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• Existing Customer-Provider peer architecture and protocols           
do not support 
– Automatic price transaction 
– Customers’ option to select any provider based on competitive service 

price
– Customers’ option to broadcast their budget
– Providers’ automatic mechanism to compute price and optimize Profit

• In competitive market
• In dynamic Internet traffic demand

• Therefore, the problem is to develop
– Automatic price-transaction based network architecture 
– A provider’s model that compute competitive price and optimize Profit
– Demonstrate the advantages of the architecture and the model through 

analysis

Introduction: Problem StatementIntroduction: Problem StatementIntroduction: Problem StatementIntroduction: Problem Statement
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• This research proposes
– A new Price transaction Architecture 

• “Automatic Price Transaction-based One-to-Many Peer Network Architecture”

– A new providers’ Profit optimization model
• “Providers Optimized Game in Internet Traffic Model”

– An algorithm 
• That implements the model in the architecture

• This research demonstrates
– The validity of the model
– Advantage of the model

• Customer Benefit
• Providers’ Benefit

– Providers’ Profit optimization method
– Examples of TE applications

Introduction: Proposed SolutionIntroduction: Proposed SolutionIntroduction: Proposed SolutionIntroduction: Proposed Solution
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This Research:
• Develops the Architecture

– Wire-line and wireless options
– Study only wire-line option

• Develops the Model and Algorithm
– Determines strategically appropriate price

• By Game Theory 

– Minimizes the network congestion sensitive cost
• By optimum Routing technique

– Non-linear optimization method
» The Gradient Projection Algorithm and the Golden Section Line Search

– Guarantees service quality
• By Designing Traffic Engineered Network

• Evaluates performance by
– Mathematical Analysis 
– Simulation Study

• Studies the followings:
– Advantages
– Profit Optimization Strategies 
– Applications

Introduction: Research MethodIntroduction: Research MethodIntroduction: Research MethodIntroduction: Research Method
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• Significant Internet pricing research
– In monopoly market
– Congestion sensitive pricing

• Service per Customer’s bid 
• Static Congestion Game 

– Game theory 
• Internet Pricing: Monopoly market
• Congestion Issues: Monopoly market
• Peer providers in Series

• Industry Standard Activity
– 3GPP Wireless Price Model
– ATIS/PTSC wireline IP Peering
– IETF wireline VoIP Peering

• On-line Exchange Research (Bandyopadday model)
– We extend this model (Details later)

• Price-Transaction based mechanism
– One provider network 

Related ResearchRelated ResearchRelated ResearchRelated Research
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• Automatic price transaction in one-to-many peer network
– New idea of pricing in peer networks
– Extends various industry standards

• Majority research are in monopoly market
– We study Oligopoly market

• Provider’s Profit optimization in oligopoly market
– New method in internet  pricing and Profit optimization

• Network Model
– A complex network, bi-directional links, multiple paths, OD&DO call legs

• Oligopoly Model
– Bandyopadhyay et al.  model

• Based on Bertrand Model and “Model of Sale” example
• Symmetric market

– All parameters are fixed
• Commodity is not internet bandwidth
• Two step static game of incomplete information
• Homogeneous service
• Uses  Reinforcement Learning (RL) in simulation to determine best strategy

– Our model
• Extension to Bandyopadhyay et al.  model
• Asymmetric market

– Some parameters are sensitive to the dynamic nature of Internet traffic
• Commodity bandwidth
• “Myopic” Markovian static game of incomplete information
• Heterogeneous service
• An analytical framework to determine the best strategy in dynamic internet traffic

Distinguishing Characteristics of our ApproachDistinguishing Characteristics of our ApproachDistinguishing Characteristics of our ApproachDistinguishing Characteristics of our Approach
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• Developed a New price transaction architecture that benefits customers and 
providers

– By Automation
– By providing options to select any provider based on competitive price
– By allowing customer power to specify budget
– By introducing new price transaction research in one-to-many architecture

• Developed a mathematical model for providers to
– To compute competitive price through the best strategy
– Optimize Profit in dynamic internet traffic demand

• Developed an algorithm and simulation model
– To verify and study providers’ game in flexible environment

• Introduced a New framework to determine Bayesian-Nash equilibrium 
– In dynamic internet traffic demand

• Demonstrated that:
– Providers improved their Profit

• Our approach yielded relative advantages over the existing Bertrand Oligopoly Model
– Providers determined Best strategies (Bayesian-Nash equilibrium and Pareto-efficient 

outcome) using our approach
– Providers was able to obtain fair market share of Profit and throughput
– Providers could implement TE applications such as optimized load balancing in the network
– Customers could enjoy market price lower than their budgets.

• Introduced new area in Internet pricing research
– Our  research is the first in Internet Oligopoly pricing research for disjoint providers
– Existing research are for monopoly market

• Introduced pricing research in a complex network model
– Bi-directional links, multiple paths, Origin-Destination and Destination-Origin Call Legs.

Introduction: ContributionsIntroduction: ContributionsIntroduction: ContributionsIntroduction: Contributions
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Automatic Price TransactionAutomatic Price TransactionAutomatic Price TransactionAutomatic Price Transaction----based 1:M Peer Network Architecturebased 1:M Peer Network Architecturebased 1:M Peer Network Architecturebased 1:M Peer Network Architecture

Session Control Function (e.g. SIP proxy)

Bearer Function (e.g. IP Router)

Security Function (e.g. Firewall)

Our architecture allows an enterprise  customer Our architecture allows an enterprise  customer Our architecture allows an enterprise  customer Our architecture allows an enterprise  customer 
to automatically shop from multiple providers to automatically shop from multiple providers to automatically shop from multiple providers to automatically shop from multiple providers 
based on the service price they offer.based on the service price they offer.based on the service price they offer.based on the service price they offer.
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Architecture: ATIS/PTSC IP  (wireline) Peering Reference DiagramArchitecture: ATIS/PTSC IP  (wireline) Peering Reference DiagramArchitecture: ATIS/PTSC IP  (wireline) Peering Reference DiagramArchitecture: ATIS/PTSC IP  (wireline) Peering Reference Diagram
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Current ATIS PTSC IP NNI Architecture specifies:
• One-to-one peer interface
• No pricing architecture is supported
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Current ATIS PTSC IP NNI Architecture specifies:
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• No pricing architecture is supported
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3GPP On-line Charging System (WOP)

Charging Architecture

Current 3GPP Architecture specifies 
One-to-one customer-provider
Online charging architecture (work on progress)
Does not support one-to-many model

Current 3GPP  (Wireless) IMS Charging Architecture Current 3GPP  (Wireless) IMS Charging Architecture Current 3GPP  (Wireless) IMS Charging Architecture Current 3GPP  (Wireless) IMS Charging Architecture 
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Our Extension supportsOur Extension supportsOur Extension supportsOur Extension supports
• OneOneOneOne----totototo----many modelmany modelmany modelmany model
• Allows automatic price negotiationAllows automatic price negotiationAllows automatic price negotiationAllows automatic price negotiation
• Allows providers to compute competitive price Allows providers to compute competitive price Allows providers to compute competitive price Allows providers to compute competitive price 

P-CSCF: Proxy-Call Session Control Function
IMS: Internet Multi-media subsystem

Current 3GPP Architecture supports
• One-to-one model
• Does not allow price negotiation
• Does not allows providers to compute competitive price

Our Extension to the 3GPP (Wireless) IMS ArchitectureOur Extension to the 3GPP (Wireless) IMS ArchitectureOur Extension to the 3GPP (Wireless) IMS ArchitectureOur Extension to the 3GPP (Wireless) IMS Architecture
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The Protocol is analogous to theThe Protocol is analogous to theThe Protocol is analogous to theThe Protocol is analogous to the
SealedSealedSealedSealed----BidBidBidBid----Reverse Auction.Reverse Auction.Reverse Auction.Reverse Auction.
Customers has power to specify the highest priceCustomers has power to specify the highest priceCustomers has power to specify the highest priceCustomers has power to specify the highest price
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Example: Session Initiation Protocol (SIP) Call Flow (sketch)Example: Session Initiation Protocol (SIP) Call Flow (sketch)Example: Session Initiation Protocol (SIP) Call Flow (sketch)Example: Session Initiation Protocol (SIP) Call Flow (sketch)
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Many other variants of the proposed Architecture are possible
(See Table 2.1)

Computes Price P1
By Proposed

Game of Oligopoly
(� = Maximum Price)

Computes Price P2
By Proposed

Game of Oligopoly
(� = Maximum Price)

Border Gateway Protocol 
(BGP)  

updates routing table with 
price as a routing cost 

parameter

E-LSR performs 
Least cost routing

Based on min(p1, p2)

Architecture: BGP ImplementationArchitecture: BGP ImplementationArchitecture: BGP ImplementationArchitecture: BGP Implementation
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Our architecture allows an enterprise  customer Our architecture allows an enterprise  customer Our architecture allows an enterprise  customer Our architecture allows an enterprise  customer 
to automatically shop from multiple providers to automatically shop from multiple providers to automatically shop from multiple providers to automatically shop from multiple providers 
based on the service price they offer.based on the service price they offer.based on the service price they offer.based on the service price they offer.
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• Packet:
– Arrival Pattern: Poisson Distributed
– Mean Service Rate: Exponentially Distributed
– Aggregate arrival distribution: Poisson
– Aggregate mean service rate distribution: Hyper-exponential
– Queue Theory Model

• M/G/1 

• For Traffic Engineering, we will use M/G/1
• For Cost Analysis, we will approximate with M/M/1

• Session: (No Queuing)
– Arrival Pattern: Poisson Distributed
– Mean Service Rate: Exponentially Distributed

• Assumed Traffic Mix
– Homogeneous:  Gold
– Heterogeneous Class: Platinum, Gold, and Silver

• The service class is differentiated by cost coefficient parameter.
• Cost coefficient parameter depends on the type of protocol and Intelligence used
• Example: Level of Security guarantees, addressing (IPv4 vs. IPv6), type of DSP
• Cost coefficient parameter distinguishes Service Class (Plat, Gold, Silver) 

Traffic ModelTraffic ModelTraffic ModelTraffic Model
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• Our method of Providers’ Profit 
Optimization:

– Design Traffic-Engineered 
Network to Guarantee QoS

– Minimize congestion sensitive 
cost (�Y) 

– Select strategically appropriate 
price by Game Theory 

• to maximize revenue (pY)

: ( ) ( )Unit Utility at steady state u p p Yω= −
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• We develop TE Rules to guarantee mean delay less than 1 msec.
– Homogeneous services

• Link Load (Green) < 90%
– Heterogeneous Services

• Link Load (Blue) < 20%
• Link Load (Green) < 30%
• Link Load (Red) < 40%

• Based on M/G/1 System
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Service Cost FunctionService Cost FunctionService Cost FunctionService Cost Function

• Assumption: Following four influences on the service cost:
– Congestion in the network

• Degrades the service quality
– causes the delay in packet transmission. 

• The degradation of service is detrimental to the revenue
• Providers have to pay to the Enterprise for jitter (Expense
• An indicator of network congestion

– Mean packet count (M) in the queue system 

– Protocol used to provide a service
• Service cost coefficient (�s)

– Amount of service (commodity)
• Throughput (Y)

– Providers’ fixed cost (�) 

, , , , , , ,
ˆ( ) ( )n s t n t n t s n t n t n n tCost Y g Y M Y Yδ θ= = +

, ,( )n t n tf Y M→
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Minimize CostMinimize CostMinimize CostMinimize Cost
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A Cost Function assumption
• Service cost is a functions of network congestion
• Mean packet count in network queue system is a congestion indicator



• Minimize Congestion Cost by Optimum Routing Method
– Minimizing Mean Packet Count

• Mean Packet Count (M/M/1 Model):

• Non-Linear Program:

We implement Gradient Projection and Golden Section line search
to satisfy Karush-Kuhn-Tucker condition 
In each game instance (each request for bid), this optimization is performed

(See dissertation for details, we provide highlight in next three slides)
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xp: BW of an LSP
Each O-D pair has Five LSPs.
Total: 60 LSPs in each provider 
network
Cl: Capacity of each link
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• Gradient Projection Method requires an initial feasible vector (X0)
• Determine: New Session Route Vector (NV)

– Minimum Hop Routing
• Step 1

– Select the shortest path (one hop route)
• If fails Step 1, Step 2

– Select either of the two hop route with equal probability
• If fails Step 2, Step 3

– Select either of the three hop route with equal probability

• Anticipated Route Vector = (Current Route Vector) + NV

• Initial feasible vector (X0) � Anticipated Route Vector 

NonNonNonNon----Linear Program: Initial Feasible PointLinear Program: Initial Feasible PointLinear Program: Initial Feasible PointLinear Program: Initial Feasible Point
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This working matrix is the foundation of the working surface (Aq)
Direction of movement (d) is found as follows: 

1( )

( )

T T
q q q qP I A A A A

d P x Tf

−= −

= − ∇

( ) ( )x x d binactive Max inactiveg gα+ =

Find Maximum distance (�Max):

Use Golden Section Line search to find optimum point in each feasible segment:

[ ] [ ]
( d )

. .
k k kMinimize f x

s t A b

α+
≤

Minimum is achieved at dk = 0 and         such that the following FONC is satisfied 0λ ≥

( ) T
kf λ∇ + =k qx A 0

NonNonNonNon----Linear Program: Gradient Projection SnapshotLinear Program: Gradient Projection SnapshotLinear Program: Gradient Projection SnapshotLinear Program: Gradient Projection Snapshot
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• Output of Non-linear program
– Optimized Mean Packet Count 

– Optimum Routes

– Fair Load Distribution Inside the Network

-�Minimization of Cost

*M̂

NonNonNonNon----Linear Program: OutputLinear Program: OutputLinear Program: OutputLinear Program: Output
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• Our Model is
– Based on Bertrand Oligopoly Model
– A Myopic Markovian-Bayesian Static Game of Incomplete Information

• Our models extends
– Bandyopadhyay et al. On-Line-Exchange Model

Game Theory ModelGame Theory ModelGame Theory ModelGame Theory Model

• Bandyopadhyay et al. On-Line-
Exchange Model

– Based on Bertrand Model and “ Model 
of Sale”  example

– Symmetric market
• All parameters are fixed

– Commodity is not Internet bandwidth

– Two step static game of incomplete 
information

– Homogeneous service

– Uses  Reinforcement Learning (RL) in 
simulation to determine best strategy

• Our Model:

– Extension to Bandyopadhyay et al.  
model

– Asymmetric market
• Demand and cost  are functions of the 

dynamic nature of Internet traffic

– Commodity is internet bandwidth

– “ Myopic”  Markovian static game of 
incomplete information

– Heterogeneous service

– An analytical framework to determine 
the best strategy in dynamic internet 
traffic
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Oligopoly Model SelectionOligopoly Model SelectionOligopoly Model SelectionOligopoly Model Selection

• Oligopoly
– A small number of providers collectively influence

• Market condition such as price, capacity 
– A single provider alone cannot completely control the market

• Two well-established fundamental models of Oligopoly
– Bertrand Model

• Strategic Variable: Price
– Cournot Model

• Strategic Variable: Capacity (quantity)



35

Oligopoly Model Oligopoly Model Oligopoly Model Oligopoly Model 

• In the Internet, providers strategically interact
– Long term: 

• Adds more capacity, i.e. “ bandwidth wars”
– Short term:

• Price adjustment in fixed capacity,  i.e., “ price wars”
• Our Model is based on Bertrand Oligopoly Model

– Short term
• Session arrival and departure in a relatively short time period

– Capacity does not change during the game
– Providers adjust price to win over customers
– Customers subscribe to the service from the lowest priced provider.
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Game Model SelectionGame Model SelectionGame Model SelectionGame Model Selection

• Game Theory
– The mathematical theory pertaining to the strategic interaction of decision makers

• There are four fundamental classes of game

Game Class Equilibrium 
Static Game of Complete Information Nash Equilibrium 
Dynamic Game of Complete Information Subgame-perfect Nash equilibrium 
Static Game of Incomplete Information Bayesian Nash equilibrium 
Dynamic Game of Incomplete Information Perfect Bayesian Equilibrium 
 

• Complete Information:
• Providers’  payoff or strategies are common knowledge

• Incomplete Information:
• At least one player is unware of the payoffs or strategies of other providers

• Static Game
• Players simultaneously interacts (chooses actions) without the knowledge of past

• Dynamic Game
• Players repeatedly interacts based on the knowledge of game history (e.g., payoff)
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Game ModelGame ModelGame ModelGame Model

• Our model is Myopic Markovian-Bayesian Game of Incomplete Information
– Each provider is a rational player
– Each provider’s payoff is private information.
– All providers simultaneously select bid price without past knowledge of payoffs
– “ Myopic Markovian”

• Each session is an instance of the game
• Game uses one step nearsighted  information

– The game is also known as Bayesian Static Game of Incomplete Information
• Developed based on Bayes’ Conditional Probability Rule
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Game ParametersGame ParametersGame ParametersGame Parameters

• Our Game Parameters
– Strategic Players : A few Internet Service Providers
– Strategic variable : Bid Price (pbid)
– Commodity: the bandwidth of services in the Internet
– Services: Homogeneous/Heterogeneous (Plat., Gold, Silv.) Services
– Capacity: Peer capacity in bw (Fixed)
– Demand: Sensitive to Internet traffic throughput (Variable)
– Marginal Cost: Sensitive to network congestion (Variable)
– Customer’s limited Budget: Reservation price (Fixed)
– Payoff: Profit
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Bayesian Static Game of Incomplete InformationBayesian Static Game of Incomplete InformationBayesian Static Game of Incomplete InformationBayesian Static Game of Incomplete Information

• Static Bayesian Game of two Providers ( A.com, B.com)
– In Static Bayesian game, a provider’s strategy is to maximize its’ expected Profit
– G = {ActionA, ActionB; TypeA, TypeB; BeliefA(), BeliefB(); PayoffA(), PayoffB()}

• Action =  Bid price (pbid)
• Type =   Provider’s marginal cost (�)
• Payoff = Expected Profit (E(u(.))
• BeliefA(.) = ProbA(TypeB|TypeA)

– A.com’s belief or uncertainty of B’s Type given that A.com knows own type
– It is a conditional probability function 
– It is also referred to as the Mixed Strategy Profile

– A.com develops a set of feasible strategies from the belief function:

: (., (.))Aj A Aj Astrategy h Action h Belief←



40

• The Belief function is the main entity of this Game 
• Belief Function: FA(p):

– is the Rejection probability of A.com for A’s bid price p.
• A.com’s belief of B.com’s winning probability for A.com’s bid price pA

• Strategy space h is the set of functions over F(p)
– Strategy is identified by the rejection probability �

• A Strategy, hAj =  “ 95% probability of having the bid rejected”

( ) Prob( )bid bid
A A B AF p p p= ≤

, , , , , , , ,: ( ) ( ) 0.95bid bid bid
n s t n s t n s t n s tp F p prob p p= ≤ =

Game Model: Belief functions and StrategiesGame Model: Belief functions and StrategiesGame Model: Belief functions and StrategiesGame Model: Belief functions and Strategies
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Belief Function (F(p))Belief Function (F(p))Belief Function (F(p))Belief Function (F(p))

• Belief function 
– It is a cumulative distribution function F(p) 

• FA(p)
– A.com’s belief of B.com’s winning probability for A.com’s bid price pA

– A.com’s probability of having its pA bid rejected
• The Rejection probability of A.com

( ) Prob( ) 0.90bid bid
A A B AF p p p= ≤ =

• A.com’s rejection probability = 90%

• A.com believes that B.com will select bid-prices at most pA with 90%probability
• A.com’s winning probability = 10%

( ) Prob( )bid bid
A A B AF p p p= ≤
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StrategyStrategyStrategyStrategy

• Strategy space h is the set of functions over F(p)
– The strategy space is constructed from the Type and Action space
– A.com’s set of strategies hAj is the set of all possible functions with domain (input) TypeA and range 

(output) ActionA.

• A Strategy, hAj =  “ 95% probability of having the bid rejected”

• Strategy is identified by the rejection probability �

: ( (..., ))Aj A Aj A Astrategy h Action h Belief Type←

, , , , , , , ,: ( ) ( ) 0.95bid bid bid
n s t n s t n s t n s tp F p prob p p= ≤ =

( ) ( )my bid othersbid my bidF p Prob p p γ= ≤ =
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• F(p) = Game(N, �, �(Y) , �s, �(M*))
– N: Number of providers in the market
– �: Market Capacity
– �(Y): Market Demand (function of throughput)
– �s: Customer Reservation Price, function of service type (s)
– �(M*)): Marginal Cost (function of mean packet count, M)
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Market Capacity (� ): Aggregate Traffic 
Engineered access bandwidth capacities of all 
providers in a market
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Market DemandMarket DemandMarket DemandMarket Demand
• Max Market Demand (�Max)

– Aggregate Bandwidth in active session by all the customers from all the 
providers at a certain instant of game (t)

– An NSP cannot meet the demand (�) of the whole market
• �TEK < �

– Maximum Market Demand is less than Market Capacity
• �Max < �

– Market Demand is greater than N-1 providers’ aggregate capacity
• �TE(N-1)K < � <= �Max

• Proposed Market Demand is a function of traffic served (Network 
output/production)
– Network is loss-less (no packet drop occurs in the network)

Yt : Sum of output (production) traffic bandwidth in all the egress ports of an
NSP at a certain Instant of the game (t) 

,
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Reservation Price of the InstitutionReservation Price of the InstitutionReservation Price of the InstitutionReservation Price of the Institution

• Reservation price (�) is the price that a customer is willing to pay in the 
Reverse Auction

– It can be considered as customer’s budget.
• We do not study the method of determining �.
• We assume 

– Enterprises (customers) are rational
• Reservation price is selected during the business agreement
• Enterprises do not violate the agreement

– Do not change the reservation price during the game
– for Homogeneous services,  � is a same fixed value for all providers
– For Heterogeneous services, �s depends on the type of service

• Enterprises may adopt their own strategies to determine �.
– This will require another larger research

• For example, Enterprise selects reservation price by considering monopoly market 
(assume that all providers constitute a Super-provider)
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This event occurs: 1-F(p)=prob(pb > p)
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( ) ( (.))L Min Minu p p Kω ρ= −
If p = pMin

This event occurs: F(p)=prob(pb <= p)
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Deriving Belief FunctionDeriving Belief FunctionDeriving Belief FunctionDeriving Belief Function
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The derived Belief function for N providers is as follows:
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The derived Belief function for 2 providers is as follows:
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Game Model: Belief Function EquationsGame Model: Belief Function EquationsGame Model: Belief Function EquationsGame Model: Belief Function Equations

Dissertation presents the derivation of the belief function and associated parameters
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Price (p)

F(p)

Price (p)

F(p)

�n,s

Pt+2 Pt Pt+1

• Belief function shifts left or right on the p axis (x-axis)
• due to the change in the network production and Network congestion
• as a function of Mean packet count in the network
• causes a bid price of a service to change

• Each service class has a distinct Belief function
• For each call, each provider has a distinct Belief function

Game Model: Properties of the Belief FunctionGame Model: Properties of the Belief FunctionGame Model: Properties of the Belief FunctionGame Model: Properties of the Belief Function
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Strategy Feasible strategies 
Very Low Rejection 

, , , , , , , ,: ( ) ( ) 0.05bid bid bid
n s t n s t n s t n s tp F p prob p p γ= ≤ = =  

Low Rejection 
, , , , , , , ,: ( ) ( ) 0.35bid bid bid

n s t n s t n s t n s tp F p prob p p γ= ≤ = =  

Rejection Neutral  
, , , ,( ( ))bid

n s t n s tp Mean F p=  

High Rejection 
, , , , , , , ,: ( ) ( ) 0.65bid bid bid

n s t n s t n s t n s tp F p prob p p γ= ≤ = =  

Very High Rejection 
, , , , , , , ,: ( ) ( ) 0.95bid bid bid

n s t n s t n s t n s tp F p prob p p γ= ≤ = =  
 

Price (p)

F(p)
1.0
0.8

0.5

0.2
Very High RejectionHigh Rejection

Low Rejection

Very Low Rejection
No Rejection Absolute Rejection

Rejection Probability

A Provider finds a bid price of a service from F(p) using h(.)

Note, not all them are feasible

Feasible StrategiesFeasible StrategiesFeasible StrategiesFeasible Strategies
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Bid PriceBid PriceBid PriceBid Price
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Derived Bid Price for any Strategy (�n,s):

Dissertation presents the derivation of these functions
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Market PriceMarket PriceMarket PriceMarket Price

When Two Providers use an Identical Strategy Set:

*
, , , , ,( )Market s t n s t n tp p Yγ=

When Two Providers do not use an Identical Strategy Set:
• Market price can be found by solving bid price equations of both providers
• Bid price equations are hyperbolic function

• Solving by algebraic method is seemingly difficult
• We apply Numerical Analysis in MATLAB to solve bid price equations

We determine Analytical Market Price from the Bid Price
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, , , , , , , ,( ) ( )bid bid
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A.com Throughput (YA)
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e

Bid Price Functions Converges to Market Price

A.com Bid Price Function
Strategy: VLR

B.com Bid Price Function
Strategy: VLR

Market Price = $90.7
YA = 984 Mbps

• Bid prices converge to market price
• At a steady state market

Finding Market Price by Numerical AnalysisFinding Market Price by Numerical AnalysisFinding Market Price by Numerical AnalysisFinding Market Price by Numerical Analysis
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ProfitProfitProfitProfit

Homogeneous Service (All strategies):

* * * *
, , , ,(.) ( )n n g t n g tu p Yω= −

Heterogeneous Service (Identical Strategy Set):

* * * * * * * * * *
, , , , , , , , , , , , , , ,

2 3 4
(.) ( )( ) ( )( ) ( )( )

9 9 9n n b t n b t n t n g t n g t n t n r t n r t n tu p Y p Y p Yω ω ω= − + − + −

Heterogeneous Service (Non-Identical Strategy Set):

, , , , , , ,n t n b t n g t n r tY Y Y Y= + +

Throughput of each service is unknown

One equation three unknowns
Unique Profit cannot be determined by math.

We study homogeneous service based market mainly by math. equations

We study heterogeneous service based market mainly  by simulation
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ResultsResultsResultsResults
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• Validation 
• Advantages:

– Customer’s benefit
• Is market price less than customers’ budget (reservation price)?

– Provider’s benefit
• Is market price above marginal cost?
• Does providers’ obtain positive Profit?
• Can providers optimize in fair market share Profit?

• Profit Maximizing Strategies 
– Best Strategies (Bayesian-Nash and Pareto-Efficient)

• TE Application

We demonstrateWe demonstrateWe demonstrateWe demonstrate
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Unit Profit Curve:
• Monotonous
• Bound 
• Concave:

,1 ,2 ,1 ,2( (1 ) ) ( ) (1 ) ( ), [0,1]n n n nu u uψρ ψ ρ ψ ρ ψ ρ ψ+ − ≥ + − ∈

• Simulation validates Analysis
• Advantages:

• Market Price less than Reservation Price
• Market Price more than Marginal Cost
• Optimizes in Positive Profit in Fair share of

• Market demand and throughput
• Optimum load is around 0.7704

Homogeneous Service Market:{hHomogeneous Service Market:{hHomogeneous Service Market:{hHomogeneous Service Market:{hAAAA, h, h, h, hBBBB} = {RN, RN}} = {RN, RN}} = {RN, RN}} = {RN, RN}
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• Simulation Validates Analysis
• Advantages: 

• Market Price less than Reservation Price
• Market Price more than Marginal Cost
• Optimizes in Positive Profit in Fair share of

• Market demand and throughput
• Optimum Load is around 0.74 to 0.77

• {VHR,VHR} yields higher Profit, VHR strategy dominates

Homogeneous Service Market (Identical Strategies)Homogeneous Service Market (Identical Strategies)Homogeneous Service Market (Identical Strategies)Homogeneous Service Market (Identical Strategies)
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• Lower rejection strategy
• causes to operate in lower optimum load

• Higher rejection strategy
• causes to operate in higher optimum load

• Higher rejection strategy yields higher Profit
• Higher rejection strategy is dominant

• Simulation Validates Analysis
• Advantages:

• Market Price less than Reservation Price
• Market Price more than Marginal Cost
• Optimizes in Positive Profit

Homogeneous Service Market (NonHomogeneous Service Market (NonHomogeneous Service Market (NonHomogeneous Service Market (Non----Identical Strategies)Identical Strategies)Identical Strategies)Identical Strategies)
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• Simulation validates analysis
• pb > pg > pr
• Advantages:

• Market Price less than Reservation Price
• Market price more than Marginal Cost
• Optimizes in positive Profit in Fair market share of

• Market demand and throughput
• Optimum load is around .68 to .70

Heterogeneous Service Market (Identical Strategies)Heterogeneous Service Market (Identical Strategies)Heterogeneous Service Market (Identical Strategies)Heterogeneous Service Market (Identical Strategies)
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Heterogeneous Service Market (Identical Strategies)Heterogeneous Service Market (Identical Strategies)Heterogeneous Service Market (Identical Strategies)Heterogeneous Service Market (Identical Strategies)

• pb > pg > pr
• Advantages:

• Market Price less than Reservation Price
• Market price more than Marginal Cost
• Optimizes in positive Profit 
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Heterogeneous Service Market (NonHeterogeneous Service Market (NonHeterogeneous Service Market (NonHeterogeneous Service Market (Non----Identical Strategies)Identical Strategies)Identical Strategies)Identical Strategies)

• Higher Priced Service May Not Bring Higher Profit
• Providers’ Should Select Lower Rejection Strategy For Higher Profit Yielding Services
• Providers’ Should Select Higher Rejection Strategy For Lower Profit Yielding services
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Heterogeneous Service Market (NonHeterogeneous Service Market (NonHeterogeneous Service Market (NonHeterogeneous Service Market (Non----Identical Strategies)Identical Strategies)Identical Strategies)Identical Strategies)

Careful Strategy Selection May Allow a Provider to Optimize the Market Profit Share
by Selling Only the Lowest Valued Service
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Aj Ajh h∀ ,RN RN
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• Market share in the dynamic internet traffic demand
• remains invariant for the Rejection Neutral strategy 
• remains close to invariant for the HR and LR strategies 
• changes rapidly for the  VHR and VLR strategies

• Assign strategies if traffic demand does not change and known:
• VHR: for High demand
• VLR:  for Low demand

Homogeneous Service: Market Share in different strategies and maHomogeneous Service: Market Share in different strategies and maHomogeneous Service: Market Share in different strategies and maHomogeneous Service: Market Share in different strategies and market demandrket demandrket demandrket demand

The Market Share of Profit Changes Due to the Change in Market Demand
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* * *[ ( , )] [ ( , )]j
A Aj Bj A Aj BjE u h h E u h h∀≥

Bayesian-Nash Equilibrium:
Find * *{ , }Aj Bjh h

s.t.

• Internet Traffic demand varies and pattern is unknown
• We use a hypothetical market load distribution

• Gaussian Normal
2( 0.65)

2(0.01)1
( ) exp

2 (0.01)
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ρ
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• Our proposal to compute the expected unit Profit as follows:
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FOR �Aj= 0.05 to 0.95
FOR �Bj= 0.05 to 0.95

FOR �Market = Min to Max
Develop Belief Functions ()
Find Bid_Prices_A;
Find Bid_Prices_B;
Find Market Price;
Find Network_Load_A;
Find Network_Load_B;
Find Marginal Cost_A
Find Marginal Cost_B;
Find UA(.);
Find UB(.);

END;

[ (.)] ( ) (.)

[ (.)] ( ) (.)
Market

Market

A Market A

B Market B

E u prob u

E u prob u

ρ

ρ

ρ

ρ
∀
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END;
END;

* * *{ , } . . [ ( , )] [ ( , )]j
Aj Bj n Aj Bj n Aj BjFind s t E u E uγ γ γ γ γ γ∀≥

Analytical Algorithm to Find  Best Strategy SetAnalytical Algorithm to Find  Best Strategy SetAnalytical Algorithm to Find  Best Strategy SetAnalytical Algorithm to Find  Best Strategy Set
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 B.com 
hnj  VLR LR RN HR VHR 

VLR (.50,.50) (.54,.55) (.57,.58) (.60,.61) (.66,.73) 
LR (.55,.54) (.59,.59) (.62,.62) (.65,.66) (.74,.77) 
RN (.58,.57) (.62,.62) (.65,.65) (.69,.69) (.79,.80) 
HR (.61,.60) (.66,.65) (.69,.69) (.73,.73) (.84,.85) 

 
 
A.com 

VHR (.73,.66) (.77,.74) (.80,.79) (.85,.84) (1.00,1.00)�� 
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Homogeneous Market: Analytical Best StrategyHomogeneous Market: Analytical Best StrategyHomogeneous Market: Analytical Best StrategyHomogeneous Market: Analytical Best Strategy
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• Three Bayesian-Nash Equilibriums
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• Not All Nash-equilibrium is preferred
• Market price of lower priority service may exceed higher priority service

• May confuse customers
• The highest Nash equilibrium that meets customers’ preference should be selected
• In our study, it is {RN,RN,RN} which is also the same for homogeneous service

Care in Adopting the Best Strategy Set Care in Adopting the Best Strategy Set Care in Adopting the Best Strategy Set Care in Adopting the Best Strategy Set 
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Load Balancing by the Assignment of Strategies

A.com: Very High Rejection Strategy (γA =0.95)

B.com: Very Low Rejection Strategy (γB = 0.05)
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Analytical Load Adjustment by Changing B.Com Strategy

Market Load (ρMarket) = 0.7

A.com Strategy: VLR (γ = 0.05)

A.com

B.com

• Load Distribution can be performed
• By changing strategies

• Assign lower rejection strategy
• For Higher load in the network

• Assign higher rejection strategy
• For Lower load in the network

• Assign identical strategy for fair share of load

TE Application: Load DistributionTE Application: Load DistributionTE Application: Load DistributionTE Application: Load Distribution



ConclusionConclusionConclusionConclusion
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• Developed a New price transaction architecture that benefits customers and 
providers

– By automation
– By providing options to select any provider based on competitive price
– By allowing customer power to specify budget
– By introducing new price transaction research in one-to-many architecture

• Developed a mathematical model for providers to
– To compute competitive price through the best strategy
– Optimize Profit in dynamic internet traffic demand

• Developed an algorithm and simulation model
– To verify and study providers’ game in flexible environment

• Introduced a New framework to determine Bayesian-Nash equilibrium 
– In dynamic internet traffic demand

• Demonstrated that:
– Providers improved their Profit

• Our approach yielded relative advantages over the existing Bertrand Oligopoly Model
– Providers determined Best strategies (Bayesian-Nash equilibrium and Pareto-efficient 

outcome) using our approach
– Providers was able to obtain fair market share of Profit and throughput
– Providers could implement TE applications such as optimized load balancing in the network
– Customers could enjoy market price lower than their budgets.

• Introduced new area in Internet pricing research
– Our  research is the first in Internet Oligopoly pricing research for disjoint providers
– Existing research are for monopoly market

• Introduced pricing research in a complex network model
– Bi-directional links, multiple paths, Origin-Destination and Destination-Origin Call Legs.

ContributionsContributionsContributionsContributions
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– Automatic Price-based Services
– Profit Optimization and Determining Optimum Throughput
– Traffic Load Distribution
– Least Price Routing
– Forecasting and Capacity Planning
– Service Provisioning

Practical ApplicationPractical ApplicationPractical ApplicationPractical Application
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• Limitations
– Traffic Distribution Pattern
– The Cost Function
– Network Queue Model

• Future Work
– Variable Reservation Price
– Experiment on 3GPP Network
– Priority based Queue System
– Extend model beyond Duopoly

Limitations and Future WorkLimitations and Future WorkLimitations and Future WorkLimitations and Future Work



AppendixAppendixAppendixAppendix
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Marginal Cost FunctionMarginal Cost FunctionMarginal Cost FunctionMarginal Cost Function
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Simulation:

This use of nearsighted one-step history extends 
the game to a Myopic Markovian-Bayesian Game
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Analysis:

• Service cost coefficient (�s)
• Mean Packet Count (M)
• Network Throughput (Y)
• Provider’s Fixed Cost (�n)

Cost (�):
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Analytical Marginal Cost Function

Assumption and verified by simulation:
Optimum routing by Gradient Projection,
equally load balance network traffic 
across all links in a market.
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Simulation Marginal Cost FunctionSimulation Marginal Cost FunctionSimulation Marginal Cost FunctionSimulation Marginal Cost Function
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Profit FunctionsProfit FunctionsProfit FunctionsProfit Functions
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Select an ODij Pair
U~[0,1]

Set-UP
CRD + b < MRD ?

NO

Send RFP To  NSP A, NSP B (s, b, �)

NSP AProduction: YA ���� 0
Traffic: [XA] ����[0]

Constrained Minimization of 
Mean Num. of Packets in Network

(M/M/1 Queuing System)
Non-Linear Program
(Gradient Projection

and Golden Section Line search)

Constrained Minimization of 
Mean Num. of Packets in Network

(M/M/1 Queuing System)
Non-Linear Program
(Gradient Projection

and Golden Section Line search)

ZA ���� YA + b
[WA ]����[XA] + botd

�A =D(ZA)

ZB ���� YB + b
[WB]���� [XB]+ botd

�B =D(ZB)

*̂
A

A
A

M
Y

ε ∂=
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*̂
B

B
B

M
Y

ε ∂=
∂

�A=f(ZA, �A,�A,�s)

�,K,MRD,Tnext_call

�B=f(ZB, �B,�B,�s)

Game Theory:F(p) = G(�,�A, �A, �)

START

Read session
Database for 

the NSP, 
OD pair, 

Class,
OD & DO route 

indices
of the

session

Tear-Down

Select the Least Cost Route, botd

Delete both the 
OD & DO legs
of the session

Clock
Interval =1 sec
Max duration=

1e6 sec CRD: Current Regional Demand
MRD: Maximum Regional Demand

12

3

4a

5a

4b
4c

4d

4e

4f

4g

4h

4i

5b

4j

For
All four
Regions

NSP B
Production: YB ���� 0
Traffic: [XB] ����[0]

NSP A: CAC

Game Theory:F(p) = G(�,�B, �B, �)

NSP B: CAC

Select the Least Cost Route, botd

Tnow = Tnext_call

Tnow = Ttear_down

Tnext_call=Tnow+ EXP(1/�)
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Constrained Minimization of 
Mean Num. of Packets in Network

(M/M/1 Queuing System)
Non-Linear Program
(Gradient Projection

and Golden Section Line search)

Constrained Minimization of 
Mean Num. of Packets in Network

(M/M/1 Queuing System)
Non-Linear Program
(Gradient Projection

and Golden Section Line search)

ZA ���� YA + b
[WA ]����[XA] + botd

�A =D(ZA)

ZB ���� YB + b
[WB]���� [XB]+ botd

�B =D(ZB)

*̂
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A
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M
Y
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*̂
B

B
B

M
Y

ε ∂=
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�A=f(ZA, �A,�A,�s) �B=f(ZB, �B,�B,�s)

Game Theory:F(p) = G(�,�A, �A, �)

PA= H(F(p)) PB= H(F(p))

Customer
Initiates 

Session with
Smaller bid

NSP

YA ���� ZA
[XA] ���� [WA]

Ttear_down = Tnow+ EXP(L)

YB ���� ZB
[XB] ���� [WB]

Ttear_down= Tnow + EXP(L)

PA < PB PA > PB

the NSP, 
OD pair, 

Class,
OD & DO route 

indices
of the

session

Select the Least Cost Route, botd

Delete both the 
OD & DO legs
of the session

YA ���� YA - b

[XA] ���� [XA] - botd

YB ���� YB - b

[XB] ���� [XB] -botd

NSP_Index == A NSP_Index == B

4e

4f

4g

4h

4i

5b

4j

5c

NSP A: CAC

Game Theory:F(p) = G(�,�B, �B, �)

NSP B: CAC

Select the Least Cost Route, botd

4kAdd both OD and DO legs Add both OD and DO legs


