
University of Kansas1

Design and Implementation of a User Level
Thread Library for Testing and Reproducing

Concurrency Scenarios

Sreenivas Sunil Penumarthy
Masters Thesis Defense

December 17, 2002

Committee:
Dr. Jerry James (Chair)

Dr.Gary Minden
Dr.Arvin Agah

University of Kansas2

Outline of Presentation

• Introduction
• Motivation
• Solution
• BERT
• Design and Implementation of BThreads
• Debugging features of BThreads
• Testing and Results
• Conclusions
• Future work

University of Kansas3

Introduction
• High performance computing (HPC) one of the key

requirements for scientific, web based and military
applications — parallel computing one solution

• An example: web server and web browser
• Web server and web browser benefit from parallelism
• Web browser displaying and fetching HTML can be

done in parallel
• Web servers need parallelism to attain maximum

throughput: number of client requests processed/unit
time

• Multithreading is a popular parallel model

University of Kansas4

Introduction
• Thread implementation models

Kernel thread

Many-to-one model One-to-one model Many-to-many model

I/O blocks one thread
Hardest to debug

One thread per one
kernel level thread (1:1)

Intermediate in difficultyEasiest to debug
I/O blocks some threadsI/O blocks all threads

Many threads many kernel
level threads (M:N)

Many threads per
process (M:1)

User threads

University of Kansas5

Motivation
• Debugging multi-threaded programs is difficult
• The execution of program can differ from one run to

another
• Multi-threaded programs don’t execute deterministically

(race conditions, deadlocks)
• Sources of nondeterminism: Context switching,

completion of I/O, signals, scheduler decisions
• Execution model and the debugging model are

mismatched; insufficient debugging control

University of Kansas6

Solution
• Without kernel modifications, don’t have sufficient

control with the one-to-one and many-to-many models
• With the many-to-one model, we have potential for

sufficient control, but current libraries don’t provide it
• With an event-driven framework, we can provide this

control
• Such an event-driven framework has been developed at

ITTC: BERT

University of Kansas7

BERT
• BERT interface is built using REACTOR, which

provides an event-demultiplexing framework
• An event is associated with a handler that has non-

blocking methods that are called upon detection of event
• An event can be: I/O completion, timer expiration,

signal
• All these events are captured at REACTOR
• Hence REACTOR is a single point of control

University of Kansas8

BERT
• Capture all the asynchronous events at deterministic

points in REACTOR
• The information can be recorded here and later used for

replay
• With many-to-one model, as scheduler runs in user

level, it is possible to test different concurrency
scenarios by forcing context switches from debugger

• BThreads library is based on many-to-one model, built
on top of BERT interface

University of Kansas9

Design and Implementation of BThreads

• Thread creation and termination
• Thread scheduling
• Thread synchronization
• I/O
• Signals
• Thread Safety
• Pushing function call onto thread stack
• Other features implemented
• Limitations Of BThreads

University of Kansas10

Thread Creation and Termination
• Two interfaces are available for creation of user space

threads:
• Ucontext API
• JMPBUF based functions

• Ucontext API is used in the BThreads library
• Thread creation and termination have been implemented

in BThreads according to POSIX requirement
• Termination Queue holds terminated threads in detached

state
• Memory resources of threads in this queue are deallocated

(reaping)

University of Kansas11

Thread Scheduling
• Default scheduling in BThreads is Round Robin
• Timers are registered with Reactor and Reactor

dispatches timer to BThreads library when it expires

• FIFO scheduling can be realized by turning off timers

Schedule_timer
ReactorDeliver timer

University of Kansas12

Thread synchronization
• If a thread blocks on a synchronization variable, process

as a whole may block
• Following synchronization primitives required in a

POSIX compliant thread library have been provided:
• Mutexes
• Condition Variables

• In addition, waitlocks and spinlocks were implemented
• Used wait locks for protecting critical sections of mutex

and condition variable functions

University of Kansas13

I/O
• I/O blocking is a major issue in many-to-one thread

library
• If a thread blocks, process as a whole blocks
• Before entering WAITING state, register the event

handler object with the reactor
• EventHandler object :Handle_input, Handle_output

methods
• Event handler methods invoked upon detection of events

– For I/O this means that thread will be put in READY state
when I/O can be done without blocking

• When to invoke Reactor to check for I/O completion?
• Whenever scheduler is invoked

University of Kansas14

Wrapper Functions in Library(I/O)
Readwrapper () or

Writewrapper ()

Create iohandler object
for current thread if

needed

Register iohandler
object with Reactor

Enter WAITING state
and call scheduler

Deregister iohandler
object with Reactor

Return from function

Is fd valid?

Yes

No

Open() or Socket()
wrapper system call

Return newly created
file descriptor

Make actual system call

Insert the file descriptor
(fd) into the global list
of currently active fd’s

(Only visible in library level)

Read() or Write()
wrapper system call

Return number of bytes
read or written

Call readwrapper() or
Writewrapper()function

Do error checking and
cleanup if necessary

Make actual
System Call

University of Kansas15

Wrapper Functions in Library(I/O)

Closewrapper ()
function call

Return from function

Remove the iohandler
from the thread’s TCB

Deregister the
iohandler completely

with the Reactor

Deallocate memory for
iohandler object

Close () system call
wrapper

Remove the file descriptor
from the global list

Call the closewrapper ()
function on all the threads

Return

Make actual close() system
call

Error ?

(Only visible in library level)

Yes

No

University of Kansas16

Signals
• Delivery and masking of signals must be thread-specific
• Signal handlers are shared among all the threads
• Classification (depending on how signals are generated):

Synchronous Asynchronous

Signals

thread_kill(tid,sig) Externally. Kill or
Ctrl+C

raise(sig) Generated due to
instruction

University of Kansas17

Signals

• POSIX requirements for delivery of signals:
• Synchronous signal - thread that generated the signal
• Asynchronous fatal signals - all the threads running in the

process must be terminated (Default behavior with BThreads)
• Asynchronous non-fatal signals

– If generated due to thread_kill - only a specific thread
– If generated due to kill/TTY- Any one thread that doesn’t

block the signal

University of Kansas18

Signals
• Signal delivered in BThreads when

• Signal mask of thread is changed thread_sigmask

• When a new thread is scheduled in the scheduler and it starts
running

• How asynchronous signals are delivered
• Signals due to thread_kill generated by inserting

raise_threads

• Signals that are generated externally will be delivered
automatically

University of Kansas19

Thread Safety
• Thread safe : Multiple threads can call methods

simultaneously - An issue in preemptive library
• User-Level data consistency: Mutexes, Condition

variables.
• How to ensure Library-Level data Consistency?
• Solution: Two ways to ensure consistency

• Consistency using atomicity (Disable and re-enable signals)
– Ready Queue (Accessed in thread_create, scheduler)
– Reactor Queue (Accessed in Reactor and scheduler)

• Consistency using mutual exclusion (Using waitlocks)
– Termination Queue (Queue having all the terminated

threads), Thread Control Block

University of Kansas20

Pushing function call onto thread stack
• This mechanism is used when

• Delivering signals due to thread_kill
• Calling scheduler due to generation of SIGPROF
• Implementing asynchronous cancellation

• To allow insertion of an arbitrary function on an
execution stack, esp, eip registers need to be modified

• Current implementation is for x86 architecture
• To support insertion of C function with arbitrary

signature, an assembly wrapper function is needed

University of Kansas21

Pushing function call onto thread stack

ESP after inserting function call (2)

ESP just before calling C function (3)

ESP at return from assembly function (4)

ESP before inserting function call (1)Original stack

Original EIP

Register Information

Flags Information

C Function to call

Arguments to C function

bytes of arguments

ESP – Stack Pointer

Enter the stackwrap assembly
wrapper

Save # bytes of arguments in
EBX register

Change the ESP to point to the
bottom of the argument list to

the C function.

Call the C function.

Return from the assembly
wrapper. This resumes original

execution.

Pop function arguments
Restore the GPR and FLAGS

University of Kansas22

Other Features Implemented
• Functions implemented according to standard POSIX

requirements:

• Thread cancellation
• Cleanup handling
• Thread specific data
• Thread once functions

University of Kansas23

Limitations of BThreads
• Priority based scheduling
• Timed variants of condition variables and mutexes

• thread_cond_timedwait
• thread_mutex_timedlock (not required by POSIX).
• These return ETIMEDOUT when timeout occurs

• Thread barrier functions (not required by POSIX)
• Thread Read/Write (R/W) locks
• Process shared or process private mutexes, R/W locks,

condition variables
• Concurrency level (Only for many-to-many thread

models)

University of Kansas24

Debugging features of BThreads
• Thread Debug Interface
• Testing concurrency scenarios
• Recording concurrency scenarios

University of Kansas25

Thread Debug Interface (TDI)
• GDB uses TDI to get information about thread library
• TDI provides ability to access and modify data

structures in the inferior process
• Event enabling and reporting
• Examining thread related information
• Invoke call back functions over a set of

threads that meet some criterion
• List of mutexes and condition variables
• Get and set register information

Debugger
(Tracing Process)

TDI

Multi-Threaded
Process

(Inferior Process)

University of Kansas26

Testing Concurrency Scenarios
• User can form his/her own concurrency scenarios
• BThreads library provides ability to an arbitrary thread

using switch_to_thread function
• This can be used by GDB debugger to switch to any

thread

Thread1:
thread_mutex_lock(A)
thread_mutex_lock(B)
thread_mutex_unlock(A)
thread_mutex_unlock(B)

Thread2:
thread_mutex_lock(B)
thread_mutex_lock(A)
thread_mutex_unlock(B)
thread_mutex_unlock(A)

University of Kansas27

Recording Concurrency Scenarios
• In normal circumstances, recording is done when

program runs without any intervention of debugger
• Record only information, which can disrupt sequential

flow
• Scheduling (due to SIGPROF signal)
• Signals
• I/O completion

University of Kansas28

Testing and Results
• Correctness Testing
• Performance Testing
• Testing different concurrency scenarios
• Recording and reproducing different concurrency

scenarios

University of Kansas29

Correctness Testing
• White Box Testing for BThreads library
• POSIX Compliance testing (Linux Threads):

• Basic thread creation and destruction
• Classic Producer-Consumer problem (Condition variables &

mutexes)
• Multi-thread searching (mutexes, cancellation and cleanup

handling)
• Different threads accumulating their strings concurrently

(TSD, thread_once functions)
• Concurrent multiplication of NxN matrices

University of Kansas30

Performance Testing
• A multi-threaded FTP server based on Linux Threads

was taken
• FTP server based on BThreads was built from it

• For 95% confidence , BThreads confidence interval
(worst case) 0.40 sec, PThreads 0.5 sec

Server

Client1 Client2 Client 3

File Sizes : 14 MB, 52 MB

University of Kansas31

Performance Testing
Performance comparision of BThreads with PThreads using

a multi-threaded ftp server for file size of 14.47 MB

0

1

2

3

4

5

6

3 6 9

Number of client connections

Av
er

ag
e

fil
e

tra
ns

fe
r t

im
e

in

se
co

nd
s

BThreads
PThreads

No of Client Connections Average FTT
BThreads Pthreads

3 2.07917 2.13417
6 3.71625 3.78375
9 5.24722 5.27722

FTT: File Transfer Time

University of Kansas32

Performance Testing
Performance comparision of BThreads with PThreads using

a multi-threaded ftp server for file Size of 52.13MB

0

5

10

15

20

25

30

3 6 9

Number of client connections

A
ve

ra
ge

 fi
le

 tr
an

sf
er

 ti
m

e
in

se

co
nd

s

BThreads
PThreads

No of Client Connections Average FTT
BThreads Pthreads

3 8.483 8.704
6 16.079 16.567
9 24.022 24.967

FTT: File Transfer Time

University of Kansas33

Testing and reproducing concurrency
• Deadlock conditions: Mutual exclusion, Hold & Wait,

Circular wait, no preemption
• Two test programs that had possibility of deadlocks

were considered:
• Two threads trying to acquire two locks in different order

Thread1:

Acquire lock A

Acquire lock B

Thread2:

Acquire lock B

Acquire lock A

R1

R2

T1 T2

University of Kansas34

Testing and reproducing concurrency

P1

P2

P3

P4

P5

P6

Think for a random
time

Acquire right fork

Acquire left fork

Eat for a random time

Dining Philosopher’s algorithm

Dining Philosopher’s Problem

University of Kansas35

Conclusions
• Built a thread library that supports most of the features

in a POSIX compliant thread library
• Built TDI to support debugging of BThreads programs
• Tested POSIX compliance of the library
• Tested the basic performance
• Provided a framework that can be used to improve

debugging of multi-threaded programs
• Tested and verified basic ability to test and reproduce different

concurrency scenarios for context switching at arbitrary points

University of Kansas36

Related Work
• Another student is working for providing debugger

support for BThreads and reproducing concurrency
scenarios.

POSIX compliance. Uses asynchronous I/OFSU Threads

Uniform programming language C++
Portable thread library
Minimize subtle synchronization errors

ACE Threads. Wrapper
thread library

POSIX Compliance (LINUX OS)Linux Threads

Main goalsLibrary

Performance, POSIX complianceNGPT

University of Kansas37

Related Work
• BThreads library is part of the BERT infrastructure

BERT
Interface
(Reactor)

BThreads
Library

Asynchronous
I/O Library

KUDOS

University of Kansas38

Future Work
• Identify & wrap all system calls that can block
• Make library completely POSIX compliant
• Experiment with scheduling policies
• Port implementation to other architectures: Solaris, Irix
• “Dynamic linker tricks” to debug other thread library

programs
• Transition an event-driven application to concurrent

application

University of Kansas39

Questions

