Perceptual Video Quality Measurement for Streaming Video over Mobile Networks

Senthil Shanmugham
Master's Thesis Defense
27th June 2006

Committee:
Dr. John Gauch (Chair)
Dr. Arvin Agah
Dr. Joe Evans
Acknowledgements

• Dr. John Gauch
• Dr. Arvin Agah and Dr. Joe Evans
• Dr. Jim Black and Dr. Claudio Lima (Sprint ATL)
Presentation Outline

• Introduction
• Background
• Digital Video Quality
• KUIM Video Pipeline
• Implementation Details
• Performance Evaluation
• Conclusion
• Future Work
Introduction

• The Internet will be an important source of video distribution
• Best-effort video delivery without any Quality of Service (QoS) guarantees
• Network bandwidth, packet losses and frame jitter are the main factors effecting video quality
Introduction

• Subjective quality
  • User perceived quality of the video
  • Time consuming and expensive

• Objective quality
  • Produce results comparable to subjective methods
  • Easy, real-time and done without user intervention

• Pixel-based metrics
  • Mean-Squared Error (MSE)
  • Peak Signal-to-Noise Ratio (PSNR)
Thesis Goals

• Develop an effective method for measuring perceptual visual quality of mobile streaming video
• Generate consistent quality scores for video sequences comparable to subjective measurements
• Models should be based on the properties of Human Visual System (HVS)
• Data will be generated using SprintPCS EVDO-Rev 0 mobile network
• Results will be compared with the Mean Opinion Score (MOS) generated by NetQual setup at ATL
Background

• Visual perception is the most important of all senses - 80 to 90% of all the neurons in the brain

• HVS can be divided two main parts: eyes and visual pathways

• Retina – information is preprocessed before sent to the brain

• Complexity
  • Considerable optical differences between individuals
  • Component of the eye undergoes constant changes throughout life
Background

The human eye (transverse section of the left eye) (Winkler, 2004)
Background

• Quality of the eye – reflection of the visual stimulus on the retina
  • The image is the distorted version of the input and the most important one is blurring
  • Point spread or Line spread function - to identify the amount of blurring

Point spread function of the human eye as a function of visual angle (Westheimer, 1986)
Background

• Photoreceptor mosaic at the back of the retina
• Responsible for sampling the image and converting into information
• Two types of photoreceptors – rods and cones
  • L-, M- and S-cones

Normalized absorption spectra of three cones (Stockman and Sharp, 2000)
Background

- Light is defined by spectral power distribution
- Trichromacy of human color vision
- Reddish yellow is perceived as orange whereas we cannot perceive reddish green
- Opponent color theory
- The principle components are (White-Black) W-B, (Red-Green) R-G and (Blue-Yellow) B-Y

![Normalized spectral densities of three opponent colors](Poirson and Wandell, 1993)
Background

• Receptive fields of primary visual cortex
• Light and dark shades denote excitatory and inhibitory regions, respectively
• These characteristics of human visual system are used in the design quality models and metrics

Idealized receptive field of primary visual cortex (Winkler, 2004)
Digital Video Quality

• The main goal is to reduce bandwidth and storage requirements without compromising quality.
• Compression and Transmission of digital video results in visual artifacts.
• Compression artifacts are blocking, ringing, blurring, and mosquito noise.
• MPEG, H.263, RealMedia, and Windows Media.
Digital Video Quality

- Compressed video is transferred over packet-switched network
- Wire or wireless channel at physical layer and TCP/UDP at transport layer
- Header contains sequencing, timing and signaling information
- Streaming video needs additional protocols like RTP and RTSP

Illustration of video transmission system (Winkler, 2001)
Digital Video Quality

- Packets may be delayed or lost during transmission
- Quality of the video may depend upon the lost frame
- MPEG macroblock loss may result in temporal loss propagation until synchronized
- Visual effects depend upon the ability of the decoder to identify and conceal errors

Spatial and temporal loss propagation in a MPEG-compressed video (Winkler, 2001)
Subjective Video Quality

- Recommendation ITU-R BT.500-10 “Methodology for the subjective assessment of the quality of television pictures” has been used for many years.
- Subjects are asked to rate the test sequence based upon the reference sequence on a continuous quality scale.
- Double Stimulus Continuous Quality-Scale Method (DSCQS) and Single Stimulus Continuous Quality Evaluation (SSCQE)
Subjective Video Quality

Typical subjective video quality assessment laboratory

Subjective quality assessment metrics corresponding to quality score from 1 to 5
Objective Video Quality

• More reproducible and portable but should have good correlation with subjective scores
• Full Reference Method – The reference and distorted videos are compared to arrive at a quality score
• Reduced Reference Method – Features from the reference and distorted video are compared to arrive at a quality score
• No Reference Method – No reference frame is needed and the quality score is based on the distorted video only
Objective Video Quality

The same amount of noise after inserting to original image (a) at two different parts of the image. (Winkler, 2004)
KUIM Video Quality Pipeline

• We have implemented an objective video quality system by extending existing KUIM tools
• Simulates the visual pathways of the HVS
• Color perception, spatio-temporal contrast sensitivity and multi-channel representation of the HVS
• Full reference method – requires both reference and distorted videos
KUIM Video Quality Pipeline

- AVI2JPEG – conversion of the original AVI video into a sequence of JPEG frames
- Vsampler – Temporal sampling is done to remove duplicate frames and to recover from frame loss
- Vpipeline – takes the two videos as input and calculates the distortion measure
- Vscore – Based on the distortion measure comes up with the Predicted Video Mean Opinion Score (VMOS)
KUIM Video Quality Pipeline
Implementation Details - AVI2Jpeg

• Conversion of the original AVI video into a sequence of JPEG frames
• It skips the initial block of header and extracts the uncompressed video frames
• Initial blue frames are the synchronization frames
• The blue frames were discarded and the comparison was done only for the video content
• Extracted video frames are then converted to Jpeg images using KUIM JPEG Library
Implementation Details - Vsampler

- Temporal sampling is done to remove duplicate frames and insert new frames as needed.
- Important step in a full-reference method where we do frame-by-frame comparison.
- The frame was sampled using nearest neighbourhood at 40us for a video transmitted at 25fps for 6 seconds.
Implementation Details - Vpipeline

- Convert the images in RGB color space to opponent color space W-B, R-G and B-Y
- Perform temporal weighted averaging (window size = 5)
- Perform binomial spatial smoothing
- Calculate and compute the distortion measure
Implementation Details - Vpipeline

- **KUIM_QUEUE**
- **KUIM_PIPELINE**
- **KUIM_COLOR**
- Temporal Averaging
- Opponent Color Conversion
- Distortion Differences
- Queue Status
- Display and Store the results
Implementation Details - Vscore

• Information from the various channels within the primary visual cortex is integrated in the subsequent brain areas

• Same process was done for our models by gathering data from all the channels and coming up with the distortion measure

• The quality score was calculated after analyzing the distortion measure

• This quality score was compared against the SwissQual’s VMOS for performance evaluation
Implementation Details - Vscore

\[ Q = \frac{((a / \text{Average}) + (b / \text{Max}) + (c / \text{Top10}))}{3} \]

where ‘Average’ is average value of the all the pixel differences
‘Max’ is the maximum value
‘Top10’ is the average of the top ten largest pixel differences
a, b and c are KUIM quality constants

<table>
<thead>
<tr>
<th>VIDEO SEQUENCES</th>
<th>MOTION CONTENT</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woman(CW)</td>
<td>Low</td>
<td>19.26</td>
<td>64.88</td>
<td>29.65</td>
</tr>
<tr>
<td>Traffic (PC)</td>
<td>High</td>
<td>54.02</td>
<td>162.8</td>
<td>78.81</td>
</tr>
<tr>
<td>Man (CA)</td>
<td>Low</td>
<td>17.73</td>
<td>61.60</td>
<td>22.70</td>
</tr>
</tbody>
</table>
Performance Evaluation

- 3 types of videos in QCIF format at 25 fps
- Two low motion content – woman drinking water outside a cafe and a man talking
- One high motion content – auto traffic outside Piccadilly Circus

<table>
<thead>
<tr>
<th>MOS</th>
<th>USER EXPERIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Imperceptible / Excellent</td>
</tr>
<tr>
<td>4</td>
<td>Perceptible / Good</td>
</tr>
<tr>
<td>3</td>
<td>Slightly annoying / Fair</td>
</tr>
<tr>
<td>2</td>
<td>Annoying / Poor</td>
</tr>
<tr>
<td>1</td>
<td>Very annoying / Bad</td>
</tr>
</tbody>
</table>
Performance Evaluation

- SwissQual's NetQual setup at Sprint ATL
- Helix Multi-media server, client running NetQual application test set and EVDO Samsung A600 PCS Vision phone
- MPEG-4, H.263 and MPEG-2 transport streams
Reference, Distorted and Pixel Differences for Woman, Car and Man test sequences in RGB Color Space
W-B, R-G and B-Y components of the test sequences after opponent color conversion for Woman, Car and Man test sequences, respectively.
W-B, R-G and B-Y components of the test sequences after temporal weighted averaging for Woman, Car and Man test sequences, respectively.
**W-B, R-G and B-Y components of the test sequences after binomial spatial smoothing for Woman, Car and Man test sequences, respectively**

- **Woman**
  - W-B
  - R-G
  - B-Y

- **Car**
  - W-B
  - R-G
  - B-Y

- **Man**
  - W-B
  - R-G
  - B-Y
Frame difference between the reference and distorted sequences after processing through KUIM perceptual software pipeline
Average pixel difference between the reference and distorted sequence

Average Pixel Difference in Opponent Color Space

- Woman
- Man
- Car
KUIM Pipeline parameters

Woman

Man

Car
Predicted VMOS vs SwissQual VMOS

SwissQual VMOS vs Predicted VMOS

Test video sequence

Predicted VMOS vs SwissQual VMOS

Test Video Sequence

Woman

Car

Man
## Performance Evaluation

<table>
<thead>
<tr>
<th>VIDEO SEQUENCES</th>
<th>MOTION CONTENT</th>
<th>SEQUENCE NAME</th>
<th>SWISSQUAL VMOS</th>
<th>PREDICTED VMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_2.7_45_005005</td>
<td>2.7</td>
<td>2.70</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_001005</td>
<td>4.1</td>
<td>4.20</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_002005</td>
<td>4.1</td>
<td>3.92</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_003005</td>
<td>4.1</td>
<td>4.17</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_004005</td>
<td>4.1</td>
<td>4.02</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_006005</td>
<td>4.1</td>
<td>4.16</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_007005</td>
<td>4.1</td>
<td>4.17</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_008005</td>
<td>4.1</td>
<td>3.91</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_009005</td>
<td>4.1</td>
<td>4.17</td>
</tr>
<tr>
<td>Woman</td>
<td>Low</td>
<td>CW_4.1_45_010005</td>
<td>4.1</td>
<td>4.21</td>
</tr>
</tbody>
</table>

**Woman - SwissQual VMOS vs Predicted VMOS**

A KTEC Center of Excellence
## Performance Evaluation

<table>
<thead>
<tr>
<th>VIDEO SEQUENCES</th>
<th>MOTION CONTENT</th>
<th>SEQUENCE NAME</th>
<th>SWISSQUAL VMOS</th>
<th>PREDICTED VMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_2.6_45_009008</td>
<td>2.6</td>
<td>1.48</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.1_45_004008</td>
<td>3.1</td>
<td>2.91</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_001008</td>
<td>3.7</td>
<td>3.66</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_002008</td>
<td>3.7</td>
<td>3.72</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_003008</td>
<td>3.7</td>
<td>3.90</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_005008</td>
<td>3.7</td>
<td>3.72</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_006008</td>
<td>3.7</td>
<td>3.67</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_007008</td>
<td>3.7</td>
<td>3.55</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_008008</td>
<td>3.7</td>
<td>3.72</td>
</tr>
<tr>
<td>Car</td>
<td>High</td>
<td>PC_3.7_45_010008</td>
<td>3.7</td>
<td>3.49</td>
</tr>
</tbody>
</table>

Car - SwissQual VMOS vs Predicted VMOS
# Performance Evaluation

<table>
<thead>
<tr>
<th>VIDEO SEQUENCES</th>
<th>MOTION CONTENT</th>
<th>SEQUENCE NAME</th>
<th>SWISSQUAL VMOS</th>
<th>PREDICTED VMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>Low</td>
<td>CA__4.4_45_001009</td>
<td>4.4</td>
<td>4.39</td>
</tr>
<tr>
<td>Man</td>
<td>Low</td>
<td>CA__4.4_45_002009</td>
<td>4.4</td>
<td>4.39</td>
</tr>
<tr>
<td>Man</td>
<td>Low</td>
<td>CA__4.4_45_003009</td>
<td>4.4</td>
<td>4.39</td>
</tr>
<tr>
<td>Man</td>
<td>Low</td>
<td>CA__4.4_45_004009</td>
<td>4.4</td>
<td>4.39</td>
</tr>
<tr>
<td>Man</td>
<td>Low</td>
<td>CA__4.4_45_005009</td>
<td>4.4</td>
<td>4.39</td>
</tr>
<tr>
<td>Man</td>
<td>Low</td>
<td>CA__4.4_45_006009</td>
<td>4.4</td>
<td>4.39</td>
</tr>
</tbody>
</table>

Man - SwissQual VMOS vs Predicted VMOS
Overall Accomplishments

• KUIM Video quality pipeline
• AVI2JPEG
• Temporal sampling of the distorted video
• Predicted VMOS in good correlation with the SwissQual VMOS
• Extensive collection of papers on Digital Video Quality – Video library
• Data generated using full reference as well as no-reference frames at ATL with SwissQual VMOS
Conclusion

• Video quality assessment and optimizing user experience based on errors in video capture, storage, transmission and display
• Models based on HVS
• Based on constraints like the quality of the displayed video and user's viewing conditions
• Methods to measure perceptual video quality that predict human perception of video quality
Future Work

• Visual quality assessment without any reference frames
• Estimate the video quality in real-time and without any user intervention
• Reduced reference model of estimating video quality
• Quality metrics for both audio and video
• Automatic selection of a, b and c weights based on video content (high/low motion)
Thank You!