
 i

Directory Enabled Distributed Packet Filtration System:

A Scalable and High Performance Security Architecture

by

Siddhartha Gavirneni

B.Tech., Jawaharlal Nehru Technological University, Hyderabad, India 2001

Submitted to the Department of Electrical Engineering and Computer Science and

the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science

Professor in Charge

Committee Members (2)

Date of Acceptance

 ii

© Copyright 2003 by Siddhartha Gavirneni

All Rights Reserved

 iii

Acknowledgements

The work for this thesis has been done at the Networking and

Telecommunications Services (NTS), University of Kansas.

I must firstly thank my supervisor at NTS, George F. Willard, who deserves

the greatest of thanks, since he has provided me with incredible support,

encouragement, and guidance in both the writing of this thesis and the work that

preceded it. I would also like to thank the people at NTS for the excellent work

environment, which has helped me concentrate on this project.

I thank my advisor, Prof. Joseph Evans, for taking his time to supervise this

Master’s thesis despite his sabbatical leave. He has furthermore been an excellent

advisor during my two years of study at the University of Kansas. I thank Prof. Gary

Minden for many insightful conversations during the development of the ideas in this

thesis, and for helpful comments on the text. I also thank Prof. Victor Frost for being

a part of my committee and evaluating this project.

Away from work, special thanks go to all my friends and roommates, both

near and far, who helped me achieve the balance between recreation and studies, and

also for their much-appreciated advice.

Most importantly, I would like to thank my family, especially my parents, for

their absolute confidence in me. To them I dedicate this thesis.

 iv

Abstract

Monolithic firewall implementations in an enterprise or university environment are

impractical for many reasons. Each department or subdivision has unique needs for

their hosts and servers. This brings in the need for distributed firewall architectures,

which allow for a border firewall and localized firewalls, leading to a consistent

filtering implementation in a distributed way. They also provide defense in depth,

resulting in more secure networks. In large organizations, managing and

synchronizing the security policies of all the firewalls requires an efficient network

management tool. An open source distributed management framework that can be

easily customized and expanded can address the distributed firewall management

needs. A directory server is an effective backbone for this framework. It will facilitate

the distributed delegation, policy-based modeling, and cooperative management

necessary to enable the next generation of secure and intelligent enterprise and

campus networks.

This report presents a distributed firewall architecture for large networks. It

also describes the implementation of a Directory Enabled policy management system,

which is a generic model for various types of firewalls (both commercial and non-

commercial). This report can be used as a prototype for designing the security

architecture of an organization’s network. This claim is substantiated by applying the

scalable, high performance directory enabled distributed firewall architecture to the

network of the University of Kansas.

 v

Contents

1. Introduction 1

1.1 Motivation . 1

1.2 Project Goals . 3

1.3 Document Layout . 5

2. Background 7

2.1 The Firewall . 7

2.1.1 Firewall functions 8

2.1.2 Firewall limitations 9

2.2 Firewall Types .10

2.3 The Directory Enabled Network Initiative 12

2.4 LDAP . 13

2.5 JNDI . 13

3. The Evolving Security Model 15

4. The Distributed Firewall Architecture 20

4.1 Advantages of a distributed security architecture 21

4.2 Firewall Location . 26

 vi

4.3 Firewall Deployment in an Existing Network 27

4.3.1 The traditional architecture 28

4.3.2 The blade architecture 29

4.3.3 The loopback architecture 31

4.4 Firewalls that can be used 33

4.4.1 The best non-commercial firewall/packet filter . . . 34

4.4.1.1 Drawbridge 34

4.4.1.2 Linux and OpenBSD filtering packages . . 38

5. Distributed Firewall Policy Management 39

5.1 Who creates/manages the policies? 39

5.1.1 A central policy management committee 39

5.1.2 Individual network administrators 40

5.2 How are the policies managed? 41

6. Directory Enabled Policy Management system 43

6.1 What is Directory Enabled, and why is it needed? 43

6.2 LDAP schema for policy management 45

6.3 Applying the LDAP schema to the distributed firewall

architecture . 52

6.4 Use of the directory by system/network administrators . . . 64

6.5 Rule Generation .66

 vii

6.5.1 Requirements of the rule generator 66

6.5.2 Algorithm .66

6.5.3 Rule generator for Linux iptables 68

7. Load Balancing for Firewalls 70

7.1 Performance of a Single Firewall 71

7.2 Parallel packet filtration 74

7.2.1 Firewall selects the packets to be processed 75

7.2.2 Firewall gets the packets to be processed 77

7.2.3 Performance tests 79

7.3 Packet Selection Algorithm 86

7.4 Available Load Balancers 87

8. Case Study: University of Kansas 89

8.1 The University Network 89

8.2 Distributed Firewall Implementation for KU 90

8.3 Firewall Deployment .92

8.4 Firewalls that can be used: Cost effective solution for KU . .92

8.4.1 At the border . 92

8.4.2 For a department 94

8.5 Policy Management for KU 96

8.6 An Example for the use of the architecture 97

 viii

8.7 Summary .99

9. Conclusion & Future Work 101

9.1 Conclusion .101

9.2 Challenges . 101

9.3 Future Work . 102

Bibliography 104

Appendices 108

Appendix I. LDAP schema for policy management 108

Appendix II. Directory Support and iptables rule generator 116

 ix

List of figures

Figure 1.1: The proposed distributed security architecture 4

Figure 1.2: The Directory Enabled packet filter architecture 5

Figure 2.1: A firewall . 7

Figure 3.1: Single firewall architecture . 15

Figure 3.2: Observed Misuse and Attacks, part-1 16

Figure 3.3: Observed Misuse and Attacks, part-2 16

Figure 3.4: Reported Losses . 17

Figure 3.5: The distributed security architecture 18

Figure 4.1: The distributed firewall architecture 21

Figure 4.2: Diversity of defense . 23

Figure 4.3: Traditional firewall deployment architecture 28

Figure 4.4: Blade firewall deployment architecture 30

Figure 4.5: Loop-back firewall deployment architecture 31

Figure 4.6: The Drawbridge configuration 35

Figure 4.7: Performance of Drawbridge for different packet sizes 37

Figure 4.8: Performance of other non-commercial packet filters 38

Figure 6.1: A network with a distributed firewall architecture 52

Figure 6.2: Directory entry for ou=protectors 54

Figure 6.3: Directory entry for cn=NTS_protector 55

Figure 6.4: Directory entry for ou=LAN Support Services 56

Figure 6.5: Directory entry for ou=NTS 57

 x

Figure 6.6: Distributed firewall architecture for the NTS subnet 58

Figure 6.7: Directory entry for ou=Windows Based Systems 61

Figure 6.8: Directory entry for ou=Solaris Workstations 62

Figure 6.9: Directory entry for cn=thundercracker 63

Figure 6.10: Delegation of privileges within the organization 65

Figure 7.1: A single firewall between two networks 70

Figure 7.2: Setup for testing the performance of one firewall 71

Figure 7.3: Performance of iptables under varying packet sizes: No Rules . . 72

Figure 7.4: Performance of iptables under varying packet sizes: 160 Rules . .73

Figure 7.5: Performance of iptables under varying packet sizes: 2180 Rules . 74

Figure 7.6: A parallel packet filter setup .75

Figure 7.7: A parallel packet filter setup, using hubs 76

Figure 7.8: A parallel packet filter setup, using load balancers 78

Figure 7.9: Test setup for parallel packet filters, using load balancers 79

Figure 7.10: Direction of traffic flows, one TCP connection 81

Figure 7.11: Direction of traffic flows, two TCP connections in different directions . 82

Figure 7.12: Direction of traffic flows, two TCP connections in same direction . . . 83

List of Tables

Table 7.1: Speedup obtained for hub-based load balancing 76

Table 7.2: Speedup obtained for load balancing, using load balancers 84

Table 7.3: CPU usage for the systems involved in the test 85

 1

Chapter 1

Introduction: Motivation and Goals

1.1 Motivation

Our increasing use of and reliance on computers and networks has resulted in

a greater sensitivity to various security related issues. As a consequence we are also

more concerned about taking measures to protect these systems against compromise

and threats, especially since the Internet has significantly increased exposure to those

who might wish to do them harm. One technology that has generated much interest

in this regard is the firewall. This security tool is now widely in use by most

organizations.

Monolithic, or single firewall implementations in an enterprise or university

environment are impractical for many reasons: The enterprise may have several

connections to the outside world; each department or subdivision has unique needs

for their hosts and servers; and departments within the enterprise have to protected

from each other. This brings in the need for a distributed firewall architecture.

Distributed firewall architectures allow for multiple border firewalls and local

department firewalls that allow for a consistent filtration model in a distributed way.

They also provide defense in depth, resulting in secure networks.

But, in large organizations, managing and synchronizing the security policies

of all the firewalls requires an efficient monolithic network management tool. An

open source distributed management framework, that can be easily customized and

 2

expanded, can address the distributed firewall management needs. A directory server

is an effective backbone for this framework. The directory service has excelled at

providing an abstraction layer for applications to lookup information, authenticate,

and authorize users while sharing information for wide-scale distributed deployment

and information sharing for scientific applications.

This will facilitate the distributed delegation, policy-based modeling, and

cooperative management necessary to enable the next generation of secure and

intelligent enterprise and campus networks. Using proven middleware design

techniques and principles for managing the delegation of authority, reliable dynamic

configuration of the network topology and naming services become practical through

a single interface. The details of the implementation of the network infrastructure are

modeled into modular components that handle the system specific controls across

heterogeneous equipment. The complexities are then hidden from the network

administrators, allowing them to focus on departmental resource management and

enabling collaborative efforts of their constituents and peer institutions. The resulting

middleware enhanced network infrastructure maintains transparency to the host

operating systems and users. Seamless management and policy enforcement of

similar network devices from a variety of vendors can be accomplished by abstracting

the capabilities from the device while keeping the management logic in a central

location. Attempts at directory enabled networking (DEN) initiatives have had little

success [1] because these middleware issues were not addressed, only the method and

schema by which the network devices are modeled in a directory service were

 3

considered. A combination of a directory enabled network modeling with additional

middleware services to facilitate distributed management and device integration logic

will define the modular core of the open network middleware management system

architecture.

1.2 Project Goals

The main goal of the project is to substantiate the claim that the use of the

models shown in Figure 1.1 and Figure 1.2 will lead to an efficient and effective way

of implementing security policies for a low cost distributed security architecture, and

for network traffic accounting for the organization, with host-centric delegated

configuration and security management.

1.2.1 Distributed security architecture:

The first goal is to study the concept of a distributed security architecture for large

enterprise networks. Parts of this study will be the evaluation of the performance

of low cost (non-commercial) packet filters, and the effect of load balancing

firewalls.

 4

Figure 1.1: The proposed distributed security architecture

1.2.2 Directory Enabled firewall policy management system:

The second goal is to develop a framework for managing security policies for the

distributed security architecture, using an LDAP compliant directory server. We

will also develop a framework for creating rules from the policies specified in the

directory server, for all the firewalls in the organization.

 5

Figure 1.2: The Directory Enabled packet filter architecture

1.2.3 Validation of the above mentioned goals:

Finally, we will apply the low-cost distributed security architecture, and the

directory enabled policy management system to the network of the University of

Kansas.

1.3 Document Layout

This document is organized into the following sections:

Chapter 2 gives some background information needed to understand this project.

The next chapter discusses the need for a distributed security architecture. The

chapter titled “distributed firewall architecture”, analyses the concepts that need to be

 6

considered before deploying a distributed security architecture in a large network.

The issues discussed are the firewall location, the firewall deployment architecture,

and the performance issues of different types of firewalls.

Chapter 5, which is “distributed firewall policy management”, presents a brief

discussion about the issues involved with managing the policies for a distributed

firewall architecture. The next chapter “Directory enabled policy management”

provides a description of the framework developed for managing the security policies,

and for migrating those policies into actual firewall rules.

Chapter 6, “Load Balancing for firewalls”, is a discussion of the load balancing

issues related to firewalls, and some test results for non-commercial firewall load

balancing.

The next chapter is a case study for the network of the University of Kansas. The

aim is to relate the above topics to this network, and derive a suitable, low cost

distributed security architecture. The last chapter is “Conclusion and Future work”,

which discusses the lessons learned, and future work that can be done on the system.

 7

Chapter 2

Background:

2.1 The Firewall

In a building, a firewall is designed to keep a fire from spreading from one part of

the building to another. A network firewall serves a similar purpose: it prevents the

threats of one network from spreading to another network. In practice, an Internet

firewall is more like a gate of a medieval castle. It serves multiple purposes: It

restricts people to entering at a carefully controlled point, it prevents attackers from

getting close to your other defenses, and it restricts people to leaving at a carefully

controlled point.

An Internet firewall is most often installed at the point where your internal network

connects to the Internet, as shown in Figure 2.1 [2].

Figure 2.1: A firewall usually separates an internal network from the Internet

 8

Logically, a firewall is a separator, restrictor, and an analyzer. The traffic coming

from the Internet or going out from your internal network passes through the firewall.

Because the traffic passes through it, the firewall has the opportunity to make sure

that this traffic is acceptable. And this “acceptable traffic” is decided by the security

policy of the site implementing the firewall.

2.1.1 Firewall functions:

Firewalls can do a lot for your site's security. In fact, some advantages of

using firewalls extend even beyond security.

- A firewall is a focus for security decisions

Think of a firewall as a choke point. All traffic in and out must pass through

this single, narrow choke point, thus giving you an enormous amount of

leverage for network security. Focusing your security at this single point is

far more efficient than spreading security decisions and technologies

around, trying to cover all the bases in a piecemeal fashion.

- A firewall enforces a security policy

Many of the services that people want from the Internet are inherently

insecure. The firewall is the traffic cop for these services. It enforces the

site’s security policy, allowing only “approved” services to pass through.

Also, depending on technologies you choose to implement your firewall, a

firewall may have a greater or lesser ability to enforce either simple or

complex security policies.

 9

- A firewall can log Internet activity efficiently

Because all traffic passes through the firewall, the firewall provides a good

place to collect information about system and network use – and misuse. As

a single point of access, the firewall can record what occurs between the

protected network and the external network.

- A firewall limits your exposure

Sometimes, a firewall will be used to keep one section of your site’s

network separate from another section. By doing this, you prevent the

problems that impact one section of your network from spreading through

the entire network, i.e., you are limiting the damage to only a part of your

network.

2.1.2 Firewall limitations:

Firewalls offer excellent protection against network threats, but they aren't a

complete security solution. Certain threats are outside the control of the firewall.

- A firewall can’t protect you against malicious insiders

If the attacker is already inside the firewall - if the fox is inside the henhouse

- a firewall can do virtually nothing for you. Inside users can steal data and

damage resources without ever coming near the firewall. Insider threats

require internal security measures, which are beyond the scope of a firewall.

- A firewall can’t protect you against connections that don’t go through it

 10

A firewall can effectively control the traffic that passes through it; however,

there is nothing it can do about traffic that doesn’t pass through it. For

example, what if the site allows dial-in access to internal systems behind the

firewall? The firewall has absolutely no way of preventing an intruder from

getting in through such a modem.

- A firewall can’t protect against completely new threats

A firewall is designed to protect against known threats. A well-designed one

may also protect against some new threats. However, no firewall can

automatically defend against every new threat that arises. You can’t set up a

firewall once and expect it to protect you forever.

- A firewall can’t fully protect against viruses

Firewalls can’t keep computer viruses out of a network. It’s true that all

firewalls scan incoming traffic to some degree, but detecting a virus in a

random packet of data is very difficult. Moreover, what can a firewall do

against other sources of viruses, like floppies? The most practical way to

address the virus problem is through host-based virus protection software.

2.2 Firewall Types

Firewalls can filter at a number of levels in the network protocol stack. There

are three main categories: packet filters, circuit gateways, and application gateways.

These work at different layers of the protocol stack, but, they often get blurred.

 11

Another category is the dynamic packet filter, which is a combination of the packet

filter and circuit-level gateway. [3]

2.2.1 Packet Filters

Packet filters work by verifying packets based on their source or destination

addresses or port numbers. Little or no context information is kept. Filtering may be

done at the incoming interface, the outgoing interface, or both. It is easy to permit or

deny access at the host or network level with a packet filter.

2.2.2 Circuit-level gateways

Circuit-level gateways work at the TCP level. TCP connections are relayed

through a system that essentially acts as a wire. The relay system runs a program that

copies bytes between two connections. When a client wishes to connect to a server, it

connects to a relay host and possibly supplies connection information through a

simple protocol. The relay host, in turn, connects to the server. The name and IP

address of the client is usually not available to the server.

2.2.3 Application gateways

Application-level filters deal with the application level of the protocol stack.

They check the details of the particular service they are responsible for. Rather than

using a general-purpose mechanism to allow many different types of traffic to flow,

special-purpose code can be used for each desired application.

 12

2.2.4 Dynamic packet filters or Stateful packet filters

These are most commonly used type of firewalls. Dynamic packet filters are

packet filters with the ability to capture connection semantics. The transit packets are

examined for the usual criteria, like the addresses and port numbers. In addition to

this, note is made of the identity of outgoing packets, and the incoming packets for

the same connection are allowed to pass through. It is thus possible to handle UDP as

well as TCP, despite UDP’s lack of an ACK bit. Since these filters keep track of the

state information, they are also called stateful packet filters, and simple packet filters

are called stateless packet filters.

2.3 Directory Enabled Network (DEN) initiative

The Internet2 Middleware Initiative web page [17] identifies four core

components: Identity, Authentication, Directories, and Authorization. It states:

Directories are the operational lynchpin of almost all middleware
services. They can contain critical customization information for
people, processes, resources and groups. By placing such information
in a common storage area, diverse applications from diverse locations
can access a consistent and comprehensive source for current values of
key data. In future information technology environments, directories
will be among the most critical services offered.

The Directory Enabled Networking (DEN) initiative involves the industry-

standard specification for constructing and storing information related to a

network's users, applications, resources, and data in a central directory.

Objectives of a directory include providing central storage for

information about people, groups, and resources; access by multiple

 13

processes, for multiple purposes; and the usual advantages of eliminating

redundancy. These properties will help us define the policy management

system for the distributed security architecture.

2.4 LDAP

With the growth of the number of different networks and applications, the

number of specialized directories of information has also grown. This has resulted in

islands of information that cannot be shared and are difficult to maintain.

The Lightweight Directory Access Protocol (LDAP) is an open industry standard

that has evolved in an effort to maintain and access this dispersed information in a

consistent and controlled manner. LDAP is gaining wide acceptance as the directory

access method of the Internet and is therefore also becoming strategic within

corporate intranets.

2.5 JNDI

The Java Naming and Directory Interface (JNDI) is an extension to the Java platform,

provided by Sun Microsystems. According to Sun Microsystems, [28]

The Java Naming and Directory Interface (JNDI) is a standard extension to
the Java platform, providing Java technology-enabled applications with a
unified interface to multiple naming and directory services in the enterprise.
As part of the Java Enterprise API set, JNDI enables seamless connectivity to
heterogeneous enterprise naming and directory services.

The JNDI is included in the Java 2 SDK, v1.3 and later releases. It is also

available as a Java Standard Extension for use with the JDK 1.1 and the Java 2

 14

SDK, v1.2. It extends the v1.1 and v1.2 platforms to provide naming and

directory functionality.

To use the JNDI, one must have the JNDI classes and one or more service

providers. The Java 2 SDK, v1.3 includes three service providers for the

following naming/directory services: [5]

• Lightweight Directory Access Protocol (LDAP)

• Common Object Request Broker Architecture (CORBA), Common

Object Services (COS) name service

• Java Remote Method Invocation (RMI) Registry

We used Java 2 SDK 1.4 for the rule generator applications, and it has been used with

LDAP.

 15

Chapter 3

The evolving security model

Conventional security architectures make use of a single point of protection for

their network, such as the one shown in Figure 3.1.

Figure 3.1: Single firewall architecture [2]

The firewall is implemented at the boundary between the external network and the

internal network. Such an architecture works for a small network, with a few hosts to

be protected from the Internet, but it fails in large networks. Some of the problems

faced by single-firewall architectures are:

a. Insider threats: In a large enterprise network, threats exist from within the

internal network. The biggest threat to an organization’s assets come from within.

 16

Figures 3.2, 3.3 and 3.4 show statistical data from the CSI/FBI 2002 Computer

Crime Survey. [6] The risk and loss from insider threats are extremely high.

Perimeter firewalls, as in Figure 3.1, are not designed to solve the insider

problem.

Figure 3.2: Observed Misuse and Attacks, part-1 [6]

Figure 3.3: Observed Misuse and Attacks, part-2 [6]

 17

Figure 3.4: Reported Losses [6]

b. Bandwidth bottleneck: By installing a firewall as a network gateway, an access

control policy can be enforced for every computer system that resides on the

protected network. This means a huge rule set, and hence a low performance. The

firewall will be a bottleneck to the network bandwidth.

c. Low trust level: It is possible to configure a firewall’s rules to permit or restrict

access to a single host, but these rules are applied at the network boundary. If

malicious traffic is able to pass through the firewall, then all hosts on the network

are vulnerable to this malicious traffic. Every organization survives on the trust

that people have in its resources, and hence, low security results in a low trust

level in the organization’s network.

 18

These problems can be overcome by using a distributed security architecture, wherein

security can be provided at different levels in the network. A typical distributed

security model is shown in Figure 3.5.

Figure 3.5: The distributed security architecture.

This model eliminates the drawbacks of the single-firewall architecture:

a. Little or No Insider threats: The aim of the distributed architecture is to divide

the complete network into smaller networks (subnets), and secure each of those

with a firewall. This way, every subnet is protected from threats arising in the

other subnets. If every subnet is a single host, then the insider threats can be

completely eliminated, as long as insecure ports are not open to attacks.

 19

b. Mitigation of the bandwidth bottleneck: Since every subnet has its own

firewall, the access control policies for that subnet are configured in that firewall,

rather than the border firewall. This keeps the rules in the border firewall to the

minimum. It is a widely accepted fact that the performance of a firewall is

inversely proportional to the number of rules configured in the firewall, in the

worst case where a packet is matched against all the rules. Hence, lesser number

of rules in the border firewall will have little effect to its performance and traffic

throughput.

c. Higher trust level: “Its easier to secure a studio apartment than a mansion”. [2]

In terms of complexity, this also applies to a computer network. The smaller the

protected network, the better the security to that network. This goes well with the

concept of dividing the organization’s network into smaller subnets for a better

security architecture, which ultimately leads to a higher trust in the network. The

effect of complexity on security will be discussed in the next chapter.

 20

Chapter 4

The Distributed Firewall Architecture:

One widely accepted property of a firewall is that it acts as a bandwidth

bottleneck - all traffic to be controlled must pass through the firewall. Modern

networks are also getting faster - on all levels, the bandwidth available has been

increasing. As a result, the performance demanded from firewalls is increasing.

A distributed security architecture follows the tenet: “It is easier to secure a studio

apartment than a mansion”. This is with respect to a single person taking care of the

security for the apartment or mansion. [2] In a large organization, like a University,

the whole network can be treated as a mansion. And the distributed architecture

attempts to divide this mansion into studio apartments, namely subnets, each of them

protected by a firewall. Figure 4.1 illustrates this architecture.

This architecture aims at providing security at different levels in the network, and at

the same time, increasing the performance of the firewalls.

 21

Figure 4.1: The distributed firewall architecture.

4.1 Security strategies provided by the distributed architecture:

Let us analyze the distributed security architecture with respect to some of the

security strategies suggested by Elizabeth D. Zwicky et. al., in “Building Internet

Firewalls” [2]:

a. Defense in Depth:

The trick to security is to make an attack attempt too risky or too expensive for

the attackers. This can be done by adopting multiple mechanisms that provide

backup and redundancy to each other. The distributed architecture caters to this

BorderFW

 22

strategy by placing firewalls at various locations in the network. For example, in

Figure 4.1, even though the BorderFW fails, every subnet is protected by its

respective firewall, assuming that the policies have been properly configured in

the firewalls.

b. Choke Point:

A choke point forces attackers to use a narrow channel, which can be effectively

monitored and controlled. In network security, every firewall acts as a choke

point. The distributed architecture incorporates numerous choke points in the

network. Each of these can be monitored and controlled, resulting in an

effective and efficient security strategy.

c. Weakest Link:

A fundamental tenet of security is that a chain is only as strong as its weakest

link and a wall is only as strong as its weakest point. Smart attackers are going

to seek out that weak point and concentrate their attentions there. Consider a

case where the weakest point is a host X. If there is only a single firewall (at the

border), a small mistake in configuring the firewall will allow access to host X,

and thus, to all the hosts in the network. On the other hand, in a distributed

architecture, the hosts in other subnets are protected by their respective

firewalls, thus reducing the risk of being affected by the weakest point.

 23

d. Diversity of Defense:

This is the idea that a network needs not only multiple layers of defense, but

different kinds of defense. A popular theory is to use different types of systems

– for instance, using systems from different vendors. After all, if all the systems

are the same, somebody who knows how to break into one of them probably

knows how to break into all of them. The strategy, diversity of defense, can be

easily applied in a distributed security architecture, since every firewall is

independent of every other firewall. Figure 4.2 illustrates the application of this

strategy to a large network. This strategy is one of the important considerations

in this project.

Figure 4.2: Diversity of defense.

 24

e. Simplicity:

Simplicity is a security strategy for two reasons: First, keeping things simple

makes them easier to understand; if you don’t understand something, you can’t

really know whether or not it’s secure. Second, complexity provides nooks and

crannies for all sorts of things to hide in. Having a single firewall protect

thousands of systems makes the firewall configurations complex, risking the

network’s security. The distributed architecture attempts to break up this

firewall into smaller and simpler firewalls, putting this security strategy into

effect. On the other hand, though every firewall’s configuration is now simple,

the large number of firewalls makes the distributed system complex. We will

look at managing this complexity, without effecting security, in the next chapter

“Distributed firewall policy management”.

The other major advantages of the distributed security architecture are:

a. Scalability:

The distributed architecture scales well, with respect to the number of hosts and

the number of rules, to the changing requirements of a network. The addition or

removal of any host in the network would require changes only in the firewall

protecting that host. In cases where more than one firewall needs to be

configured, the directory enabled framework proposed in this report, will help

us maintain consistency without affecting scalability. In single firewall

 25

architectures, all the changes need to be done in that single firewall, which

becomes complex with network growth.

b. High Performance:

The performance of a firewall depends on the average number of rules each

packet transits. But, in our discussion, we will consider the worst-case scenario

for the firewalls. This scenario is one in which all packets traverse all rules. For

example, at a given moment, there might be several connections going through

the firewall. If one of these connections generated heavy traffic, and if this

connection has a matching rule at the end of the rule list, then all the packets of

this connection will be matched against all the rules, thus decreasing the

performance of the firewall. Hence, large number of rules implies low

performance in the worst-case scenario. With a single firewall, rules for all

hosts need to be specified in that firewall, thereby drastically reducing its

performance. The firewall becomes a bandwidth bottleneck. With a distributed

architecture, the rules are distributed among all the firewalls. Every firewall has

a limited number of rules to process, with little effect to both their performance

and the network traffic bandwidth.

 26

4.2 Firewall location

Now that we have decided upon a distributed security architecture, we need to

think about the locations for the firewalls. A secure architecture is that, wherein

security can be provided to the lowest level in the network hierarchy. This can be best

achieved by pushing network security to the inner edge of the network.[7] The

concept of the “edge” of the network could be classified as:

• A single host

• A group of hosts

It can be easily argued that pushing network security all the way to a host would be

the most secure solution. This has also been proved by Markham et. al. [7] But, in a

large network, like that of a University with thousands of hosts, such a security

architecture would be practically impossible. Each host needs to be configured with

its security policies, requiring extensive work by the network/system administrators.

The other option is to assume a small group of hosts as the network edge. In this

case, the same set of policies can be easily applied to that group of hosts, thus

simplifying the management, compared to the previous case. For example, consider a

University with 50 departments. It is easier to have a firewall for each department. To

increase the depth of defense, each department can be divided into sections like the

administrative office, the laboratories, and conference rooms. Each of these sections

can have an independent firewall (these sections are now considered the network

edge).

 27

4.3 Firewall deployment in an existing network

Modern networks have two sets of people working for the network: the network

engineers and the security administrators. These two teams attempt to work together,

but actually constrain each other. Network engineers provide routing of traffic, high

availability and high bandwidth. They do this in part by deciding where within the

topology to create links and install routers, firewalls, etc. Security administrators

decide where within the network topology to install firewalls/filtering routers, and

what filtering rules should be implemented in each of these intermediate network

devices. Any changes in one area affects the other area. [7] One solution is to divide

the complete network into two topologies:

• The network topology: which consists of hosts, servers, routers, etc., without

any firewalls.

• The security topology: which denotes the firewall deployment architecture,

i.e., the actual location of the firewalls with respect to the network topology.

In an existing network, the security topology should be implemented with minimal

affect to the network topology. Let us analyze three different types of firewall

deployment architectures, and select the one that satisfies our requirement of

independent network and security topologies.

 28

4.3.1 The traditional architecture:

The traditional firewall deployment architecture consists of a dual-homed

firewall device, a public subnet that is routable to the rest of the network and/or the

network Internet uplinks. An internal private subnet uses a non-routed subnet to

encapsulate the firewalled hosts. Traffic flow originates on the public subnet as a

request to a firewalled host. The traffic is then passed through the firewall device’s

public interface, filtered, and is then passed to a private distribution switch. The

distribution switch connects to a separate patch panel and ultimately to the firewalled

host. Figure 4.3 illustrates this architecture.

Figure 4.3: Traditional firewall deployment architecture.

The advantages of the traditional firewall deployment architecture are: Only a single

connection to the network layer 3 (routing) device is needed to connect the firewall;

and firewall management is simpler if the firewall is dedicated to a single set of

 29

servers with a single firewall manager. This however, does require additional

firewalls.

On the other hand, the firewall is limited to the bandwidth capacity of the public and

private interfaces on the firewall. It contains multiple single points of failure,

including the distribution switches. Also, it does not scale beyond distribution

switches without physical wiring. This deployment architecture requires dedicated

switches for each firewall deployed, and the management of these distribution

switches requires access through the firewall. The implementation of this architecture

often requires an additional patch panel. Distribution switch and patch panel

population may be sparse and underutilized.

4.3.2 The blade architecture:

The blade firewall deployment architecture consists of a router firewall

module or “firewall blade”, a public VLAN that is routable to the rest of the network

and/or the network Internet uplinks. An internal private VLAN uses a non-routed

subnet to encapsulate the firewalled hosts.

Traffic flow originates on the public VLAN as a request to a firewalled host. The

traffic is then passed through the firewall blade, filtered, and is then passed to the

private VLAN on the routing device for connection to the firewalled hosts.

 30

Figure 4.4: Blade firewall deployment architecture

The advantages of the blade firewall deployment architecture are: The firewall is

located inside the router chassis and benefits from the redundancy of the router as

well as the performance and high bandwidth of the router backplane. Also, existing

network patch panels handle distribution to firewalled hosts that may reside anywhere

on the network. Another advantage is that the utilization of public and private VLANs

allows for additional router-level security mechanisms to be applied.

The disadvantages of this architecture are that: It requires a network layer 3 (routing)

capable device that can host the firewall blade and VLANs. This architecture

introduces management complexity when combining the firewall rules for multiple

firewalled host groups. Also, it effects the physical perception: the presence of the

firewall is not as physically prominent.

 31

4.3.3 The loop-back architecture:

The loop-back firewall deployment architecture consists of a dual-homed firewall

host, a public VLAN that is routable to the rest of the network and/or the network

Internet uplinks. An internal private VLAN uses a non-routed subnet to encapsulate

the firewalled hosts.

Traffic flow originates on the public VLAN as a request to a firewalled host. The

traffic is then passed through the firewall device’s public interface, filtered, and is

then returned to the private VLAN on the routing device for connection to the

firewalled hosts.

Figure 4.5: Loop-back firewall deployment architecture.

The advantages of the loop-back firewall deployment architecture are: The firewall

can be physically located anywhere in the network: a secure location, network closet,

or server rack. The existing network patch panels handle distribution to firewalled

 32

hosts that may reside anywhere on the network. Also, utilization of public and private

VLANs allows for additional router-level security mechanisms to be applied.

The disadvantages of this architecture are: The firewall is limited to the bandwidth

capacity of the public and private interfaces on the firewall. The firewall contains

multiple single points of failure, but this drawback may be mitigated by the

introduction of multiple network interfaces and/or a backup firewall unit. This

architecture requires a network layer 3 (routing) capable device to handle packet

routing between the public and private VLANs.

All the above firewall deployment architectures have been described using a

public and a private subnet. But, the private subnet can be replaced by a public

subnet. With such a setup, the loop-back firewall deployment architecture would be

best suited to separate the network topology from the security topology. But this is

not always the optimal solution at every point in the network. Every department

might have its own limitations and could choose to implement any of the three

architectures discussed above. Our suggestion is to use the loop-back architecture, or

the blade architecture. The disadvantages of the loop-back architecture, specially the

bandwidth constraints can be overcome by load balancing, as will be discussed in

Chapter 7.

 33

4.4 Firewalls that can be used

The next important decision that needs to be made is the type of firewall to be

used in the security architecture. The major factors that affect this decision are:

• Performance / throughput

• Cost

The two broad categories to be considered are:

• Commercial firewalls: high throughput, high cost

• Non-commercial firewalls: low throughput, low cost

The decision needs to be made about what type of firewall is to be used at what level

in the distributed security architecture.

For example, in a University network: The firewall at the border (between the

Internet and the University network) needs to process large amounts of traffic, and a

commercial firewall would be a good choice. In the same network, a firewall for the

History department would not have to process huge amounts of traffic. For such

implementations, a simple non-commercial firewall would be sufficient.

But one way of compensating for the low performance of non-commercial

firewalls is to load balance them. This is discussed in detail in Chapter 7.

Also note that not all commercial firewalls have greater throughputs than non-

commercial firewalls. For example, tests conducted by Samuel Patton, et. al. [8] show

that Linux Kernel 2.2 ipchains had a better performance than the Cisco IOS firewall

feature set.

 34

4.4.1 The best Non-commercial firewall/packet filter

The “best” firewall, in this section, indicates the one with highest throughput. A

commercial firewall is best suited where high bandwidth is needed. But let us look at

the bandwidth that can be made available using non-commercial firewalls. The

firewalls that will be considered are:

• Drawbridge, FreeBSD

• ipchains, Linux Kernels 2.2.x

• iptables, Linux Kernels 2.4.x

• OpenBSD packetfilter

4.4.1.1 Drawbridge:

Drawbridge is a firewall package that was developed at Texas A&M

University and was designed with a large academic environment in mind. It is a

copyrighted, but freely distributable, bridging IP packet filter with a powerful filter

language. It uses a constant-time table lookup algorithm so it can provide the same

level of packet throughput regardless of the number of filters defined. Drawbridge is

composed of three components: the Drawbridge filter code, the Drawbridge

Manager, and the Drawbridge Filter Compiler. These three components run on a

FreeBSD system where the filter code is compiled into the kernel and the manager

and compiler are user level applications.

Drawbridge is different from any of the current standard firewall

configurations. Using the categorization of firewalls developed by Ranum [9],

 35

drawbridge compares best to a filtering router firewall configuration as shown in

Figure 4.6.

Figure 4.6: The Drawbridge configuration [10]

In a filtering router firewall, a router which has packet filtering support is used to

filter packets to and from hosts on the “inside” of the router. This is used to establish

a policy where hosts are provided more or less access depending on the decisions of

the network managers.

A typical drawbridge firewall configuration is related to a filtering router firewall.

The difference is that instead of using a filtering router as the firewall, the filtering

function is moved from the router into drawbridge which acts as a bridging filter.

 36

Advantages of using drawbridge:

• In conventional filtering routers, as filters are added, the performance begins

to quickly drop due to how they implement the filtering rules. In drawbridge,

arbitrary numbers of complex filters can be set up and the performance

remains almost constant since simple look ups are performed and only

connection establishment packets are filtered for TCP.

• A second problem with most filtering implementations is that testing filter

configurations is difficult. Drawbridge remedies this by allowing the

administrator to check the results of a compiled configuration file to see if the

correct filtering rules have been applied. Since drawbridge is less algorithmic

than current filtering implementations, it is sufficient to investigate the

compiler output. The administrator can look at the class that a host has been

assigned and at the filtering lists defined for each subtable in that class.

• Unlike other filtering implementations like iptables, the order in which the

rules are specified in the configuration file does not matter. This simplifies the

user’s task of generating and maintaining the rules.

Disadvantages of using drawbridge:

• Low throughput: Drawbridge can provide a maximum throughput of 5.5Mbps,

which is not sufficient for most of the modern networks.

• Drawbridge specifically defines an entire subtable to support TCP source port

filtering, but UDP source port filtering is not currently supported.

 37

• Only connection establishment packets are filtered for TCP.

• No further development on the drawbridge project.

Performance of Drawbridge:

Drawbridge was tested with a few filtering rules, but varying packet sizes. The test

systems used: two Linux Kernel 2.4.20 boxes, and one FreeBSD 4.0 for filtration.

The performance of drawbridge for various packet sizes is as shown below (Figure

4.7):

0

0.5

1

1.5

2

2.5

3

1024 512 256 128 64 32 16 8 4 2 1

Packet Size (KB)

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

Figure 4.7: Performance of Drawbridge for different packet sizes.

 38

4.4.1.2 Linux and OpenBSD filtering packages

These were not tested because of already existing reports on their

performance. One such report is “Packet Filters and their Behavior under high Network

Load” [11]. An overview of the maximal TCP throughput test is shown in Figure 4.8.

Figure 4.8: Performance of other non-commercial packet filters. [11]

The report also shows that the packet loss with Linux Kernel 2.4.16 was the least as

compared to the other packet filters.

Looking at these performance results, iptables in Linux Kernels 2.4.x can be

considered the “best” packet filter among the tested non-commercial firewalls.

 39

Chapter 5

Distributed firewall policy management

Specifying and managing security policies for a firewall is not a trivial task. It

requires extensive study of the needs of the entire network. Every aspect of the

network needs to be considered, and worse than that, every need of every user needs

to be considered. The best way to do this is to ask: to ask managers, system

administrators, and users; then look at the actual computers and see what is going on.

Let us look at the possible ways of defining security policies in a large enterprise

network.

5.1 Who creates/manages the policies?

5.1.1 A central policy management committee

Consider a University network: ~60 departments, ~120 buildings, ~20000 hosts,

~35000 users. Deciding the security policies for such a network, including specific

needs of each department and user, is not a task that can be easily accomplished by a

small committee. The policies set for the History department will not work for the

Computer Science department. Similarly, the policies for the office staff might not be

what a computer lab needs. Framing such a vast and varied set of policies is not

feasible for a small committee. Also, every department would like to be independent:

it might not be happy with what the committee imposes upon them. Keeping

 40

everyone happy is an important tenet of security. People don’t like learning or

working in a hostile environment; and because they won’t do it, the security

administrators will either lose the security or lose the organization.

5.1.2 Individual Network Administrators

On the other hand, if every department has a network administrator, the task of

creating policies becomes easier. The network administrator needs to worry only

about a small group of systems. This is under the assumption that every network

administrator is well versed with the concepts of security and firewalls. This

decentralized model makes the framing and management of security policies easy,

with every department getting what it needs. Also, one of the security strategies is

simplicity. Managing all the firewalls is a complex task. This complex task can be

divided into simpler tasks by allowing every network administrator to maintain the

firewall(s) for that particular department.

In short, a central committee will not be able to properly carry out the tasks of

creating security policies: because it cannot ask the 35000 users and managers about

their needs. On the other hand, a network administrator who is in charge of a small

department, can frame effective security policies by asking the few 100 or 200 users.

With the above factors, we suggest that individual network/security

administrators decide and implement their security policies, whereas a central

 41

committee, who are believed to be security experts, help/advise the network/security

administrators in deciding and configuring the security policies for their department.

The above discussions are based on the assumption that ever department has a

network/security administrator who is capable of maintaining and configuring

firewalls.

5.2 How are the policies managed?

Now that we have each network administrator framing the security policies for

the department, how will these policies be managed? Should this be left to the

network administrator’s discrepancy, or should there be a centralized policy

management system?

We propose a centralized policy management system because of the following

reasons:

i. In a distributed security architecture, the firewalls are interdependent in a

hierarchical manner. For example, the border firewall should not block

packets that are needed by a host in department X. In such a case, the traffic

allowed by the firewall of department X will be blocked by the border

firewall, thus displeasing the users in that department.

ii. A centralized management system creates a framework for maintaining the

firewalls. Information like the old and new policies, the last time the firewall

 42

was updated, etc., can be maintained for every firewall in the network.

Maintaining firewalls is an important security strategy, and the policy

management system serves this purpose.

The policy management system: we propose a Directory Enabled policy management

system, which is discussed in the next chapter.

 43

Chapter 6

Directory Enabled Policy Management System

6.1 What is Directory Enabled, and why is it needed?

Directory Enabled describes a class of software drawing on a common data

repository to unite the previously disparate functions of an enterprise information

technology presence into a coherent, cooperating mirror of the business processes it

is designed to aid. The heart and soul of this network design is the LDAP directory.

It serves as the hippocampus of the system, maintaining a "memory" of business

transactions by storing and cataloging successive transaction results for ready access

on demand.

As with all high-quality products, the mechanisms which provide the de facto

standard for network management have stood the test of time. These include such

packages as the Internet Software Consortium's BIND and DHCP packages for

name resolution and host configuration, and the iptables implementation famous

from Linux and BSD. Over time, these solutions have been perfected to a point

where deciding not to use them seems foolhardy. However, with age also comes a

loss of flexibility. In the case of these software giants, their ancient designs have

survived essentially unchanged in the face of a world full of evolving

methodologies. In most cases the networks in which they operate are fundamentally

different than the ones in which they matured. This inexorable march toward

 44

obsolescence has in some cases been slowed through the implementation of

awkward, hacked-in appendages which do nothing to make the maintainer's life any

easier, and often expose vulnerabilities, bugs, or degraded performance.

We intend to bridge the gap between tomorrow's service requirements and

today's rock-solid but aging systems. Our approach is to embed all of the operational

data required for network management into a single data source - the directory.

After all, the separation of operational data for each problem domain is artificial,

and in most cases, explains the difference between desired and actual system

performance. The reason is simple: separation and overlap of operational data

inevitably means synchronization of that data between any two systems which

participate in the same service offering. Simply stated, synchronization consumes

bandwidth unnecessarily, sapping your businesses ability to transact business.

This is where our architecture parts company with the background of

mediocre solutions. The directory enabled nature of our architecture enables low-

overhead integration of services without the need for a bandwidth-hungry

synchronization bus. It provides centralized control of services into a single user

interface for configuration and management. Finally, delegation of enterprise

management to regional or departmental system administrators is made possible by

the access control features of the directory itself.

In short, directory enabled software allows an enterprise to do everything it

did before, only smarter.

 45

For a distributed security architecture, synchronization and coordination is utmost

important. Directory enabled policy management serves this purpose.

6.2 LDAP schema for policy management:

The security policy management is carried out in two steps:

Step 1: Networked device registration:

In order to facilitate policy decisions for networked devices, the devices

must first be registered within the system. The minimal registration requires a

device owner and a MAC address. Security policies are then applied to the

registered hosts or group of hosts within the system.

Step 2: Distributed firewall support:

This provides for specifying various security policies for a host or a group

of hosts. Policies like which services a registered host is allowed to initiate or

receive, what addresses the host can communicate with, etc., can be specified, and

securely propagated to the appropriate firewall.

The first step is essential in any directory enabled network middleware management

framework, and will not be discussed in this report.

We define two object classes specifically targeted at the distributed firewall support

with LDAP:

• IPPacketFilterHost: describing the firewall/packet filter.

• IPPacketFilter: specifying the policies/rules for the protected network.

 46

In our discussion, we use the term “protector” to denote a firewall or packet filter,

simply because it protects the internal network.

IPPacketFilterHost:

This object class represents and describes the protector. The attributes are:

1. cn

The commonName attribute.

2. insideInterfaceMACAddress

The hardware address of the interface connected to the internal

network (protected network).

3. outsideInterfaceMACAddress

The hardware address of the interface connected to the external

network.

4. protectedNetworkDN

The DN of the network being protected by this protector.

5. sysadmin

The system/network administrator who is responsible for this protector

and the protected network.

6. insideInterfaceName

The name of the interface connected to the internal network (protected

network). This is used for creating rules using the interface name, e.g.,

eth0, eri1, de0, etc.

 47

7. outsideInterfaceName

The name of the interface connected to the external network. This is

used for creating rules using the interface name, e.g., eth0, eri1, de0,

etc.

The attributes described above are the required attributes. These are needed to

describe and identify any type of protector, and for the management of that protector.

The other attributes, which are not required, but add to the description of the

protector, are:

8. insideInterfaceIPAddress

The IP address of the interface connected to the internal network

(protected network).

9. outsideInterfaceIPAddress

The IP address of the interface connected to the external network.

10. typeBridging

true indicates that the protector is a transparent bridging firewall, e.g.,

Drawbridge, OpenBSD pf. false indicates that it is a forwarding type

of firewall.

11. typeForwarding

true indicates that the protector is a forwarding firewall, e.g., Linux

iptables. false indicates that it is a transparent bridging type of

firewall.

 48

If the type is not defined (neither typeBridging, nor typeForwarding),

then the protector is assumed to be a forwarding type of firewall.

12. statefulFiltration

true indicates that this is a stateful packet filter. false indicates that it is

a stateless packet filter. The default, if this attribute is not defined, is

stateless filtration.

IPPacketFilter:

The IPPacketFilter object class consists of attributes for specifying the policies for the

protected networks. These attributes specify the TCP/UDP services to be allowed or

denied, the ICMP types to be allowed or rejected, the trusted internal and external

network addresses. These attributes are:

1. packetFiltrationLevel

This attribute denotes the level of the firewall in the distributed

firewall architecture. The architecture is considered to be hierarchical,

and hence, the attribute specifies the placement of the firewall in the

hierarchy. This will be discussed in detail in section 6.3.

2. packetFilterProtectedInternalIP

This specifies the IP addresses within in the protected network.

3. packetFilterDefaultAllowAll

true indicates that the default policy is to allow all packets.

4. packetFilterDefaultBlockAll

 49

true indicates that the default policy is to drop all packets.

5. packetFilterAllowInboundICMPType

This is a list of all the ICMP types that should be allowed to enter the

internal network.

6. packetFilterAllowOutboundICMPType

This is a list of all the ICMP types that should be allowed to leave the

internal network.

7. packetFilterDenyInboundICMPType

This is a list of all the ICMP types that should be denied entry into the

internal network.

8. packetFilterDenyOutboundICMPType

This is a list of all the ICMP types that should be denied exit from the

internal network to the external network.

9. packetFilterAllowInternalTCPServices

The list of TCP port numbers that should be allowed access to from

the external network.

10. packetFilterAllowExternalTCPServices

The list of TCP port numbers that should be allowed access to from

the internal network.

11. packetFilterDenyInternalTCPServices

The list of TCP port numbers that should be denied access to from the

external network.

 50

12. packetFilterDenyExternalTCPServices

The list of TCP port numbers that should be denied access to from the

internal network.

13. packetFilterAllowInternalUDPServices

The list of UDP port numbers that should be allowed access to from

the external network.

14. packetFilterAllowExternalUDPServices

The list of UDP port numbers that should be allowed access to from

the internal network.

15. packetFilterDenyInternalUDPServices

The list of UDP port numbers that should be denied access to from the

external network.

16. packetFilterDenyExternalUDPServices

The list of UDP port numbers that should be denied access to from the

internal network.

17. packetFilterAcceptInternalIP

The list of acceptable IP addresses in the internal network. All

outbound packets with the source as any of these IP addresses will be

accepted.

 51

18. packetFilterRejectInternalIP

The list of unacceptable IP addresses in the internal network. All

outbound packets with the source as any of these IP addresses will be

rejected.

19. packetFilterAcceptExternalIP

The list of acceptable IP addresses in the external network. All

inbound packets with the source as any of these IP addresses will be

accepted.

20. packetFilterRejectExternalIP

The list of unacceptable IP addresses in the external network. All

inbound packets with the source as any of these IP addresses will be

rejected

The LDIF files for these object classes are shown in Appendix I:

IPPacketFilterHost.ldif and IPPacketFilter.ldif. The attributes described are only

some of the various features that are possible using the directory enabled system.

More of these can be added when required. Some such attributes can be the

specifications for log files, compatibility with various protocols, etc.

 52

6.3 Applying the LDAP schema to the distributed firewall

architecture

This section describes the application of the packet filtration schema, i.e., the

IPPacketFilterHost and IPPacketFilter to the distributed firewall architecture. Figure

6.1 shows a sample network. The LDAP schema will be applied to this network.

Figure 6.1: A network with a distributed firewall architecture

 53

The four firewalls are:

• campusFW: the firewall for the campus, at the border.

• NTS_protector: the firewall for the NTS department.

• NTS_Solaris_protector: the firewall for the Solaris workstations in NTS.

• Department X protector: the firewall for Department X.

Each of these firewalls has a “level” in the hierarchy. The protector campusFW is at

level 0, NTS_protector and Department X protector are at level 1, and

NTS_Solaris_protector is at level 2. These levels are denoted by the

packetFiltrationLevel attribute in the directory.

The NTS subnet is divided into three parts: the “Windows based systems”, the

“Solaris workstations”, and “Other NTS systems”.

We create an entry for maintaining the information about all the protectors, as in

Figure 6.2.

 54

Figure 6.2: directory entry for ou=protectors

Each of these protectors is described using the attributes of the IPPacketFilterHost

object class. A description of NTS_protector is shown in Figure 6.3.

 55

Figure 6.3: directory entry for cn=NTS_protector

The sysadmin attribute points to another entry in the directory, containing the

information about the system/network administrator for the firewall and the protected

network (Figure 6.4). In this case, the system administrator is the LAN Support

Services group. The contacts for the system administrator are maintained in this entry.

 56

Figure 6.4: directory entry for ou=LAN Support Services

Similarly, in Figure 6.3, protectedNetworkDN points to the protected network. This is

yet another entry in the directory (Figure 6.5). This is where the policies for the

firewall are specified. The object class IPPacketFilter is used in the description of the

policies.

 57

Figure 6.5: directory entry for ou=NTS, which is protected by a firewall

As seen in Figure 6.5, the protector for this network is at level 1 in the firewall

hierarchy (packetFiltrationLevel). The internal IP addresses protected by this firewall

are the 129.237.234.0/24 and 129.237.4.0/24 subnets

 58

(packetFilterProtectedInternalIP). The default policy for this firewall is to allow all

packets (packetFilterAllowAll). The IP address 10.10.234.254 is an acceptable

external IP address (packetFilterAcceptExternalIP). Similarly, various other policies

can be specified using the attributes of the object class IPPacketFilter.

Now let us look at how the policy specification can be extended to other systems in

the hierarchy. The NTS subnet shown in Figure 6.1 will be the focus of discussion.

This subnet is depicted in Figure 6.6.

Figure 6.6: distributed firewall architecture for the NTS subnet.

 59

The security policies follow a hierarchy as described below:

1. The policies in NTS_protector apply to all the systems in the NTS subnet.

2. In case a group of systems in the subnet require policies other than those

specified for the NTS subnet, then the policies for that group of systems are

specified as attributes for the entry corresponding to that group.

3. In case a host requires policies other than those in the higher levels of the

hierarchy, then the policies for that system are specified as attributes for the

entry corresponding to that system.

4. If a group of systems in that subnet have a separate firewall, then the policies

for that group need not be specified in the firewall above it. But, the firewall

above it must have policies such that the functioning of the firewall for this

group is not hindered.

5. The policies specified at level = X in the directory override the policies

specified at levels < X, as long as these entries are under the same protector.

In Figure 6.6, the policies specified for the host Thundercracker, override the policies

specified for the group Solaris Workstations. The policies, if specified, for the groups

Windows Based Systems and Other NTS Systems, will override the policies specified

for NTS Subnet.

 60

Consider the following scenario:

1. Windows Based Systems require policies other than those specified for NTS

Subnet, whereas, Other NTS Systems do not have any special requirements.

2. Solaris Workstations need to be protected with an additional layer of security,

and hence, another firewall NTS_Solaris_protector. But, one of those

workstations, Thundercracker, requires additional or different access policies.

These requirements can be easily implemented and managed using the LDAP

directory, as shown in the following figures:

We have already seen the policies for the NTS Subnet in Figure 6.5.

Figure 6.7 shows the specifications for Windows Based Systems, fulfilling our first

requirement.

All the packets to or from the Windows Based Systems will first be verified using the

rules specified here (Figure 6.7). In case none of these rules matches the packet, then

the verification will continue with the rules specified for NTS Subnet (Figure 6.5).

The attribute packetFilterProtectedInternalIP is used to identify the

IP addresses that will be subject to the policies of Windows Based Systems.

 61

Figure 6.7: directory entry for ou=Windows Based Systems in the NTS subnet.

The Solaris Workstations are protected by another firewall NTS_Solaris_protector.

The policies for the Solaris Workstations are shown in Figure 6.8.

 62

Figure 6.8: directory entry for ou=Solaris Workstations, in the NTS subnet.

Once again, the value of 2 for the attribute packetFiltrationLevel says that the firewall

for the Solaris Workstations is at a level 2 in the firewall hierarchy. To satisfy the

second requirement, i.e., a single host having special access policies, let us look at the

specifications for the host Thundercracker, in Figure 6.9.

 63

Figure 6.9: directory entry for cn=thundercracker, a host in the Solaris Workstations
group of the NTS subnet.

The attribute ipHostNumber, in conjunction with the packet filter attributes, is used to

verify the packets to or from Thundercracker in the firewall NTS_Solaris_protector.

 64

6.4 Use of the directory by system/network administrators

As discussed earlier, every network administrator will be responsible for the

department’s firewall(s). Hence, the network administrator should be able to access

the directory and define the security policies of the network. The directory access can

be carefully controlled by using the authentication/authorization features available in

directory servers. Also, access control lists can help in determining what part of the

tree in the directory can be accessed by the administrator. There are many LDAP

administration tools available for accessing the directory server.

Figure 6.10 shows an administrative hierarchy which allows for delegation of

privileges within the security management and tracking information for the hosts in

the network.

Figure 6.10: Delegation of privileges within the organization.

As the above examples show, the Directory Enabled system is simple and useful for

firewall policy management.

 65

Summary of the reasons for using LDAP for policy management:

From the previous sections, we can say that the use of LDAP and directories for

firewall policy management eases this task. It provides for delegated management of

the policies, mainly due to the flexible hierarchical model. Also, we obtain a high

granularity of the security system, including host-level security. The policies can be

easily synchronized and coordinated. Another major advantage is the scalable nature

of this framework: it is scalable in terms of both the number of hosts and the number

of policies. The directory framework and its firewall policy management schema act

as a common language for different types of firewalls, both commercial and non-

commercial firewalls.

The directory provides high speed search and security audit capabilities. As for

directory access, the identification, authentication, and authorization take place before

changes can be made. LDAPS provides for encrypted communication on the network.

The encrypted user credentials are stored in the directory and on the underlying file

system. There exist various flexible LDAP administration client tools for use by the

system/network administrators. LDAP provides a protocol-oriented communication

with external systems, i.e., ModPerl, or Java JNDI, or OpenLDAP APIs. Also,

replication agreements with peer directory servers is possible. The directory servers

are easy to load-balance, and easy to make backups via LDIF export.

 66

6.5 Rule generation

We now have all the policies specified in the LDAP directory. This representation

is not what a firewall needs. The firewall needs to be configured with rules in its own

elaborate rule specification format. Therefore, the policies specified in the directory

need to be converted to a format understandable by the firewall. This brings in the

need for a rule generator.

The rule generator can be considered as the front-end to the firewall policy

management system. This rule generator depends on the firewall being used. Linux

iptables requires a rule generator completely different from OpenBSD pf. There are

many such firewalls, and every firewall in the distributed architecture might be a

different type of firewall.

6.5.1 Requirements of the rule generator

1. The rule generator must be able to identify the entries for which rules need

to be created.

2. The rules generated should conform to the hierarchical architecture.

3. The rule generator must be platform independent.

6.5.2 Algorithm for identifying the entries

In this section, we give an overview of the algorithm for identifying the entries for

which rules need to be generated. The result is a list of entries, in the order in which

 67

rules are configured in the firewall. This ordering is based on the following

assumption.

Assumption: In every firewall, packets are matched against the rules in a linear

fashion. The packet traverses the rule list only until it reaches a matching rule.

The Algorithm:

1. Start traversing the tree from the DN specified in the protectedNetworkDN

attribute of the protector. Let this DN be denoted by “RootDN”.

2. Algorithm for obtaining all the nodes for which rules need to be generated:

a. Let X = RootDN, index = 1, last = 1

b. Put X in Table(last)

c. Get children of X

d. For each child “C” of X:

last++ , and put C at Table(last) if and only if:

• C does not have the packetFiltrationLevel attribute,

 AND

• C is not “leaf without the attribute objectClass=IPPacketFilter”

e. index++, X = Table(index)

f. if X is not a leaf node, GOTO step c, else GOTO step e.

g. In a Last-In-First-Out manner, move the values in Table to another table

EntryList, only if that node has the attribute objectClass=IPPacketFilter.

h. EntryList now has the entries in the order in which rules are to be created.

 68

This algorithm only gives an idea about the correct way to obtain the list of entries,

but not the best and efficient way.

6.5.3 Rule generator for Linux iptables

In our effort to apply the directory enabled policy management system to a

real world situation, we created an application to generate iptables rules from the

policies specified in the directory.

The application can be divided into two parts:

1. A firewall independent directory support system

The firewall independent directory support system is used for:

i. Connecting and authenticating to the LDAP server.

ii. Providing modules for search and retrieval operations from the

directory.

iii. Obtaining the list of entries for which rules need to be created (section

6.5.2).

2. A firewall dependent rule creator

The firewall dependent rule creator is a module that creates rules for that

particular type of firewall. Hence, there will be separate modules for iptables,

Drawbridge, Cisco PIX, etc.

The Java Naming and Directory Interface (JNDI) was used to provide access to the

enterprise LDAP server. Te Java Standard Edition (J2SE) was used for the rest of the

application. The reason for using Java was to make the modules platform

 69

independent, so that the system administrators are not bound to a specific platform.

The basic classes used in developing the application are described in Appendix II.

 70

Chapter 7

Load Balancing for firewalls

Figure 7.1 shows a setup with a single firewall separating two IP networks.

All traffic from one network to the other network must pass through this firewall. The

firewall applies the packet filtering rules to every packet, and makes a decision

whether to forward the packet or reject the packet. These rules are applied

sequentially to the packets, i.e., in the same order that they were configured.

Therefore, the load on the firewall depends not only on the number of packets

traversing the firewall, but also on the number and order of the configured filter rules

associated with each network interface.

Figure 7.1: A single firewall between two networks

In high speed networks, a single firewall becomes a bottleneck to the network

bandwidth. There are two possible ways to compensate for the bottleneck. One way

to increase the performance is to get a better processor, but this solution does not

scale for fast scaling high speed networks. The other solution is to use parallel

 71

processing, thus distributing the packet load evenly to a set of firewalls working in

parallel.

7.1 Performance of a single firewall

The test systems were out-of-the-box Linux systems, without any performance

tuning. The OS on every system is Linux Kernel 2.4.20.

The test setup consisted of the following systems: Figure 7.2.

Figure 7.2: Setup for testing the performance of one firewall.

The tests were conducted with varying packet sizes, using iperf for TCP

connections. Note that these are bi-directional, which involve requests and replies.

The firewall/packet filter was configured with no rules, ~160 rules, and ~2180 rules.

7.1.1 No rules:

Figure 7.3 shows the performance of the firewall for varying packet sizes. IP

forwarding was enabled and no iptables rules were configured.

 72

MTU vs. Bandwidth:
 Firewall with no rules

0
50

100

150
200
250
300

350
400

32 64 96 128 192 256 384 512 768 1024 1280 1500

MTU (Bytes)

B
an

dw
id

th
 (M

bp
s)

Figure 7.3: Performance of iptables under varying packet sizes: No Rules.

7.1.2 Around 160 rules:

Figure 7.4 shows the performance of the firewall for varying packet sizes. IP

forwarding was enabled, and the packets were made to traverse around 160

rules before being accepted in the FORWARD chain. The test was conducted

for both stateless and stateful packet filter rules.

 73

MTU vs. Bandwidth:
Firewall with 160 rules

0
50

100
150
200
250
300
350
400

32 64 96 12
8

19
2

25
6

38
4

51
2

76
8

10
24

12
80

15
00

MTU (Bytes)

B
an

dw
id

th
 (M

bp
s)

Stateless

Stateful

Figure 7.4: Performance of iptables under varying packet sizes: 160 Rules.

7.1.3 Around 2180 rules:

Figure 7.5 shows the performance of the firewall for varying packet sizes. IP

forwarding was enabled, and the packets were made to traverse around 2180

rules before being accepted in the FORWARD chain. The test was conducted

for both stateless and stateful packet filter rules.

 74

MTU vs. Bandwidth:
Firewall with 2180 rules

0

10

20

30

40

50

60

32 64 96 12
8

19
2

25
6

38
4

51
2

76
8

10
24

12
80

15
00

MTU (Bytes)

B
an

dw
id

th
 (M

bp
s)

Stateless

Stateful

Figure 7.5: Performance of iptables under varying packet sizes: 2180 Rules.

As the above figures show, the same throughput is maintained for the case with no

rules and the case with 160 rules. The real crunch is seen when the firewall is

configured with around 2180 rules. For large packets, the bandwidth drops from

365Mbps to 51Mbps (for stateless filtration).

7.2 Parallel packet filtration

The model in Figure 7.1 can be extended to use more than one firewall between

the two networks, as shown in Figure 7.6.

 75

Figure 7.6: A parallel packet filter setup.

This brings up the issue of load balancing. The traffic between the two networks

needs to be load balanced among the firewalls. This aspect can be integrated into the

system in two ways:

• The firewall “selects” the packets that it will process.

• The firewall “gets” the packets that it will process.

7.2.1 Firewall selects the packets to be processed

This is the case wherein both the filtration and load balancing functions are

combined in a single system. All the packets to be filtered are forwarded to all the

firewalls. The firewalls then use a packet selection algorithm to select the packets that

will be filtered using the packet filtration rules. This is a hub-based approach, as

shown in Figure 7.7.

 76

Figure 7.7: A parallel packet filter setup, using hubs.

This approach was tested for its performance by Carsten Benecke in [12].

Table 7.1 shows the speedups obtained by such a setup.

Processors Speedup

1

2

3

4

1

1.82

2.3989

2.9557

Table 7.1: Speedup obtained for hub-based load balancing. [12]

 77

The drawbacks of this hub-based architecture are:

• The major drawback is the half duplex mode of the hubs employed. Hubs

implement a shared segment and all connected workstations compete with

each other for the available bandwidth.

• In conditions of heavy network load, the number of collisions on the Ethernet

will increase dramatically.

• If two fully switched fast Ethernets are joined by parallel packet filters based

on hubs, the total bandwidth of 200Mbits/s (full duplex) is reduced to at most

100Mbits/s.

7.2.2 Firewall gets the packets to be processed

The following is an excerpt from an article “Firewall and Load-Balancer: Perfect

Union?”. [13]

At The Internet Security Conference recently, we participated in a panel
discussion on the merits of load-balancing in the enterprise and the security
issues involved.
Not surprisingly, many audience members asked the panel about integrating
firewall services with load-balancers. The panel's response was decisive:
Integrating a firewall appliance into a load-balancer or vice versa creates more
problems than it solves. Combining the specialized functionality of both
products--not to mention trying to create a single point of failure--is difficult.
Segmenting the processes allows for additional fine-tuning of performance
parameters and configuration problems.

This section describes an attempt to separate packet filtration from load balancing.

The system is as shown in Figure 7.8.

 78

Figure 7.8: A parallel packet filter setup, using load balancers.

The hubs in Figure 7.7 are now replaced by load balancers (LB1 and LB2), which can

be considered as yet another level of packet filtration. Each of the firewalls (FW1,

FW2, FW3) is connected to an Ethernet interface on the load balancers. The packets

are forwarded to the firewalls based on a packet selection algorithm in the load

balancers.

The advantages of this architecture, compared to the hub-based architecture are:

• The firewalls do what they are intended to do: they need not worry about the

selection of packets to be filtered. This removes the additional load, and the

firewalls can perform to their best.

• This overcomes the half duplex limitations of the hub-based architecture. The

firewalls do not compete for the available bandwidth. The bandwidth

available to the firewalls now depends on the load balancers.

 79

• In conditions of heavy load, the rate of collisions is not as high as in the hub-

based architecture.

7.2.2.1 Performance of this architecture

This architecture was tested for its performance, using two firewalls. The setup is as

shown in Figure 7.9.

Figure 7.9: Test setup for parallel packet filters, using load balancers.

 80

The test setup consisted of the systems shown in the figure, with the following

environment:

• All systems had the RedHat Linux 9.0 Kernel 2.4.20 operating system.

• The firewalls FW1 and FW2 were each configured with 2188 rules.

• The load balancers LB1 and LB2 used Linux iproute2 for load balancing the

packets between the two firewalls. Load balancing with iproute2 follows a

route based algorithm.

The limitations to the test setup were Host1 and Host2 that had 100Mbits/s

Ethernet cards. This limited the ability of the load balancers and firewalls (having

gigabit Ethernet cards).

As seen in Figure 7.5 and Figure 7.4, the bandwidth possible with 2188 rules is

around 51Mbits/s for stateless filtration, whereas, 162 rules would give us

365Mbits/s. To test the load balancing between the two firewalls, and with the

limitations of the two end systems, the firewalls were configured with 2188 rules.

This setup was used to calculate the speedup achievable by load balancing.

Iperf was used for testing the throughput. The test parameters were:

• Window size: 128KB

• Maximum Segment Size (MSS): the default for iperf: 1460 (MTU = 1500)

• Read/Write buffer length: 8KB for TCP and 1470 bytes for UDP

Though these parameters do not represent the real world traffic, they can be used,

without loss of generality, to calculate the speedup achievable by load balancing the

firewalls.

 81

Unlike the tests conducted by Carsten Benecke [12], discussed in section

7.2.1, the TCP and UDP connections were 2-way connections: including both

requests (client to server) and replies (server to client). This is a more accurate

representation of the communication protocols. Note that the number of reply packets

is less than the number of request packets.

The tests performed included the following:

1. TCP: one connection

2. TCP: two parallel connections, one in each direction

3. TCP: two parallel connections in the same direction

The results of the tests:

1. TCP: one connection

This test is represented in Figure 7.10.

Figure 7.10: Direction of traffic flows, one TCP connection.

 82

The requests were forwarded through FW1, and the replies through FW2.

With a single firewall, the throughput obtained was 46Mbits/s, whereas the

two firewalls together were capable of providing 64.5Mbits/s.

2. TCP: two parallel connections, one in each direction

This test is represented in Figure 7.11.

Figure 7.11: Direction of traffic flows, two TCP connections in different directions.

FW1 filtered the requests for Connection1 and replies for Connection2. FW2

filtered the requests for Connection2 and replies for Connection1. With a

single firewall, the throughputs obtained were 23.6Mbits/s and 26.0Mbits/s,

whereas the two firewalls together were capable of providing 54.0Mbits/s and

55.7Mbits/s.

 83

3. TCP: two parallel connections in the same direction

This test is represented in Figure 7.12.

Figure 7.12: Direction of traffic flows, two TCP connections in same direction.

FW1 filtered all the packets for Connection1. FW2 filtered all the packets for

Connection2. With a single firewall, the throughputs obtained were

18.8Mbits/s and 19.6Mbits/s (a sum of 37.4Mbits/s), whereas the two

firewalls together were capable of providing 47.5Mbits/s and 46.4Mbits/s (a

sum of 91.9Mbits/s).

Table 7.2 shows the speedup obtained for each of these tests.

 84

Test Bandwidth with 1
firewall (Mbits/s)

Bandwidth with 2
firewalls
(Mbits/s)

Speedup

One connection

Connection 1 46.0 64.5 1.40217

Two parallel connections: one in each direction

Connection 1
Connection 2

23.6
26.0

54.0
55.7

2.28814
2.14231

Two parallel connections: both in same direction

Connection 1
Connection 2

Aggregate

18.8
19.6
37.4

47.5
46.4
91.9

2.52660
2.36735
2.45722

Table 7.2: Speedup obtained for load balancing, using load balancers.

The speedups (more than 2 for 2 processors) obtained with two connections can be

explained by Little’s law. With a high packet arrival rate, and as the queue gets

overloaded, the system performance decreases rapidly. This explains the low

performance of a single firewall, and the high speedup obtained with multiple

firewalls.

The load balancing was route based. This was one of the limitations for the

performance of the parallel firewall architecture. The route based algorithm does not

distribute the packets evenly between the firewalls. This explains the low speedup for

the single connection, as compared to the speedup for parallel connections. In case of

the parallel connections in the same direction, the load was almost evenly split up

between the two firewalls, because each connection followed a separate route.

 85

This test was performed with stateless filtering, because of the unavailability of a load

balancer for stateful filtering, which requires that the replies follow the same route as

the requests (flow based load balancing).

Another important aspect to be considered is the CPU utilization. This gives an idea

about the bottlenecks in the setup. Table 7.3 shows the CPU usage for the firewalls

and the load balancers for each of the tests.

CPU Usage Test
LB 1 LB 2 FW 1 FW 2

One connection 20% 20% 100% 35%

Two parallel connections:
 one in each direction 25% 25% 100% 100%

Two parallel connections:
both in same direction 25% 25% 100% 100%

Table 7.3: CPU usage for the systems involved in the test.

Table 7.3 indicates that the bottlenecks are the firewalls. The load balancers can

handle much more traffic than the two firewalls, even though the firewalls have better

processors.

 86

7.3 Packet Selection Algorithm

The requirements of the packet selection algorithm in the load balancers are:

1. The algorithm must be fast enough to prevent the load balancer from being

the bottleneck.

2. The algorithm should map each packet to exactly one firewall.

3. The algorithm should allow the system to be scalable, easily adapting to

increasing number of firewalls.

4. The algorithm should be able to handle flow based load balancing for

stateful packet filters.

Another key aspect to load balancing is the selection of the node to process the

packet. The scheduling algorithm decides this aspect. Some of the scheduling

strategies that can be used for load balancing firewalls are:

• Weighted Round Robin

Round robin scheduling consists of allocating a packet to each firewall in turn.

Weighted round robin gives each firewall a number of packets based on their

relative processing power. This is not useful for stateful filtration, unless the

stateful filters are synchronized with the state information.

• Minimal Node Load

In this approach, the load balancer maintains load statistics for every firewall.

A new request is assigned to the node with the lowest current workload, based

on some internal benchmark - CPU idle time, free memory, ping time, or

some compound measure. This does not work for stateful filtration.

 87

• Hash Functions based on packet information

A hash-function can be used to map the incoming packets to the firewalls. The

various types of packet information that could be used for the hash calculation

are: [12]

��IP Address

��IP Address and Port Number

��IP header checksum

��Frame checksum

��Combinations of the above

The packet information like IP addresses and port numbers can be used for

load balancing stateful packet filters.

7.4 Available Load Balancers

Most of the available load balancers support load balancing for a cluster of

servers. Load balancing firewalls is completely different from load balancing servers.

According to T.W.Verwoerd, [14]

In order to load balance all traffic directed into a clustered gateway while
allowing the use of packet filtering or transparent proxies, a distributed load-
balancing gateway would be required. Such a system would have to
compensate for NAT effects on the gateways, and correctly channel related
packets into the same node on all interfaces. In addition, such a system would
have to maintain internal synchronization between load-balancing devices,
without forming a new performance bottleneck or single point of failure. To
the best of our knowledge, no such system currently exists.

 88

Though there are no non-commercial products, there are some commercial products

that have recently made their way into load balancing for firewalls. Some such

products are:

• F5 Networks: BigIP Application Switches

• Nortel Networks: Alteon Application Switches

• Cisco Systems: CSS Services Switches

These products follow the architecture described in section 7.2.2.

 89

Chapter 8

Case Study: University of Kansas

This chapter focuses on applying the distributed security architecture, and the

directory enabled policy management system described in the previous chapters to the

network of the University of Kansas.

8.1 The University network

The University of Kansas operates enterprise class voice, video, and data

transport systems in support of the needs of its faculty, staff, and students.

The data network provides connectivity to some 17,000 workstations, many dozens of

servers, high performance computing platforms, several remote sites, regional

networks, the commodity Internet, and Internet 2.

10/100BaseT and IEEE 802 Ethernet protocols provide basic LAN support.

The backbone of this network consists of five Cisco Catalyst 6509s running native

IOS in a layer 3 "routed" environment. These devices are currently fully

interconnected in a mesh topology via single-mode fiber optic media operating at

1000 Mbps full-duplex.

KU's data network is assigned its own Autonomous System (AS) number, and

controls its own class B IP address range. The IPX and Appletalk protocols are no

longer routed at layer 3, and KU currently employs an IP-only environment.

Multicast is also enabled for selected locations on campus.

 90

KU connects to the Kansas Research and Education Network (KANREN) for

communicating with other State educational institutions and the commodity Internet

(70 Mbps of Internet bandwidth) and also peers with the Great Plains Network (GPN)

for regional communications with other state networks and access to Internet 2. All of

this connectivity is currently aggregated using a Cisco Lightstream 1010 ATM switch

and PVCs over an ATM OC3c link operating at 155 Mbps.�

Some statistics

• Number of students, faculty and staff: ~35000

• Number of buildings: ~100

• Number of hosts: ~20000

• Internet 1 link: 70Mbps rate limited on 100Mbps connection

8.2 Distributed firewall implementation for KU

The University environment is a heterogeneous environment with different users

and different requirements. It has different facets: it is an educational and research

entity, it is a Corporation, and it is an ISP. The major challenges faced by security

administrators in a University network are: [15] Lack of control over users, a loose

confederation of autonomous entities, an academic culture and tradition of open

access to information, the complex trust relationships between departments at various

Universities for research, and the availability of excellent platforms for launching

 91

attacks (high bandwidth Internet, sophisticated computing capacity, insecure systems

in dorms).

Securing such a vast and diverse environment is not easy. This requires a delegated

security management system.

The distributed architecture, described in Chapter 4, fits well into the

University environment. Every department can have its own firewall, with its own

specifications. For example, the History department’s security policies can be

independent from those of the Computer Science department. Also, different sections

in the same department may have different security policies.

The distributed security architecture would drastically decrease the number of

insider threats in the network. If the network only had a single border firewall, and a

host was compromised behind the firewall then used to attack internal hosts, or an

attack originated from the internal network, a hacker could target any of the 20,000

systems in the network. On the other hand, with distributed firewall architecture in

place, the hacker’s access is limited to only a few systems in that section. The rest of

the systems would still maintain layers of protection from the compromised section.

Another issue that requires special attention is the need for higher bandwidth

connectivity. In a large network with thousands of users, the bandwidth cannot be

compromised. But it is a property of firewalls to become a bandwidth bottleneck. In

case of a single border firewall, with thousands of rules for the complete network, the

firewall is bound to become a bottleneck. On the other hand, in the distributed

 92

architecture, the campus border firewall will have only a few rules, allowing it to

have minimal impact on network throughput. The other rules will be distributed

among all the other firewalls, with little effect to their performance.

8.3 Firewall deployment

We had seen three possible firewall deployment architectures in section 4.3. In a

University, where network connectivity is utmost important, an extended disruption

to the network would be catastrophic. This brings in the need to separate the network

topology from the security topology, especially because the network topology is

already well established. Hence, the loop-back deployment architecture would be best

suited to the existing network in a University environment.

8.4 Firewalls that can be used: Cost effective solution for KU

8.4.1 At the border

In this section, we make the assumption that all packets are matched against all

the rules in the firewall. This is the worst case scenario.

The University is currently using a rate limited 70Mbps out of a 100Mbps

connection to Internet 1. The rate limiting will likely be removed in the near future as

commodity Internet bandwidth costs decline, hence, at this stage, we need a firewall

that can provide a throughput of at least 100Mbits/s. The major factors affecting the

throughput of a firewall are:

• The number of rules.

 93

• The type of filtration: stateless or stateful.

• The size of packets.

• The number of flows (connections) passing through the firewall.

Currently, the number of packet filtering access control lists in the border router,

pertaining to the KU campus, is approximately 50 rules. The average packet size is

200 to 500 bytes. Stateless filtration is used.

The firewall at the border of the network need not be configured with the

policies for individual hosts or subnets within departments. These will be configured

in the respective firewall of the department. Also, the border firewall need not be a

stateful filter. Stateful filtration can be used in the inner firewalls.

The following assumptions will be used for determining the firewall architecture

at the border:

• Number of rules: ~100

• Packet size: ~200 to 500 bytes

• Type of filtration: Stateless

• Number of flows: not an issue with stateless filtration.

With these parameters, and from Figure 7.4, we can say that a non-commercial

firewall/packet filter can be used.

Note that the results in Figure 7.4 were obtained using simple, low cost systems, and

freely available packet filter (iptables). With a packet size of 192 bytes, the

throughput achieved was 85.5Mbits/s. Packets larger than this were processed at

 94

speeds greater than 100Mbits/s when gigabit network interfaces on the firewall were

utilized.

The bandwidth of 85.5Mbits/s is not sufficient for the border firewall. Hence,

we suggest the use of load balancers, as described in section 7.2.2. With the

parameters specified above, the load balancer need not keep track of state. Hence, the

traffic can be evenly distributed among all the firewalls.

Summary of the proposed firewall architecture at the border:

• Non-commercial firewalls with stateless filtration.

• Load balancing for the firewalls, need not keep track of state.

• Number of firewalls required: 2 (from Figure 7.4 and Table 7.2). The number

might vary for other firewalls (OpenBSD pf, Drawbridge, etc.)

• Scalability issues: If the bandwidth requirement increases, adding firewalls to

the load balanced architecture is simple.

• Need for high-availability protocols in the load balancers to prevent failures.

8.4.2 For a department

In general, the following observations have been made for departments in the

University:

• Number of rules: ~200

• Packet size: ~200 to 500 bytes, on an average.

• Number of unique flows: ~100 per minute (from netflow record analysis).

• Type of firewall: stateless or stateful.

 95

For a department, let us make the following assumptions:

• Number of rules: ~500

• Packet size: ~200 to 500 bytes

• Number of flows: ~250 per minute

• Type of firewall: stateful

With these parameters, and from Figure 7.4, we see that a non-commercial firewall

can support the security requirements of the department. As for the stateful filtration,

the maximum number of connections the state table can contain depends on the

physical memory available. For example, for iptables, with 512Mb of physical

memory, the default maximum is 32760. The states for UDP have a timeout of 19

seconds, and the maximum for TCP is two minutes, except for the “established” state,

which has a timeout of 5 days (but the entry will be removed as soon as the

connection is closed). Hence, the 500 flows can be handled by the firewalls without

any overflows.

The number of parallel packet filters needed depends on the bandwidth

required by the department. The network usage of the departments varies with the

work being done. Hence, the decision about the number of firewalls is to be made by

the department, and cannot be generalized.

Summary of the proposed firewall architecture for the departments:

• Non-commercial firewalls with stateless/stateful filtration.

 96

• Load balancing for the firewalls, depending on the requirements of the

department. For stateful filtration, the load balancer needs to keep track of

state.

• Scalability issues: If the bandwidth requirement increases, adding firewalls to

the load balanced architecture is simple.

• If more than one firewall, need for high-availability protocols in the load

balancers to prevent failures.

Note: The above discussions are based on the test results obtained in section 7.1 and

section 7.2.2.1. The test systems were not tuned for better performance. With

performance tuning, and using systems with better processors, the bandwidth

achieved can be improved.

8.5 Policy management for KU

In section 6.3, we discussed the use of LDAP directory servers for firewall

policy management. The figures and snapshots in that section pertain to the

University of Kansas, and to one of the departments.

Every network administrator will have access to the central LDAP directory, but

only for that part of the network the administrator is responsible for. The rule

generator makes the administrators’ task easy. The administrator will have to specify

the policies in the directory, generate the rules using the rule generator, and configure

the firewall with the rules generated.

 97

8.6 An example for the use of the above described architecture

This section describes the application of the distributed security architecture to a

real world example: The recent W32.Nachi worm attack.

The Nachi worm spreads by exploiting a vulnerability in Microsoft Windows. It

scans the local class-b subnet (port 135) for target machines. It sends an ICMP ping to

potential victim machines, and upon a reply, sends the exploit data. A remote shell is

created on the target system, which connects to the infected machine on a TCP port in

the range 666-765. Victim machines are instructed to download the worm via TFTP.

With the current architecture, i.e., a single firewall architecture, the network and

security administrators faced the following problems:

A few infected hosts in the internal network were trying to infect other hosts, both

inside and outside the campus network. The whole network was flooded with ICMP

ping packets, and the routers were overloaded with the excessively high number of

flows.

The steps taken to overcome this problem:

• The packet filter in the border router was configured to block packets destined

to TCP or UDP port 135.

• The infected systems were identified and repaired.

 98

The first step could only stop the spread of the infection from the internal network

to the external network, and vice versa, but it could not stop the infection from

spreading to other systems within the internal network. Also, this could not prevent

the flooding of the backbone network. Each infected system attempted to generate

approximately 100,000 flows per minute. The border router was still overloaded:

because it had to filter millions of packets using the Access Control List (ACL)

mechanism. Another problem was the time taken to identify and repair the infected

systems. This process takes time, and in the meanwhile, the system would have

infected many more systems. Identifying and repairing many hundreds of infected

hosts required a big task force, and hence incurs high expenses.

With a distributed architecture, the management “nightmare” can be transformed

into a simple but efficient task.

• Every firewall in the network can be immediately configured to block all

packets addressed to TCP or UDP port 135. This prevents the worm from

spreading to areas outside the firewall. Hence, a system in department X will

not be able to infect a system in department Y. The threat remains at the

network edge.

• The traffic generated by the affected system remains within the subnet of that

department. This avoids the exponential traffic growth at the border router,

thus preventing the router’s overloading and failure risks.

 99

• Every firewall deals with the situation, thus distributing the heavy traffic load

among them.

• The firewalls can be configured before identifying and repairing the infected

systems. This removes the “extra” time given to the system for infecting other

hosts in the campus.

• The directory has a complete list of the firewalls and the hosts they protect.

This helps in identifying the firewall for an infected host. The mechanism of

targeting the firewall to be configured will speed up the process.

• The complete process can be divided into four steps:

i. Enter the policy in the directory, for every firewall.

ii. Generate the rules for the firewalls.

iii. Inject the rules into the firewalls.

iv. Identify and repair the infected systems.

• The management of the security incident does not require a huge task force, as

required by the current architecture. Not many systems will be infected, and

hence, not many people are required to track and repair them.

8.7 Summary

The above discussions and example indicate that a distributed security

architecture, in conjunction with directory enabled policy management will work best

for the University of Kansas. The important features of this system are that it provides

defense in depth, including host-level security, the insider threats remain at the

 100

network edge, and do not spread throughout the campus network. Synchronized and

coordinated policy management can be achieved. This system facilitates quick

response to security incidents and emergencies. The system can be a low cost system

with the use of non-commercial firewalls/packet filters.

 101

Chapter 9

Conclusion & Future Work

9.1 Conclusion

The discussions, analyses, and test results presented in this report have shown that

• A distributed security architecture is required for large networks.

• The distributed architecture can be implemented by using low cost, non-

commercial firewalls/packet filters, and satisfy the bandwidth requirements of

the network.

• The directory enabled policy management system greatly simplifies the task

of managing the distributed security architecture.

In effect, the directory enabled system helps us maintain a distributed security

architecture while retaining the ability of the departmental system administrators to

make fine-grained decisions about what may pass through the distributed firewall to

their managed systems.

9.2 Challenges

The major challenge in this project was the design of the LDAP schema and the

hierarchical organization of the policies. The other network management components

which are being developed along with the distributed firewall support module, are

device policy management, IP address management, DNS, DHCP and SLP

 102

management, Usage-based charging system, VLAN administration, and wireless

access point administration. Hence, the distributed firewall support modules had to be

designed without disrupting the existing hierarchy in the directory. Also, the object

classes were developed with an idea of simplifying the task of the network

administrator. These were created after studying the rule formats and features of

Linux iptables, Drawbridge and Cisco PIX firewalls. The resulting specifications are

generic, and can be used for creating rules for any type of packet filter.

9.3 Future Work

The additional work that needs to be done to complete and enhance this project:

1. More features for firewall maintenance

Other attributes, related to firewall maintenance need to be added. Some of

those are the time the firewall was last updated and the policies were last

modified, the firewall access policies, for example, policies for the input and

output chains, and an application that can inject rules into all the firewalls,

during security incidents.

2. Rule generators for different types of firewalls

A rule generator for iptables has been developed. Rule generators for other

types of firewalls/packet filters need to be developed to support the various

types of firewalls in the organization.

3. Managing firewall auditing

 103

Firewall auditing capabilities have to be included in the framework. These

include logging facilities, packet counters (netflow), and usage based

metering/ charging.

4. Integrating IDS into the firewall architecture

It is always a good idea to use Intrusion Detection Systems, in conjunction

with firewalls. The directory enabled framework can be enhanced to include

IDS support.

 104

Bibliography

[1] Enterasys Networks, Directory Enabled Networking, A Technology Guide.

http://www.enterasys.com/products/whitepapers/den

[2] Elizabeth D. Zwicky, Simon Cooper and D. Brent Chapman. Building Internet

firewalls, 2nd edition. O’Reilly, June 2000.

[3] William R. Cheswick, Steven M. Bellovin, Aviel D. Rubin. Firewalls and

Internet Security, Second Edition: Repelling the Wily Hacker. Addison-Wesley

Professional Computing Series, © 2003.

[4] Heinz Johner, Larry Brown, Franz-Stefan Hinner, Wolfgang Reis, Johan

Westman. Understanding LDAP. IBM Corporation, International Technical

Support Organization, © 1998.

[5] Rosanna Lee. The JNDI Tutorial: Building Directory-Enabled Java

Applications. Sun Microsystems, Inc. © 1998-2000.

http://java.sun.com/products/jndi/tutorial/

[6] CSI/FBI National Computer Crime Survey, 2002. Oregon State Controller’s

Division.

 105

[7] Tom Markham, Charlie Payne. Security at the Network Edge: A Distributed

Firewall Architecture. Proceedings of the DARPA Information Survivability

Conference and Exposition (DISCEXII’01), © 2001 IEEE.

[8] Samuel Patton, David Doss, William Yurcik. Open Source Versus Commercial

Firewalls: Functional Comparison. Proceedings of the 25th Annual IEEE

Conference on Local Computer Networks (LCN 2000), Tampa FL. USA,

November 2000.

[9] Marcus J. Ranum. Thinking about Firewalls. Presented at SANSII in

Washington, DC, 1993.

http://www.linuxsecurity.com/resource_files/firewalls/ThinkingFirewalls/Think

ingFirewalls.html

[10] David R. Safford, Douglas Lee Schales, and David K. Hess. The TAMU

Security Package: An Ongoing Response to Internet Intruders in an Academic

Environment. Proceedings of the Fourth USENIX Security Symposium.

[11] Roberto Nibali, ratz and Jonathan Heusser. Packet Filters and their Behavior

under high Network Load: The impact of extreme (real) conditions analyzed on

Linux, Solaris and OpenBSD. March 20, 2002.

 106

[12] Carsten Benecke. A Parallel Packet Screen for High Speed Networks. 15th

Annual Computer Security Applications Conference, December 1999.

[13] Gregory Yerxa. Firewall and Load-Balancer: Perfect Union? Network

Computing, February 7, 2000.

http://www.networkcomputing.com/1102/1102ws1.html

[14] T. W. Verwoerd. Stateful Distributed Firewalls. University of Canterbury,

2001.

[15] Paul Howell. Security Interchange. MAIS / Technical Infrastructure Operations,

June 2002.

[16] Nortel networks. Firewall load balancing: Application switching to optimize

firewall performance. © 2002.

[17] Internet2 middleware and directory initiatives web page.

http://middleware.internet2.edu/core/directories.html

[18] James Grant, Philip Attfield, Ken Armstrong. Distributed firewall Technology.

EWA Canada, March 2001.

 107

[19] Documentation for iPlanet Directory Server, Sun ONE Directory Server, and

LDAP available at http://docs.sun.com/db/prod/sunone.

[20] Rusty Russell. Linux iptables HOWTO. September 1999.

http://www.linuxguruz.com/iptables/howto/iptables-HOWTO.html

[21] Bill Klein. System/Network Security: Firewall Issues.

http://www.nts.ku.edu/information/whitepapers/firewalls.jsp

[22] Sun’s website on JNDI: http://java.sun.com/products/jndi/

 108

Appendix I

LDAP schema for policy management

As discussed earlier, the two objectclasses defined for the distributed firewall policy

management system are the ipPacketFilter and ipPacketFilterHost.

I.1. ipPacketFilter objectclass:

#!/bin/sh

. ./credentials

eval $LDAPMODIFY -c $BINDDN $BINDPW << "EOF"

University of Kansas Proposed IP Packet Filter Schema

University of Kansas, Networking & Telecommunications Services

This schema defines the object class and attributes that facilitate
packet filtering hosts, with host centric rules sets.

SCHEMA_FORMAT = iPlanet Directory Server 5.1 schema

OBJECTCLASSES

IPPacketFilter attributes for packet filtering

AUTHORS + DESIGNERS

Siddhartha Gavirneni siddh@ku.edu

UPDATE_ON UPDATE_BY VER DESCRIPTION

06/03/2002 siddh@ku.edu 0.1 Architecture Planning
08/12/2002 siddh@ku.edu 0.2 Initial Incarnation
01/14/2003 siddh@ku.edu 0.3 Added protocol filtration attributes
03/17/2003 siddh@ku.edu 0.4 IP address filtration attributes
06/30/2003 siddh@ku.edu 0.5 Service based filtration
07/02/2003 siddh@ku.edu 0.6 Removed unnecessary attributes
07/17/2003 siddh@ku.edu 0.7 Added attribute for identifying internal IPs

 109

dn: cn=schema
changetype: modify

IPPacketFilter

delete the existing attributeTypes

#delete: attributeTypes
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.1 NAME 'packetFilterAllowInboundICMPType')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.2 NAME
'packetFilterAllowOutboundICMPType')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.3 NAME 'packetFilterDenyInboundICMPType')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.4 NAME 'packetFilterDenyOutboundICMPType'
)
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.5 NAME 'packetFilterAcceptInternalIP')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.6 NAME 'packetFilterRejectInternalIP')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.7 NAME 'packetFilterAcceptExternalIP')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.8 NAME 'packetFilterRejectExternalIP')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.9 NAME 'packetFiltrationLevel')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.10 NAME 'packetFilterDefaultBlockAll')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.11 NAME 'packetFilterDefaultAllowAll')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.12 NAME
'packetFilterAllowInternalTCPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.13 NAME
'packetFilterDenyInternalTCPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.14 NAME
'packetFilterAllowInternalUDPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.15 NAME
'packetFilterDenyInternalUDPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.16 NAME
'packetFilterAllowExternalTCPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.17 NAME
'packetFilterDenyExternalTCPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.18 NAME
'packetFilterAllowExternalUDPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.19 NAME
'packetFilterDenyExternalUDPServices')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.20 NAME 'packetFilterProtectedInternalIP')
#-

re-add the attributes -- in case there is a change of definition

add: attributeTypes
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.1
 NAME 'packetFilterAllowInboundICMPType'
 DESC 'allows the specified type of inbound ICMP traffic'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')

 110

attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.2
 NAME 'packetFilterAllowOutboundICMPType'
 DESC 'allows the specified type of outbound ICMP traffic'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.3
 NAME 'packetFilterDenyInboundICMPType'
 DESC 'denies the specified type of inbound ICMP traffic'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.4
 NAME 'packetFilterDenyOutboundICMPType'
 DESC 'denies the specified outbound ICMP traffic'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.5
 NAME 'packetFilterAcceptInternalIP'
 DESC 'the acceptable IP address within the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.6
 NAME 'packetFilterRejectInternalIP'
 DESC 'the rejectable IP address within the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.7
 NAME 'packetFilterAcceptExternalIP'
 DESC 'the acceptable external IP addresses'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.8
 NAME 'packetFilterRejectExternalIP'
 DESC 'the rejectable external IP addresses'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.9
 NAME 'packetFiltrationLevel'
 DESC 'the level at which the packet filter is placed'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.10
 NAME 'packetFilterDefaultBlockAll'
 DESC 'block all traffic to and from this system/subnet'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.11
 NAME 'packetFilterDefaultAllowAll'
 DESC 'Allow all traffic to or from this system/subnet'

 111

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.12
 NAME 'packetFilterAllowInternalTCPServices'
 DESC 'The accessible TCP services on the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.13
 NAME 'packetFilterDenyInternalTCPServices'
 DESC 'The inaccessible TCP services on the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.14
 NAME 'packetFilterAllowInternalUDPServices'
 DESC 'The accessible UDP services on the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.15
 NAME 'packetFilterDenyInternalUDPServices'
 DESC 'The inaccessible UDP services on the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.16
 NAME 'packetFilterAllowExternalTCPServices'
 DESC 'The accessible TCP services on the external network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.17
 NAME 'packetFilterDenyExternalTCPServices'
 DESC 'The inaccessible TCP services on the external network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.18
 NAME 'packetFilterAllowExternalUDPServices'
 DESC 'The accessible UDP services on the external network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.19
 NAME 'packetFilterDenyExternalUDPServices'
 DESC 'The inaccessible UDP services on the external network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.1.20
 NAME 'packetFilterProtectedInternalIP'
 DESC 'The internal IP addresses for which the rules apply'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
-

 112

delete the existing objectClass

#delete: objectClasses
#objectClasses: (1.3.6.1.4.1.11314.2.2.4.2.1 NAME 'IPPacketFilter')
#-

now re-add the objectClass properly defined

add: objectClasses
objectClasses: (1.3.6.1.4.1.11314.2.2.4.2.1
 NAME 'IPPacketFilter'
 DESC 'attributes for packet filtering'
 SUP top
 MAY (packetFilterAllowInboundICMPType
 $ packetFilterAllowOutboundICMPType
 $ packetFilterDenyInboundICMPType
 $ packetFilterDenyOutboundICMPType
 $ packetFilterAcceptInternalIP
 $ packetFilterRejectInternalIP
 $ packetFilterAcceptExternalIP
 $ packetFilterRejectExternalIP
 $ packetFiltrationLevel
 $ packetFilterDefaultAllowAll
 $ packetFilterDefaultBlockAll
 $ packetFilterAllowInternalTCPServices
 $ packetFilterAllowExternalTCPServices
 $ packetFilterAllowInternalUDPServices
 $ packetFilterAllowExternalUDPServices
 $ packetFilterDenyInternalTCPServices
 $ packetFilterDenyExternalTCPServices
 $ packetFilterDenyInternalUDPServices
 $ packetFilterDenyExternalUDPServices
 $ packetFilterProtectedInternalIP)
 X-ORIGIN 'IP Packet Filter Schema')
-

end of LDIF

EOF

I.2. ipPacketFilterHost objectclass:

 113

#!/bin/sh
. ./credentials
eval $LDAPMODIFY -c $BINDDN $BINDPW << "EOF"

University of Kansas Proposed IP Packet Filtering Host Schema

University of Kansas, Networking & Telecommunications Services

This schema defines the object class and attributes that describe
packet filtering hosts.

SCHEMA_FORMAT = iPlanet Directory Server 5.1 schema

OBJECTCLASSES

IPPacketFilterHost attributes describing the packet filtering host

AUTHORS + DESIGNERS

Siddhartha Gavirneni siddh@ku.edu

UPDATE_ON UPDATE_BY VER DESCRIPTION

04/12/2003 siddh@ku.edu 0.1 Initial Incarnation
07/01/2003 siddh@ku.edu 0.2 Changing the attribute requirements
(protectedNetworkDN and sysadmin are made a MUST)
07/14/2003 siddh@ku.edu 0.3 Changing the attribute requirements
(insideInterfaceName and outsideInterfaceName are made a MUST)
07/29/2003 siddh@ku.edu 0.4 Attributes for stateful/stateless filtration

dn: cn=schema
changetype: modify

#IPPacketFilterHost

delete the existing attributeTypes

#delete: attributeTypes
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.1 NAME 'insideInterfaceName')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.2 NAME 'outsideInterfaceName')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.3 NAME 'insideInterfaceMACAddress')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.4 NAME 'outsideInterfaceMACAddress')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.5 NAME 'insideInterfaceIPAddress')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.6 NAME 'outsideInterfaceIPAddress')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.7 NAME 'typeBridging')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.8 NAME 'typeForwarding')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.9 NAME 'protectedNetworkDN')
#attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.10 NAME 'statefulFiltration')

 114

#-

re-add the attributes -- in case there is a change of definition

add:attributeTypes
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.1
 NAME 'insideInterfaceName'
 DESC 'name of the interface on the internal network'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.2
 NAME 'outsideInterfaceName'
 DESC 'name of the interface on the external network'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.3
 NAME 'insideInterfaceMACAddress'
 DESC 'mac address of the interface on the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.4
 NAME 'outsideInterfaceMACAddress'
 DESC 'mac address of the interface on the external network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.5
 NAME 'insideInterfaceIPAddress'
 DESC 'IP address of the interface on the internal network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.6
 NAME 'outsideInterfaceIPAddress'
 DESC 'IP address of the interface on the external network'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.7
 NAME 'typeBridging'
 DESC 'indicates if bridging is used'
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.8
 NAME 'typeForwarding'
 DESC 'indicates if forwarding is used'

 115

 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.9
 NAME 'protectedNetworkDN'
 DESC 'the department/LAN protected by this host'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 X-ORIGIN 'IP Packet Filter Schema')
attributeTypes: (1.3.6.1.4.1.11314.2.2.4.3.10
 NAME 'statefulFiltration'
 DESC 'indicates whether this is a stateful or stateless packet filter'
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 X-ORIGIN 'IP Packet Filter Schema')
-

delete the existing objectClass

#delete: objectClasses
#objectClasses: (1.3.6.1.4.1.11314.2.2.4.4.1 NAME 'IPPacketFilterHost')
#-

now re-add the objectClass properly defined

add: objectClasses
objectClasses: (1.3.6.1.4.1.11314.2.2.4.4.1
 NAME 'IPPacketFilterHost'
 DESC 'attributes describing the packet filtering Host'
 SUP top
 MUST (insideInterfaceMACAddress
 $ outsideInterfaceMACAddress
 $ protectedNetworkDN
 $ sysadmin
 $ insideInterfaceName
 $ outsideInterfaceName)
 MAY (insideInterfaceIPAddress
 $ outsideInterfaceIPAddress
 $ typeBridging
 $ typeForwarding
 $ statefulFiltration)
 X-ORIGIN 'IP Packet Filter Schema')
-

end of LDIF

EOF

 116

Appendix II

Directory Support and iptables Rule Generator

This appendix will outline the basic classes designed and used for the firewall

directory support, and the iptables rule generator.

II.1. Directory Access:

Package edu.ku.net.den.util

Class Summary

DirectoryServer
The DirectoryServer class provides an abstraction to the
back-end directory server to provide a mechanism to
decouple and change the directory server.

DirectoryServerConfigFile
The DirectoryServerConfigFile class processes a
directory server configuration file, converting the XML
syntax into a collection of DirectoryServerInfo objects.

DirectoryServerInfo The DirectoryServerInfo class contains the information
necessary to connect to a directory server.

II.2. Directory support for the packet filter

Package pfDirSupport

Class Summary

PacketFilterDirectorySupport
The PacketFilterDirectorySupport class provides the
directory access support for the packet filtration
system.

PacketFilterProtectedNodes

The PacketFilterProtectedNodes class provides
functions for obtaining the directory entries (subnets
or systems, or group of systems), for which rules
need to be created.

 117

II.3. iptables Rule Generator

Package iptables

Class Summary

CreateIptablesRules The CreateIptablesRules provides methods for creating the
iptables rules for the nodes being protected by a packet filter.

