does not currently support ethernet as the physical support network; the protocol
contains no contingencies whatsoever for lost packets. To support ethernet, the syn-

chronization mechanism in the Proportional Time layer would have to be extended

*Those with a keen eye will notice that a link delay of four would actually have the packet being
processed in epoch N + 4. However, one epoch is added to all link delays to simulate clocking delay.
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to utilize a simple fixed-window windowing scheme to detect lost packets or out-of-
sequence packet arrivals. Further, an acknowledgement or retransmit request mech-
anism would need to be implemented to recover from such failures and transmitting
hosts would need to retain packets until they are acknowledged or fall outside the s-
liding epoch window. ATM, on the other hand, is reliable, low delay and essentially
loss-free. The ProTEuS synchronization protocol contains a simple mechanism to de-
tect the loss of a proportional time packet in the physical network. Through hundreds
of ProTEuS experiments lasting millions of epochs each, resulting in physical ATM cell

transmissions in the billions, not a single ATM cells has ever been lost.

3.4.3.2 Epoch Phases

The real-time thread controlling proportional time executes a conventional suspend-
work loop as shown in Program 3.1. At the top of the loop, the thread is suspended
by KURT-Linux if either the kernel is not in real-time mode, or until the thread is next

scheduled. When the thread is awakened, the work phase of an epoch ensues.

Program 3.1 Proportional Time Thread Suspend-Work Loop

1 while (Irt_suspend(SUSPEND_IF_NRT)) {
2

3 if (receive() == SUCCESS){

4 produce();

5 transmit();

6 }

7

8 if (stop_time()) break;

9 }

Each real-time epoch consists of three fundamental phases as previously alluded to
in Section 3.2; receive, produce and transmit. The iteration of the loop is terminated
by a stop condition that signals the end of the simulation, at which time the real-time
thread breaks out of the loop and exits.

The receive phase ensures that all data necessary to proceed with the epoch has
arrived as enforced by the synchronization protocol.

If the receive phase succeeds, the Proportional Time layer then moves to the pro-
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duce phase. This phase entails first unpacking and demultiplexing the received pack-
ets and imposing the simulated link delays on all cells in the packets. It then pushes
those cells whose simulated delay has expired up the virtual device stack and into
the software switch or the kernel socket implementation. At this point, any necessary
cell-switching is accomplished by invoking the virtual ATM software switch switching
function, followed by servicing all open virtual virtual circuits on each proportional
time virtual ATM device through performing cell-level traffic shaping. As preparation
for the transmit phase, each virtual ATM device is permitted to select a single cell to
send during this epoch if one is so enabled.

This is followed by the transmit phase, during which the enabled cells sharing each
supporting physical virtual circuit are multiplexed into AAL5 packets, one per physi-

cal support VC, that are relayed to the destination host.

3.4.3.3 Sending and Receiving

When sources send data on an open virtual virtual circuit on a virtual ATM device, the
buffer propagates its way down to the virtual device layers, where the data is eventu-
ally sent out onto the network. Those configured with a SAR layer segment the buffer
into 48 byte payloads and propagate a frain of 53 byte ATM cells to the layers below.
On a virtual device void of a PT layer, the cell train is passed down to the lowest virtual
device layer, which encapsulates the ATM cells into a network packet and sends it out
on the physical network device.

When the virtual ATM device is configured with a PT layer, which resides below
the SAR?, the cells are buffered by the layer and are not immediately sent out onto the
physical support network. As depicted in Figure 3.9, cells entering the Proportional
Time layer are queued into a transmit queue on a per-VVC basis where they wait to be
enabled by the traffic shaper.

As part of the work during each epoch, cell-level traffic shaping is performed on
every open VVC with pending cell transmission. Traffic shaping applies a decision

function to each VVC, whose purpose is to decided whether or not the VVC should

*Proportional time virtual ATM devices must be configured with a SAR layer above the PT layer.
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Figure 3.9: Transmit Side Queueing in the Proportional Time Layer

be allowed to send a cell in this epoch, based on its current cell rate (CCR. Program
3.2 shows the algorithm used to shape ATM traffic, which guarantees that a source
sending at rate CCRcells per second on a simulated link of speed linerate  cells per
second will send exactly CCReells in linerate  cell-slots. The algorithm itself is very
simple and spaces cell transmission on the link as evenly as possible, utilizing remain-

der accumulation to approximate periodic transmission in accordance with the CCR

Program 3.2 Proportional Time Traffic Shaping

1 [* Initialization. */

2 send = linerate /| CCR;

3 remainder = linerate % CCR,;

4

5 /* During each epoch. */

6 if (I--send) {

7 /* Send a cell */

8 send = linerate / CCR;

9 remainder += linerate % CCR,;
10 send += remainder /| CCR;

11 remainder = remainder % CCR;
12 '} else {

13 /* Do not send a cell */

14 }

CBR and ABR are shaped by this algorithm, while VBR and UBR are not. Of course,
in a CBR connection, CCRnever changes, while in an ABR connection, it has the poten-

tial for change at the reception of each BRM cell.
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VBR traffic is implemented through the ATM Reference Traffic Source (ARTS) in
ProTEuS which dispenses cells based on an explicit time line schedule. This is a very
interesting and intriguing feature because it essentially means that ProTEuS can repli-
cate any ATM stream whose cell transmission schedule can be explicitly captured. For
instance, some of the ARTS VBR sources used in Chapter 4 were cell traces of an MPEG
clip from the movie Star Wars streamed across a real ATM network. ARTS can also be
used to replicate other fundamental source cell or packet patterns such as on-off, or
statistically significant ones such as Markovian. All that is required are statistical ran-
dom number generators, such as those contained in the GNU Scientific Library, and a
simple program to generate the schedule.

UBR traffic is shaped using a token bucket algorithm where user-level programs
can specify a token replenishment rate and a maximum bucket size, which default
to the simulated line rate and one, respectively. In ProTEuS, by default, UBR cells
are always allowed to transmit, however, they find themselves behind all other traffic
classes in priority for the link once they are enabled. When UBR cells are waiting to
be transmitted, the shaper hands out tokens, each of which allow a cell to be enabled,
as long as they are available. When the bucket is emptied, cells are blocked and the
bucket is replenished with tokens at the specified rate.

When cells are enabled by the shaper, they are transferred from their VVC queue
to the device queues, where cells are separated by class. Each device has five queues
as shown in Figure 3.9; one each for RM, CBR, VBR, ABR and UBR. At the conclusion
of each epoch, each virtual ATM device is allowed to send one cell if there are any
enabled. This is, of course, because we specifically chose the ATM cell time as the
basic virtual time unit. Therefore, each epoch can result in at most one cell being sent
on each simulated network link. The current mechanism used to choose a cell is a
strict priority criterion which services traffic classes in the order; RM, CBR, VBR, ABR
and UBR. Therefore, if there is an RM cell waiting, it will be sent regardless of the
occupancy of other queues. If no RM cell is waiting, but a CBR cell is, then the CBR cell
will be chosen, etc. Chosen cells, at most one from each proportional time virtual ATM

device, are then enqueued onto an outbound queue shared by all PT devices being
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multiplexed onto a particular virtual circuit in the physical network. The contents of
each of these multiplexing queues will be bundled and transmitted during the last
phase of the epoch.

Figure 3.10 depicts the structure of a proportional time packet. The first four bytes
is a long integer that conveys the epoch number in which the packet was created. Fol-
lowing the epoch information, which is primarily used for synchronization purposes,
is a four byte long integer containing the status flags. The status flags can be used for
any purpose, but currently contain information about the state of the node generat-
ing the packet. State values include PT_INACTIVE , which indicates the the host has
no more active sources or sinks, PT_STOR indicating that the host is prepared to stop
the simulation, and PT_HALT, which means that the host is in the process of halting its
support of the simulation. These flags are used when the criteria for ending a simula-
tion is based on a number of data cells sent and/or received as opposed to a set stop
time. Following the status flags are any number of demultiplex information - ATM cell
pairs, including zero; synchronization information is sent in every epoch regardless of
the traffic, or lack thereof, in the virtual network. The demultiplexing information for
each cell is a unique six byte MAC address* in the simulated network assigned to each
virtual ATM device, by the user, at configuration time. Each ATM cell is preceded by
a MAC address, allowing the receiving PT layer to identify the destination PT virtual
ATM device by associating virtual point-to-point connections between pairs of peer
MAC addresses in the simulated network.

When an AALS packet is successfully received and reassembled on the physical
network supporting ProTEuS, the Interrupt Service Routine (ISR) merely queues the
packet onto a receive queue for the shared physical VC on which the packet was re-
ceived as shown in Figure 3.11. When the next epoch begins, under KURT-Linux con-
trol, the receive phase of the epoch determines whether or not the epoch may proceed
by checking the synchronization information in the packets that have arrived thus far.

If the epoch is allowed to proceed, all packets timestamped with an epoch previous to

*The MAC addresses should be unique, but recall that they are user-assigned upon virtual ATM device
configuration, so no guarantees can be made. Non-unique MAC address certainly can, and often will,
lead to incorrect demultiplexing of ATM cells.
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Figure 3.10: The Structure of a Proportional Time Packet

the current epoch are demultiplexed. This entails iterating through each packet, us-
ing the demultiplexing information to locate the destination virtual ATM device for
each cell, and moving those cells into the receive queue on the destination virtual ATM

device.

VATM 1

Upto SAR

Upto SAR

o -
m -
m -

Upto SAR

Figure 3.11: Receive Side Queueing in the Proportional Time Layer

All PT virtual ATM devices have the option of specifying a simulated network
transmission delay. When cells are moved into the receive queues on their respective
virtual devices, they may be forced to wait to simulate this delay. While all cells are
forced to wait at least one epoch to simulate clocking delay, the simulated link delay
may be zero. The wait queue is implemented as a timeout queue, such that only the
head of the queue ever needs to be checked to determine cell release. When a cell is
released from the queue, it is passed up the virtual device stack to the SAR layer.

A recent modification of ProTEuS ATM simulation was the ability to loopback virtual
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devices so that both endpoints of a simulated connection can be mapped onto the same
physical machine, eliminating altogether the need for a VC in the physical network.
Furthermore, this permits a more flexible, almost arbitrary, mapping of the simulated
domain onto the physical. When virtual ATM devices with PT layers are configured,
they attempt to find their peer on the local machine by MAC address association. If
they are successful, they are configured as loopback devices. When cells from a loopback
device are selected for transmission, they are not multiplexed into a network packet,
but rather queued directly onto the receive queue of their peer, where they too will
endure any simulated network transmission delay.

It should also be noted that there are several minor exceptions to the implementa-
tion described here. For instance, when FRM cells are turned-around by destination
PT virtual ATM devices, they are not queued in the transmission queue for the VC
on which they were received (and will be subsequently transmitted). Instead, they
are queued directly onto the RM cell queue on the virtual ATM device for immediate
transmission. Further, when PT virtual ATM devices are configured as virtual ATM
software switch ports, traffic shaping is not performed on any of the VCs, regardless
of traffic class. Any shaping, i.e. weighted-round robin cell service, is done at the soft-
ware switch level, such that cells are unconditionally enabled for transmission when

available at the PT layer.

3.4.34 ABR Support

Support for ABR service is present in the Proportional Time layer in both the source
and destination behavior whose ATM Forum specification is summarized in Sections
3.3.1 and 3.3.3. Although the current Proportional Time platform implementation sup-
ports ABR cell service in the PT layer, the layered architecture of virtual network de-
vices allows a cleaner implementation, separating ATM traffic shaping, including that
of ABR, into a separate ATM Quality of Service (QoS) layer residing logically above
PT. This is part of the future work that will generalize the use of proportional time for
other applications.

As alluded to earlier, ABR sources are shaped at the cell-level by the fundamental
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algorithm in Program 3.2. However, for ABR streams, the shaper is complicated by
two other factors. First, if the shaper determines that an ABR source may send a cell, it
must decide whether it will be a FRM cell or a data cell in the current cell-slot. Further,
if the source rate is instructed to fall to zero, FRM cells must be periodically sent to
probe the network, or the rate may never again be non-zero.

Below is an abbreviated list of the supported ABR source behavior in proportional

time virtual ATM devices.

1. ABR sources always send at a rate less than or equal to the ACR, which lies

between the MCR and the PCR.
2. ABR sources begin sending cells at the ICR and the first cell sent is a FRM cell.
3. ABR sources send a FRM cell every NRM data cells.

4. Upon reception of a BRM cell, ABR sources reset the ACR based on the CI, NI,
and ER from the received BRM cell as shown in Table 3.2 on page 35. If the new
ACR is zero, a timer is set to probe the network with a FRM cell every 100ms (in

virtual time) and is not turned off until a returning BRM contains a non-zero ER.

ABR destinations have an extremely simplified implementation in PT virtual AT-
M devices and support only one destination behavior, albeit the most important one.
When a FRM cell is received, the destination sets the direction bit, making it a BRM

cell, and sends it back out on the virtual virtual circuit on which it was received.

3.5 The Virtual ATM Software Switch

The virtual ATM software switch was initially created as a method by which to provide
simple software supported ATM cell switching capabilities at a fraction of the cost of
a real ATM switch[51]. Although the software implementation restricts the achievable
real-time throughput, it also provides flexibility for experimentation and extension. As
was the case with virtual network devices, the potential uses for the software switch

has far transcended its intended purpose. For ProTEuS network simulation, the need

54



emerged to more closely mimic the operation of a real ATM switch. As part of this
work, the software switch has been extended to support both AALO cell and AALS5
packet switching and employs several queueing disciplines. Further, the switch has

been modified to operate in a proportional time mode compatible with ProTEuS.

3.5.1 Architecture

Virtual ATM switching is implemented in the Linux kernel as a pseudo device driver,
/dev/vswitch. Again, this implementation technique is a common one because it allows
simple and uniform user-level access to kernel facilities. User-level programs written
to control the software switch configuration and operation do so through ioctl  calls
on the pseudo device.

Figure 3.12 shows the virtual ATM software switch architecture. In this example,
the switch contains four ports; two are virtual ATM devices configured over a physical
ethernet Network Interface Card (NIC), one is a virtual ATM device configured over a
physical ATM NIC and one is itself a physical ATM NIC. This example demonstrates
the versatility of the software switch, which can be configured to support any number
of ATM interfaces as switch ports, both physical and virtual. This illustrates an impor-
tant realization; the software switch does not know or care that the ATM devices may be
virtual.

The virtual ATM switching layer, as the name suggests, accomplishes the task of
switching cells from an incoming (Port, VC) onto an outgoing (Port, VC) based on the
contents of a routing table. The switch provides backlog queueing or output queuing
in multiple forms as discussed in Section 3.5.2 and can easily be extended to support
others. Further, Q.Port has previously been modified to operate on the virtual ATM
software switch fabric and can be used to provide signaling support[6].

Routing table entries are created implicitly full-duplex through a user-level ioctl
call specifying an input (Port, VC) and output (Port, VC). This opens the incoming and

outgoing virtual circuits* on the specified ports and makes an association between the

*Remember that if the port is associated with a virtual ATM device, then these are actually virtual
virtual circuits.
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Figure 3.12: Virtual ATM Switching

two in the software switch routing tables. As part of the creation of a routing table
entry, the push function pointer for each VC is set to the ATM switch receive function
rather than the default Linux-ATM receive function. This is the hook that bypasses the
Linux-ATM protocol stack and kernel implementation and allows the software switch

to queue and switch ATM cells and packets.

3.5.2 Queueing

The virtual ATM software switch has been modified to support several queueing dis-
ciplines in an effort to provide another level of realism to the switch. As mentioned
previously, the architecture of the switch is quite flexible and can be extended ad infini-
tum to mimic a real ATM switch as closely as the user desires. Such embellishments
may include input queueing, crossbar operation, multicast routing, etc. However, the
more complicated that queueing, routing and switching become, the slower the switch
is likely to run, elongating the necessary real-time epoch.

The available queueing disciplines, as well as the maximum lengths of the related
queues can be configured from user-level applications on a per-port basis, individually

and independently, providing further flexibility. As will be discussed in the ensuing
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sections, however, different disciplines may require different types of additional sup-

port to provide the quality of service for which their implementation was intended.

3.5.2.1 Shared Backlog Queueing

The original software switch was extremely primitive because the purpose for which
it was initially intended did not require it to be overly faithful to real ATM switching.
Furthermore, one of its driving motivations was the maximization of the achievable
throughput, which, as mentioned earlier, is theoretically maximized when the switch
software is at its simplest, including the queueing mechanisms[51].

Therefore, the first queueing discipline implemented, and still the default queueing
discipline, is a single shared backlog queue whose maximum length is configurable,
but which defaults to 300 cells (or packets). As depicted in Figure 3.13, all incoming
cells from all ports are queued into a single First In First Out (FIFO) queue. When the
queue is serviced, cells are switched from the queue in FIFO order and routed to their

respective output ports.

InPort OutPort

Figure 3.13: Shared Backlog Queueing in the Software Switch

3.5.2.2 Per-VC Queueing

Another queueing discipline implemented in the software switch is per-VC queueing
in which every route across the switch is allocated its own FIFO queue at each port

associated with the connection, whose maximum lengths are configurable, but which

57



default to 5000 cells (or packets). As cells arrive, they are routed to the output port of
their connection and queued in FIFO order on the queue for that connection, as shown

in Figure 3.14.

InPort OutPort

N | 1
[

Figure 3.14: Per-VC Queueing in the Software Switch

This is a very complicated queueing mechanism, and was one of the major reasons
that the credit-based congestion control mechanism discussed briefly in Section 3.3.2
was not adopted by the ATM forum,; it requires per-VC queueing, while the explicit-rate
approach does not necessitate any particular queueing discipline. In general, per-VC
queueing can unnecessarily consume large amounts of memory and complicates both
the queueing and switching mechanisms. When a particular queue is serviced, cells
are switched from the queue in FIFO order. However, on a given port with many open
VCs, switching between the queues for each VC is usually accomplished in a fashion
reminiscent of round-robin service.

To accomplish the effect that this queueing discipline is intended to have, it is im-
portant that only one cell is switched per switching invocation, which is not the default
software switch behavior. For instance, if instead, the switching mechanism switches
all cells from each per-VC queue in each invocation, the behavior will be nearly equiv-
alent to that of the shared backlog; the order of cell departure would differ, but all cells,

in effect, would be switched at essentially the same time. Therefore, real-time opera-
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tion of the switch, in which only one cell is switched per switching invocation, is the

recommended implementation for this discipline.

3.5.2.3 Per-class Queueing

Per-class queueing is a common and practical queueing mechanism for several reasons.
First of all, it provides per-port queueing, unlike the shared backlog, but is far less
complicated than per-VC queueing. Further, it segregates the traffic by class which
facilitates fulfilling some quality of service guarantees.

In per-class queueing, each port has a queue for each class of traffic; VBR, CBR,
UBR and ABR. In addition, the software switch also creates a separate RM cell queue*
to segregate resource management cells. As shown in Figure 3.14, incoming cells are
routed to the output port of their connection where they are queued FIFO on the par-

ticular queue for their traffic class.

InPort OutPort

-

Figure 3.15: Per-Port Per-Class Queueing in the Software Switch

When the queue of a particular traffic class is serviced, cells are switched from the
queue in FIFO order. To service cells between classes on each port, a weighted-round

robin scheduling mechanism has been implemented, but because the focus of this work

*More generally, it is an Operation, Administration and Maintenance (OAM) queue, to which RM cells
belong.
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and its predecessor has been Available Bit Rate (ABR) service, current scheduling sup-
port is only available for VBR and ABR; cells of all classes are queued by the switch,
but only the VBR and ABR (and RM) queues are serviced. The VBR and ABR queues
are serviced with a VBR:ABR weight ratio of 200:1. The RM cells in the separate RM
cell queue are serviced with the highest priority.

Again, real-time operation of the switch is the recommended mode of operation for
this queueing discipline because best-effort service will, in effect, negate any quality of
service imposed by the queueing and cell-switching mechanisms by simply switching

cells as quickly as possible.

3.5.3 Switching a Cell or Packet

The process of switching a cell or packet in the virtual ATM software switch is typically
driven by interrupts issued by the physical network devices on which the software
switch ports are configured. However, with proportional time virtual ATM devices,
queueing and switching are invoked by the KURT-Linux proportional time thread.
The four fundamental interrupts issued by the network device are fairly standard and
whether the physical devices are ethernet or ATM is largely inconsequential in this
regard. As an example, Figure 3.12 on page 56 depicts a scenario that we will refer to
during the following explanation.

Here, an incoming packet that is tagged as as a virtual network device packet ar-
rives on a physical ethernet card causing the card to issue an interrupt to the operating
system. In this interrupt service routine, the device driver is supposed to arrange for
the DMA of the packet contents into system memory and relay the DMA information
to the NIC.

When the NIC completes the packet transfer from card memory to system memory,
it interrupts the system again to let it know that the transfer is complete. If the physical
device is an ethernet device, as it is in Figure 3.12, the interrupt service routine in
the device driver queues the cell and marks the network bottom half which services

the packet at the discretion of the system*. When the network bottom half runs, it

*Bottom halves are discussed in slightly more detail in Section 3.7.1.
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checks the ethernet packet type and recognizes the packet as one destined for a virtual
network device, at which time it will invoke the packet type func function, passing it
to the appropriate virtual ATM device.

If the physical device is an ATM NIC, the packet is passed directly to the virtual
ATM device implementation or to the software switch queueing mechanism through
the push function on the virtual circuit, or virtual virtual circuit as the case may be, on
which the packet was received, bypassing the bottom half mechanism which does not
exist for ATM devices in Linux.

In Figure 3.12, the virtual ATM device processes the packet and passes the cells up
the virtual device stack, eventually invoking the push function on the virtual VC. This
push function is the software switch receive function that routes the cells to their output
ports and queues them. As mentioned, however, depending on the configuration of the
virtual ATM device, the invocation of this push function may, or may not, be the result
of the physical network interrupt.

When the switching routine is executed, cells that are ready to be switched, as de-
termined by the queueing and switching mechanisms, are switched out by calling the
send routine on the ATM device configured as the switch port. If the output port is a
physical ATM device, then this is the conventional physical device driver send func-
tion. If the port is associated with a virtual ATM device, then this is the virtual ATM
device send function which propagates the cells down the virtual ATM device stack
and eventually to the device driver of either a physical ATM or ethernet device.

At this point, the device driver arranges for the DMA of the packet back to the
memory of the NIC and informs it of the pending transfer. When the card completes
the transfer of the packet into card memory, it interrupts the system making it aware
that the packet has been copied from system memory, at which time, in the interrupt
service routine, the device driver frees the memory that the packet occupied. When
the packet has been successfully sent out on the network by the NIC, it interrupts the

system one last time to let it know that the packet has been sent.
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3.5.4 ABR Support

Because Available Bit Rate service is still, in many ways, in its infantile stages, support
for it is yet absent in hardware or premature at best. Therefore, in order to study its
behavior, it was necessary to model ABR service in software. As discussed in Section
3.4.3, ABR support is provided in end systems as part of the Proportional Time layer
implementation on virtual ATM devices. Support for ABR on the virtual ATM soft-
ware switch is present in two forms; the Explicit Proportional Rate Control Algorithm
(EPRCA), and more recently, the Explicit Rate Indication for Congestion Avoidance
(ERICA).

3.54.1 EPRCA

The Enhanced Proportional Rate Control Algorithm (EPRCA) is generally a congestion
reaction scheme[50]. EPRCA operates at each output port of the software switch where
it computes a Mean Allowed Cell Rate (MACR) using exponential weighted averaging
and a FairShare as a fraction of the MACR:

15 1

MACR = EMACR + ECCR

FairShare = gMACR

Program 3.3 shows the fundamental algorithm executed at the reception of a BRM
cell. EPRCA sets the CI and NI bits of the BRM cells based on the length of the ABR
queue on the port on which the BRM cell was received. In the software switch, LOWs
defined as 200 cells and HIGH is defined as 300 cells.

If the computed FairShare is greater the the ER in the BRM cell, then the ER is
unchanged, otherwise the ER is set to the FairShare. This ensures that if BRM cells
traverse more than one switch, the minimum of the FairShares reaches the source,
avoiding congestion at a bottleneck switch.

The advantages of EPRCA are that it is conceptually and computationally simple
and allows both explicit and binary feedback. However its congestion detection algo-

rithm, which is based on queue length, has been shown to be unfair. Sources starting
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Program 3.3 ERPCA: At the Reception of a Backward RM Cell

1 MACR= (15 * MACR+ CCR) >> 4;
2 FairShare = (MACR* 7) >> 3;
3

4 if (length >= HIGH) {

5 Cl = 1,

6 NI = 0;

7 } else if ((length < HIGH) && (length > LOW)) {
8 Cl = 0;

9 NI = 1,

10 } else if (length <= LOW) {
11 Cl =0

12 NI = 0;

13 }

14

15 ER = MIN(ERINRMCell,  FairShare)

late are treated differently than those that started early and are not allocated equal

bandwidth.

3.54.2 ERICA

The Explicit Congestion Indication for Congestion Avoidance (ERICA) algorithm is
generally a congestion avoidance scheme[32]. ERICA operates at each output port of the
software switch where it periodically measures the total load, total ABR load, and the
number of currently active ABR flows on the port. Using those, ERICA calculates a
FairShare that can be allocated to each ABR stream, which is the target ABR capacity
(usually 85 - 90% of the instantaneous available ABR capacity) divided by the number
of active ABR VCs. Further, it calculates a load factor, z, to control the source rates. The

load factor is the ABR input rate divided by the target ABR capacity.

TargetABRCapacity
NumActiveABRVCs

, ABRInputRate
"~ TargetABRCapacity

FairShare =

Program 3.4 is the fundamental algorithm executed at the reception of a BRM cel-

1. The VCShare is the current cell rate on the connection divided by the load factor,
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MaxAllocPrevious is the FairShare from the last averaging interval and DELTAis 0.1.
As in EPRCA, if the ER in the BRM cell is less than the calculated ER, then the
ER is unchanged ensuring that BRM cells traversing more than one switch relay the

minimum ER to the source.

Program 3.4 ERICA: At the Reception of a Backward RM Cell

1 VCShare = CCR/ z;

2

3 if (z > 1 + DELTA)

4 ER = MAX(FairShare, VCShare);

5 else

6 ER = MAX(MaxAllocPrevious, VVCShare);
7

8 if ((ER > FairShare) && (CCR < FairShare))
9 ER = FairShare;

10

11 ER = MIN(ERINRMCell, ER, TargetABRCapacity);

ERICA possesses several distinguishing features. First, to minimize the feedback
latency, ERICA monitors FRM cells for traffic metrics, but feedback is provided in
the BRM cells. Therefore, the feedback is based on recent traffic and is more timely
than if it were provided in the forward direction or based on current cell rate content
from BRM cells. Further, the characteristics of the flows are measured over averaging
intervals and ERICA gives only one feedback value per interval. By doing so, ERICA
prevents the switch from giving multiple conflicting feedback indications in a short
time interval. ERICA has a high throughput, exhibits low delay, keeps queue lengths

near unity and exhibits a short time to reach steady-state.

3.5.5 Real-Time Switching

In its original form, the Virtual ATM Software Switch performed the switching of cells
in a Linux bottom half. When cells arrived, the software switch marked the ATM soft-
ware switch bottom half. When the bottom halves were run at the discretion of the
system, the ATM switch bottom half switched out cells until the queues were emptied.
While this mode of operation still exists in the switch and is adequate for some appli-

cations, a second mode, a real-time implementation, was added both to better provide
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quality of service guarantees in the switch and to support ProTEuS ATM simulations.

The switch has been modified to operate under KURT-Linux control, which pro-
vides real-time support and the necessary accurate scheduling and timer mechanisms
to service the output queues and provide the expected quality of service[52, 25, 53].
A real-time kernel thread operates the software switch switching functions, looping
through and servicing each port, and is scheduled by an executive process through an
explicit time line schedule, which is typically, but need not be, periodic. The switch
operates in firm real-time mode and the cell service rate is specified by the executive
process at the time the system is switched into real-time mode.

The obvious benefits of real-time switching are two-fold. First, real-time scheduling
can provide the accurate periodic queue service that simulating a real ATM switch
requires. Second, real-time guarantees can ensure an accurate, reliable switching rate
that cannot be guaranteed by the Linux bottom half mechanism.

In ProTEuS ATM simulations, the switching function is invoked as part of the real-
time thread controlling the proportional time simulation. During the computation in-
terval of each real-time epoch, the PT layer calls the real-time switching function to

provide the opportunity to switch out a cell on each port.

3.6 TCP/IP Timing Changes to Linux

As alluded to previously, the only changes necessary to utilize real system and appli-
cation code in a ProTEuS simulation is to make it aware of virtual time, as opposed to
real time. A protocol stack such as ATM or UDP requires little to no changes because
the protocols are not heavily time-dependent. In ATM, for instance, all of the time
sensitive operation, such as traffic shaping resides in the network hardware, not in the
protocol stack.

TCP, however, includes several timing mechanisms to ensure reliable delivery of
data. These include delayed acknowledgements and packet retransmission, just to
name a couple. If these mechanisms are not modified to operate in virtual time, then

the behavior of the protocol will be largely unpredictable and its operation is not likely
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to be faithful to that of a real-world implementation. In such a case, the link layer of
the system is operating in virtual time while the protocol layer is operating in real time.
Therefore, because we wanted to be able to simulate IP over ATM sources in ProTEuS
ATM simulations, it was necessary to virtualize the TCP/IP stack in Linux.

The TCP/IP stack in Linux uses Linux timers to control its time-sensitive imple-
mentation. For instance, when TCP packets are sent, a retransmit timeout timer is
set that will cause TCP to retransmit the associated packet(s) when the timer expires,
meaning that the corresponding ACK did not return in time. If the ACK does arrive
before the timer expires, the timer is removed from the queue. These timers are are
serviced by the Linux scheduler from a FIFO queue and are controlled by the PC timer
chip. The fundamental unit in time in Linux is the jiffy, which represents 10ms of real
time, and all timers are multiples of a jiffy. Once per jiffy, the Linux scheduler runs the
timer queue and services all expired timers.

It was therefore necessary for ProTEuS to intercept the timer routines in the TCP/IP
stack associated with virtual TCP flows and allow ProTEuS to service them in virtual
time. First and foremost, a method was contrived to distinguish a virtual flow from
a non-virtual flow so that normal TCP sessions are not disrupted by this modification
to the protocol stack. Then, through the use of a simple C macro, all timer routine
calls in the TCP/IP stack were modified to use the ProTEuS timer mechanisms when
the flow is across a proportional time virtual ATM device and to use the conventional
Linux timer mechanisms when the flow is non-virtual. ProTEuS implements its own
timer queue identical to that of standard Linux, and services it each virtual jiffy. Fur-
ther, using a similar macro, several places in the stack where TCP was capturing and
operating on timestamps* were modified to use the virtual timestamp value, in units
of virtual jiffies, as opposed to the real timestamp value, in units of Linux jiffies. This
converts the timing control of virtual TCP flows to think in virtual time instead of real
time.

The changes to the TCP/IP protocol stack encompassed probably less than 50 lines

of source code and were completed in less than a week. Most of that time was spent

*Such as in the estimation of round-trip time which TCP uses to vary its retransmission timeout value.
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simply traipsing through the TCP/IP stack trying to find the calls to the Linux timer
routines and uses of the Linux jiffy counter, some of which were less than apparent.
This metamorphosis is a significant example of the strength of ProTEuS. With few-
er than 50 changed lines of source code and with minimal effort persisting less than a
week, ProTEuS simulations were able to use the real TCP/IP stack from the Linux operat-

ing system.

3.7 Remaining Challenges

Once the major performance constraints of ProTEuS were addressed and corrected, it
was still clear that there were additional issues affecting the performance of our dis-
tributed computations. However, these newly identified factors constraining perfor-
mance are at the system level and manifest in the form of scheduling jitter. Because
KURT-Linux is a firm real-time system, guarantees cannot always be made for every in-
vocation of real-time processes. KURT-Linux is, at times, subject to the greedy nature
of other parts of the system and can occasionally experience latencies of up to several
hundred ps; that is, a few times per second. Of course, if the period of a computation is
in the range of several milliseconds, this is unlikely to have much impact (depending
on the utilization of the epoch). However, if the period is on the order of hundreds of

microseconds, it can have a significant impact on efficiency.

3.7.1 Linux Bottom Halves

The largest source for jitter is the bottom half execution in Linux[2, 24]. In an effort
to minimize the amount of work done in an Interrupt Service Routine (ISR), many
interrupt handlers will employ a bottom half, which they “mark” during the ISR. Only
critical work is done during the ISR and marking the bottom half is a notification to
the system that it needs to run the bottom half for this interrupt, whose duty it is
to complete the work. Bottom halves are run at the discretion of the system and are
executed all-or-nothing. That is, when they are run, they are all run in succession

regardless of the length of time it takes to complete.
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Some bottom halves, such as the network bottom half and the SCSI disk bottom half
can introduce significant jitter because they are allowed to run for significant lengths
of time, much of it with interrupts disabled. This is because in a standard Linux sys-
tem which uses a 10ms periodic interrupt to keep time, occasional distortions of a few
hundred microseconds are largely insignificant. Some work has been done to reduce
the execution times of specific bottom halves, but it is clear that a more general ap-
proach is necessary to achieve significant improvement in the reduction of scheduling
jitter[24]. One method currently being considered is to introduce a kernel thread whose
sole purpose is to run bottom halves. That thread could then be scheduled along with
all other threads, explicitly controlling when bottom halves execute, thus reducing the

jitter they currently introduce into the scheduling of real-time processes.

3.7.2 Clock Rate and Phase Synchronization

Another issue with synchronized distributed computation is that KURT-Linux and U-
TIME depend on somewhat inaccurate timer chips to keep time, as does conventional
Linux, that are sensitive to environmental changes which affect the rate at which they
increment. This is a known problem and is a motivation for the Network Time Proto-
col (NTP)[37, 38]. The problem is that if each component of a synchronized distributed
computation has a different notion of either relative or absolute time it will affect the
synchronization of the distributed computation. We assist the machines in increment-
ing time at the same rate as addressed by Hill where the NTP standard is used to
calibrate each machine’s notion of the number of CPU cycles per second[24]. This has
been shown to be a very effective method to keep clocks incrementing at very close to
the same rate.

However, it does not affect their synchronization on the absolute time line, which
is subject to the granularity of NTP. On a local area network (LAN), NTP claims to
be able to synchronize to roughly within a millisecond. Whether or not this is ade-
quate absolute synchronization will depend on the length of the epoch and its slack
time component. Relatively simple and notably accurate clock synchronization, both

in phase and frequency, has been shown by Menon to be achievable when the physical
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network is reliable and low latency and the time-keeping mechanism is kept as close
to the network hardware as possible[35].

Figure 3.16 shows a scenario with two distributed components where the absolute
time references are off by approximately half the length of an epoch. Depending on the
epoch length and the ratio between the computation time and the slack time (epoch u-
tilization), it is easy to visualize how this interleaving of epochs can have unfortunate
consequences, even the propagation of missed epochs around the system. This is de-
picted in Figure 3.16 where each distributed component misses roughly every third
epoch, all of which, except the first, are the direct result of the other component miss-
ing a previous epoch. Because our driving application often requires very fine tem-
poral granularity, we are considering various ways of improving the synchronization
of distributed components on the absolute time line, including re-enacting the simple

master-slave synchronization method investigated by Menon[35].

Epoch 0 Skip 1 2 Skip 3 4
Machine 1

Messages

Machine 2
Epoch 0 1 Skip 2 3 Skip 4

Time

Figure 3.16: Epoch Interleaving Due to Insufficiently Synchronized Clocks

3.8 NetSpec

As the size of ATM networks grow, so does the complexity of the simulations nec-
essary to effectively evaluate them. This brings about a need for a simple, effective,
reproducible and extensible way to describe an experiment and have the setup, execu-
tion and the subsequent tear-down be automated as much as possible.

NetSpec is a distributed network performance evaluation tool developed at the
University of Kansas that uses a simple, block-oriented scripting language to describe
an experiment[30, 31]. The general architecture of the NetSpec system is depicted in

Figure 3.17. The input script is parsed and blocks of the experiment are distributed to
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NetSpec daemons as directed by the script. The daemons are processes that execute on
target hosts to perform the tasks outlined in the script. These daemons, which can be
written to perform just about any task desired, catch and execute the instructions that

NetSpec sends them.

— DataFlow

****** -+ Control Flow

Control
Daemon

Figure 3.17: The NetSpec Architecture

Each NetSpec daemon traverses several phases of execution. The NetSpec control
daemon, nscntld, invokes these functions on each of the daemons in the input script.
All of the phases must be defined in the daemon, but none is actually required to
do anything except send an acknowledgement back to the control daemon to tell it
that the execution of the particular phase has completed; not doing so runs the risk
of NetSpec hanging, waiting for an acknowledgement that never arrives. Other than
the acknowledgements, the daemons have complete autonomy regarding what they

do during each phase. Each phase is listed below with its intended use:

e [nitialize: Initialize the daemon.

Setup: Allocate any necessary resources.

Open: Establish any necessary connections.

Run: Perform the requested actions.

Close: Close any open connections.

70



Finish: Finish any unfinished portion of the requested work.

Report: Generate a report of the results.

Teardown: Release any allocated resources.

Kill: Exit.

Users provide NetSpec an input script that describes an experiment in a manner
that is meaningful to the appropriate NetSpec daemons. NetSpec parses the script and
contacts the daemons on hosts, typically remote ones, as the script dictates. The dae-
mons listen on TCP ports waiting to receive NetSpec commands and an instruction
block from the input script, which they receive and parse between the initialize and
setup phases. Before each daemon exits, it is granted the opportunity to send a report
back to the user during the report phase. The report can contain anything the daemon
wishes to relay back to the user, if anything. Upon completion, the daemon process-
es are killed and before it exits, NetSpec presents the information reported from the
various daemons to the user.

Furthermore, the daemons need not be started by hand and left running like con-
ventional daemon processes. NetSpec is set up such that inetd, the Internet super-
server daemon, will activate the NetSpec daemon, netspecd, on a remote host when
a connection is established on a recognized NetSpec port*. Ironically, netspecd is es-
sentially the NetSpec equivalent of inetd and receives information about the NetSpec
daemon to invoke and the port on which to invoke it. If netspecd can locate information
about the requested daemon in its configuration file, /etc/netspec.conf, it will execute it,

requiring no user intervention.

3.8.1 NetSpec Scripts

Program 3.5 contains an example NetSpec script used to relay ATM traffic between
two nodes across a virtual ATM software switch in a ProTEuS ATM network simula-

tion. The script contains a super-block that describes the general manner in which the

*This operates much in the same way, for instance, that telnetd is activated by inetd when a connection
is established on port 23.
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experiment should proceed; in this example, cluster. The valid super-block types are

listed below:

serial The individual blocks of the super-block are executed in the order in which they
appear in the script, serially; i.e., the first block is executed in its entirety before

the second even begins execution, and so on.

parallel The individual blocks of the super-block are run in parallel asynchronously;
i.e., they all begin execution roughly at the same time, but no guarantees are

made that their execution will remain synchronized in any way.

cluster The individual blocks of the super-block are executed in parallel synchronous-
ly; i.e., they all begin execution of each NetSpec phase at the same time. For
example, no daemon will begin the run phase before all daemons have finished

the open phase, and so on.

Inside the super-block are blocks that each describe some portion of the overall
experiment. Each block in a super-block specifies the name of the NetSpec daemon for
which the block is destined and an optional host name and port number on which to
contact the daemon. The target machine will default to localhost if not specified and a
port number for communication will be assigned if not provided.

Inside each block is the list of commands to be passed to the specified daemon.
Although each daemon can define its own semantics and syntax, it must satisfy certain
restrictions imposed by NetSpec. NetSpec parses each block, not for content, but to

ensure that it conforms to its language syntax, which basically consist of:
ID = ID [(ID[=value] [[ ID[=value] )1k

where the square brackets indicate optional specification.

The argument list in parentheses is optional, but if it exists, the arguments should
be identifier or identifier=value pairs separated by commas, and each statement must
end in a semicolon. Identifiers are compelled to start with a letter and may consist

of letters, numbers and underscores exclusively. Values have many different allowed

72



Program 3.5 An Example NetSpec Script

1 cluster {

2 vdev testbed18 {

3 vdev = atm (V1, physical=atm, itf=0, vc=60, localmac="0020ea000776",
4 remotemac="0020ea000777", stack=sarpt, delay=10);

5 pt = config (linerate=8000, wait=0,  stop=50000);

6 kurt = pt (repeat=5000, schedule="pt_sched_150",

7 path="/users/shouse/ProTEUS/KURT/user_pro 0s");

8 }

9

10 test testbed18 {

11 type = full  (blocksize=2048, duration=5);

12 protocol = atm (PVC, vc=V1.0.50, class=ABR, pcr=8000, ccr=1000);
13 own = testbed18;

14 peer = testbed20;

15 }

16

17 vdev testbed19 {

18 vdev = atm (V1, physical=atm, itf=0, vc=60, localmac="0020ea000777",
19 remotemac="0020ea000776", stack=sarpt, delay=10);

20 vdev = atm (V2, physical=atm, itf=0, vc=65, localmac="0020ea000779",
21 remotemac="0020ea000778", stack=sarpt, delay=10);

22 pt = config (linerate=8000, wait=0,  stop=50000);

23 kurt = pt (repeat=5000, schedule="pt_sched_150",

24 path="/users/shouse/ProTEUS/KURT/user_pro gs");

25 }

26

27 vswitch  testbed19  {

28 vswitch = port (P1, itf=V1, queueing=perclass);

29 vswitch = port (P2, itf=V2, queueing=perclass);

30 vswitch = connection (inve=P1.0.50, outvc=P2.0.50, aal=0, class=ABR);
31 }

32

33 vdev testbed20 {

34 vdev = atm (V1, physical=atm, itf=0, vc=65, localmac="0020ea000778",
35 remotemac="0020ea000779", stack=sarpt, delay=10);

36 pt = config (linerate=8000, wait=0,  stop=50000);

37 kurt = pt (repeat=5000, schedule="pt_sched_150",

38 path="/users/shouse/ProTEUS/KURT/user_pro gs");

39 }

40

41 test testbed20 {

42 type = full  (blocksize=2048, duration=5);

43 protocol = atm (PVC, vc=V1.0.50, class=ABR, pcr=8000, ccr=1000);
44 own = testbed20;

45 peer = testbedl8;

46 }

47 '}
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types including integer, string, character, real, IP address, ATM address, identifier,

boolean, etc.

3.8.2 NetSpec Daemons

One of the most attractive features of NetSpec is that it is easily extended. One only
needs to write a new daemon or extend an existing one to get new functionality, and
it requires no changes to NetSpec itself. The daemons link with a library of common
NetSpec daemon routines that serves as the glue between the daemon and NetSpec.
Since the language that each daemon utilizes to describe the functions that it will per-
form can be, and probably should be, unique for each daemon, each daemon requires
a Lex & Yacc parser to parse the instruction block from the input script that NetSpec
provides it. Furthermore, each daemon has to implement each of the phases described
in Section 3.8, but what the daemon does in each of these phases, if anything, is com-
pletely up to the daemon. This feature makes it almost infinitely extensible; you can write

a daemon to do pretty much anything.

3.8.2.1 The Virtual Network Device Daemon: nsvdevd

The primary method for configuring virtual network devices is command line based.
This is acceptable, perhaps even convenient, when the experiment is small to moder-
ately sized. However, in large-scale experiments, it becomes oppressive and imprac-
tical. Therefore, the virtual network device NetSpec daemon, nsvdevd, was created as
part of this work to ease the burden of experiment specification, rendering it as simple,
automated and reproducible as possible.

There are currently four accepted commands; one for configuring virtual network
devices*, one for proportional time configuration, one for real-time support for pro-
portional time and one for proportional time ATM Reference Traffic Source (ARTS)

support. The commands may come in any order and inconsistencies will be detected

*Because the development of virtual ethernet devices is as yet ongoing, nsvdevd does not yet support
them, but the syntax of the language has been designed with their eventual matriculation in mind.
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during the setup. Program 3.6 shows some example NetSpec commands for configur-

ing devices, ARTS streams, and proportional time and real-time operation.

Program 3.6 Examples of Virtual Network Device NetSpec Commands

1 vdev = atm (V1, physical=atm, itf=0, vc=50, localmac="0020ea000778",
2 remotemac="0020ea000779", stack=SARPT, delay=50);

3

4 pt = config (linerate=365000, wait=50, tolerance=100, stop=365000);
5

6 kurt = pt (repeat=5000, schedule="pt_sched_250", start=952059105,

7 path="/users/shouse/ProTEUS/KURT/user_progs ");

8

9 pt = arts (repeat=5000, schedule="StarWars-8000.sched", vc=V2.0.40,
10 path = "/users/shouse/ProTEuS/atm/vatm");

Creating a virtual network device creates what the Linux kernel believes is an actual
network device, and requires numerous parameters, both to configure the behavior
and structure of the virtual device and to specify the physical network resources that
will be used to support it. Below is a brief explanation of each of the virtual network

device options.

Vnum Assigns the virtual network device a temporary identifier. This is necessary
to identify the device throughout the script because the kernel assigns interface
numbers as devices are registered. Therefore, to allow the virtual network de-
vices to be subsequently identified in this script (and by other NetSpec daemon-
s), we assign a temporary identifier to each virtual network device. This must be

the first specification in the list of options. (Required)

Physical Specifies the physical support network [eth, atm] for the virtual network de-
vice. That is, the type of physical device with which it will be associated. Be-
cause virtual network devices have different options depending on the physical
network, this specification must be the second specification in the list of options

so that the list of permissible options can be identified by the parser. (Required)

ITF This is the interface number of the physical network device. Ethernet devices are
identified by a name, ethX where X is an integer, while ATM devices are identified

by a integer ATM interface ID. (Required)
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Type Applies to virtual network devices over ethernet only and should always be
MAC. MACRCA is used specifically in the RDRN project at the University of

Kansas and is essentially useless elsewhere. (Required if physical ethernet)

VC Applies to virtual devices over ATM only, and is the ATM virtual circuit over
which traffic for this virtual network device will be multiplexed. (Required if phys-
ical ATM)

LocalMAC A fictional MAC address that will be assigned to this virtual network de-

vice. (Required)

RemoteMAC A fictional MAC address that this virtual network device associates a
point-to-point connection with. This MAC address should be the local MAC

address on another virtual network device in the experiment. (Required)

Stack This is the stack that will be created on the virtual device. Components currently
include Segmentation and Reassembly (SAR), Data Link Control (DLC) and Pro-
portional Time (PT) that can be combined in particular supported configurations

[SAR, DLC, SARDLC, SARPT]. (Required)

Delay Sets the simulated link delay on proportional time virtual ATM devices. This
option is only valid on virtual ATM devices configured with a Proportional Time

layer. The default simulated delay is zero. (Optional)

Support for ProTEuS resides in the virtual network device implementation and is
available whenever a virtual network device is configured with a Proportional Time
layer. Several parameters of the proportional time simulation can be configured as

briefly explained below.

LineRate The simulated line rate for the simulation in cells per second. The default

line rate is 365000 cells per second (~OC-3). (Optional)

Wait The time to wait (in ps) for packets that have not yet arrived before bailing out

of the receive phase. The default wait time is zero. (Optional)
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Tolerance The distributed synchronization tolerance. This parameter is automatically
calculated by proportional time virtual ATM devices as the minimum of the local
simulated link delays on this physical host, however a specific tolerance can be
set through this mechanism. Note: A configured tolerance greater than the minimum
simulated delay can cause erroneous ATM simulation results because ProTEuS will no
longer be able to ensure that all data with a bearing on the current epoch being executed

has actually arrived. See Section 3.4.3.1, page 45 for more information. (Optional)

Stop The stop time of the simulation in epochs. The default stop time essentially

amounts to never (~12.5 days at a period of 250us). (Optional)

Of course, any virtual network devices on a host that are configured with a Propor-
tional Time layer require real-time support in the form of KU Real-Time modifications
to Linux (KURT-Linux) to execute the simulation. KURT-Linux invokes the propor-
tional time implementation on a static periodic schedule provided in the real-time pa-

rameters described briefly below.

Schedule The filename of the real-time schedule. Schedules are usually, but need not
be, periodic and are created by a utility provided in the KURT-Linux distribution.
(Required)

Repeat The number of times to repeat the schedule. The default is one. (Optional)

Start The time at which to begin the real-time schedule, as expressed in UNIX time
format (seconds only). The default behavior is to start as soon as possible. (Op-

tional)

Path The path to the KURT-Linux executables and schedules. The default path is /us-
r/local/bin. Schedules are expected to live in a subdirectory of path called sched-

ules/. (Optional)

Virtual ATM devices configured with a Proportional Time layer also contain sup-
port for ARTS sources used to mimic or reproduce specific ATM traffic sources based

on an explicit cell schedule. Cells are dispatched by the PT layer in accordance with a
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schedule that specifies the epochs in which to send cells. Below is a brief explanation

of each of the ARTS parameters.

Schedule The filename of the ARTS schedule. Schedules are created by utilities pro-
vided with the ProTEuS distribution. (Required)

Repeat The number of times to repeat the schedule. The default is one. (Optional)

VC The VITE.VPL.VCI on which to send the ARTS traffic. Because ARTS functionality
is provided by proportional time virtual ATM devices, this must be a VC on a PT
virtual ATM device (a VVC). The interface should therefore begin with a leading
V to signify a virtual ATM interface, followed by the virtual ATM device ID.
(Required)

Path The path to the ARTS executables and schedules. The default path is /usr/local/bin.
Schedules are expected to live in a subdirectory of path called schedules/. (Option-
al)

When the nsvdevd parser is invoked on the script that NetSpec provides, it fills in
data structures that it will need to accomplish the requested tasks. After parsing is
complete, it loops through all virtual network device specifications and creates them
trough an ioctl . If proportional time configuration has been provided, it is also con-
figured during this phase. During the run phase, all specified ARTS sources are con-
figured. Because the ATM interfaces are virtual, the daemon must map the virtual
device ID to the kernel-assigned ATM interface number by querying the kernel. This
is also the phase where real-time control of proportional time is initiated, if it has been
specified.

Upon reaching the teardown phase, the daemon again loops through the same data
structures created while parsing the script to restore the system to its original state. By
the time the daemon exits, the machine state is exactly as it was before the experiment
ran, allowing another experiment to run on it at any time without requiring a re-boot.

The nsvdevd report consists of the state of the hosts network devices at the end of

the experiment and the ProTEuS status. This includes the device statistics, and the
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proportional time configuration and results. The report is obtained through both the

Linux /proc interface and a system call in the PT implementation.

/proc/atm/devices Shows the status of the host ATM devices; cells transmitted, re-

ceived, erred, etc.

sys_pt_get_config() Retrieves the PT configuration; the simulation duration, total num-

ber of epochs and missed epochs, configuration information, etc.

3.8.2.2 The Virtual ATM Software Switch Daemon: nsvswitchd

For users of the virtual ATM software switch, setting up an experiment can be an ardu-
ous and monotonous task when the size of the experiment is very large. The primary
method for configuring the software switch is command line based, which is fine for s-
mall to moderately sized experiments, but cumbersome and impractical for large ones.
Therefore, the virtual ATM software switch NetSpec daemon, nsvswitchd, was created
as part of this work to employ a simple, automated and reproducible way to configure
the software switch and ease the burden of experiment specification.

There are three commands; one for configuring virtual ATM software switch ports,
one for creating connections across the switch and one for specifying the real-time op-
eration of the switch. The commands may come in any order and inconsistencies will
be detected during the setup. Program 3.7 shows some example NetSpec commands

for configuring ports, connections and real-time support.

Program 3.7 Examples of Virtual ATM Software Switch NetSpec Commands

1 wvswitch = port (P3, itf=V2, gueueing=perclass, class=CBR, length=300);
2

3 vswitch = connection  (invc=P1.0.50, outvc=P3.0.40, aal=0, class=ABR);
4

5 kurt = switch(repeat=500, schedule="rt_sched_125", start=952059001,

6 path="/users/shouse/ProTEuUS/KURT/user_progs" );

In previous versions of the software switch, it discovered the ATM devices on the
host machine during boot and automatically configured them as software switch ports.

However, with the advent of virtual ATM devices, this is no longer a desired feature
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because not all ATM devices will be available to be automatically discovered by the
switch at boot time. Therefore, the need has arisen to explicitly configure devices as

ports. Below is a brief explanation of each of the port parameters.

Pnum Assigns the switch port a temporary identifier. This is necessary to identify the
port throughout the script because the software switch assigns port numbers as
devices are configured. Therefore, to allow the port specifications to appear in
any order in the script, we assign a temporary identifier to each port. This must

be the first specification in the list of parameters. (Required)

ITF Specifies the ATM interface that will support the switch port. Virtual ATM inter-
faces are identified by a leading V followed by the virtual ATM ID assigned in the
nsvdev script. This will cause the switch daemon to map from the virtual ATM ID

to the ATM interface. (Required)

Queueing Specifies the queueing discipline [backlog, perVC, perclass] to be assigned
to this port. The default queueing discipline on all ports is the shared backlog.
(Optional)

Class Specifies the ATM traffic class [CBR, UBR, ABR, VBR] to which the length is
applied if the discipline is per-class. The default is that the length is applied to

the queues of all traffic classes on the port. (Optional)

Length Specifies the length of the associated queue(s). The default length of the shared
backlog is 300 cells and all other queues default to 5000 cells. (Optional)

Connections across the software switch must be set up manually through an ioctl
call to make sure that the VC becomes associated with the software switch and not the
normal Linux-ATM stack (through the ATM push function, as described in Section 3.5).
Any VCs not created this way, even those on ATM devices configured as software
switch ports, pass through the normal Linux-ATM stack and bypass the switch. SVCs
can be setup across the software switch using Q.Port software that has been modified
to work with the virtual ATM software switch fabric and need not be specified here.

Further, connections are implicitly full-duplex, so there is no need to create the same
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connection in both directions*. Below is a brief explanation of each of the connection

parameters.

InVC The incoming [port.VPL.VCI]. Ports are identified by their IDs, beginning with

a P, assigned by the port configuration command. (Required)

OutVC The outgoing [port.VPL.VCI]. Ports are identified by their IDs, beginning with

a P, assigned by the port configuration command. (Required)

AAL The AAL [0, 5] for this connection. The software switch can switch packets
(AALD5) or cells (AALQ). If the connection is AALQ, packets will not be reassem-
bled by the ATM device. The default AAL is AALQ. (Optional)

Class The traffic class [CBR, UBR, ABR, VBR] for this connection. The default traffic
class is UBR. (Optional)

The software switch operates in one of two modes, which is a kernel configuration
option set at compile time. The default mode of operation is what we term best-effort,
where switching is invoked through the Linux bottom-half implementation. A more
recent mode of operation is real-time switching, where the switching routine is a real-
time kernel thread invoked periodically by KURT-Linux. Below is a brief explanation
of each of the real-time switching parameters that are available if the real-time mode

of operation has been built into the kernel.

Schedule The filename of the real-time schedule. Schedules are usually, but need not
be, periodic and are created by a utility provided in the KURT-Linux distribution.
(Required)

Repeat The number of times to repeat the schedule. The default is one. (Optional)

Start The time at which to begin the real-time schedule, as expressed in UNIX time
format (seconds only). The default behavior is to start as soon as possible. (Op-

tional)

*The second call would fail when it finds that the VC is already in use.
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Path The path to the KURT-Linux executables and schedules. The default path is /us-
t/local/bin. Schedules are expected to live in a subdirectory of path called sched-

ules/. (Optional)

When the nsvswitchd parser is invoked on the block that NetSpec passes it, it fills in
data structures that it will need to accomplish the requested tasks. In the setup phase,
it loops through all port specifications and associates the ATM devices with software
switch ports through an ioctl . If the interfaces are virtual, the daemon must map the
virtual device ID to the kernel-assigned ATM interface number by querying the kernel.
It maintains a mapping from user specified port identifiers to software switch assigned
port numbers. Finally, it loops through all connections in the script and creates each
one using the port-ID mapping. During the run phase, if specified, real-time switching
is initiated.

Upon reaching the finish phase, the daemon loops through the same data structures
to restore the system to its original state. By the time the daemon exits, the virtual ATM
software switch setup is exactly as it was before the experiment ran, allowing another
experiment to run on it at any time without requiring a re-boot.

The nsvswitchd report consists of the state of the switch at the end of the experiment.
It includes the switch configuration, statistics and the current status of the queues and

is obtained through the Linux /proc interface.

/proc/atm/vswitch Shows the status of the switch ports and connections; the number

of cells switched, dropped, peak cell rates, etc.

/proc/atm/backlog Shows the status of the backlog queue; the current length of the

queue, number of cells dropped, etc.

/proc/atm/pervc Shows the status of any configured per-VC queues; the current length-

s of the queues, number of cells dropped, etc.

/proc/atm/perclass Shows the status of any configured per-class queues; the current

lengths of the queues, number of cells dropped, etc.
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3.8.2.3 The Test Daemon: nstestd

People trying to evaluate the performance of a network, regardless of the particular
protocol, need a simple way to specify and generate network traffic. For small net-
works, simple techniques, such as ttcp  at the command line may do. However, this
limits the characteristics of the generated traffic to a greedy source and bounds its ver-
ity in practical application. Users will typically want to emulate real traffic sources
such as bursty, telnet, WWW, etc. The NetSpec Test daemon is a candidate application
capable of assuming such a role, however, it does not support the ATM protocol that is
necessary for ProTEuS ATM network simulations. As part of this work, modifications
were made to the existing daemon to add support for ATM and Classical IP over ATM
(CLIP).

The Test daemon was implemented as part of the original NetSpec work, however,
it did not support the ATM protocol[30, 31]. One reason for this is that not all operating
systems that NetSpec runs on have ATM support, where TCP and UDP are omni-
present. In the case of Linux, the ProTEuS platform, ATM support is in many ways still
in its infantile stages, and therefore NetSpec support for the ATM protocol in general
has not been a high priority. Rather, the Test daemon concentrated on the UDP and
TCP protocols and support for the aforementioned emulated traffic types.

There are five accepted commands; one for setting the test type, one for specifying
the protocol, two for setting the peer and local IP addresses, and one for configuring
CLIP over ATM. The commands may come in any order and inconsistencies will be
detected during the setup. Program 3.8 shows some example NetSpec commands for

configuring the ATM protocol and CLIP over ATM*.

Program 3.8 Examples of ATM Test NetSpec Commands

1 protocol = atm (PVC, vc=V2.0.70, class=abr, ccr=1000, pcr=15000);
2

3 clip = PVC (itf=atmO, own=10.0.0.1, peer=10.0.0.2, vc=0.0.60,

4 path=""/ProTEuS/atm/arpd");

*The specifics of each preexisting test type and protocol can be found in [30, 31] and will not be dis-
cussed here. Instead, the focus is on the added ATM functionality.
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The protocol line informs the daemon that the protocol is ATM and sets up the
VC on which the traffic will be transmitted as well as the traffic class for the connection
and its parameters. TCP and UDP have a similar specification, but with different sets of

protocol options. Below is a brief explanation of each of the ATM protocol parameters.

PVC/SVC Specifies whether the traffic should traverse a Permanent Virtual Circuit
(PVC) or a Switched Virtual Circuit (S§VC). Although the language syntax in-
cludes SVCs, currently, only PVCs are supported. Because the protocol options
differ depending on the type of VC, this specification must be the first specifica-
tion in the list of options so that the list of permissible options can be identified

by the parser. (Required)

VC The ITE.VPLVCI on which to perform the test. Virtual ATM interfaces are identi-
fied by a leading V, followed by the virtual ATM ID set upon virtual ATM device

configuration in the nsvdev script. (Required)

Class The ATM traffic class of the VC [CBR, UBR, ABR]. The traffic class defaults to
UBR. ABR is available only if the ATM interface is a proportional time virtual
ATM device. The default ATM traffic class is UBR. (Optional)

AAL The AAL of the connection. Currently, only AAL5 connections are allowed. (Op-

tional)

SDU The maximum AALS5 packet length. The SDU defaults to the ATM maximum
AALS5 packet length, 65535 bytes. (Optional)

PCR The Peak Cell Rate (PCR) of the connection. (Required if CBR or ABR)

MCR The Minimum Cell Rate (MCR) of an ABR connection. The default MCR is zero.
(Optional)

CCR The Initial Cell Rate (CCR) of an ABR connection. (Required if ABR)

NRM The number of data cells between FRM cells on an ABR connection. The default
NRM is 31. (Optional and only if ABR)
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Classical IP over ATM allows the use of conventional IP services over ATM in-
terfaces. From the user-level, the differences are transparent; ssh, telnet, ping, etc. all
function in the same fashion from the user perspective, but the actual data transport
is over an ATM network. However, some setup and configuration is necessary to al-
low ATM Address Resolution Protocol (ARP) to resolve IP over ATM mappings. The

available configuration options and parameters are briefly explained below.

ITF The unique* ATM-o-IP interface. ATM-o-IP interfaces are of the form atmX where

X is an integer. (Required)
Own The IP address to be assigned to the ATM-o-IP interface. (Required)

VC If configuring CLIP using PVCs, this is the PVC through which to contact the peer
IP entity. Virtual ATM interfaces are identified by a leading V, followed by the
virtual ATM ID set upon virtual ATM device configuration in the nsvdev script.

(Required if PVC)

Peer If configuring CLIP using PVCs, this is the peer IP address reachable through the
specified PVC. (Required if PVC)

Netmask If configuring CLIP using SVCs, this is the netmask used by ATM ARP to
determine which ARP server to contact. (Required if SVC)

ARPsrv If configuring CLIP using SVCs, this is the ATM address of the ARP server.
(Required if SVC)

When the nstestd parser is invoked on the block that NetSpec passes it, it fills in
data structures that it will need to accomplish the requested tasks.

In the setup phase, it first configures CLIP support if it has been specified. It then
opens an ATM socket and sets the specified Quality of Service (Qos) parameters, in-
cluding the traffic class and associated cell rates and the open phase results in the bind-
ing of the virtual circuit (or virtual virtual circuit). If the interfaces are virtual in either

the CLIP VC or the ATM protocol VC, the daemon maps the virtual device ID to the

*The same ATM interface cannot exist twice simultaneously on the same physical host.
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kernel-assigned ATM interface number by querying the kernel. During the run phase,
the actual data transmission is conducted and the subsequent close phase severs all
open connections.

The nstestd report consists of both the setup and results of the test, including the
test and protocol configuration, test duration, blocks transferred, and the throughput

achieved.

3.8.2.4 Summary

The increasing size of network performance evaluation experiments, including those
of ProTEuS, brings about a need for a simple, effective, reproducible and extensible
way to describe an experiment and have the setup, execution and the subsequent tear-
down be automated as much as possible.

NetSpec is a distributed network performance evaluation tool that uses a simple,
block-oriented scripting language to describe an experiment. Users provide NetSpec
an input script that describes an experiment in a manner that is meaningful to the ap-
propriate NetSpec daemons. The script is parsed and blocks of the experiment are
distributed to NetSpec daemons that execute on target hosts to perform the tasks out-
lined in the script. The daemons process their tasks in phases of execution and report
the results back to the user upon completion of the experiment.

Due to the size of ProTEuS ATM simulations and the complexity of their associated
setup and tear-down, command line and shell script based control is often cumber-
some and impractical. Therefore, ProTEuS utilizes NetSpec to control proportional
time simulations of ATM networks through the use of the NetSpec virtual network de-
vice daemon, the NetSpec virtual ATM software switch daemon and the NetSpec test

daemon.
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Chapter 4

Evaluation

This chapter evaluates the Proportional Time Emulation and Simulation (ProTEuS)
platform, specifically as it pertains to the simulation of ATM networks. The perfor-
mance and verity of ProTEuS ATM network simulation is compared with two popular
alternative network simulation tools; the Block Oriented Network Simulator (BONeS)
and Georgia Tech Time Warp (GTW). BONeS is a sequential discrete event simulator
from Cadence Design Systems, Inc. that is geared specifically towards the simulation
of communication networks[10]. GTW is a popular parallel discrete event simulator
from the Gerogia Institute of Technology that is based on Jefferson’s Time Warp prin-
ciple and primarily intended for shared-memory multiprocessors[17, 29].

The comparison with BONeS is meant to be a testimonial to the ability of the Pro-
TEuS platform to produce ATM network simulation results equivalent to those pro-
duced by a mainstream discrete event simulator. While a portion of the comparison
with GTW serves the same purpose, it is also an effort to demonstrate some of the scal-
ing properties of the two systems and investigate how the properties of the simulated
system, and the simulator itself, affect scaling.

First, some of the properties of generic distributed synchronous computations are
considered and presented in Section 4.2, followed by an examination of the faithfulness
of the ProTEuS platform for simulating ATM networks in Section 4.3. Finally, a head-
to-head comparison of the scaling properties of ProTEuS versus GTW is presented in

Section 4.4.
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All BONeS and GTW results presented herein are courtesy of Murthy and Chong,
respectively[40, 14].

4.1 Experimental Setup

All of the BONeS results were gathered on a 300 MHz dual-processor Sun UltraSPARC-
II with 512 MB of RAM. Keep in mind that although this was a dual-processor machine,
BONeS gains very little, if anything, from multiprocessor architectures because the
software is not designed to exploit such concurrency.

All of the GTW results were gathered on 168 MHz 8-processor Sun UltraEnterprise
with 1 GB of RAM. GTW is, of course, specifically designed to utilize the parallelism
of a multiprocessor system through optimistic concurrency control and the detection
of and recovery from temporal violation.

All of the ProTEuS results were gathered on a rack of 200 MHz single-processor
Intel x86s with 128 MB RAM each, connected via an ATM network. The rack also in-
cludes a few 233 MHz and 500 MHz machines, some of which were included in one
set of experiments, but for the most part, ProTEuS utilized the 200 MHz machines.
ProTEuS embraces a Network of Workstations (NOW) approach using conservative
synchronization and real-time control to distribute the simulation across a rack of ma-
chines.

From the experimental setup alone, you can see the striking differences between the
basic architectures of the three systems and their hardware demands. This is not to say
that these systems absolutely require such hardware, but rather that they were designed
for, and benefit greatly from, such hardware. BONeS generally runs best on high-end
single-processor machines with a generous amount of memory. GTW is targeted at
high-end shared-memory (lots of it) multiprocessors where it can exploit parallelism.
ProTEuS, to the contrary, is designed for commercial off-the-shelf (COTS) Networks of
Workstations (NOWs), which lends itself to inexpensive and simple system expansion.

The ProTEuS experiments were run using the NetSpec control system described

in Section 3.8, which distributes pieces of the simulation to participating members ac-
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cording to an input script[30, 31]. Some of the data gathered was done via the Data
Stream Kernel Interface (DSKI), which is a standard and extensible interface for gath-
ering performance data from the Linux kernel in a variety of forms, including counters,

event streams and histograms|[9].

4.2 Distributed Synchronous Computation

This section is a discussion of some of the properties of a generic distributed syn-
chronous computation; that is, a computation where synchronization information is
exchanged among distributed entities, but the computational component of each e-
poch is, in effect, just a busy-wait. Several system parameters are varied and their
affects on the performance of the system are examined.

Figure 4.1 depicts a distributed computation comprised of 24 simulation elements
distributed across three host machines - eight elements per machine. Assuming that
each distributed element consumes approximately the same computation time, the dis-
tribution is well-balanced; that is, each host in the experiment has roughly the same

amount of work to do in each epoch.

Host Host 2 Host 3

HiEuIn
Rininini
HiEuIn
[ L1
HiEuIn
[ L1

Figure 4.1: Balanced Synchronous Distributed Computation Topology

For the set of experiments in this section, we artificially impose this equality of
computation components, but in general this may or may not be true, depending on
the simulated system. In ProTEuS ATM network simulations, for instance, this is gen-

erally not the case, where virtual ATM software switch port entities consume more
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computation time, for example, than a virtual ATM device (NIC) traffic source. There-
fore, load balancing does not simply constitute equating the number of entities on each
host, but more importantly, equating the computation time on each host.

Figure 4.2 shows an analogous distributed topology consisting of the same number
of simulation elements as Figure 4.1. However, the busiest host here has twice as many
simulation elements, and therefore twice as much work to do per epoch, as the other
two hosts; this is an unbalanced distribution. As a consequence, this distribution also
burdens the busiest host with twice as much communication overhead because it sup-
ports twice as many communication channels as the other two hosts. There is nothing
fundamentally wrong with an unbalanced system, but the degree to which balance is

skewed will affect the overall performance of the computation supported by ProTEuS.

Host 1 Host 2 Host 3

HiRIRINININ

HiNiNininIn
HiRIRINININ

HiNiNininIn

Figure 4.2: Unbalanced Synchronous Distributed Computation Topology

Two different scenarios are investigated which differ only by the individual compu-
tation component of each distributed element. As mentioned, for the sake of these ex-
periments, we artificially impose a computation component for each element through a
busy-wait. In the first trial, the computation component is 25us per simulation elemen-
t, while in the second, the computation component is increased to 200us per element.
The first scenario represents an application with very aggressive fine-grained needs,
requiring epoch lengths on the order of 400 to 650 us, depending on the system bal-
ance. The second scenario, with computation intervals nearly an order of magnitude

larger, is more coarse, requiring epoch lengths on the order of 1800 to 3000 ps, and can
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therefore support very high utilizations due to the large ratio of computation time to
slack time.

Simulations utilizing the 25us computation component per element were run for
one million (10°) successful epochs and those with a 200us computation component
were run for one hundred thousand (10°) successful epochs.

It is worth noting here that the missed epoch counts reported in this section are
not guaranteed to be 100% accurate. ProTEuS simulations are executed by a real-time
thread running in kernel mode. A missed epoch occurs when the thread is awak-
ened by KURT-Linux and it realizes that the information that it needs to proceed is not
present. It increments the missed epoch counter and suspends, waiting for the next
scheduled epoch to begin. However, consider the case where the thread does not com-
plete its execution of the present epoch before the next epoch is scheduled to begin.
When the timer expires, KURT-Linux suspends the thread and the real-time sched-
uler immediately resumes it. While this also constitutes a missed epoch, ProTEuS in
and of itself has no way of detecting this, so it cannot keep track of this type of mis-
s, which would require instrumentation by KURT-Linux itself. In general, this occurs
most often when the length of the real-time period is prohibitively small. Note that in
such instances, the computation still proceeds correctly, but somewhat more slowly as

a result of the missed epochs.

4.2.1 Effects of Load Balancing

In this experiment, the effects of load balancing are investigated by using both the bal-
anced and unbalanced topologies and varying the epoch length to find the minimum
execution time for each distribution. Both delta, the epoch synchronization tolerance,
and wait time, the second-chance waiting period for missing data, are kept at their
default values of zero, meaning that the simulation enforces strict per-epoch synchro-
nization, with no tolerance for late-arriving data. Table 4.1 and Figure 4.3 show the
results.

First of all, in both scenarios, it is clear that the balanced topology performs better

with regard to execution time. This is expected because the evenly balanced computa-
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25us Computation Component

Balanced Topology
Epoch Length (us) 375 400 425 450 475 500 525
Missed epochs 722884 | 584022 | 519202 | 440644 | 379641 | 337151 | 303834
% Missed 41.96% | 36.87% | 34.18% | 30.59% | 27.52% | 25.21% | 23.30%
Execution time (s) | 746.719 | 663.657 | 658.125 | 656.765 | 663.065 | 675.156 | 691.563
Unbalanced Topology
Epoch Length (us) 550 575 600 625 650 675 700
Missed epochs 529690 | 343012 | 234390 | 176891 | 136448 | 99345 | 70578
% Missed 34.63% | 25.54% | 18.99% | 15.03% | 12.01% | 9.04% | 6.59%
Execution time (s) | 846.237 | 776.679 | 744.913 | 739.633 | 742.367 | 745.549 | 752.717

200us Computation Component

Balanced Topology

Epoch Length (us) 1750 1800 1850 1900 1950 2000 2050

Missed epochs 73090 65051 59976 54753 53235 52845 51437

% Missed 42.23% | 39.41% | 37.49% | 35.38% | 34.74% | 34.57% | 33.97%
Execution time (s) | 349.949 | 306.908 | 296.895 | 294.640 | 299.391 | 306.563 | 311.072
Unbalanced Topology

Epoch Length (us) 2700 2750 2800 2850 2900 2950 3000

Missed epochs 35613 | 30419 | 25948 | 22406 | 21659 | 20767 | 19194

% Missed 26.26% | 23.32% | 20.60% | 18.30% | 17.80% | 17.20% | 16.10%

Execution time (s) | 366.130 | 358.631 | 352.632 | 348.836 | 352.792 | 356.238 | 357.560

Table 4.1: The Effects of Load Balancing
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tion components allows ProTEuS to utilize a smaller epoch time than in the unbalanced
case; the simulation moves only as fast as the slowest component. In the 200pus compu-
tation component scenario, this results in an epoch length nearly a millisecond smaller
than in the balanced topology. Further, notice that the unbalanced topologies achieve
their minimum execution times with a much smaller missed epoch count than in the
balanced topologies. In both cases, its a factor of nearly two and a half times. In gen-
eral, this is because missing an epoch in the unbalanced topology is a harsher penalty
than in the balanced topology due to the longer epochs.

Another result from the graphs in Figure 4.3 worth noting is the shapes of the plots
produced. The Execution Time vs. Real-Time Epoch Length curves are somewhat hyper-
bolic in nature; or, perhaps more generally, they are generic curves of degree two that
exhibit a minimum value. If the epochs are too short, the system begins to miss a lot
of epochs, as shown in the Missed Epochs vs. Real-Time Epoch Length graphs, resulting
in an increase in execution time. The misses are often due to one of two things; (1) the
phenomenon described earlier, where the real-time thread overruns its allotted execu-
tion time and spills over, undetected, into the next epoch (therefore, these misses are
not accounted for in the missed epoch counts, but are nonetheless factored into the ex-
ecution time, which accounts for both detected and undetected misses), or (2) because
the computation time is generally fixed, the shorter epoch length causes a correspond-
ing shrink in the slack time component of the epoch*. However, if the epochs are too
long, the system usually misses fewer epochs, but it ends up wasting time because the
slack time component of the epoch is overly large, which results in inflated execution
times. Of course, the reason that the curves are steep on the left side and nearly linear
on the right side is due to the steep slope of the Missed Epoch vs. Real-Time Epoch Length
graphs, which are reminiscent of a negative exponential in shape. These plots show
clearly that decreasing the length of an epoch causes more misses than increasing the
length of an epoch saves. The result is that the cost, in terms of missed epochs, of hav-
ing an epoch that is a bit too short is far greater than the cost of having an epoch that

is a bit too long.

*Computation time is governed by the load distribution, not the epoch length.

94



4.2.2 Effects of Slack Time Choice

In this experiment, the effects of choosing a slack time, and therefore an epoch length,
are investigated using the balanced topology and varying the utilization of the epoch.
Both delta, the epoch synchronization tolerance, and wait time, the second-chance wait-
ing period for missing data, are kept at their default values of zero, meaning that
the simulation enforces strict per-epoch synchronization, with no tolerance for late-

arriving data. Table 4.2 and Figure 4.4 show the results.

25us Computation Component

Utilization 20% 40% 60% 80% 90% 95%
Epoch Length (us) 1580 790 525 395 350 -
Missed epochs 27 21084 | 301843 | 594706 | 739710 -
% Missed 0.00% 2.06% | 23.19% | 37.29% | 42.52% -

Execution time (s) | 1579.800 | 810.459 | 690.528 | 673.003 | 721.311 -
200us Computation Component

Utilization - 40% 60% 80% 90% 95%
Epoch Length (us) - 4290 2860 2145 1905 1805
Missed epochs - 931 22718 46088 58929 64528
% Missed - 0.92% | 18.51% | 31.55% | 37.08% | 39.22%
Execution Time (s) - 432.922 | 350.947 | 314.142 | 303.304 | 304.676

Table 4.2: The Effects of Slack Time Choice

The first thing to note in the results presented here is that the 95% utilization exper-
iment in the 25us computation component scenario was not included because the mag-
nitude of the slack time was prohibitively small and the epoch miss rate was extremely
high. Similarly, the 20% utilization experiment in the 200pus computation component
scenario was not included because it missed no epochs at all due to the magnitude of
the slack time.

The first realization in these results is that using KURT-Linux as a real-time plat-
form for a synchronous distributed computation, ProTEuS can achieve, for example, a
ratio of missed epochs in the neighborhood of a mere 2% at a granularity of less than
800us, which is 8% of the granularity of standard Linux. We believe this to be well

within the operating range of many synchronous distributed applications.
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The results show that the missed epoch rate generally grows linearly with utiliza-
tion, with exceptions to be made at the lower and upper bounds on utilization. Fur-
thermore, the execution time also appears to be a function of utilization exhibiting a
minimum, with each scenario achieving that minimum at a different utilization. In
fact, what this exposes is the existence of a minimum necessary slack time. The slack
time interval of the epoch length resulting in the minimum execution time, from the
results from Section 4.2.1, is approximately 135us in the 25us computation component
scenario, resulting in a utilization of about 70%, and 180us in the 200us computation
time scenario, resulting in a utilization of about 90%*. Of course, these numbers are
subject to the granularity of the chosen epoch intervals, but nevertheless, there appears
to be a minimum slack time in the neighborhood of 150us required to send and receive
data in each epoch. The absolute value of this slack time, however, depends on several
factors, including the network latency and delay variation, the processor speed, which
dictates the length of an interrupt service routine, and the number of inter-processor
communication channels supported on each node in the network. For instance, a node
supporting communication with ten other nodes requires more slack than a node com-
municating with two other nodes. In the balanced topology, each node supports four
lines of communication between other nodes, as shown in Figure 4.1.

Furthermore, the results show that the 200us computation component scenario per-
forms slightly better than the 25us computation component scenario, insofar as missed
epochs are concerned, due to its larger slack times. As alluded to in an earlier discus-
sion in Section 3.7.2, the placement of the virtual time line in absolute time also affects
the sufficiency of slack time, in that time lines that are out of sync on distributed n-
odes can even cause the propagation of misses around the system. The larger the epoch
length is, the higher the probability of this phenomenon becomes and the combination
of slack time and phase difference will dictate the effect on performance. It is impor-
tant to note that in all experiments herein, including those presented in other sections,

no effort was made to synchronize in absolute time because no mechanism current-

*The calculation of this value is not presented here, but the computation intervals on the busiest nodes
in the two scenarios were measured over time and statistically determined to be approximately 316us and
1717us, respectively for the 25us and 200us computation component scenarios.
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ly exists to do so with sufficiently fine granularity. However, doing so will be key to

improving performance, and is part of future ProTEuS work.

4.2.3 Effects of Delta Values

In this experiment, the effects of delta values, or synchronization tolerance, is investi-
gated using the balanced topology and varying the value of delta to provide a window
of synchronization to lessen the effects of scheduling jitter, clock skew and communi-
cation overhead. The epoch lengths used are those producing the minimum execution
times in Section 4.2.1; 450us in the 25us computation component scenario and 1900us
in the 200us computation component scenario. The wait time, the second-chance wait-
ing period for missing data, is kept at its default value of zero, meaning that the sim-
ulation will not wait around for late data outside the synchronization window. Table

4.3 and Figure 4.5 show the results.

25us Computation Component

Delta (epochs) 0 1 2 10 100 1000 10000
Missed epochs 437763 | 19360 4615 2843 1525 1216 0
% Missed 30.45% | 1.90% 0.46% 0.28% 0.15% 0.12% 0.00%

Execution time (s) | 655.418 | 466.943 | 460.674 | 460.116 | 459.645 | 459.413 | 458.861
200us Computation Component

Delta (epochs) 0 1 2 10 100 1000 10000
Missed epochs 57690 45 5 0 0 0 0
% Missed 36.58% | 0.04% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

Execution time (s) | 300.407 | 191.179 | 191.143 | 191.143 | 191.141 | 191.143 | 191.130

Table 4.3: The Effects of Delta Values

Note: In this chapter, delta values are referred to using a zero-indexed notation because of
the manner in which they are specified in an actual ProTEuS experiment, while in Chapter
3, they were described in a manner consistent with being indexed by one. Therefore, while in
Chapter 3 immediate consumption of data from epoch N occurring in epoch N+1 was described
as having a delta value of one, in this chapter, the same scenario is referred to as having a delta
value of zero.

The results show clearly that allowing distributed hosts to get out of sync by even
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a single epoch has startling effects on performance. In both scenarios, delta=1 decreases
the number of missed epochs from over 30% down to less than 2%. This translates to
an improvement in simulation time of nearly 200 seconds (30%) in the 25us computa-
tion component scenario. Delta is very powerful because it not only offsets the effects
of network delay variation, it also eliminates the problem of cascading epoch misses
resulting from clock skew because nodes are often allowed to move on when data is
missing.

One interesting result in the table that deserves explanation is the non-zero num-
ber of misses through delta=1000 in the 25us computation component results that are
not present in the 200us computation component results. The reason that 1216 misses
still occur with delta=1000 is that one or more nodes in the simulation is progressing
faster than the rest. This is most notable in an unbalanced topology, but can still occur
in a balanced topology due to distortions in execution time such as bottom half exe-
cution and interrupt service routines. The execution of bottom halves, which is done
between the timer interrupt and the switch to the proportional time thread, will often
delay the beginning of the epoch. If the delay is large enough, it can cause the exe-
cution to overlap into the next epoch. While this goes unnoticed on the local host, it
is detected as a missed epoch by the other nodes. Further, depending on the relative
positions of their respective virtual time lines on the absolute time line, some nodes
may find themselves executing most of their interrupt service routines within their
computation interval, while other nodes receive their interrupts during the slack time.
The result is elongated computation intervals, which also may cause the epoch execu-
tion to overlap into the subsequent epoch. If this behavior is consistent, the result is
that even a synchronization window of 1000 epochs in this case may not be enough
to insure zero misses. However, larger slack times, taking control of bottom half exe-
cution and working to minimize the ATM interrupt service routines, which currently
take approximately 30us in Linux, will help to offset this problem. Lastly, recall that
the 200us computation component scenarios were only run for one-tenth the number
of epochs as the 25us computation component scenarios. If they had been run for a full

one million epochs, it is possible, if not likely, that we would see a similar trend there.
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As a reference for comparison, remember that in ProTEuS ATM network simula-
tions, the minimum link delay simulated on a node determines its delta value. In an
OC-3 ATM network simulation, a link delay of 5ms would translate to a delta of 1825

epochs.

4.2.4 Effects of Waiting for Missing Data

In this experiment, the effects of waiting for missing data is investigated using the bal-
anced topology and varying the value of wait time to allow late data a second-chance
to arrive, offsetting some variation in network delay and execution time. The epoch
lengths used are those producing the minimum execution times in Section 4.2.1; 450us
in the 25us computation component case and 1900us in the 200us computation compo-
nent case. The value of delta, the epoch synchronization tolerance, is kept at its default
value of zero, meaning that the simulation enforces strict per-epoch synchronization.

Table 4.4 and Figure 4.6 show the results.

25us Computation Component

Wait Time (s) 0 50 100 150 200 250 300
Missed epochs | 445964 | 317383 | 223903 | 108370 | 55411 | 38133 | 27020
% Missed 30.84% | 24.09% | 18.29% | 9.78% | 5.25% | 3.67% | 2.63%

Execution time (s) | 659.167 | 601.383 | 569.124 | 540.069 | 529.579 | 529.231 | 530.056
200us Computation Component

Wait Time (us) 0 50 100 150 200 250 300
Missed epochs 58258 55736 52220 49117 44030 40099 36927
% Missed 36.81% | 35.79% | 34.31% | 32.94% | 30.57% | 28.62% | 26.97%

Execution time (s) | 301.323 | 296.617 | 289.854 | 284.609 | 277.386 | 273.234 | 268.584

Table 4.4: The Effects of Waiting for Missing Data

The results of these experiments certainly support the notion that giving data a
second-chance to arrive can be beneficial to simulation performance. In both scenar-
ios, the number of missed epochs essentially decreases linearly with increased wait
time. However, as the number of missed epochs nears zero, waiting longer begins to
produce diminishing returns, as expected. In fact, as shown in the Execution Time vs.

Time to Wait graph for the 25us computation component scenario, waiting too long can
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actually be detrimental to performance. The reason is that waiting longer postpones
the execution of the epoch, which can cause its execution to overlap into the next epoch.
The result is an apparent reduction in the number of missed epochs due to the inabil-
ity of ProTEuS, in and of itself, to detect this type of missed epoch, but an increase in
actual execution time, which accounts for both detected and undetected misses. In this
graph, for instance, from a wait time of 250us to 300us, the number of missed epochs
appears to be reduced from 38133 to 27020, but the execution time actually increases
from 529.231 seconds to 530.056 seconds.

One of the functions of wait time is to offset the effects of virtual time lines on dis-
tributed nodes being interleaved in absolute time by giving late data extra time to
arrive. However, for this to be ultimately successfully in doing so, the wait time needs
to be near in size to the epoch length. This can be seen clearly in the results in Table
4.4, where in the 25us computation component scenario, a wait time of 300us success-
fully decreases the number of missed epochs from 445964 (30.84%) to 27020 (2.63%)*.
In this case, the wait time is very near the epoch length of 450us. In the 200us compu-
tation component scenario, however, a wait time of 300us only succeeds in decreasing
the number of missed epochs from 58258 (36.81%) to 36927 (26.97%). In this case, the
wait time of 300 ps is no where near the epoch length of 1900us.

It is worth noting that while waiting for missing data appears to improve simula-
tion performance, it was not used in any experiments presented in subsequent sections.
Further, its value-added to the already enormous performance improvements achieved

by delta values is as yet unknown and is not presented here.

42,5 Effects of Bottom Halves

In an effort to minimize the amount of work done in an interrupt service routine, many
interrupt handlers use a bottom half, which is a way to defer work to be completed out
of interrupt context. Only critical work is done during the interrupt, which marks the

bottom half as a notification to the system that it needs to run the bottom half for this

*Keep in mind that for reasons already discussed in length, these missed epoch counts may not be
completely accurate accounts.
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interrupt, whose duty is to finish the work. Bottom halves are run at the discretion
of the system and are executed without regard to time. Some bottom halves, such
as the network and SCSI disk bottom halves introduce significant jitter because they
are allowed to run for significant lengths of time, much of it with interrupts disabled.
In a standard Linux system, which utilizes a 10ms periodic interrupt to keep time,
occasional distortions of a few hundred microseconds are largely insignificant. When
trying to maintain fine-grained periodicity, however, they become quite significant.

To demonstrate the effects of Linux bottom halves on the performance of a syn-
chronous distributed computation, a histogram of the latency between the timer inter-
rupt and the beginning of the epoch was gathered. This is important because essen-
tially the only thing between the timer interrupt and the beginning of the epoch is the
bottom halves. This experiment utilizes the balanced topology and the 25us computa-
tion component. The epoch length is 500us and both delta and wait time are kept at their
default values of zero, meaning that the simulation enforces strict per-epoch synchro-
nization, with no tolerance for late-arriving data. Histogram data was collected for 60

wall-clock seconds and Table 4.5 and Figure 4.7 show the results.

Distortion (us)

Host 50-99 | 100-149 | 150-199 | 200+
Host1 | 10802 392 102 14
Host2 | 11413 425 145 55
Host3 | 14890 2149 189 37

Table 4.5: Effects of Bottom Halves

It is important to note that not all results from the histogram data collected are
presented here. In fact, the vast majority of the occurrences are less than 50us, but
only those that we feel were adversely affecting the execution of the ProTEuS real-time
thread are shown here. Further, keep in mind that during this period, the two most
notorious bottom half culprits were essentially inactive. There was no disk activity
to speak of, so the SCSI bottom half was dormant, and while there was certainly some
network activity, it was by no means significant, meaning that the network bottom half

was also not very active.
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The histogram clearly shows that the latency between the timer interrupt and the
actual start of the epoch is often intrusive. Several hundred times a second the latency
is between 50 and 100us, and few times per second it exceeds 150us. These are sig-
nificant distortions when attempting to maintain a periodicity of 500us. Distortions
such as these essentially offset the slack time of the epoch, and as alluded to earlier can
actually cause subsequent missed epochs by forcing the execution of the current epoch
to overlap the arrival of the next epoch. Getting control of the bottom halves is key to

KURT-Linux’s ability to provide reliable fine-grained schedulability.

4.3 The Faithfulness of ProTEuS for ATM Simulation

In order to make an argument advocating the viability of the Proportional Time plat-
form for simulating ATM Networks, and by extension other systems, it is important
to establish the ability of the platform to produce results faithful to the system being

simulated; or in the very least, comparable to those produced by commonly used sim-
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ulation techniques.

In this section, network and simulator metrics were gathered from a rather uninter-
esting but revealing ATM network simulation. Figure 4.8 shows the network topology,
which contains three ATM switches, one of them a bottleneck, and four sources and
sinks, two Available Bit Rate (ABR) and two Variable Bit Rate (VBR). Results are gath-
ered and presented for three discrete event simulation platforms; BONeS, GTW and

ProTEuS.
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Table 4.6 lists the relevant simulation parameters. The seemingly low line rate of
8000 cells per second was a legacy requirement of a predecessor of ProTEuS* and was
used in some corresponding BONeS models in Murthy’s experimentation[40]. This
line rate is retained here solely for the sake of comparison with those BONeS results.

The ABR sources are greedy, initially sending at 1000 cells per second, and even-
tually will share the available bandwidth at the bottleneck link. The VBR sources are
reconstructed cell streams from cell-level traces of an MPEG video clip from the movie
Star Wars, whose behavior are bursty with a sustained cell rate of approximately 3000
cells per second. The software switches exhibit output port per-class queueing with

weighted round-robin service between VBR and ABR queues and ABR RM cell feed-

*This line rate corresponds to a cell-time of 125us, which is roughly the smallest reliably schedulable
periodicity under KURT-Linux due to system distortions and interrupt service. In the work previous
to ProTEuS, the simulations were run in real time, not virtual time, which imposed this limitation on
simulated line rates. This limitation on line rate is lifted by the advent of proportional time, but the lower
limit on real-time epoch lengths is not.
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Simulated Line Rate 8000 cells per second (cps)
ABR Sources Greedy: PCR=8000 cps, CCR=1000 cps, MCR=0 cps
VBR Sources Bursty: SCR=~3000 cps
ABR Feedback Mechanism | EPRCA: Thresh,,,=200 cells, Threshy;r=300
Switch Queue Lengths Maximum=5000 cells
Switch Queueing Discipline | Per-class: VBR::ABR=200::1

Scenario (1) A=5ms, B=20ms
Link Delays Scenario (2) A=15ms, B=15ms
Scenario (3) A=20ms, B=5ms
Simulated Time 50 seconds

Table 4.6: Faithfulness Simulation Parameters

back is provided by the EPRCA explicit rate scheme. The link delays on links A and B
are varied over three scenarios and each was run for 50 simulated seconds.

The ProTEuS and GTW models were both mapped equivalently across three pro-
cessors - GTW using three processors of a shared-memory multiprocessor, and Pro-

TEuS using three Linux workstations connected by an ATM network.

4.3.1 Link Utilization

Due to of the burstiness of the VBR sources, the utilization of bandwidth on links A and
B will constantly vary as the EPRCA feedback mechanism attempts to keep the bottle-
neck link full by giving the instantaneously available bandwidth to the ABR sources.
Of course, the actual utilizations will depend on the feedback mechanism and the de-
lay that backward RM cells that carry the explicit rate information incur. For each of
the three scenarios, the average utilization of links A and B was measured at the output
port of the upstream switch on each of the three simulation platforms. Table 4.7 shows
the results.

First of all, it is obvious from the table that all three systems produce results suffi-
ciently close that it is difficult, if not impossible, to declare any one set of results clearly
right or wrong. However, consider what perturbations the three scenarios represent.
First, each successive experiment (down the columns in Table 4.7) increases the round-

trip time of the cells traversing link A and decreases the round-trip time of the cells
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Link A Link B
Experiment BONeS | GTW | ProTEuS | BONeS | GTW | ProTEuS
A:5ms B:20ms | 0.495 | 0.502 0.503 0.505 | 0.498 0.497
A:15ms B:15ms | 0.494 | 0.498 0.499 0.506 | 0.502 0.501
A:20ms B:5ms | 0.493 | 0.498 0.499 0.507 | 0.502 0.501

Table 4.7: Mean Normalized Link Utilization

through link B. Second, notice that the round-trip times through the two links are not
equal in any of the three scenarios; in the first, round-trip times via link A are lower,
and in the last two, round-trip times through link B are lower.

Consider that, in general, shorter delays between the bottleneck switch and the
ABR sources means timelier feedback, and therefore should result in higher link u-
tilizations. Stale feedback leads to periods of inefficient bandwidth utilization when
bandwidth is available, but the sources are not yet aware, and potentially subsequent
periods of long queueing delays and rapid back-off when the sources respond to the
outdated feedback and send on a network that may now be congested. Therefore, as
delay increases on a link, utilization should decrease, and vice versa.

Table 4.7 shows that in all three simulation environments, as the delay on link A in-
creases (down the columns), its utilization decreases or remains constant. Likewise on
link B, as delay decreases (down the columns), its utilization increases or remains con-
stant. In this respect, all three platforms produce perfectly plausible results. However,
the BONeS results are missing one key trend that the other two systems exhibit. In sce-
nario one, cells across link A have a lower round-trip time than cells across link B, and
therefore link A should attain higher average utilization. In the last two scenarios, the
opposite is true, such that link B should achieve higher utilizations than link A. Table
4.7 shows that while the ProTEuS and GTW results do show this, the BONeS results do
not; link B always achieves higher utilizations in the BONeS experiments. Now, this is
not to say that BONeS is inherently flawed, but rather that the ABR model likely has
discrepancies that may have been the result of errors, abstractions, omissions or some
other factor. These are the potential pitfalls of implementing system code in a simula-

tor that ProTEuS attempts to avoid altogether by using real, (essentially) unmodified
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system code.

One last observation that also applies to all of the subsequent results in this section
as well is the very close correlation between the GTW and ProTEusS results. This is
due in part to the careful attention to implementation detail during the development
of the two models. However, BONeS is not left out in all of this, in that both GTW and
ProTEuS take their EPRCA and weighted round-robin cell service implementations

directly from the BONeS models in Raguparan’s work[48].

4.3.2 Mean Queueing Delay

ABR feedback mechanisms struggle to keep average utilizations high and average
delays low through efficient ABR source rate pacing. Some feedback schemes de-
signed specifically to do just that, such as ERICA, keep queueing delays far below
those produced by EPRCA, while delivering only slightly lower utilizations in most
cases[32, 50]. Therefore, the queueing delays incurred by ABR streams are largely de-
pendent on the efficiency of the ABR feedback scheme, which in turn typically depends
on the delay of the feedback. For each of the three scenarios, the mean queueing de-
lays of each of the two ABR streams was measured at the output port of the bottleneck

switch on each of the three simulation platforms. Table 4.8 shows the results.

ABR 1 queuing delay (sec) | ABR 2 queuing delay (sec)
Experiment BONeS | GTW | ProTEuS | BONeS | GTW | ProTEuS
A:5ms B:20ms | 0.143 | 0.159 0.156 0.147 | 0.164 0.163
A:15ms B:15ms | 0.149 | 0.165 0.163 0.148 | 0.161 0.160
A:20ms B:5ms | 0.154 | 0.167 0.165 0.147 | 0.159 0.157

Table 4.8: Mean ABR Cell Queuing Delay

Because the queueing delays are directly related to the link delays, as was the case
with link utilizations, the trends, and much of the rationale is the same. For instance,
as the delay incurred by backward RM cells increases, Table 4.7 shows that utilization
suffers because the feedback from the congestion control scheme on the bottleneck

switch is stale by the time it reaches the sources. As alluded to earlier, this often leads
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to sources increasing their cell rates when they should not*, which in turn causes longer
delays on the switch as queues build up, followed by a back-off from the sources, an
oscillatory effect, as described by Raguparan and Murthy, resulting in higher mean
queueing delays[48, 40].

In Table 4.8, as the delay on link A increases (down the column), so does the delay
on RM cells associated with ABR 1, which increases the mean queueing delay experi-
enced by data cells in that stream. Similarly, as the delay on link B decreases, the mean
queueing delay for data cells in the ABR 2 stream decreases. Further, just as before,
in scenario one, link A, and therefore the ABR 1 stream, has a lower round-trip time
than link B, while for the last two scenarios, the reverse is true. Therefore, in the first
scenario, the mean queueing delay of ABR cells on link A (ABR 1) should be lower, and
for the last two scenarios, the mean queueing delay of cells on link B (ABR 2) should
be lower. As Table 4.8 depicts, this is the case in all three models, but once again,
some of the BONeS results look slightly suspect, specifically the ABR 2 mean delays,
which are essentially unchanged across the three scenarios. Again, the exact reason for
the discrepancy is unknown, and further this is not concrete evidence that the BONeS
model is actually flawed, but it does point to potential issues common to conventional
simulation techniques, such as excessive abstraction. For instance, the original BONeS
ABR models in Raguparan’s studies modeled RM cell feedback to the ABR sources
through timer-controlled mechanisms, based on round-trip times, as opposed to actu-

al cell flow, which had adverse effects on simulation results[48].

4.3.3 ABR Queue Length

As discussed in Section 3.5.4.1, EPRCA is an explicit rate feedback mechanism whose
primary input is the current cell rate and the length of the associated ABR output
queue. EPRCA calculates an allowed cell rate using exponential averaging to provide
explicit rate feedback and supplies binary feedback by categorizing the ABR queue
length into one of three regions delineated by low and high thresholds. The length of

*Of course, this is also dependent on the properties of the other higher-priority network traffic; in this
case, the VBR sources and their burstiness.
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the queue controls whether the source is allowed to increase its rate, decrease its rate
or neither and the algorithm, in effect, keeps the queue length between Thresh;,,, and
Threshp;gn on average. For this experiment, results were gathered only for Scenario
(2) in Table 4.6, where link A and B both have delays of 15ms. In GTW and ProTEusS,
the ABR queue length of the output port on the bottleneck switch was measured at the
reception of each backward RM cell. This data was not collected in the BONeS simu-
lation models, so no comparison with BONeS is made. Figures 4.9 through 4.11 show

the results.
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Figure 4.9: ABR Queue Length

The graph in Figure 4.9 shows the queue length over the entire 50 second simula-
tion and while the granularity of the graph makes it difficult to claim anything with
certainty, it is clear that the graphs are very similar. There are regions, such as between
10 and 20 seconds where there is some discernible differences, and regions where the
plots are virtually indistinguishable, like between 20 and 28 seconds.

Figure 4.10 is a closeup of Figure 4.9 between 0 and 10 seconds. This is an inter-

esting section of the time line because it includes the ABR ramp-up that occurs be-
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tween 0 and 1 seconds in simulated time. In this region, the queue length very quickly
grows from 0 to beyond Threshpign (300 cells) as the feedback scheme continues to
allow the ABR sources to increase their source rates. At some point near where the
queue length reaches Threshy;gn, EPRCA begins to throttle the ABR source rates and
the queue length drops until it reaches approximately Thresh;,,,, (200 cells), at which
point the sources are again allowed to increase their source rates. From then on, for all
intents and purposes, the queue length oscillates between Threshy,,, and Threshpign
without significant exceptions. Figure 4.11 shows another closeup of a different section
of the simulated time line, from 30 to 40 seconds. In all three graphs, there are certainly
a few regions where some disparities arise between the results from GTW and Pro-
TEuS, but they are well within the realm of random variation and it is in no way clear

where in the models the discrepancy may exist, nor even in which model it exists.

4.3.4 ABR Source Rate

The aim of ABR sources is to consume the instantaneously available bandwidth in a
network and ABR feedback schemes vary their source rates attempting to maximize
network utilization, while preserving the quality of service guarantees of all sources,
including the ABR sources. Most ABR implementations utilize additive increase, mul-
tiplicative decrease, which permits them to linearly increase their source rate when
bandwidth is available and exponentially decrease it in the face of congestion. For this
experiment, like the last, results were gathered only for the the scenario in which link
A and B both have delays of 15ms. In GTW and ProTEuS, the source rate of one of the
two ABR sources was measured at the reception of each backward RM cell, which is
where the source rate is updated by the feedback scheme. This data was not collected
in the BONeS simulation models, so no comparison with BONeS is made. Figures 4.12
through 4.14 show the results.

Figure 4.12 depicts the source rate of ABR 1 for the entirety of the 50 second simu-
lation. Again, in general, the plots from GTW and ProTEuS are very similar with a few
noticeable inconsistencies, such as the very high spikes in source rate that GTW en-

counters at 15 and 46 seconds that ProTEuS does not. Figure 4.13 shows a closer look
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Figure 4.13: ABR Source Rate (zoom 0 - 10 seconds)
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Figure 4.14: ABR Source Rate (zoom 30 - 40 seconds)

at the time period between 0 and 10 simulated seconds, including the ABR ramp-up
between 0 and 1 seconds. During this period, the source rate ramps-up very quick-
ly because of the initially empty queues on the switches and then declines rapidly as
they fill. Notice that while the ABR sources have an initial cell rate (ICR) of 1000 cells
per second (cps), the graph starts at 1500. This is because the measurements were tak-
en after the RM cell feedback was processed, meaning that the first backward RM cell
allowed the ABR source to increase its rate 50% from 1000 cps to 1500 cps.

Figure 4.14 shows another zoom of simulated time; this one showing the period be-
tween 30 and 40 seconds. The two closeup graphs show that, other than a minor period
of chaos between 4 and 6 seconds, the correlation of the results from two platforms is
quite good. Of course, while the discrepancy in Figure 4.13 certainly deserves its due
attention and investigation, when compared to the other 48 seconds of simulated time,
this is not a significant enough disagreement to conclude that either simulation model

or corresponding platform is inherently erred.
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4.3.5 Execution Time

Table 4.9 shows the resulting execution times for each scenario on all three simulation
platforms. To the surprise of nobody, BONeS, the sequential discrete event simulator,
takes orders of magnitude longer to simulate this seemingly elementary network. While
BONeS takes more than an hour and a half to simulate 50 seconds, both GTW and
ProTEuS complete the task in less than a minute and a half. This is a somewhat expect-
ed result, because, if due to nothing else, GTW and ProTEuS distribute the simulation

across three processors executing in parallel.

Execution Time (HH:MM:SS)

Experiment | BONeS | GTW | ProTEuS
A:5ms B:20ms | 01:40:36 | 00:01:24 | 00:01:28
A:15ms B:15ms | 01:40:36 | 00:01:23 | 00:01:28
A:20ms B:5ms | 01:40:36 | 00:01:22 | 00:01:28

Table 4.9: Execution Time

One caveat to keep in mind is that the execution time of a ProTEuS simulation is
directly related to the virtual to real time epoch ratio, which is strongly correlated to
the simulated line rate in our ATM simulations, since it maps a real-time period to
each simulated cell-time. Therefore, in these experiments, with comparatively large
cell-times due to small simulated line rates, 125us in this case, ProTEuS can almost run
them in real-time; that is, a one-to-one mapping between real and virtual time. How-
ever, simulations where the line rate is increased to more realistic values, such as OC-3,
such a feat would require a real-time period of less than 3us - an impossible task on
commercial off-the-shelf hardware. In general, however, larger real-time periods re-
sulting in a larger simulation slowdown from real-time are not inherently bad because;
(1) coarse time granularity lessens the affects of system scheduling distortions and net-
work latencies, and (2) larger periods gives ProTEuS more time to do work, increasing
CPU utilization and enabling the simulation of very large networks as presented in

Section 4.4
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4.4 ProTEuS vs. GTW

To further establish the capabilities of the Proportional Time platform, the need arises
to explore the scaling properties of the system as compared to a system with well-
established credibility. In this section, experiments of varying size and complexity
were performed on both ProTEuS and GTW in an effort to examine the properties of
each simulation platform and how they relate to the system being simulated. Two
edge-core ATM network topologies are simulated; one with 6 ATM switches and 40
hosts, and the other with 16 ATM switches and 120 hosts. Some of the perturbations
include varying the network size, traffic types and parameters, round-trip times, net-

work load and the distributed mapping of entities to processors.

4.4.1 Scenario A

Scenario A is a 6 ATM switch, 40 host edge-core network topology consisting of a single
bottleneck link depicted in Figure 4.15. The set of experiments presented here consists

of four traffic scenarios:

o Uni-directional ABR traffic: Consists of ABR and VBR sources sending traffic logi-
cally from left to right in Figure 4.15. That is to say, each of the 20 hosts on the left
side of the network is a traffic source, while each of the 20 hosts on the right side
of the network is a traffic sink. Traffic sources are divided evenly, 10 ABR and 10
VBR, and are further balanced so that the same number of ABR and VBR sources

flow across each edge switch (5 of each per edge switch), as shown in Figure 4.15.

e Uni-directional TCP over ABR: Identical to uni-directional ABR, except that instead
of being raw ATM sources, the ABR sources are TCP sources transmitting over
an ABR virtual circuit. TCP introduces a number of issues and behaviors that im-
pact simulation performance, including slow-start, acknowledgement and MTU

implications, just to name a few.

e Bi-directional ABR: Each host in Figure 4.15 now acts as both a source and a sink,

such that the bottleneck pipe is filled in both directions. This essentially doubles
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the load on the network.

e Bi-directional TCP over ABR: This scenario is the same as bi-directional ABR, ex-

cept that the sources are TCP sending over an ABR pipe.

All Link delays are 5ms

Core Network
Switch Switch

Edge Network Edge Network

Edge Network D Edge Network

Sources/ Sinks

Swiitch -
5=
T =
5=

VAR

]
N

Figure 4.15: 6 Switch 40 Host Scalability Comparison Topology

Table 4.10 shows the parameters for the simulations. The simulated line rate is in-
creased to a more realistic 365000 cells per second, which is approximately OC-3. The
traffic sources for these experiments were specifically crafted to keep the normalized
utilization of the bottleneck near unity without invoking cell-loss or ABR feedback
mechanisms, because the intent of these experiments is not to examine a particular-
ly interesting ABR network, but rather to stress the simulation platforms. The VBR

sources are square waves sending at an average rate of 12500 cells per second (cps)
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and a peak of 15000 cps. The ABR sources peak at 21000 cps, which is enough to keep
the average utilization of the bottleneck at around 335000 cps, or about 0.92. Because
the peak cell rate (360000 cps) is also below link capacity, ABR throttling should not
occur at all. Because they are transmitted over an ABR virtual circuit, the TCP sources
are bound by the same parameters as the ABR sources, and they have a TCP window
of 512KB, which is more than enough to fill the ABR pipe. All simulations were run

for 10 simulated seconds.

Simulated Line Rate 365000 cells per second (cps) ~ OC-3
ABR Sources Greedy: PCR=21000 cps, ICR=25% PCR, MCR=0 cps
TCP Sources Greedy: Window=512KB
VBR Sources 50% square: Min/Max=10000/15000, period=100ms

ABR Feedback Mechanism | EPRCA: Threshy,,=200 cells, Threshy; 4, =300
Switch Queue Lengths Maximum=5000 cells
Switch Queueing Discipline | Per-class: VBR::ABR=200::1
Link Delays 5ms fixed delay
Simulated Time 10 seconds

Table 4.10: Scenario A Simulation Parameters

Furthermore, to demonstrate both speedup capabilities and flexibility, each of the
four scenarios was run on three different physical mappings; two processors, four pro-
cessors and six processors. The virtual to physical entity mappings for each of these
are shown in Figures 4.16, 4.17 and 4.18, respectively, where the dotted ellipses demon-
strate the virtual to physical mappings. It is worth noting here that the reason that no
results are presented for mappings in excess of six processors is due to the limitations
of the SMMP hardware at our disposal for the GTW simulations. The heftiest multipro-
cessor machine available was an eight processor Sun, of which only seven processors
are available for GTW simulation purposes. Because mappings across seven proces-
sors were unnatural for the ATM simulations presented here, mapping simulations
across six processors was the largest plausible mapping for the GTW simulations.

The two processor mapping is a very natural one, splitting the topology vertically
in the center. One obvious advantage of such a mapping is that it is well-balanced.

Actually, it is perfectly balanced in the bi-directional cases, and nearly perfect in the
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uni-directional cases, depending on the differences in execution times of sources ver-
sus sinks. The four processor mapping offloads the edge networks on each side of the
network onto their own processor. As the results will show, this is not a very good
mapping, because it is very poorly load balanced; the processors with the edge net-
works have much more work to do in each epoch than the core switches do. The six
processor mapping additionally moves the sources and sinks onto a processor of their
own. While this is slightly better balancing than the four processor mapping, it may
or may not be the best six processor mapping. Load balancing a simulation involves
tradeoffs between both execution time and communication costs.

Table 4.11 and Figure 4.19 show the execution time results on both simulation plat-

forms. There are several interesting results to point out here.

Execution Time (seconds)

Experiment | # Processors GIW ProTEuS
Uni-directional 2 1551.75 1191.32
ABR 4 1228.38 1213.28
Traffic 6 610.33 1055.88
Bi-directional 2 2622.97 1548.12
ABR 4 2177.81 1540.79
Traffic 6 1134.29 1221.99
Uni-directional 2 1600.48 1234.22
TCP over ABR 4 1649.88 1243.12
Traffic 6 663.93 1070.77
Bi-directional 2 3016.11 1540.10
TCP over ABR 4 2730.70 1502.08
Traffic 6 1488.28 1200.08

Table 4.11: Scenario A: Execution Time (10 simulated seconds)

First of all, notice that in all four scenarios, ProTEuS achieves essentially no speedup
when the number of processors is increased from two to four. As alluded to earlier, this
is a direct result of the unbalanced nature of the four processor mapping. In this map-
ping, the core switches are offloaded to the two additional processors, but this does
very little to lighten the load on the other two processors that host the edge network-
s. In fact, in some scenarios, this actually increases simulation time due to increased

communication costs. Increasing the number of processors increases the number of
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synchronization messages sent and received by each processor, which in turn increases
the number of interrupt service routines executed on each host. Increasing the number
of interrupts increases scheduling jitter and therefore disruption in the simulation time
line, especially when attempting to maintain fine-grained real-time periods.

Further, notice that while ProTEuS does achieve some speedup in the six processor
mapping, it is less significant than the speedup achieved by GTW; this is our first intro-
duction to the ProTEuS floor function. The floor function exists because there are prac-
tical lower limits on the size of the real-time period that the system can reliably sup-
port, due to scheduling granularity, scheduling jitter and communication overhead.
So, while in theory the six processor mapping could theoretically utilize a smaller real-
time period due to its decreased load, the period cannot be reliably decreased past the
"floor”. This is one reason why ProTEuS actually performs better with higher loads.
Compare, for instance, the uni-directional cases with the bi-directional cases, where
even though the load on the simulated network doubles, which causes the execution
time in GTW to essentially double, the ProTEuS execution time increases by a much
smaller percentage; approximately 30% in the two processor case and as little as 15%
in the six processor case, despite an increase in load by a factor of two. Of course,
this marginal increase in simulation time, especially in the six processor mapping, is
further evidence of the floor function in the lightly loaded uni-directional scenarios.

Another analogous trend in the results is the trend of execution times as the com-
plexity of the simulation increases from uni-directional ABR, to uni-directional TCP
over ABR, to bi-directional ABR, to bi-directional TCP over ABR. Notice that as the
complexity and load of the simulated system increases through this progression, GTW
is penalized much more heavily than ProTEuS. Pictorially, in Figure 4.19, the height of
the bars representing the executing times of GTW “grow” at a much faster rate than
those representing ProTEuS. This is actually a combination of the doubled load, as
discussed earlier, and the added complexity that TCP brings to the simulation. Table
4.11 shows clearly that GTW takes a significant performance hit when the sources are
TCP; as little as 5% in some cases, and as much as 30% in others, as compared to the

analogous ABR experiments, depending on the load and mapping. This is due to the
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increase in the state-saving overhead of the optimistic protocol that is necessitated by
the presence of the TCP protocol. The effect of TCP on ProTEuS, however, is large-
ly insignificant because ProTEuS is essentially source agnostic. ProTEuS suffers a 3%
increase or decrease in the most significant cases, which is well within the range of
random variation.

Furthermore, it is difficult to draw too much from a direct comparison between
the absolute values of execution times in the two systems, due to the differences in
the hardware that the two platforms employ. While it is true that the 168 MHz 8-
processor shared-memory multiprocessor on which GTW executes has a slightly lower
clock frequency than the 200 MHz workstations of the ProTEuS NOW, it is also true
that it exhibits significantly smaller communication overhead than a NOW, giving GTW
an immediate and obvious hardware advantage over ProTEuS. Regardless, the scaling

trends are clearly in ProTEuS’ favor.

4.4.2 Scenario B

Scenario B is a 16 ATM switch, 120 host edge-core network topology consisting of
a four switch, fully-connected core depicted in Figure 4.20. The set of experiments
presented here consist of the same four traffic scenarios presented in Section 4.4.1, uni-
and bi-directional ABR and uni- and bi-directional TCP, but the routing of traffic is
slightly different.

In this topology there are 12 edge networks, three per core switch, each of which
is logically peered with an edge network located on another core switch. Each edge
network on core switch A routes its traffic through a different destination core switch.
The traffic from one edge network on core switch A would send to a destination edge
network on core switch B, another to an edge network on core switch C, and the last
through core switch D. This keeps the traffic in all parts of the network balanced and
symmetrical. The assignment of peer relationships between edge networks was com-
pletely random, as was the assignment of source and sink duties in the uni-directional
cases. In the bi-directional scenarios, the peer relationships between edge networks

remain the same, but each edge network acts as both a source and a sink, just as in the
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experiments of Scenario A.

Table 4.12 shows the parameters for the simulations, which are substantially the
same as those from Scenario A, except that the source rates have been adjusted to the
new topology. In this scenario, each link through the core network is shared by five
ABR streams and five VBR streams whose combined rates should hover near the ca-
pacity of the link (365000 cells per second) in order to stress the simulation engine. The
peak rate of each stream is set at 36000 cells per second, producing a peak link utiliza-
tion of nearly 99%. The average utilization is approximately 295000 cells per second, or
about 80%, due to the variability of the VBR sources, which are 50% duty cycle square
waves. All simulations were run for 1 simulated second, as opposed to the 10 second
simulations of Scenario A in Section 4.4.1, simply because, due to hardware limitation-

s, GTW was unable to complete 10 second simulations of all of the scenarios in this

section.
Simulated Line Rate 365000 cells per second (cps) ~ OC-3
ABR Sources Greedy: PCR=36000 cps, ICR=25% PCR, MCR=0 cps
TCP Sources Greedy: Window=128KB
VBR Sources 50% square: Min/Max=10000/36000, period=100ms

ABR Feedback Mechanism | EPRCA: Threshiq,,=200 cells, Threshy;g=300
Switch Queue Lengths Maximum=5000 cells
Switch Queueing Discipline | Per-class: VBR::ABR=200::1
Link Delays 5ms fixed delay
Simulated Time 1 second

Table 4.12: Scenario B Simulation Parameters

Furthermore, as in the previous scenario, each of the four scenarios in this section
was run on both ProTEuS and GTW using three different physical mappings; two pro-
cessors, four processors and six processors. The virtual to physical entity mappings for
each of these are shown in Figures 4.21, 4.22 and 4.23, respectively, where the dotted
ellipses demonstrate the virtual to physical mappings. Additionally, to showcase the
flexibility and scalability of the ProTEuS architecture, the ProTEuS experiments were
also mapped onto 16 processors, whose mapping is shown in Figure 4.24.

The two and four processor mappings are again quite natural and result in excellent
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load balancing among processors. The six processor mapping also achieves good load
balancing, although it may or may not be evident from the figure. Although each of the
two processors hosting two core switches handles essentially double the event load of
any processor hosting three edge networks, due to other factors, such as the number of
simulation elements on each processor and communication overhead, it still achieves
a good balance. This also highlights one of the many differences between GTW, which
is most heavily dependent on the number of simulated events, and ProTEuS, which
is less sensitive to load and more sensitive to communication costs due to its NOW
architecture. While the 16 processor mapping achieves only mediocre load balancing,
it is a natural and straight-forward distribution, and really the only sensible mapping
across 16 processors for a simulated topology this small. It is worth noting that the
machines supporting the four core switches in the 16 processor mapping, but not in
the other three mappings, were 500 MHz Pentium III Linux workstations with 256 MB
of memory. This was a strategic decision in that not only will they be the most heavily

loaded machines (insofar as the number of events) in the simulation, they also have the

130



highest communication overheads, each communicating with six other nodes in the
simulation. The faster processor speeds up all execution, including interrupt service
routines, to offset the heavier load. This also illustrates an important advantage of a
NOW architecture, which is its ability to be easily upgraded or extended in a piecewise
manner. NOWs also make mapping a simulation extremely flexible and allow the
balancing of simulation load to take into account factors that an SMMP simulation
often cannot, such as processor speed.

Table 4.13 and Figure 4.25 show the execution time results on both simulation plat-
forms. The results from these experiments, combined with those from Section 4.4.1

reveal a great deal about the two simulation platforms and their scaling properties.

Execution Time (seconds)

Experiment # Processors GTW ProTEuS
2 762.88 327.14
Uni-directional 4 385.36 239.43
ABR Traffic 6 298.47 178.87
16 N/A 126.05
2 1569.48 527.29
Bi-directional 4 851.44 335.64
ABR Traffic 6 662.42 257.88
16 N/A 159.79
2 784.74 349.75
Uni-directional 4 425.72 241.39
TCP over ABR Traffic 6 331.21 178.66
16 N/A 126.03
2 1535.20 549.22
Bi-directional 4 871.57 327.74
TCP over ABR Traffic 6 668.90 251.07
16 N/A 148.47

Table 4.13: Scenario B: Execution Time (1 simulated second)

The first observation evident in the results from Scenario B is the clear improvement
in the speedup achieved by ProTEuS. Through better load balancing and heavier load
per processor to eliminate the effects of the floor function, ProTEuS attains speedup-
s nearly those typically achieved by GTW. Further, once again, because of its strong

dependency on the number of events processed, GTW is exhibiting a well-known and
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expected performance penalty as the traffic load doubles. Namely, when the event load
doubles, so does the GTW execution time. ProTEuS, however, takes a much smaller hit,
from 60% to as little as 35%, depending on the scenario and its distribution.

Furthermore, it is clear, especially from the graphs in Figure 4.25 that, hardware dif-
ferences aside, ProTEuS is clearly dominating and out-performing GTW. For instance,
in the bi-directional traffic cases, ProTEuS” execution times are less than half of GTW
even in the 6 processor cases.

Lastly, to illustrate the flexibility of the Proportional Time platform, Scenario B was
mapped across 16 commercial off-the-shelf (COTS) Linux workstations connected by
an ATM network. As the results clearly show, despite the additional communication
overheads in such a distribution, ProTEuS continues to achieve speedup. Consider the
cost difference between 16 COTS Linux workstations, which are general purpose and
are not limited to high performance simulation, and a 16 processor shared-memory

multiprocessor, and the appeal of such a simulation platform is evident.

4.4.3 Execution Time vs. Network Size

Two of the most fundamental issues motivating the creation of ProTEuS was the fact
that conventional simulation techniques do not scale well with size of the simulated
network, nor with simulated time. In this section, results from Scenario A and Scenario
B, which differ in size by roughly a factor of three, are compared to evaluate the ability
of both simulators to scale with network size.

For these experiments, only the mapping across six processors is presented and
each of the four traffic scenarios was run for 10 simulated seconds. The results are
shown in Table 4.14 and Figure 4.26.

The most obvious result here is the distinct differences in scalability with network
size. In the uni-directional cases, GTW exhibits nearly a factor of six performance
penalty between Scenario A and Scenario B, while in the bi-directional scenarios, its
almost seven. ProTEuS, on the other hand, takes a hit of less than two times in the
uni-directional cases, and just over 2 in the bi-directional cases. However, we speculate

that the ProTEuS scaling factors may be slightly off due to somewhat inflated execution
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Experiment (Scenario) GTW ProTEuS
Uni-directional 6 Switch / 40 Host (A) 610.33 1055.88
ABR Traffic 16 Switch / 120 Host (B) 3520.28 1754.40
Bi-directional 6 Switch / 40 Host (A) 1134.29 1221.99
ABR Traffic 16 Switch / 120 Host (B) 7845.38 2528.08
Uni-directional 6 Switch / 40 Host (A) 663.93 1070.77
TCP over ABR Traffic | 16 Switch / 120 Host (B) 3834.70 1873.59
Bi-directional 6 Switch / 40 Host (A) 1488.28 1200.08
TCP over ABR Traffic | 16 Switch / 120 Host (B) N/A 2579.70

Table 4.14: Execution Time vs Network Size (10 simulated seconds)
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times in Scenario A attributed to the effects of the floor function. However, execution
time profiling of Scenario A has shown that, at worst, it may be as high as a factor 2.5 or
thereabouts. Further, notice that GTW was unable to complete a 10 second simulation in
the Scenario B, bi-directional TCP over ABR case due to memory limitations. When the
system reached the bounds of physical memory and started invoking disk swapping,
the simulation was effectively stopped. Keep in mind that this SMMP machine was an
8-processor 168 MHz Sun with 1 GB of main memory - not, by any standard, meager
computing power.

Itis quite clear, especially looking at Figure 4.26, that ProTEuS is exhibiting superior
scaling with network size for these scenarios. While we don’t presume that ProTEuS
scales this much better than GTW for all applications, or even for all network models,
we do believe that it will produce superior scaling in many of them.

The other very interesting result comes from a comparison between Table 4.13,
which contains one second simulations, and Table 4.14, which contains 10 second simu-
lations, both of Scenario B. It is interesting to note that GTW does not scale linearly with
simulated time either. For instance, while a one second simulation of uni-directional
ABR traffic took GTW 298.47 seconds to complete, a 10 second simulation of the same
model took 3520.28 seconds; not 10 times longer, but nearly 12 times longer. For the
same scenario, ProTEuS takes 178.87 seconds for a one second simulation and 1754.40
for a 10 second simulation; slightly less than 10 times longer. ProTEuS appears to be
slightly better than linear for the ABR cases and slightly more than linear for the TCP
over ABR cases; overall, a linear scaling with time. In fact, ProTEuS should scale pre-
cisely linearly with time if the number of missed epochs remained constant with time
as well; variations in the number of missed epochs will result in variations in execution

time.

4.4.4 Execution Time vs. Round Trip Time

In this section, perturbations of a fundamental parameter of a network simulation
model are performed to demonstrate their effect on different simulation methodolo-

gies. For these experiments, the topology and parameters of Scenario A (Section 4.4.1,
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page 117) were used, while varying the round-trip time between hosts. The round-trip
time is divided evenly between the 10 one-way delays in a round-trip. For instance, a
round-trip time of 50ms is modeled as 5ms one-way delays on each link in the network.
All simulations were mapped across six processors and rather than running them for
a fixed length of time, which results in an unfair comparison between ProTEuS and
GTW, the simulations were run for a fixed number of data cells. In the ABR scenarios,
the simulation proceeds until the last ABR source sends its 100000th (10°) data cell. In
the TCP over ABR simulations, the simulation stops when the last TCP source sends 5
MB of data. In both cases, the VBR sources continue to send their background traffic

for the duration of the experiment. The results are shown in Table 4.15 and Figure 4.27.

Round-Trip | Execution Time (seconds)

Experiment Time (ms) GTW ProTEuS
10 330.44 496.00
Uni-directional 50 333.67 513.50
ABR 100 341.49 513.46
Traffic 200 366.40 518.33
400 398.47 533.03
10 609.16 585.95
Bi-directional 50 649.27 603.76
ABR 100 651.15 602.05
Traffic 200 708.41 617.11
400 857.33 643.14
10 307.28 565.12
Uni-directional 50 330.40 595.94
TCP over ABR 100 349.24 633.44
Traffic 200 389.14 702.97
400 470.61 858.66
10 574.69 656.51
Bi-directional 50 648.79 684.89
TCP over ABR 100 703.38 754.35
Traffic 200 835.71 802.07

400 1017.36 1098.67

Table 4.15: Execution Time vs. Round Trip Time

First and foremost, it is certainly expected that GTW will suffer as a result of in-

crease round-trip time due to several factors, including rollback and state-saving. Pro-
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TEuS, however, has no real dependency on round-trip time, and therefore should not
show any real adverse effects as round-trip time increases. The results paint a very
intriguing picture. Note: Realize that the graphs in Figure 4.27 are Normalized Execution
Time vs. Round-Trip Time, where the execution time for each round-trip time was divided by
the execution time of the 10ms round-trip time case.

In the ABR scenarios, the results are essentially what is expected; GTW perfor-
mance takes a significant hit as round-trip time increases, while ProTEuS experiences
an almost negligible performance penalty. However, when TCP traffic is introduced
over ABR, the results are completely different. GTW continues to worsen with in-
creased round-trip time, reaching increases of nearly 80% in the bi-directional case, but
now ProTEuS also suffers a performance impact. The interesting part is, why?

In an ABR simulation, ProTEuS is basically immune to changes in round-trip time;
it doesn’t significantly affect the length of simulated time necessary to send N data
cells, which was the stopping condition for these experiments. Of course, as shown
in Section 4.3.1, delayed ABR feedback certainly can make some difference on link u-
tilization, but not in a scenario in which the feedback mechanism is never invoked.
It is likely that the very slight increase in simulation time for ProTEuS is due to the
delayed ABR feedback during ramp-up, which lengthens the time necessary for ABR
sources to ramp-up to their peak cell rates. GTW, on the other hand, experiences a per-
formance penalty for well-known reasons, including increased probability of rollback
and increased state saving overhead mandated by the optimistic control.

In a TCP over ABR simulation, GTW is essentially in the same situation (made
worse by the added protocol layer), but ProTEuS is penalized by being placed at the
whim of protocol idiosynchracies, such as windowing mechanisms and Van Jacobsen’s
slow-start. Because it is a conservatively synchronized simulator, ProTEuS doesn’t race
ahead across idle periods optimistically like GTW does. Therefore, ProTEuS actually
waits for TCP ACKs to return before sending out more data, which obviously takes
longer as the round-trip time increases. So, for these specific experiments, because of
TCP slow-start, ProTEuS takes longer to send N data cells, which increases the simu-

lated period. In the bi-directional TCP scenario, the ABR source rate update and ACK
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delay is compounded by the fact that TCP ACKSs are now forced to wait in queues be-
hind data cells in the same direction generated by the peer source to which the ACK
belongs.

The bottom line on round-trip time and TCP is a very important observation, which
is that the two platforms exhibit very similar scaling behavior, but for completely different
reasons. GTW suffers a performance penalty because of the properties of the simulation
engine itself. ProTEuS, on the other hand, suffers as a result of the properties of the system
which it is simulating. This is manifest in the difference between the ABR and TCP over
ABR results; it is TCP, and to a lesser extent ABR, that has the dependency on round-
trip time, not ProTEuS.
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Chapter 5

Conclusions and Future Work

It is our desire, as well as that of many others, to evaluate the performance of ATM net-
works of significant size and complexity under varying conditions and architectures.
There have been many attempts to solve this problem, including sequential discrete
event simulation techniques and many flavors of parallel discrete event simulation.
Sequential discrete event simulations, however, often do not scale well in two impor-
tant respects; the size of the network and the length of simulated time. Networks of
significant size become increasingly difficult to even model in sequential discrete event
systems and their size significantly affects the run-time of a simulation. Parallel dis-
crete event simulations, Time Warp in particular, are quite promising with respect to
scalability, however, Time Warp is subject to poor performance when the computation
is fine-grained, as it is in many network simulation scenarios, including ATM. Further,
systems with significant feedback cause interactions among distributed components
that can result in significant overhead in Time Warp systems due to frequent state-
saving and rollback.

The real problem is how to efficiently simulate large networks for long periods of
simulated time. It is our contention, as well as that of many others, that faster single
processors are not adequate to offset the scaling of the simulation. Further, current
methods for parallelizing such simulations are not entirely satisfactory for some simu-
lated systems, including our driving applications. Our approach to improving perfor-

mance is an innovative application of real-time and embedded techniques producing
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a system which supports parallel simulations executing in proportional time, named
ProTEuS: Proportional Time Emulation and Simulation.

ProTEuS uses real-time, distributed system, and embedded system techniques to
create synchronized distributed proportional time simulations. Because the simulated
system is distributed across any number of physical machines, it is orders of magni-
tude faster than conventional sequential discrete event simulation experiments and
shows scalability tendencies superior to those of Time Warp implementations in many
significant situations. Furthermore, ProTEuS uses the real code that networks and sys-
tems could, and often do, use. ProTEuS ATM simulations use a real operating system
protocol stack and the ATM signaling support is the same as that used in an off-board
signaling architecture. Because it uses real system networking code, it does not require
the implementation of system code abstractions in a software simulator, avoiding the
pitfall of excessive abstraction suffered by many other discrete event simulators. The
only changes necessary to utilize existing system code in ProTEuS are those required
to support the notion of virtual time, such as those described in this work pertaining to
the TCP/IP stack in Linux. ProTEuS uses commercial off-the-shelf PC hardware run-
ning Linux at a modest cost and all of the necessary software is free and open source,
including the real-time platform.

This work has demonstrated the ability of the ProTEuS platform to produce simu-
lation results extremely similar, arguable identical, to those produced by conventional
methods. It has also explored some of the properties of synchronous distributed com-
putation using KU Real-Time modifications to Linux (KURT-Linux) as a platform and
discovered several methods by which to improve performance, uncovered interesting
properties of such a distributed real-time system, and identified areas that need at-
tention to further improve performance. Furthermore, it has established the capacity
of ProTEuS to scale linearly with simulated time, a feat that Georgia Tech Time Warp
(GTW) is unable to match in the scenarios modeled herein. It has also showcased scal-
ability in network size superior to that of GTW, even for the relatively small networks
simulated thus far. Lastly, it has exposed a fundamental difference between the prop-

erties of GTW and ProTEuS that was a well-known fact, but manifest in round-trip
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time perturbations.

In short, ProTEuS is a simulation platform that shows noteworthy promise regard-
ing the two fundamental problems of conventional simulation techniques; scaling with
network size and simulated time. It does it without the loss of generality, without the
loss of verity due to over-abstraction and without the addition of prohibitive hardware
needs. It is further worth mentioning that the version of ProTEuS evaluated herein
should be considered beta quality, i.e. a proof of concept implementation, meaning
that no optimization has been attempted whatsoever, as opposed to the obvious matu-

rity of a product like GTW. It can only get better.

5.1 Future Work

The Proportional Time platform is truly in its infancy and a multitude of enhancements

and optimizations are possible. This is a brief list:

e Separate the ATM-specific ProTEuS implementation. Because ProTEuS was ini-
tially designed for the simulation of ATM networks, there exists a tight coupling
between the two in the current implementation. Separating the two layers, Pro-
portional Time and ATM Quality of Service, and providing a generic interface
will open a door to a wide range of applications for which a general distributed

real-time communication framework is useful.

o Create a Master-Slave protocol between simulation nodes. By assigning one ma-
chine the duty of simulation master, the simulation can be controlled from a sin-
gle point, for instance, to pause or stop the simulation under certain conditions,
or to control the start time of the simulation from a master to alleviate some of
the clock synchronization and race condition issues that have already been en-

countered.

e Add support for virtual ethernet devices. The current virtual network device
implementation has support only for virtual ATM devices. Virtual ethernet de-
vices will allow the application of ProTEuS techniques to the simulation of IP

networks.
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e Optimize critical paths of execution. This includes more efficient methods of
demultiplexing virtual device traffic and the preallocation of packets (cells) to

avoid dynamic allocation wherever possible.

e Dynamically control the epoch lengths. This is a key enhancement that is neces-
sary for several reasons; (1) it will allow the simulation to track its own perfor-
mance and make adjustments when necessary, for example increasing the epoch
size when too many epochs are being missed, and (2) it will eliminate the need

to manually probe for the right epoch length to use for a particular simulation.

e Provide better clock synchronization. This includes both synchronization in ab-
solute value, but also controlling the rate at which time progresses. Further, com-
bined with the dynamic control of real-time periods, this could include the ad-
justment of epoch phase to mitigate the effects of virtual time lines interleaved in

absolute time.

e Exert better control over Linux bottom halves to decrease scheduling jitter. This
may include selectively turning them off, or a more sophisticated solution such as
delegating and scheduling a thread whose sole purpose is to run bottom halves.
Because thread scheduling is controlled by KURT-Linux, this can prevent bottom

halves from interfering in the execution of fine-grained real-time applications.

e Extend the notion of proportional time to other simulation domains. This in-
cludes the obvious extension to the simulation of native IP networks, but also
includes other non-networking domains such as data collection, hardware sim-
ulation and distributed virtual environments. Once generalized, ProTEuS is ap-

plicable to any application with distributed real-time communication needs.

e Add support for mismatched line rates. In the current ProTEuS implementation,
every link in the simulation must exhibit the same simulated line rate. Of course,
most real-world networks have several line rates depending on the proximity to
the core. This will require some bookkeeping as well as some notion of propor-

tionality between links.
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e Create tools for visualization, topology and script generation, etc. Sooner or later,
as the scenarios get larger and larger, ProTEuS will need front-end applications
to perform tasks like automatic topology generation, parameter assignment and

testbed /network configuration, as well as NetSpec script generation and result

visualization.
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