
[10] S. Helke, T. Neustupny, T. Santen, Automating Test Case Generation from Z Spec-

i�cation using Isabelle, In J. Bowen, M. Hinchey, editors, ZUM 1997: The Z formal

Speci�cation Notation, pages 52-71, Springer, 1997.

[11] P. Stocks, D. Carrington, Test templates: A Speci�cation-Based Testing Framework.

In Proceedings of the 15th International Conference on Software Engineering, pages

405-414, 1993

[12] Chang, Richardson and Sankar Structural speci�cation based testing using ADL.

69

Bibliography

[1] Je� O�utt, Aynur Abdurazik, Generating Tests from UML Speci�cayions, George Ma-

son University, April 1999.

[2] T.H Tse, Zhinong Xu , Test Case Generation for Class-Level Object-Oriented Testing ,

University of Hong Kong, May 1996.

[3] Debra J Richardson, Cindy Tittle, Owen O'Malley, Approaches to Speci�cation-Based

Testing, University of California, December 1989.

[4] Mark T Pronobis, Robert Hillman, Christopher Flynn, Test Insertion Without Being a

Test Expert,Rome Laboratory.

[5] Edmond M.Clarke, Jeannette M.Wing, Formal Methods:State of the Art and Future

Directions., Carnegie Mellon University, ACM Computing Surveys, December 1996.

[6] Perry Alexander, David Barton,Roshan Kamath System Speci�cation in Rosetta, Uni-

versity of Kansas,IEEE Engineering of Computer Based Systems Symposium, April

2000.

[7] Dr.Perry Alexander, A Practical Semantics of Design Facet Interaction , University of

Kansas, September 2000.

[8] Krishna Ranganathan, Dr.Perry Alexander, Automated Test Vector Generation from

Rosetta Requirements, University of Kansas, May 2000.

[9] G. Myers, The Art of Software Testing, chapter 4, 1979.

68

2. The test vectors are not generated for a structural speci�cation where a system is

divided into di�erent components and each component is speci�ed as a Rosetta facet.

In such cases, vectors could be generated for each of the components and tested.

3. The test coverage can only be speci�ed using the 'step' approach. This restricts the

user to narrow sequences of test inputs. The user should be able to specify inputs

within a range using Gaussian distribution, Poisson distribution, etc.

4. The current version of the tool translates the abstract test vectors into WAVES test

vectors to test VHDL implementation of the system. It would be useful if the abstract

test vectors were translated into various other formats

6.3 Conclusion

Design and implementation are two independent tasks, with the implementation phase de-

pending on an understanding of the design phase for a correct end product. Designing of

systems in an abstract way is a complicated and error prone task. There is no smooth
ow

of the design process from the speci�cation stage to the end product. The number of breaks

in the design process increases with the increasing abstraction. It is the presence of such

breaks in the life-cycle of a product that necessitates the validation of end-product against

the original speci�cation. In this thesis, we have presented a simulated based approach to

validate if an implementation is correct. Our technique involves generating the test inputs

and the expected outputs from the speci�cation of a system. The implementation of a system

is declared correct if the observed behavior matches the expected output obtained from the

speci�cation. This process, we believe is last and necessary step before declaring a product

"correct"

Currently, test coverage can only be speci�ed using the 'step' approach explained in chapter4.

This restricts the user to narrow sequences of test inputs. Ability for the user to specify

custom requirements exists, but the framework for understanding such custom requirements

is not yet in place. Such a framework will increase the ability of our tool manifold.

67

application of WAVES and VHDL models conforming to the 1164 standard logic value

system.

6.1.1 Evaluation

Evaluation of test information representation and test vectors generation is currently being

performed with respect to some systems. Systems like Schmidt Trigger and an alarm clock

example by Synopsys are used to evaluate the tool. The alarm clock example is interesting

to evaluate since it allows test vector generation for typical register transfer level speci�-

cations and systems level speci�cation. The Schmidt trigger example shown in this paper,

demonstrates the e�ectiveness of representing and utilizing test requirements in the vector

generation e�ort. The Schmidt trigger example thus the success of methodology in support-

ing expressions using IF-THEN-ELSE and AND operators. It covers both relational and

logical operators, and serves to demonstrate generation of vectors for nested operators.

Currently more work is done in testing the Satellite Communication up-link system de�ned

by TRW. As the system uses Time Division Multiplexing approach, it forces the test vector

generation system to deal with issues such as synchronization. Such issues are critical in

Rosetta's application domain. Although results are promising, it is still early to declare the

approach successful in actual speci�cation situations.

6.2 Future Work

The current implementation of test vector generator does not support all features of the

Rosetta speci�cation language. We enumerate some future tasks that could be done.

1. The current tool supports only primitive data types like boolean, bit, real, integer

and their statically determined sub-types. The data types like record, set, tuple and

bunch are not yet supported in the current implementation. The test vectors cannot be

generated for operators that are not part of the standard Rosetta logical and relational

operator set.

66

2. Obtaining the information from the user-de�ned requirements: The test scenarios pro-

vide us with a class of values for the input variables. This set of values can be huge

and hence it is not feasible to generate test vectors for each of these values. By provid-

ing test requirements, the user limits the test cases to within the limit of practicality.

Requirements provided by the user determine the number of test cases to be used, and

the coverage desired. The test requirements can be a range of values for the input

parameters, or initial vectors to drive the system to an initial state or a range of values

for a characteristic of input parameters. The user de�ned requirements are obtained

in a particular format as explained in chapter 4.

3. Generation of Test vectors from user-de�ned requirements and Test scenarios:The test

vectors that are generated contain the following information

(a) Values for the input parameters

(b) Expected values for the output parameters corresponding to the input values

The generated test cases are referred to as abstract test vectors because they are not

speci�c to any testing software. The actual values of input parameters are obtained

from the user de�ned requirements and additional values are generated by applying the

boundary testing strategy. The expected output values are obtained by instantiating

the inputs in the scenarios with each of corresponding values from test requirements.

4. Translation of Rosetta vectors into WAVES format: As there is no testing software

for Rosetta, test vectors that are generated using test scenarios and user de�ned test

requirements have to be translated into a format that is speci�c to some testing soft-

ware. We have translated the test vectors generated to a WAVES format. WAVES

is IEEE standard 1029.1-1991 for the representation of digital stimulus and response

data for both the design and test communities. The format was developed to support

users in the exchange of waveform information between di�erent simulator and tester

environments.Because waves is a exchange speci�cation, all facets of stimulus and re-

sponse data must be captured. This test bench tool was developed speci�cally for the

65

Chapter 6

Summary and Future Work

6.1 Summary

In this work, we have described the methodology we use for selection and generation of test

vectors from a Rosetta speci�cation of a component or a system and the user de�ned re-

quirements. Test vectors generated provide us with input values and expected output values.

The expected output values are compared with the output values from the implementation

to check for errors in the implementation. Speci�cation based testing is used to augment

and complement implementation based testing. Speci�cation based techniques are basically,

implementation based techniques, applied to formal speci�cations. Generating test scenarios

and test cases from the speci�cation and using it against the implementation is a way to

establish that the implementation indeed satis�es its speci�cation.

The test vectors generation is described below

1. Generation of Test scenarios: All terms inside the facet are boolean expressions. The

test scenarios can be obtained by evaluating the expression to true or false, depending

on the requirements of a particular system. We use the multi-condition strategy as

proposed by Myers to generate the speci�c test conditions from the expressions. Ac-

cording to this strategy, test scenarios should be generated for the expression under

test to take all possible values.

64

5.3.3 Test Vectors

The test vectors are generated from generated test scenarios and test cases obtained from

test requirements. We have to make sure that the pre-conditions have to be satis�ed for the

values of input parameters. In the above case, all the values of input voltage satisfy the pre-

conditions. Test scenarios are evaluated by instantiating input voltage with corresponding

values. In the �rst case when the value of is 0.0, the scenario ACCEPT 1 and the scenario

ACCEPT 4 hold true. Hence the vector generated when the value of input voltage is 0.0 is :

ACCEPT_0: (input_voltage =0.0) and (b' = 0) and (output_value' = 0);

Now considering the case when input voltage is 1.0, it satis�es the pre-conditions and when

the scenarios are evaluated, ACCEPT 3 and ACCEPT 4 hold true so the vector that gener-

ated for this case is :

ACCEPT_1: (input_voltage = 1.0) and (b = 0) and (b' = 0) and (output_value' = 0);

The abstract test vectors are generated similarly for all the values of input voltage obtained

from test requirements. The Schmidt trigger example thus demonstrates the success of

methodology in supporting expressions using IF-THEN-ELSE and AND operators. It covers

both relational and logical operators, and serves to demonstrate generation of vectors for

nested operators.

63

use testrequirements;

Package schmidt_trigger_REQ is

Begin logic

Facet schmidt_trigger_REQ(input_voltage:: in real) is

Begin logic

req1: test_req(input_voltage,0.0,5.0,0.5);

end;

end schmidt_trigger_REQ;

Figure 5.8: Test requirements for Schmidt Trigger

in steps of 0.1. The values for the input input voltage that are obtained from user-de�ned

requirements and by applying boundary testing strategy are as follows :

input_voltage = 0.0;

input_voltage = 0.5;

input_voltage = 0.9; (From boundary testing strategy)

input_voltage = 1.0;

input_voltage = 1.1; (From boundary testing strategy)

input_voltage = 1.5;

input_voltage = 2.0;

input_voltage = 2.5;

input_voltage = 3.0;

input_voltage = 3.5;

input_voltage = 3.9; (From boundary testing strategy)

input_voltage = 4.0;

input_voltage = 4.1; (From boundary testing strategy)

input_voltage = 4.5;

input_voltage = 5.0;

62

is output value, that is of type bit. A state variable b is used to store the value of output

output value.

5.3.2 Generated Test Scenarios and Test Requirements

The scenarios generated from a Schmidt trigger speci�cation,shown in Figure 2.1, are shown

in Figure 5.7. The �rst test scenario is obtained by requiring the pre-condition to be true.

Similarly, the test scenarios for the post-condition are obtained by evaluating the post-

condition to true. The �rst three acceptance conditions correspond to the three branches of

the IF-THEN-ELSE statement.

PACKAGE schmidtTrigger IS

BEGIN logic

FACET schmidt_trigger(input_voltage:: in real;

output_value:: out bit) IS

b :: bit;

BEGIN state_based

INPUT_0: (input_voltage >= 0.0) and (input_voltage =< 5.0);

ACCEPT_1: (b' = 0) and (input_voltage < 1.0);

ACCEPT_2: (b' = 1) and (input_voltage > 4.0);

ACCEPT_3: (b' = b) and (input_voltage =< 4.0) and

(input_voltage >= 1.0);

ACCEPT_4: (output_value' = b');

END schmidt_trigger;

END schmidtTrigger;

Figure 5.7: Schmidt Trigger Test Scenarios

Since the variable input voltage can take on in�nite number of values, there is a need for

limiting the input values to plausible ranges. This is done by using the test requirements to

specify the input space and coverage, shown in Figure 5.8. This test requirement speci�es

that the variable input voltage must be varied from 0 to 5 volts (input space) in steps of 0.5

volts.

From the test scenarios we �nd that there are two boundary values for the input parameter

input voltage, 1 and 4. So additional test cases are generated near the values of 1 and 4

61

signal=[signal y];

count = count + sampleperiod;

if (count >= (numberbit *period))

numberbit = numberbit+1;

end;

end;

The mechanism for generating the I and Q bit vectors, speci�ed in facet generate is explained

below. If the modulation type is FSK, SOBPSK or BPSK then all the bits are in phase and

so there are no bit vectors in the Q channel. For the other modulation types like QPSK

and DEQPSK, the I channel carries all the odd bits and the Q channel carries all the even

bits. This is speci�ed in the expressions l1 to l5. Once the bits transmitted in each channel

are obtained, the next step is to generate the sampled signal. This is done by using the

matlab function bitvectorperiod. Gaussian noise is then added to the sampled signal. This

is done by using the pre-de�ned matlab function awgn. The function awgn adds suÆcient

noise to sampled signal such that the output signal has the right value for Signal-to-Noise

Ratio ratio. Each of the sampled values is a real number. The function real2bin is used to

convert the sampled value to 12 bit 2's complement samples.

5.3 Schmidt Trigger

5.3.1 Functionality and Speci�cation

A Schmidt Trigger is a square wave generating circuit component. If the input exceeds a

particular value (upper threshold) or goes below a particular value(lower threshold), the

output changes. When the input value is between the upper threshold and lower threshold

the output retains the value it had in the previous state. The input to the Schmidt Trigger

is a voltage(signal of type real) according to which the output (of type bit) changes. The

speci�cation of a Schmidt Trigger component in Rosetta is shown in the Figure 2.1. The input

parameter to the component is input voltage,that is of type real and the output parameter

60

function sigpower = powersquare(main_signal)

sigpower =0;

for i = 1:length(main_signal)

sigpower = sigpower + (main_signal(i) * main_signal(i));

end;

sigpower = sigpower/length(main_signal);

4. bitvectorperiod

This function is used to generate a sampled bit vector signal at a given rate given the

period of each bit in the original bit vector. The magnitude of generated sampled bit

stream is 0.5 for a bit of value 1 and 0.0 for a bit of value 0.

function signal = bitvector(genvector,rate,period)

signal = [];

totaltime = period * length(genvector);

magnitude = 0.5;

sampleperiod = 1/rate;

numofsamples = totaltime/sampleperiod;

count = 0;

numberbit = 1;

vector = [];

for i = 1:length(genvector)

if genvector(i) == 1

vector = [vector genvector(i)];

else

vector = [vector -1];

end;

end;

while count < totaltime

y = magnitude * vector(numberbit);

59

ratio and modulation type modType. A mechanism to generate the actual values of I and Q

bit-vectors is provided in the facet generate. The facet generate takes Signal-to-Noise Ratio

ratio, Modulation type modType as the inputs and outputs are I and Q bit-vectors. Matlab

functions like awgn, bitvectorperiod, powersquare, oddbits, evenbits and real2bin are used in

the facet. The matlab function awgn adds Gaussian noise to a signal in such a way that

the output signal has a particular signal to noise ratio given the power of input signal. The

other functions are explained below.

1. oddbits

This function is used to return an bit-vector consisting of all the odd bits in a given

bitvector.

function bits = oddbits(vector);

count = 1;

bits = [];

while count < length(vector)+1

if (rem(count,2) == 1)

bits = [bits vector(count)];

end;

count = count+1;

end;

2. evenbits

This function is used to return an bit-vector consisting of all the even bits in a given

bitvector. The implementation of this function is similar to the oddbits function given

above.

3. powersquare

This function is used to calculate the power of a bit vector signal.

58

USE matlabpackage;

USE testrequirements;

PACKAGE sigNoise_REQ IS

BEGIN logic

FACET generate(ratio::in real;modType::in integer;

I,Q::out signal) IS

bits::bitvector is [1;;0;;1;;0;;0;;0;;0;;1;;0;;0];

squareI,disI::signal;

squareQ,disQ::signal;

initI,initQ::signal;

powerI::real;

powerQ::real;

rate::real is 64000;

bitperiod::real is 1/9600;

BEGIN logic

l1: (modType = 0) => (initI' = oddbits(bits)) and

(initQ' = evenbits(bits));

l2: (modType = 1) => (initI' = oddbits(bits));

l3: (modType = 2) => (initI' = bits);

l4: (modType = 3) => (initI' = bits);

l5: (modType = 4) => (initI' = oddbits(bits)) and

(initQ' = evenbits(bits));

l6:squareI' = bitvectorperiod(initI,rate,bitperiod);

l7:powerI' = powersquare(squareI);

l8:disI' = awgn(squareI,ratio,powerI);

l9:I' = real2bin(disI,12);

l10:((modType = 0) or (modType = 4)) =>(squareQ' =

bitvectorperiod(initQ,rate,bitperiod));

l11:((modType = 0) or (modType = 4)) =>

(powerQ' = powersquare(squareQ));

l12:((modType = 0) or (modType = 4)) =>

(disI' = awgn(squareQ,ratio,powerQ));

l13:((modType = 0) or (modType = 4)) =>

(I' = real2bin(disQ,number));

END;

FACET sigNoise_REQ(ratio:: in real;modType:: in integer;

I,Q::out signal) IS

test_req(a,b,c,d::integer)::integer;

BEGIN state_based

l1:test_req(ratio,15.0,30.0,5.0);

l2:test_req(modType,0,4,1);

l3:generate(ratio,modType,I,Q);

END;

END;

Figure 5.6: Requriements for Satellite Communication Example

57

in that decision. The synchronizer looks speci�cally for bit transitions to determine if

the proper N symbols are being used to make a decision on the transmitted bit.

5. Error Correction Decoder: This block takes the 3 bit vector from the bit synchro-

nizer and gives a decision on the transmitted bit.

6. Unique Word Detector: This block correlates the detected bits from the error cor-

rection decoder, against the selected unique word. This is implemented similar to a

FIR �lter with the unique word as the �lter taps.

The requirements of the preprocessor system are as follows :

1. The BER (Bit Error Rate) measured at the output of demodulator for FEC code rate

1 shall not exceed 10E-5 for Eb/N values greater than 11.1 dB and BER shall not

exceed 10E-3 for Eb/N values greater than 8.3 dB for SBPSK modulation type.

2. The BER (Bit Error Rate) measured at the output of demodulator for FEC code rate

1 shall not exceed 10E-5 for Eb/N values greater than 13.7 dB FSK modulation type.

3. The BER (Bit Error Rate) measured at the output of demodulator for FEC code rate

1 shall not exceed 10E-5 for Eb/N values greater than 12.2 dB and BER shall not

exceed 10E-3 for Eb/N values greater than 10.0 dB for BPSK modulation type.

4. The BER (Bit Error Rate) measured at the output of demodulator for FEC code rate

1 shall not exceed 10E-5 for Eb/N values greater than 12.5 dB and BER shall not

exceed 10E-3 for Eb/N values greater than 9.7 dB for DEQPSK modulation type.

5. The BER (Bit Error Rate) measured at the output of demodulator for FEC code rate

1 shall not exceed 10E-5 for Eb/N values greater than 11.1 dB and BER shall not

exceed 10E-3 for Eb/N values greater than 8.3 dB for SOQPSK modulation type.

5.2.2 Requirements

The user de�ned requirements for this example is given in the Rosetta package shown in

Figure 5.6. In this case the requirements are provided for a property of inputs I and Q,

56

1. Unique word detected - This bit represents whether the unique word has been detected

in the input bit stream.

2. Doppler Estimate - This is a 12 bit vector that gives the integer estimate of the Doppler

frequency o�set in Hertz.

3. Automatic Gain control threshold - This is a discrete signal provided by the prepro-

cessor indicating whether the input signal power is greater than a particular threshold

value.

The various blocks or components in the preprocessor system are as follows :

1. Resampler : The function of resampler block is to resample the I and Q bit vectors

to a rate that is determined by the modulation rate. The resampling rate is still high

enough to track the Doppler o�set and is also an integral multiple of modulation rate.

The output of resampler is also a 12-bit bit vector, but is generated at a di�erent rate

than the input.

2. Carrier Recovery : This block is to resolve the frequency uncertainty in the input

signal. The frequency uncertainty is mainly due to the Doppler e�ect. The Carrier

Recovery block contains a voltage controlled oscillator, costas loop and an automatic

gain control (AGC) unit. Automatic gain controller block determines if the power of

input signal is greater than a particular threshold or not. It must be noted that the

input signal to the preprocessor is a downconverted signal from the receiver front end

that we are not designing.

3. Decimator : This block is used to decimate the baseband data samples to a rate

that is modulation rate times the number of samples per symbol. This rate is also

determined by the modulation rate and is an integral multiple of modulation rate.

4. Bit Syncronizer : The 12 bit vectors that are input to this block represent values

for individual data samples. Each set of N 12 bit vectors results in a single symbol soft

decision. The 3 bit vector represents the decision of transmitted bit and the con�dence

55

The speci�cation that we use speci�es a preprocessor block on the receiver side. The main

functions of the preprocessor block are :

1. To �nd the doppler uncertainty.

2. To constantly check if the power of received signal is greater than a particular threshold.

3. To synchronize the bits using the bit-synchronizer block.

4. To detect the unique word by taking the correlation.

It is assumed that there exists a microprocessor that provides some control signals to the

preprocessor block. The various control signals are :

1. modType - This gives us the method for carrier recovery.

2. modRate - It is used to determine the interpolation/decimation rates in the resampler

and the number of samples per symbol in the bit synchronization block.

3. uniqueWordType - From this value we can determine the sequence against which the

incoming bit stream is correlated.

4. burstType - This gives the burst type of a signal.

5. accessType - The access type give the channel that is being used to send the data. The

channel could be 5-khz single access or 25-khz TDMA.

6. FECRate - This gives the FEC code rate used to encode.

7. reset - This is a bit that is used to reset the synchronization functions for receiving a

new burst or when synchronization is lost.

The inputs to the preprocessor block along with the control signals described above are I and

Q bit vectors. These are the 12 bit two's complement samples of in-phase and quadrature

waveforms that have been converted to baseband. The outputs from the preprocessor block

are :

54

%%% This is the External Test Vectors File in WAVES %%%

%%% This file is automatically generated by the DVTG tool %%%

% timeIn setAlarm setTime alarmToggle displayTime alarm

4 1 - - 4 -

1 - 1 - 1 -

1 0 1 1 1 0

2 0 1 1 2 0

3 0 1 1 3 0

4 0 1 1 4 0

5 0 1 1 5 1

6 0 1 1 6 0

7 0 1 1 7 0

8 0 1 1 8 0

9 0 1 1 9 0

10 0 1 1 10 0

11 0 1 1 11 0

12 0 1 1 12 0

Figure 5.5: Alarm Clock WAVES �le

5.2 Satellite Communication Preprocessor System

5.2.1 Functionality

In Time Division Multiple Access (TDMA), messages sent by di�erent users are interlaced

in time. The data from each user is transmitted in slots, with a number of slots comprising a

frame. In each time interval only one user is allowed to transmit or receive the data. So each

user occupies a cyclically repeating time slot. It is necessary to maintain overall network

synchronization in a TDMA system.

Each transmission within a control or slave channel time slot consists of two elements.

1. A synchronization element (Preamble) - a known signal the receiver needs for carrier,

bit and data synchronization and a unique word.

2. A data element containing the information.

53

range of various input variables. There are no additional test cases by applying the boundary

testing strategy because all the control inputs are of type bit. The resultant sequence of test

cases that are obtained from test requirements are as follows :

(timeIn = 4) and (setAlarm = 1) -- from the init function.

(timeIn = 1) and (setTime = 1) -- from the init function.

(timeIn = 1) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 2) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 3) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 4) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 5) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 6) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 7) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 8) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 9) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 10) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 11) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

(timeIn = 12) and (setTime = 1) and (setAlarm = 0) and (alarmToggle = 1)

The test vector generation �rst ensures that a test case conforms to pre-conditions speci�ed

in the input Rosetta speci�cation. The generated test scenarios are then combined with

the user-speci�ed test requirements to generate the abstract test vectors. This is done by

instantiating the inputs in the scenarios with each of the corresponding values from test

cases.

Using the initial vectors provided in the function init, the alarm clock system is driven to a

state where the internal variable alarmTime is set to a value 6 and the clockTime variable

is set to a value 1. The other vectors are obtained similarly by instantiating inputs in test

scenarios with each of the corresponding values from the test cases. Abstract test vectors

are translated into a format that is appropriate to the WAVES software. The waves �le for

the above alarm clock example is as shown in the Figure 5.5.

52

(setTime == 0) and (setAlarm == 0) and (displayTime' = clockTime);

For the fourth labelled item sound, test scenarios generated on applying the rules for IF-

THEN-ELSE operator are :

(alarm' = 1) and (alarmToggle == 1) and (alarmTime == clockTime);

(alarm' = 0) and (alarmToggle == 0) and (alarmTime /= clockTime);

(alarm' = 0) and (alarmToggle == 0) and (alarmTime == clockTime);

(alarm' = 0) and (alarmToggle == 1) and (alarmTime /= clockTime);

5.1.3 Initial Vectors and Test Cases

USE testrequriements;

PACKAGE alarmClockBeh_REQ is

BEGIN logic

FACET alarmClockBeh_REQ(timeIn:: in integer;setAlarm,setTime::in

bit;alarmToggle::bit) is

BEGIN state_based

init1: init(1,(setAlarm=1) and (timeIn=4));

init2: init(2,(setTime =1) and (timeIn=1));

t1:test_req(timeIn,1,12,1);

t2:test_req(setTime,1,1,1);

t3:test_req(setAlarm,0,0,1);

t4:test_req(alarmToggle,1,1,1);

END;

END;

Figure 5.4: Alarm Clock User-De�ned Requirements

From user de�ned requirements, shown in Figure 5.4, we observe that there are some initial

vectors. As explained in the previous chapter vectors provided in the init function are to be

evaluated once before the other test cases. Vectors provided in the function test init are to

be evaluated once before every test case. The other test cases are obtained from the given

51

Facet alarmClockBeh_TEST(timeIn:: in integer;displayTime:: out integer

alarm:: out bit;setAlarm::in bit;

setTime,alarmToggle:: in bit) IS

alarmTime,clockTime:: integer;

Begin state_based

ACCEPT_0: (setTime == 1) AND (clockTime' = timeIn)

AND (displayTime' = timeIn);

ACCEPT_1: (setTime == 0) AND (clockTime' = clockTime + 1);

ACCEPT_2: (setAlarm == 1) AND (alarmTime' = timeIn)

AND (displayTime' = timeIn);

ACCEPT_3: (setAlarm == 0) AND (alarmTime' = alarmTime);

ACCEPT_4: (setTime == 0) AND (setAlarm == 0)

AND (displayTime' = clockTime);

ACCEPT_5:(alarm' = 1) AND (alarmToggle == 1)

AND (alarmTime == clockTime);

ACCEPT_6:(alarm' = 0) AND (alarmToggle == 0)

AND (alarmTime /= clockTime);

ACCEPT_7:(alarm' = 0) AND (alarmToggle == 0)

AND (alarmTime == clockTime);

ACCEPT_8:(alarm' = 0) AND (alarmToggle == 1)

AND (alarmTime /= clockTime);

End;

Figure 5.3: Alarm Clock Speci�cation

true.For the �rst labelled item setclock, applying the rules of IF-THEN-ELSE operator,

generated test scenarios are :

(clockTime' = timeIn) and (displayTime' = timeIn) and (setTime == 1);

(clockTime' = (clockTime + 1)) and (setTime == 0);

Similarly, generated test scenarios for labelled item settime are :

(alarmTime' = timeIn) and (displayTime' = timeIn) and (setAlarm == 1);

(alarmTime' = alarmTime) and (setAlarm == 0);

For the third labelled item displayClock, applying the rules for the IMPLIES operator, gen-

erated test scenarios are

50

PACKAGE alarmClockBeh IS

BEGIN logic

FACET alarmClockBeh(timeIn::in integer; displayTime::out integer;

alarm::out bit; setAlarm::in bit;

setTime::in bit;alarmToggle::in bit) IS

alarmTime :: integer;

clockTime :: integer;

increment_time(clk::integer)::integer is clk + 1;

BEGIN state_based

setclock: if %setTime

then (clockTime' = timeIn) and (displayTime' = timeIn)

else clockTime' = increment_time(clockTime)

endif;

setalarm: if %setAlarm

then (alarmTime' = timeIn) and (displayTime' = timeIn)

else (alarmTime' = alarmTime)

endif;

displayClock: (setTime == 0) and (setAlarm == 0) =>

(displayTime' = clockTime);

sound: alarm' = if ((alarmToggle == 1) and (alarmTime = clockTime))

then 1

else 0

endif;

END alarmClockBeh;

END;

Figure 5.2: Alarm Clock Speci�cation

49

STORE

MUX
COMPARATOR

clockTime alarmTime alarmOn

alarmTogglesetTimesetAlarmtimeIn

setAlarm

displayTimesetTime

Figure 5.1: Structural representation of the Alarm Clock

clock time is being set. The clock time is incremented in the next state as long as the input

setTime is false. Term setalarm handles when the alarm time is being set. If setAlarm is not

set, then alarmTime retains its value from the previous state. Term displayClock handles

the third requirement, case when clock time is being displayed and term sound de�nes alarm

output in terms of alarmToggle bit and whether alarmTime and clockTime values are equal.

All the terms in the speci�cation have to be true simultaneously. Thus the speci�cation has

the same e�ect as VHDL.

5.1.2 Test Scenarios

We explain generation of input values that satisfy input criteria and output values that

satisfy acceptance criteria. The methodology described in chapter 3 is used for generation

of these values. The generated scenarios are as shown in Figure 5.3. Examining the test

scenarios indicates that the scenarios are generated for each term of the input speci�cation.

In order to generate test scenarios, the expression in the labelled term should evaluate to

48

3. alarmToggle - This control bit indicates whether or not the alarm will ring when current

time is equal to alarm time. The alarm will not ring if it is set to low. It is also used

to shut o� the alarm.

4. timeIn - It contains the current time input and can be used to set either the alarm

time or the clock time.

Local variables correspond to the state of the clock. The internal variables to the system are

1. clockTime - It maintains the current time. If the setTime bit is not set then the

clockTime should be incremented

2. alarmTime - It stores the value of time associated with sounding an alarm.

The outputs to the system are

1. displayTime - The time that is to be displayed.

2. alarm - A bit that indicates that the alarm sound is on.

The speci�cation of an alarm clock system states the following requirements :

1. When setTime bit is set, timeIn is stored as clockTime and output as displayTime.

2. When setAlarm bit is set, timeIn is stored as alarmTime and output as displayTime.

3. When both setTime and setAlarm bits are not set, the clock always increments its time

value (clockTime).

4. When clockTime and alarmTime are equal, and alarmToggle is high, the alarm should

be sounded. Otherwise it should not.

Figure 5.2 shows the speci�cation of Alarm clock system in Rosetta. Looking at the require-

ments and speci�cation above, we can observe that every requirement is de�ned as a Rosetta

expression or a labelled item. The term setclock handles the �rst requirement, case where

47

Chapter 5

Examples

In this chapter, we present a few examples to explain the methodology of generation of test

vectors from Rosetta speci�cation. The examples discussed are the Alarm clock system, a

Satellite communication preprocessor system and a Schmidt trigger component. We explain

the functionality, generation of test scenarios, test requirements and generation of test vectors

for each of the examples.

5.1 Alarm Clock

5.1.1 Functionality

An alarm clock is a time keeping device that has the additional feature of sounding an alarm

at a particular time. It also provides the basic capability of setting time and setting alarm

time. The inputs to the system are

1. setTime - Control bit to indicate that input time should be stored as current time of

the alarm clock. The setTime and setAlarm signals cannot be set simultaneously.

2. setAlarm - Control bit to indicate whether that input time should be stored in the

internal alarm time.

46

4.3.2 Conversion

The abstract test vectors that have been generated are not in a format that is speci�c to

some test software. We address the transformation of abstract test vectors generated as

a Rosetta facet into WAVES test vectors suitable for VHDL simulation. Since the format

of concrete test vectors is speci�c to the WAVES testing software, stimulus waveforms are

applied to the VHDL model, the model produces its output response based on the stimulus

presented. The expected and the actual responses can then be compared to �nd the errors.

%%% This is the External Test Vectors File in WAVES %%%

%%% This file is automatically generated by the DVTG tool %%%

% input_voltage output_value

0.1 0

0.6 0

0.9 0

1.1 0

1.6 0

3.9 0

4.1 1

Figure 4.6: WAVES test vectors for Schmidt Trigger

Figure 4.6 shows the WAVES test vectors obtained for the Schmidt Trigger component.The

'%' symbol is the commment character in WAVES. The third comment line indicates the list

of input and output parameters. The �rst column is the list of values of input parameter

input voltage and the second column speci�es the expected values for output parameter

output value for corresponding input values.

The test benches are not generated automatically and the user needs to write the test benches

for VHDL implementation of a system. Theses test benches could then use the WAVES data

set to drive the system during simulation. The results obtained from the simulation are then

compared to the expected output values in the WAVES data set. If both are the same, then

the implementation conforms to the speci�cation.

45

oping their WAVES data set and generation of a test bench for applying the stimulus and

response to the models. This test bench tool was developed speci�cally for the application

of WAVES and VHDL models conforming to the 1164 standard logic value system. Figure

4.5 is a simpli�ed illustration of the test con�guration that is generated.

WAVES

Data Set

VHDL

Model

stimulus

Expected
Response

Response
Test Bench

Monitor

Detected
Errors

Figure 4.5: WAVES-VHDL Simpli�ed Test Bench Con�guration.

Stimulus waveforms that are produced by the WAVES data set are applied to the VHDL

model, the model produces its output response based on the stimulus presented. The test

bench contains a set of monitoring processes that monitor the expected and actual response

values and ensures that they conform to the timing speci�ed in the WAVES data set.

The use of automated test insertion software reduces the need of circuit designers from

becoming an expert in testability algorithms, test element implementations, and testability

approaches. The structured approach to test insertion that this software provides reduces

design time while implementing a veri�ed, eÆcient test solution. The bene�t here is that

the designer is required to think up front about the responses and not after the simulation

is complete by looking over stacks of simulation reports.

44

Expression,

Imposed Outcome

Generate Values

For sub-expressions

Assign values to

operands according to
operator rules

Are
Operands Expr-

ssions

Combine Values

&remove Redundancy

Test Vectors

Figure 4.4: Algorithm for generation of Test Vectors

4.3 Conversion of Vectors to WAVES Format

As there is no testing software for Rosetta, abstract test vectors that are generated using the

test scenarios and the user de�ned requirements have to be translated into a format that is

speci�c to some testing software. We have translated the test vectors generated to a WAVES

format. The background about WAVES and the details of translation are explained below.

4.3.1 Background on WAVES

WAVES is IEEE standard 1029.1-1991 for the representation of digital stimulus and response

data for both the design and test communities. The format was developed to support users

in the exchange of waveform information between di�erent simulator and tester environ-

ments.Because waves is a exchange speci�cation, all facets of stimulus and response data

must be captured. When information is exchanged between environments, assumptions are

dangerous and often incorrect. The purpose of the test bench tool is to aid a user in devel-

43

A = 1 AND B = 0; (vector from "init" function)

A = 1 AND B = 1; (vector from "test_init" function)

A = 1 AND B = 4;

A = 1 AND B = 1; (vector from "test_init" function)

A = 1 AND B = 5;

A = 1 AND B = 1; (vector from "test_init" function)

A = 1 AND B = 6;

A = 1 AND B = 1; (vector from "test_init" function)

A = 2 AND B = 4;

A = 1 AND B = 1; (vector from "test_init" function)

A = 2 AND B = 5;

A = 1 AND B = 1; (vector from "test_init" function)

A = 2 AND B = 6;

A = 1 AND B = 1; (vector from "test_init" function)

A = 3 AND B = 4;

A = 1 AND B = 1; (vector from "test_init" function)

A = 3 AND B = 5;

A = 1 AND B = 1; (vector from "test_init" function)

A = 3 AND B = 6;

Figure 4.3: Test Cases when initial vectors are speci�ed in Requirements

Actual values of input parameters are obtained from user de�ned requirements as explained

in the previous section. Additional test cases are generated using the boundary testing

strategy. A boundary value is one that is directly on, above or below the limit of a class

or range of values speci�ed by a condition. For example, in the condition (x < 10), 10 is a

boundary value that divides the values of x into di�erent classes. When using real numbers,

the step value of a particular variable, speci�ed in test requirements, is used to determine

the smallest step size. For example, in the condition (x > 3.5) with a step size of 0.05, the

smallest step value would be 0.01. Experience shows that test vectors that use boundary

conditions have a higher payo� than test vectors that do not. The values generated from

the user-de�ned test requirements are combined with any boundary conditions within the

speci�ed bounds to obtain the �nal abstract test vectors.

42

which initial vectors are evaluated to reach a particular state. The initial vectors that are

obtained from the function init are evaluated only once before all the test cases, obtained

from generic requirements, are evaluated. The vectors obtained from the test init are

evaluated before every test case obtained from the generic requirement.

If the user speci�es the requirements for a facet with two input variables A and B as follows

:

req1: init(1,(A = 1) and (B = 0));

req2: test_init(1,(A = 1) and (B = 1));

req3: test_req(A,1,3,1);

req4: test_req(B,4,6,1);

The test cases that the system generates are shown in Figure 4.3. The vectors obtained from

the function init are evaluated only once. The vectors obtained from the function test init

are evaluated once before any test case that is obtained from the function test req.

4.2 Generation of Abstract Test Vectors

Test vectors generated from test scenarios and user de�ned test requirements contain the

following information :

1. Values for the input parameters

2. Expected values for the output parameters corresponding to the input values

The test vector generation �rst ensures that test cases generated from test requirements,

conform to the pre-conditions speci�ed in the input Rosetta speci�cation. The generated

test scenarios are then combined with the user-speci�ed test requirements to generate the

abstract test vectors. This is done by instantiating the inputs in generated test scenarios with

each of the corresponding values from the test requirements. Figure 4.4 gives the
owchart

of the algorithm that is used to generate the test scenarios and the test vectors

41

The package matlabpackage contains the declarations of matlab functions in Rosetta format.

The user might use the matlab functions to provide the mechanism to generate actual values

of input given the property of that input. Figure 4.2 shows the Rosetta package matlabpack-

age. Functions in the package might be prede�ned matlab functions like awgn, a function

used to add white gaussian noise, or some user de�ned matlab functions.

PACKAGE matlabpackage IS

BEGIN logic

pi::real is 3.1416;

phase::subtype(real) is sel(x::phase | -180 < x < 180);

signal::subtype(array(real));

bitsignal::subtype(array(bit));

sinewave(amp::real;ph::phase;freq::real)::univ;

bitvectorsignal(input::bitvector;rate::real)::univ;

bitvectorperiod(input::bitvector;rate,period::real)::univ;

defaultbitvector(rate::real)::univ;

powersquare(sig::univ)::real;

awgn(sig::univ;snr::real;power::real)::univ;

print(sig::univ)::boolean;

realTobin(x::univ;y::integer)::univ;

real2bin(x::univ;y::integer)::univ;

oddbits(x::bitvector)::bitvector;

evenbits(x::bitvector)::bitvector;

EXPORT ALL;

END matlabpackage;

Figure 4.2: Matlab Package

4.1.3 Initial Vectors and Test Cases

In some cases, it is necessary for the system to reach a state before the generated test cases

are tested on the system. The initial test vectors are used to drive the system to a particular

state before the test cases are evaluated. The functions test init and init declared in

the package testrequirements, Figure 4.1 are used to specify the initial vectors. Both the

functions test init and init take a sequence number and an expression as the arguments.

The sequence number is an integer and it provides us the information about the order in

40

specify this kind of requirement. This function takes a variable, a lower bound, an upper

bound and the step value as the arguments. All the numbers within the speci�ed lower and

upper bound are selected such that they all vary by the speci�ed step value. A combination of

all the numbers selected for di�erent input variables are the di�erent test cases generated.The

following example gives an idea of test cases generated when the user provides a requirement

for more than one input variable. Requirements can be speci�ed only for the inputs to the

system or for the property of input. If the user speci�es the requirements for two input

variables A and B as follows :

req1: test_req(A,1,3,1);

req2: test_req(B,4,6,1);

The di�erent test cases that are generated from the above requirements are as follows :

A = 1 AND B = 4;

A = 1 AND B = 5;

A = 1 AND B = 6;

A = 2 AND B = 4;

A = 2 AND B = 5;

A = 2 AND B = 6;

A = 3 AND B = 4;

A = 3 AND B = 5;

A = 3 AND B = 6;

4.1.2 Requirements for a property of the input

The user might provide requirements for a property of an input to the system. In such

cases, the user must provide a mechanism to generate the actual input values given just the

value of property of that input. This mechanism is provided in a Rosetta facet, that is then

translated to a matlab function. On execution of this matlab function, actual values of input

are obtained.

39

The user de�ned test requirements are speci�ed for input parameters of a system. These

coverage requirements are determined by a number of factors like the most frequently used

range of values for signals, con�dence, time constraints, the acceptable risk factors, etc.

PACKAGE testrequirements IS

BEGIN logic

test_req(label::label;lower_bound,upper_bound,steps :: number) :: bunch(number

sel(x :: univ | (lower_bound =< x) and (x =< upper_bound)

and exists(n :: univ | x = (n * steps + lower_bound)));

test_init(seq::integer;vector::univ)::univ;

init(seq::number;vector::univ)::univ;

EXPORT ALL;

END testrequirements;

Figure 4.1: Requirements Package

The Rosetta package, shown in Figure 4.1 gives the declaration of functions that should

be used by the user when providing test requirements for a particular system : The pack-

age testrequirements illustrates our current approach to specifying test requirements in

Rosetta. The test req function accepts a variable, a lower bound, an upper bound and the

step value. Apart from the variable, that is of type label, all the other parameters are of

type number, that enables the function to be used over natural numbers, integers, real num-

bers and boolean variables (that are really maximum and minimum integers). The test req

function itself uses the sel function to select all the numbers within the speci�ed lower and

upper bounds such that they all vary by the speci�ed step value. The functions test init

and init accepts a sequence number and an The vectors speci�ed in these functions are

used to drive the system to a particular state.

4.1.1 Generic Requirements

Generic requirements are requirements where the user provides a range for input variables

with a step size. The function test req declared in package testrequirements is used to

38

Chapter 4

Test Requirements and Test Vectors

This chapter explains the general methodology used to generate test vectors from test sce-

narios and user de�ned requirements. The chapter can be divided into two parts. In the �rst

part we discuss about test requirements provided by the user. Requirements provided by the

user are used to get the actual values of input variables. We also discuss about the initial

vectors. The second part of chapter is about generation of test vectors from user de�ned re-

quirements and generated test scenarios. This involves assignment of values to the operands

of expressions that occur in relevant clauses of a speci�cation. Finally, the implementation

details of how test vectors are generated using the Rosetta Object Model are explained.

4.1 Test Requirements

In the previous chapter, we explained the generation of test scenarios that provide us with

a set of values for the input variables. This set of values can be huge and hence it is not

feasible to generate test vectors for each of these values. By providing test requirements,

the user limits the test cases to within the limit of practicality. Requirements provided by

the user determine the number of test cases to be used, and the coverage desired. In some

cases, the user might provide a range of values for a property of input and not directly for

the input. In such cases, it is necessary for the user to provide a mechanism so that inputs

with the right property or characteristic are generated.

37

B' = IF (A > 50)

THEN 21

ELSE 19

ENDIF;

By following the rules for IF-THEN-ELSE operator, the scenarios that we get are

B' = (A > 50) AND 21

B' = (A =< 50) AND 19

But these are not the correct scenarios, the scenarios generated are

(B' = 21) AND (A > 50)

(B' = 19) AND (A =< 50)

36

In the second scenario since the relational expression (A > 50) is false. The values of A less

than or equal to 50 evaluate the expression to false and hence, these values are selected.

3. When the scenarios are generated for a expression, there is every chance that the sub-

expressions might be redundant. The tool removes redundancy in the generated scenarios.

For example the scenarios generated for a nested IF-THEN-ELSE expression will have re-

dundancy when the rules are applied.

IF (input_voltage < 1.0)

THEN (b' = 0)

ELSE (IF (input_voltage > 4.0)

THEN (b' = 1)

ELSE (b' = b)

ENDIF)

ENDIF;

The scenarios generated by applying the rules are

(b' = 0) AND (input_voltage < 1.0)

(b' = 1) AND (input_voltage > 4.0) AND (input_voltage >= 1.0)

(b' = b) AND (input_voltage =< 4.0) AND (input_voltage >= 1.0)

From the above scenarios generated we observe that there is redundancy in the second

scenario. If it is given that input voltage is greater than 4, then it is redundant to say that

input voltage is greater than one. After the redundancy is removed the scenarios are

(b' = 0) AND (input_voltage < 1.0)

(b' = 1) AND (input_voltage > 4.0)

(b' = b) AND (input_voltage =< 4.0) AND (input_voltage >= 1.0)

4. Consider the following expression :

35

((A AND B) = false) AND (D = true)

The l.h.s. is another logical expression whose value is to be evaluated to false. The list of

scenarios for (A AND B) when the expression is evaluated to false are :

(A = false) AND (B = false)

(A = false) AND (B = true)

(A = true) AND (B = false)

The r.h.s. is just a identi�er. Combining both the scenarios the list of test scenarios for the

expression (A AND B) OR (D') are :

(A = false) AND (B = false) AND (D' = true)

(A = false) AND (B = true) AND (D' = true)

(A = true) AND (B = false) AND (D' = true)

2. Consider an expression

IF (A > 50)

THEN (B' = 20)

ELSE (B' = B + 1)

ENDIF;

The above expression is evaluated to true and the scenarios generated by applying the rules

for IF-THEN-ELSE operator are :

(A > 50) = true) AND (B' = 20) = true

(A > 50) = false AND (B' = B + 1) = true

Applying the rules for relational operators, the following scenarios generated are :

(A > 50) AND (B' = 20)

(A =< 50) AND (B' = B + 1)

34

3.3 Implementation Details

The present Rosetta suite has the parser that parses the speci�cation and builds a parse

tree. This parse tree is then used to build an object model of Rosetta items. An item is the

basic Rosetta semantic unit. All items have Type, Value, Label and String �elds. The test

scenario generator makes use of this object model for obtaining the �elds. Every expression

in the facet is in the form of a tree structure with the node as the operator and branches

as left operand and right operand. The rules to generate test scenarios for logical operators

are applied recursively until the operands are just identi�ers or literals or sub-expressions

without any logical operators. When the sub-expressions are relational expressions, the rules

of relational operators are applied to evaluate the expression to the boolean value that is

obtained and the scenarios are thus generated. The following examples give more information

as to how the scenarios are generated :

1. Consider an expression with just the logical operators

(A AND B) OR (D')

In the object model this expression is stored as a tree structure as follows

OR

AND

A B

D’

Figure 3.2: Tree Structure for the expression (A AND B) OR (D')

The test scenario generator tool �rst generates the values for the operands corresponding to

the OR operator. In this case the r.h.s. is a non-controllable operator and the l.h.s. operator

is a controllable operator so the test scenarios generated are as follows. The expression is

evaluated to true.

33

Operator Expression Test conditions to

evaluate expression

to true to false

< x < y x < y x >= y
=< x =< y x =< y x > y
> x > y x > y x =< y
>= x >= y x >= y x < y
= x = y x = y x /= y
/= x /= y x /= y x = y

Table 3.7: Test conditions for relational operators

If the relational expression is a part of or a sub expression in a logical expression then the

value to which the expression has to be evaluated is obtained by applying the rules for

logical operators. The assigned boolean values determine whether the test scenarios are to

be generated by evaluating the expression to true or false. If the relational expression is

not a operand in a logical expression then the test scenarios are generated by evaluating the

expression to true .

In a relational expression, the r.h.s operand divides the range of l.h.s into classes. One of

these classes evaluate the expression to true and the other classes evaluate the expression

to false. Depending on the operator, these classes fall in the satisfy or non-satisfy category

of the expression. This is the process used to generate the test conditions for the relational

operators.

For example, consider the expression x > 20 . This expression divides the range of x into

two categories. One class of values that are greater than 20 and the other the values that

are less than or equal to 20. If the expression has to be evaluated to false then the second

class comes under the satisfy category and vice-versa.

As mentioned above, some logical expressions have the relational expressions as an operand.

If each of the sub-expressions yields a number of values for the operands, then these are

combined according to the rules of operator joining the sub-expressions.

32

(not(P(x)) And R(z)) are both false, the If-Then-Else expression evaluates to false. We

also note that the terms (P(x) And Q(y)) and (not(P(x)) And R(z)) can never be true

at the same time, since that would be a contradiction. Hence, the possible test scenarios for

the If-Then-Else expression are as enumerated as below :

not((P(x) AND Q(y))) AND (not(P(x)) AND R(z))

(P(x) And Q(y)) AND not(not(P(x)) AND R(z))

We notice that each of the above test scenarios are in terms of basic logical operators and

can be further simpli�ed using De Morgan's laws. We obtain the �nal test scenarios by

recursively applying the test generation rules for the basic operators. Examining the driving

and driven values does not help reduce the number of test scenarios any further. This

is because, by de�nition, the operator covers the two cases when the If term condition is

true and false. This gives us the list of �nal test scenarios generated for an If-Then-Else

expression. These scenarios are summarized below.

(P(x) = false) AND (R(z) = true)

(P(x) = true) AND (Q(y) = true)

3.2.2 Relational Operators

In order to obtain the test conditions for relational operators, we obtain test values that

cause the relational expression to evaluate to true or false as shown in Table 3.7. For the

logical operators since the values that the operand could take were just true or false all

the values of operands that evaluate the expression to true or false were generated. In the

case of a relational expression it is impossible to get all the values of operands for which the

expression will evaluate to true but it is possible to get a class of values. The following table

gives the list of test scenarios generated when a relational expression is evaluated to true or

false.

31

P(x) Q(y) SCENARIOS

Non-Controllable Non-Controllable 1. P(x) = false AND Q(y) = false
2. P(x) = false AND Q(y) = true
3. P(x) = true AND Q(y) = true

Non-Controllable Controllable 1. P(x) = false AND Q(y) = false

Controllable Non-Controllable 1. P(x) = true AND Q(y) = true

Controllable Controllable 1. P(x) = false AND Q(y) = false
2. P(x) = false AND Q(y) = true
3. P(x) = true AND Q(y) = true

Table 3.5: Scenarios for IMPLIES operator when expression is evaluated to true

We �nd that considering the driving and driven variables does not help reduce the number

of test scenarios. This is because, regardless of whether the operands are driving or driven

variables, the expression evaluates to false only when the left operand is true and the right

operand is false. So the tool generates the single test condition as indicated above.

The IF-THEN-ELSE Operator

The IF-THEN-ELSE expression can be transformed to an expression in terms of the basic

logical operators. The expression IF P(x) THEN Q(y) ELSE R(z) equals (P(x) AND Q(y))

OR (NOT(P(x)) AND R(z)). Using this transformation, we obtain the truth table for the

If-Then-Else operator shown in Table 3.6.

P(x) And Q(y) not(P(x)) And R(z) (P(x) And Q(y)) Or

(not(P(x)) And R(z))

0 0 0
0 1 1
1 0 1
1 1 0

Table 3.6: Truth table for the If-Then-Else operator

We observe from the truth table, that when the term (P(x) And Q(y)) and the term

30

P(x) Q(y) SCENARIOS

Non-Controllable Non-Controllable 1. P(x) = false AND Q(y) = true
2. P(x) = true AND Q(y) = false
3. P(x) = true AND Q(y) = true

Non-Controllable Controllable 1. P(x) = true AND Q(y) = false

Controllable Non-Controllable 1. P(x) = false AND Q(y) = true

Controllable Controllable 1. P(x) = false AND Q(y) = true
2. P(x) = true AND Q(y) = false
3. P(x) = true AND Q(y) = true

Table 3.4: Scenarios for NOR operator when expression is evaluated to false

enumerated below :

(P(x) = false) AND (Q(y) = false)

(P(x) = false) AND (Q(y) = true)

(P(x) = true) AND (Q(y) = true)

By taking into consideration whether the expressions P(x) and Q(y) are controllable or non-

controllable, we can remove some scenarios generated. We know that if the left operand is

true, then the right operand has to be true in order to evaluate the IMPLIES expression to

true. Hence, when P(x) is controllable and Q(y) is not, we consider only the test scenario

where P(x) and Q(y) are both true. Similarly, if the right operand is false, then the left

operand has to be false to evaluate the IMPLIES expression to true. Hence, if only Q(y)

is controllable, we consider only the test scenario where both P(x) and Q(y) are false. The

�nal test scenarios after the elimination process are summarized in Table 3.5.

When the IMPLIES expression is false, the only test scenario generated is :

(P(x) = true) AND (Q(y) = false)

29

NOR expression to true are :

(P(x) = false) AND (Q(y) = false)

and the list of possible test scenarios to evaluate the NOR expression to false are :

(P(x) = false) AND (Q(y) = true)

(P(x) = true) AND (Q(y) = false)

(P(x) = true) AND (Q(y) = true)

In the case when the NOR expression is evaluated to true, we �nd that considering the

driving and driven variables does not help reduce the number of test scenarios. This is

because, regardless of whether the operands are driving or driven variables, the expression

evaluates to true only when both the operands evaluate to false. So the tool generates the

single test condition as indicated above.But considering the the driving and driven variables

helps reduce the number of test scenarios, when the NOR expression evaluates to false. If

P(x) can be controlled, then we are only interested in the test scenarios where P(x) is false,

because a disjunction is always true whenever P(x) is true regardless of value of Q(y). A

similar argument holds when Q(y) is controllable and P(x) is non-controllable. The �nal test

scenarios generated when the NOR expression is false are summarized in Table 3.4.

The IMPLIES Operator

The IMPLIES expression can be written in terms of basic logical operators. The expression

P(x) => Q(y) equals NOT(P(x)) OR Q(y).

We observe that the IMPLIES expression evaluates to false when the left operand P(x) is

true and the right operand Q(y) is false. The expression evaluates to true for all other values

of P(x) and Q(y). The list of possible scenarios when the expression evaluates to true is as

28

where P(x) is true, because the NAND expression is true whenever P(x) is false, regardless

of value of Q(y). A similar argument holds for Q(y) depending on whether y is driving or

driven variable. Table 3.3 gives the scenarios generated when the NAND expression is false.

P(x) Q(y) SCENARIOS

Non-Controllable Non-Controllable 1. P(x) = false AND Q(y) = false
2. P(x) = false AND Q(y) = true
3. P(x) = true AND Q(y) = false

Non-Controllable Controllable 1. P(x) = false AND Q(y) = true

Controllable Non-Controllable 1. P(x) = true AND Q(y) = false

Controllable Controllable 1. P(x) = false AND Q(y) = false
2. P(x) = false AND Q(y) = true
3. P(x) = true AND Q(y) = false

Table 3.3: Scenarios for NAND operator when expression is evaluated to true

When the NAND expression is false, the only test scenario that is generated is :

(P(x) = true) AND (Q(y) = true)

We �nd that considering the driving and driven variables does not help reduce the number

of test scenarios. This is because, regardless of whether the operands are driving or driven

variables, the expression evaluates to false only when both the operands evaluate to true. So

the tool generates the single test condition as indicated above.

The NOR Operator

The NOR operator functions as the negation of OR operator. The NOR expression evaluates

to true only when both the operands are false, and the expression evaluates to false when

either or both of operands are true. Hence the list of possible test scenarios to evaluate the

27

The XNOR Operator

The XNOR expression evaluates to true when both its operands are true, or when both

operands are false. From this property, we enumerate the list of possible test scenarios when

the XNOR expression is true.

(P(x) = false) AND (Q(y) = true)

(P(x) = false) AND (Q(y) = true)

When the XNOR expression is false, the scenarios generated are :

(P(x) = false) AND (Q(y) = false)

(P(x) = true) AND (Q(y) = true)

We then examine the driving and driven values for XNOR expression. We derive that if

only one of the predicates is controllable and the other non-controllable, or when both are

non-controllable, we need to consider both the test scenarios.

The NAND Operator

The NAND operator is the negation of AND operator. Hence, the NAND expression evalu-

ates to true when either or both the operands are false. When the expression is true the list

of possible test scenarios is as enumerated below :

(P(x) = false) AND (Q(y) = false)

(P(x) = false) AND (Q(y) = true)

(P(x) = true) AND (Q(y) = false)

Considering the driving and driven variables reduces the number of test scenarios when (i)

P(x) is non-controllable and Q(y) is controllable; and (ii) P(x) is controllable and Q(y) is

non-controllable. If P(x) can be controlled, then we are only interested in the test scenarios

26

The NOT operator is a unary operator and by de�nition the result of NOT operation on

a expression NOT(P(x)) is evaluated to true only if P(x) is false. The scenarios generated

when the expression is true or false are given below.

When the expression is evaluated to true the only scenario generated is :

(P(x) = false)

When the expression is evaluated to false the only scenario generated is :

(P(x) = false)

Considering the driving and driven variables does not help reduce the scenarios.

The XOR Operator

The XOR operator evaluates to true only when one of the operands is true and the other is

false. The scenarios generated when the XOR expression is evaluated to true are :

(P(x) = false) AND (Q(y) = false)

(P(x) = true) AND (Q(y) = true)

From the de�nition, we know that for an XOR expression to evaluate to true, the two

predicates should have contrasting values. Based on this property, we conclude that if only

one of the predicates is controllable, while the other is non-controllable, or when both are

non-controllable, we need to consider both the test scenarios.

When the XOR expression is false, the scenarios generated are :

(P(x) = false) AND (Q(y) = true)

(P(x) = false) AND (Q(y) = true)

25

the expression is true, the maximum possible scenarios that can be generated are :

(P(x) = false) AND (Q(y) = true)

(P(x) = true) AND (Q(y) = false)

(P(x) = true) AND (Q(y) = true)

If P(x) can be controlled, then we are only interested in the test scenarios where P(x) is

false, because a disjunction is always true whenever P(x) is true regardless of value of Q(y).

A similar argument holds when Q(y) is controllable and P(x) is non-controllable. The �nal

test scenarios generated when the OR expression is true are summarized in Table 3.2.

P(x) Q(y) SCENARIOS

Non-Controllable Non-Controllable 1. P(x) = false AND Q(y) = true
2. P(x) = true AND Q(y) = false
3. P(x) = true AND Q(y) = true

Non-Controllable Controllable 1. P(x) = true AND Q(y) = false

Controllable Non-Controllable 1. P(x) = false AND Q(y) = true

Controllable Controllable 1. P(x) = false AND Q(y) = true
2. P(x) = true AND Q(y) = false
3. P(x) = true AND Q(y) = true

Table 3.2: Scenarios for OR operator when expression is evaluated to true

The only scenario that is generated when the expression is false is :

(P(x) = false) AND (Q(y) = false)

This is because, regardless of whether the operands are driving or driven variables, the

expression evaluates to false only when both the operands evaluate to false.

The NOT Operator

24

When the value of expression is false, the list of possible test scenarios are :

(P(x) = false) AND (Q(y) = false)

(P(x) = false) AND (Q(y) = true)

(P(x) = true) AND (Q(y) = false)

Considering the driving and driven variables reduces the number of test scenarios when (i)

P(x) is non-controllable and Q(y) is controllable; and (ii) P(x) is controllable and Q(y) is

non-controllable. If P(x) can be controlled, then we are only interested in the test scenarios

where P(x) is true, because the AND expression is false whenever P(x) is false, regardless

of value of Q(y). A similar argument holds for Q(y) depending on whether y is driving or

driven variable. Table 3.1 gives the scenarios generated when the AND expression is false.

P(x) Q(y) SCENARIOS

Non-Controllable Non-Controllable 1. P(x) = false AND Q(y) = false
2. P(x) = false AND Q(y) = true
3. P(x) = true AND Q(y) = false

Non-Controllable Controllable 1. P(x) = false AND Q(y) = true

Controllable Non-Controllable 1. P(x) = true AND Q(y) = false

Controllable Controllable 1. P(x) = false AND Q(y) = false
2. P(x) = false AND Q(y) = true
3. P(x) = true AND Q(y) = false

Table 3.1: Scenarios for AND operator when expression is false

The OR Operator

By de�nition, the outcome of an OR operation evaluates to true if either of the terms i.e

either of operands in the OR expression is true. In a disjunction of form P(x) OR Q(y), when

23

both the predicates are driven variables, all the test scenarios are considered to evaluate the

expression.

Every expression in a Rosetta facet is a boolean expression. We generate the di�erent values

for the predicates in the expression by evaluating the expression to true. If the predicates

are complex, the rules are applied recursively and values for simple predicates, not involving

logical operators are generated, by evaluating them to true or false depending on the value

assigned to them.

The speci�c algorithm for test case generation is explained below in detail for each of the

logical operators.In the subsections P(x) and Q(y) are assumed to be predicates over the

parameters x and y. We consider single variable predicates for sake of simplicity. In reality,

predicates can have any number of variables, and will be handled properly by our tool. The

various values generated for the simple predicates P(x) and Q(y) when the expression is

evaluated to true and false are shown. If P(x) and Q(y) are complex predicates, then the

process is continued recursively.

The AND Operator

By de�nition, the outcome of an AND operation evaluates to true if both the terms i.e operands

in the AND expression are both true. If the AND expression is a pre-condition, we can

eliminate the test scenario because we have no values to observe for the expression.

The value of an expression depends on the requirements. If the value of an expression is true

then the only test scenario generated for the AND expression is:

(P(x) = true) AND (Q(y) = true)

We �nd that considering the driving and driven variables does not help reduce the number

of test scenarios. This is because, regardless of whether the operands are driving or driven

variables, the expression evaluates to true only when both the operands evaluate to true. So

the tool generates the single test condition indicated above.

22

tree. Then the corresponding test generation algorithm is used for each boolean operator

depending on its boolean value. The boolean value assigned to the operator determines if

the test scenarios should be generated to evaluate the predicate to true or false. The fol-

lowing subsections of this chapter explain how the scenarios are generated for all the logical

and relational operators in Rosetta. The expression from the object model is always evalu-

ated to true and the other sub-expressions are evaluated to true or false depending on the

requirement.

Rosetta
Specification

Parser Object
Model

Test Scenarios
Generator

Test Scenarios

Figure 3.1: Test Scenario Generation Process

Throughout the thesis, we use the terms driving and driven values to describe the input and

output parameters respectively. Inputs to the component are the parameters that drive the

system and the expected outputs corresponding to the driving values (inputs) are the driven

parameters. A predicate is a controllable predicate when the values of variables that make

up the predicate are driving values or can be controlled. A predicate is a non-controllable

predicate when the values of variables that make up the predicate are driven values or cannot

be controlled but are obtained by driving the system with the input parameters.

3.2.1 Logical Operators

Test scenarios are generated for expressions with logical operators using the canonical de�-

nition of each operator. First, all the test cases possible for an operator are listed according

to the truth-table de�nition of the operator. Test cases for which the expression evaluates

to true or false depending on requirements, are selected. The notion of driving and driven

values is then used to �lter out redundant test cases, if any from the selected ones. If all

the predicates of an operator are driving values, then we can eliminate the test scenarios

because we have no output values to observe for these driving values. On the other hand, if

21

in the implementation are detected when, given a test case that satis�es the input criteria,

the generated output does not satisfy the acceptance criteria. The input criterion may be as

speci�c as actual input values or as general as a range of values that the input parameters can

take. The acceptance criterion speci�es a value or range of values for the output parameters

that are acceptable to the system. The test scenarios, therefore, provide classes of tests to

be performed on the system.

3.2 Generation of test scenarios from speci�cation

Since all terms inside the facet are boolean expressions, test scenarios are generated by eval-

uating the expressions to true or false, depending on the requirements of a system. The

expressions are formed by joining variables and literals of various types with operators. We

use the multi-condition strategy as proposed by Myers [9] to generate the speci�c test con-

ditions from the expressions. According to this strategy, enough test scenarios should be

generated for the expression under test to take all possible values. For example, consider

an arithmetic expression on having an integer outcome. According to the strategy used,

test scenarios generated should be such that the outcome of the expression ranges from the

smallest integer to the largest integer. In case of boolean expressions the whole range of out-

comes is covered in the set of true and false.All Rosetta expressions are boolean expressions.

In the case where the outcome of an expression is known, the test case are generated to

satisfy this value. For example, if the known outcome of an expression is true, we generate

test scenarios, such that operands in the expression take all possible values, that make the

expression true.

The process of test scenario generation is summarized in Figure 3.1. The present Rosetta

suite has a parser that parses the speci�cation and generates an Object Model for the speci-

�cation. The expressions obtained from the object model are in the form of a tree structure.

If the expression is a formula then each node of the tree corresponds to operator and the

branches represent operands or predicates. Test scenarios generation is done by simple

traversal algorithm to determine the operator and its boolean value, at each level of the

20

Chapter 3

Generation of Test Scenarios

In this chapter we explain the methodology used to generate test scenarios from a Rosetta

speci�cation. Test scenarios are generated using the speci�cation based testing techniques.

The techniques used are discussed in detail in this chapter. We discuss the various operators

supported by Rosetta, and the technique used to handle each of these operators. We then

illustrate the test scenario generation process with simple examples.

3.1 Test Scenarios

The methodology that we use is an extension of implementation based testing techniques

applied to formal languages. Richardson, O'Malley and Tittle [3] have proposed a method-

ology to generate test scenarios from speci�cations in any axiomatic speci�cation language.

This methodology is an extension of implementation-based testing strategy applied to formal

speci�cations. It proposes that, a test scenario should be generated for each pre-condition

and post-condition pair. As explained in section 2.4, a test scenario consists of an input

criteria and an acceptance criteria. The pre-condition de�nes constraints upon the inputs to

the component, hence the input criteria is obtained from the pre-condition. Similarly, the

post-condition de�nes the constraints on the generated output for input values that satisfy

the input criteria. The acceptance criteria is hence obtained from the post-condition. Errors

19

In general test requirements are properties that must be satis�ed during testing. For example,

reaching statements are the requirements for statement coverage. In our work we refer to

test requirements as the requirements on test implementation and test coverage. They are

used to constrain the otherwise in�nite number of test cases that fall within a particular test

scenario. In this work, the test requirements are speci�ed by the user.

A test case or test vector is a general software artifact that includes test case input values,

expected outputs for the test case, and any inputs that are necessary to put the system

into the state that is appropriate for the test input values [1]. The speci�c values for the

input are obtained from the test requirements provided by the user. By evaluating the test

scenarios for a particular value of input, a description of output parameter for that speci�c

value of input is obtained. It is to be noted that the speci�c values of input should satisfy

the pre-condition.

Abstract test vectors are vectors that are generated from the user de�ned requirements and

the test scenarios. They are in Rosetta format and cannot be directly used on any kind

of implementation of a component where the speci�cation has been written and hence we

call them abstract test vectors. In this work, we translate abstract test vectors to WAVES

format.

Concrete test vectors have the same information as the abstract test vectors, like input values

and expected output values. They are obtained by simple translation of abstract test vectors.

The concrete test vectors are speci�c to some testing software. In our work, we translate the

abstract test vectors to a WAVES format.

18

The return state test conditions constrain values of both the input and output parameters.

In their paper Structural speci�cation based testing using ADL, [12] Chang, Richardson and

Sankar describe a method to develop test cases from Assertion Description Language (ADL)

speci�cations. They claim that their method complements traditional code based techniques

like statement coverage and branch coverage.

In their paper Test templates: A speci�cation-based testing, [11] Stock and Carrington de-

scribe a new method for speci�cation-based testing using test-templates and test template

frameworks. The test template frameworks deals with functional unit testing, that is, de�n-

ing and deriving tests from operations de�ned in the speci�cation. Their main strategy is

partition testing but the framework is
exible enough to incorporate other strategies too.

The framework also provides a platform to apply, classify and compare the results due to

the di�erent testing strategies.

Most of the algorithms for generation of test vectors, are aimed to detecting errors in the

implementation of a system with the main focus being functional testing. These algorithms

do not consider whether the implementation conforms to its speci�cation. The approach

presented in this thesis is di�erent. We generate test scenarios/vectors to test whether the

implementation conforms to the formal speci�cation of a system, without considering internal

details of the implementation.

2.4 Terminology

A test scenario or a test condition is a set of boolean conditions that provide constraints

on the values of input and output variables. The input criterion is a constraint on the

input parameters; it may be as speci�c as actual input values or as general as a range of

values that the input parameters can take. The acceptance criterion is a constraint on the

output parameters, and it speci�es a value or range of values for the output parameters that

are acceptable to the system. The test scenarios, therefore, provide classes of tests to be

performed on the system. Throughout the thesis we use the terms test scenario or a test

condition interchangeably unless explicitly stated otherwise.

17

class. The test-model referred above is a �nite-state machine that composes of a set of states

and a set of transitions among the states. Each state is obtained through the state-space

partition of a class. Each transition consists of a method that might change the value of an

object from source state to target state. Partition analysis to get the states mainly involves

the reduction of predicates into a disjunctive normal form, that gives a disjoint partition of

value spaces. While performing the partition of state-space of a class, the input space of

each method is also to be partitioned. While generating the test cases from the test-model,

either the �nite-state testing techniques could be used or the data-
ow testing techniques

could be used.

The main di�erence between the approach of the authors and the approach we take is as

follows; While they de�ne the test scenarios as a sequence of operations and the expected

result, we de�ne them as built of input and acceptance criterion, that is the set of input

data and the expected results. Hence, while they use the information from the test-model

that they build, to obtain the test scenarios, we use the expressions in the facets to obtain

ours.We obtain all this information from the user de�ned requirements while they derive the

test cases from the test-model that they build by partition analysis.

2.3.3 Other related work

In this section, we give a brief overview some of the other work being done in the area

of speci�cation-based testing. In their paper, Automating Test Case Generation from Z

speci�cations using Isabelle, [10] Helke, and Santen describe a way of automating test case

generation from Z speci�cations. They make use of the Isabelle theorem prover to automate

the generation of test cases. The Isabelle theorem prover is used to generate the disjunctive

normal form from the Z schemas, and using it to obtain and simplify the test cases.

For Assertion De�nition Language (ADL), two kinds of test conditions can be derived. They

are, call-state test conditions and return-state test conditions. Call state test conditions are

derived from the input conditions and they describe constraints on the input parameters

while the return state test conditions are derived from both input and output conditions.

16

user could provide some initial vectors in the requirements �le that can be evaluated to reach

a particular state. The methodology used to generate the test cases that conform to the full

predicate criteria described in their work is similar to the methodology we use. Di�erent

combinations of inputs are generated such that each predicate P in the Rosetta facet results

in true or false, depending on the requirement. They generate the test cases that make

the transition valid and invalid. Similar to our work an algorithm is run to identify and

remove the redundant test cases. We do not have the Transition-pair Coverage because we

are concerned with only a single transition and not all the transitions.

2.3.2 Testing object-oriented programs from formal speci�cation

Object-oriented software testing is generally performed at four levels:

1. Method-level testing - testing of an individual method in class.

2. Class-level testing - testing of interactions among components of an individual class.

3. Cluster-level testing - testing of interactions among objects.

4. System-level testing - testing the external inputs and outputs visible to the users of a

system

Objects in object oriented programming are based on data abstraction, that can be de�ned

at two di�erent levels. At the more abstract level, known as the speci�cation level, objects

are represented by object types. They specify only the expected interfaces and behaviors of

object. At more concrete level objects are represented by classes.

In their paper Test case Generation for Class-Level Object-Oriented Testing, [2] Tse and Xu

present a new technique to generate the test cases for class-level object-oriented testing. It

integrates the testing techniques based on algebraic speci�cations, model-based speci�ca-

tions, and �nite-state machines. In their approach, test cases contain various sequences of

method invocations with various test data. The test cases are generated from a test-model to

test the state-dependent scenarios on the behaviors of interactions among methods of a single

15

2.3 Related Work

2.3.1 Generating Tests from UML Speci�cations

In the paper, Generating Tests from UML speci�cations, [1] O�utt and Abdurazik describe

a way of generating test data from UML state charts. UML state charts are based on �nite

state machines and are used to represent the behavior of an object. The state of an object

is the combination of all attribute values and objects the object contains. This is similar to

what a state of an object means in Rosetta. The state of a facet is the combination of all the

parametized and internal variables. UML categorizes transitions into �ve types high-level,

compound, internal, completion and enabled transitions.The authors describe di�erent levels

of testing and they are as follows

1. Transition Coverage: The test set T must satisfy every transition in the speci�cation

graph.

2. Full Predicate Coverage:For each predicate P on each transition,T must include tests

that cause each clause c in P to result in a pair of outcomes where the value of P is

directly correlated with the value of c.

3. Transition-pair Coverage:For each pair of adjacent transitions, T contains a test that

traverses the pair in sequence.

The main entry point has three objects

1. a UML speci�cation parser

2. a full predicate test case generator

3. a transition-pair test case generator.

A pre�x generation algorithm is used in test case generation algorithms to create the values

necessary to reach a particular state. This is similar to the approach used in our work. The

14

by revealing speci�cation failures. Fault-based testing techniques postulate that faults

exist in the implementation and select test cases to detect those faults if they exist.

Even if the speci�cation is correct, these hypothesized faults may still be indicative of

faults that might be introduced in the implementation.

The following testing techniques treat the speci�cation as an oracle to be violated.

3. Oracle/Error-Based Testing

Oracle/Error-based testing applies error-based techniques to the implementation while

explicitly attempting to force a violation of a oracle in a speci�cation. A form of

oracle/error based testing is incompleteness testing where test cases are selected for

portions of input domain left unspeci�ed.

4. Oracle/Fault-Based Testing

Oracle/Fault-based testing focuses on detecting speci�c faults in the implementation by

transferring resulting errors to violate the speci�cation. For a potential fault, we select

the revealing condition up to a post condition that references an error and attempts

to force one of the source or the variant to satisfy the post condition and the other to

violate it.

We use the error-based testing technique mentioned above for the generation of test scenarios

from the speci�cation. We assume the Rosetta speci�cation that we have is correct and then

use generated test scenarios to generate the test vectors for particular values of input. Test

vectors provide us with expected outputs that are compared to the outputs of implementation

in the hope of uncovering errors. Our terminology is slightly di�erent from that used in their

work. They use the term test-case as we de�ne the term test-scenarios whereas we use the

term test-case to mean speci�c values given to the input variables.

13

2.2.2 Approaches to Speci�cation based testing

In their paper "Approaches to Speci�cation-Based Testing",[3] Richardson, O'Malley and

Tittle propose di�erent approaches to speci�cation based testing by extending a wide variety

of implementation based testing techniques to be applicable to formal speci�cation languages.

In the same paper the authors describe these approaches for the Anna and Larch speci�cation

languages.

According to the authors a test case consists of an input criterion and an acceptance criterion.

The input criterion may be as speci�c as actual test data or as general as a condition on

the input domain or output range. The output criterion is a condition describing whether

or not execution of this test case is acceptable or whether an error has been revealed.

The test data selection can be classi�ed as error based or fault based. Error based techniques

are used to reveal speci�c types of errors. Fault based testing selects test data that focus on

detecting particular types of faults where a fault is a mistake in the source code. The following

approaches are applicable to algebraic speci�cations, pre/post conditions, assertions and

procedural design languages. The speci�cation-based testing approaches discussed below

select test cases as they are applied to pre/post condition pairs.

1. Speci�cation/Error-Based Testing

Speci�cation/Error-based testing attempts to detect errors in the implementation that

derive from misunderstanding the speci�cation or errors in the speci�cation. The gen-

eral approach is to select the test cases that would detect potential errors in the rep-

resentation. Symbolic evaluation of speci�cation partitions the input space. The form

of a speci�cation partition depends on the type of speci�cation language. Evaluation

of a pre/post-condition language, partitions the domain by the pre-conditions while

evaluation of a algebraic speci�cation language selects speci�cation paths partitioned

by the procedural constructs.

2. Speci�cation/Fault-Based Testing

The goal of Speci�cation/Fault-based testing is to detect faults in the speci�cation

12

Logic

State-Based Continuous-Time

Finite-State Infinite-State

Discrete-Time

Figure 2.2: Domains and Interaction

program is written.

The relationship between speci�cations and testing includes ways that information derived

from a formal or informal speci�cation can be used to assist testing but also other issues

such as testability. This includes both dynamic testing, where we execute the implementa-

tion under test (IUT) and compare the output with that expected and static testing where

we compare the speci�cation and the code without actually executing the IUT. Speci�ca-

tion based veri�cation uses conventional testing methods where the program under test is

repeatedly stimulated and outputs and/or other values are observed and compared against

expected values. The bene�ts of using a formal speci�cation language when verifying are :

1. Test results are compared against a formal speci�cation, not a human interpretation

of a speci�cation document.

2. Powerful regression testing. Other methods tend to fall apart when the implementation

is changed. This happens because these methods compare the test against a "golden"

test, representing a particular correct test run.

Most of the research conducted in the area of speci�cation-based testing has been limited to

theory and there is a need for practical solution that addresses this concern.In our work, we

attempt to leverage some of this research and provide a tool that automatically generates test

vectors from high level formal speci�cations written in the Rosetta speci�cation language.

11

Facet schmidt_trigger(

input_voltage:: in real;

output_value :: out bit) is

/* state_variable */

b::bit;

begin state_based

/*first pre-condition */

pre1: (input_voltage > 0.0) AND

(input_voltage < 5.0);

/* first post-condition */

post1: (IF (input_voltage < 1.0)

THEN (b' = 0)

ELSE (IF (input_voltage > 4.0)

THEN (b' =1)

ELSE (b' =b)

ENDIF)

ENDIF;)

/* second post-condition */

post2: (output_value' = b');

end schmidt_trigger;

Figure 2.1: Schmidt Trigger Rosetta Speci�cation

2.2.1 Speci�cation based testing

The term speci�cation-based testing as used in the document, usually refers to testing

based solely on the speci�cation, i.e testing not using any information from the implementa-

tion.Speci�cation based testing o�ers many advantages in software testing. The speci�cation

of a software product can be used as a guide for designing functional tests for the product.

The speci�cation precisely de�nes fundamental aspects of a software, while more detailed

and structural information is omitted. Formal speci�cations provide a simpler, structured

and more formal approach to the development of functional tests than using non-formal

speci�cations. One advantage of producing tests from speci�cations is that the tests can be

created earlier in the development process, and be ready for execution before the program is

�nished or the system is built. Additionally, when tests are generated the test engineer can

�nd inconsistencies in the speci�cations, allowing the speci�cations to be improved before a

10

The basic unit of speci�cation is termed a facet. A facet is a model of a component or

system that provides information speci�c to a domain of interest. To support heterogeneity

in designs, each facet may use a di�erent domain model to provide domain-speci�c vocabulary

and semantics. A facet is a parameterized construct to encapsulate all Rosetta de�nitions

from basic unit speci�cations through components and systems. The de�nition of facets is

achieved by directly de�ning model properties or by combining previously de�ned facets.

The former technique allows users to choose a speci�cation domain and specify properties

that must hold in that domain. The latter technique allows users to select several models

and compose a system model that consists of elements from each facet domain. Vectors are

generated for the facets that are de�ned using the former technique. The form of a Rosetta

speci�cation can be understood by examining the Schmidt trigger functional speci�cation

facet from Figure 2.1. The speci�cation body is opened by the begin keyword immediately

followed by the speci�cation domain. Three terms are provided where one of them is the

pre-condition and the other two terms are post-conditions.

Di�erent domains are discrete time, continuous time, �nite state, performance constraints,

and, most recently testing domains. Figure 2.2 shows a collection of domains de�ned for

requirements and constraint modeling. Solid arrows in the �gure represent homomorphism

while the dashed arrows represent incomplete interactions. Rosetta allows designers to de-

velop and integrate speci�cations from multiple design domains using interaction. Descrip-

tion of domains and interactions is beyond the scope of this thesis.

2.2 Background on Speci�cation Based Testing

Much research has been done in the area of speci�cation-based testing, and the signi�cance

of test generation from formal speci�cation has gained wide acceptance in the industry

and the software engineering community as a whole. We use these research e�orts as the

basis of our test generation methodology. In this section, we discuss some approaches to

speci�cation-based testing.

9

Chapter 2

Background and Related Work

In this chapter we give a brief description of Rosetta as a speci�cation language and how it

is used to specify complex systems in an abstract way. We also discuss speci�cation based

testing and compare it with the implementation based testing. The di�erent approaches to

speci�cation based testing techniques are also discussed. Finally, we discuss some related

work being done in speci�cation based testing.

2.1 Rosetta Speci�cation Language

Rosetta is a System Level Design Language used to design systems at higher levels of abstrac-

tion [6]. As system complexity increases, the need to specify a system at higher abstraction

levels becomes important. Rosetta provides some important design characteristics: (i) Inte-

gration of information from multiple heterogeneous sources; (ii) The ability to work at high

levels of abstraction with incomplete information; and (iii) Support for model composition.

By allowing the user to de�ne and compose models, it allows
exibility and heterogeneity

in design modeling and supports meaningful integration of models representing all aspects

of system design. Developed from concepts from the formal veri�cation and functional pro-

gramming communities, Rosetta allows designers to develop and integrate speci�cations from

multiple design domains.

8

itations of current implementation with the future work to be done in order to remove

the limitations in the current work is given.The main contribution through this thesis is a

methodology to generate test scenarios and abstract test vectors from Rosetta speci�cations.

7

function and on execution of this matlab function, the actual input values are obtained.

The requirements could also contain some initial vectors so that the system reaches a par-

ticular state before each test case. In this case before driving the system for a particular

test case, the system is driven to reach the required state by going through the set of vectors

provided by the user.It is to be noted that the values of only the input variables can be

controlled by the user. Hence test requirements are speci�ed only for the input variables.

The test vectors that are generated from the scenarios and the user-de�ned requirements are

in our own generic format with suÆcient information to translate them into a format speci�c

to some testing software. In our case, we translate the vectors into WAVES format.

1.4 Organization of the thesis

Chapter 2 provides background on the Rosetta language. It gives an overview of how the

Rosetta facets provide the declarative speci�cation capability. We also discuss some of

relevant research work done in the area of speci�cation-based testing and test case selection.

In Chapter 3, details on the strategies used to generate test scenarios from the expressions

that occur in the Rosetta facets are provided. We discuss the various operators supported

by Rosetta, and the algorithm used to generate test conditions for each of these operators.

The implementation of these strategies is explained with some examples.

Chapter 4 describes the generation of abstract test vectors and concrete test vectors. We �rst

explain how the requirements speci�ed in Rosetta are used to know what values the variables

are likely to take and how many tests need to be performed for adequate coverage. We then

explain how test scenarios are combined with the test requirements to generate abstract test

vectors. Finally, the translation of abstract test vectors, represented in Rosetta, into WAVES

test vectors for VHDL simulation is described.

We demonstrate how the test scenarios and the test vectors given the test requirements

are generated for some Rosetta speci�cations like alarm clock, satellite communication and

Schmidt trigger in chapter 5. In Chapter 6, a summary of our contributions and the lim-

6

Object Model From

Rosetta
Specification

Multi-Condition /
Boundary Testing

Strategy

Test
Scenarios

User Defined
Requirements

Evaluation of

Scenarios

Matlab

Abstract Test
Vectors

 Translator

WAVES
Test Vectors

Figure 1.2: Test case Generation Information
ow

A test scenario is a set of boolean conditions that are constraints on the values of input and

output parameters. A number of strategies can be used to generate the scenarios for the

expressions in the facet. We use the multi-condition strategy for the logical expressions. For

the relational expressions the boundary testing strategy is used.

The scenarios generated and the user de�ned test requirements are used to generate the

abstract test vectors. The test requirements specify the coverage requirements of a tester,

and are used to restrict the number of test vectors that are generated.In addition to the test

requirements the boundary testing strategy is also employed to determine the test cases.The

number of test cases generated depends on the test coverage required by the user.

When the requirements are speci�ed for some property of input rather than the input val-

ues, the user has to provide information about the generation of actual input values. This

information has to be speci�ed in Rosetta facet. The Rosetta facet is translated to a matlab

5

Rosetta

Spec
Parser Object

Model
Vector

Generator

Test
Vectors

Test

Requirements
WAVES

Test Vectors

WAVES

 Generator

Implement

in VHDL

VHDL

Implementation

Validation Of

Implementation

Implementation

Of Requirements

Testing of

Implementation

Correctness of

ImplementationSystem Inputs

Existing Tools

Proposed Tools

Figure 1.1: Testing of implementation against the speci�cation

test requirements given by the user are speci�ed for some property of input.The generation

of speci�c test cases from the test scenarios given the test requirements by the user is also

addressed.

1.3 Proposed Solution

The task of generating the test vectors is divided into three distinct phases - generation

of test scenarios, generation of abstract test vectors from the scenarios, and translating the

abstract vectors obtained into WAVES [4] format. Figure 1.2 gives an overview of test vector

generation process.

The Rosetta parser builds the object model from the Rosetta speci�cation of a component.

4

A system can be analyzed formally and its behavior can be predicted even before the system

is built. This enables the identi�cation of potential problems very early in the design cycle

of a system.

Rosetta [6] is a system level design language used to design systems at higher levels of ab-

straction. Rosetta models individual facets, that can be combined using boolean operators,

to model the complete system. We have established the importance of testing the imple-

mentation of a system against the speci�cation. This brings the need for a Rosetta tool that

has the capability of using a speci�cation to generate test cases. A test case includes the

values of input variables and the expected output when the implementation is run using the

values of input variables.The system is driven with selected input test data, and the output

of simulation is monitored and veri�ed against the expected output. If the two outputs

match, then the test is a success, else it indicates an error in the system. Figure 1.1 explains

in detail the approach we take to test if the implementation conforms to the speci�cation

of a system. In the �gure, the implementation of the system is assumed to be in VHDL,

but could theoretically be any simulation language. The correctness of an implementation

is tested by comparing the expected output values generated from the speci�cation with the

outputs obtained from the implementation.

1.2 Problem statement

This thesis addresses the problem of automatically generating the test cases for systems

speci�ed in Rosetta. This is done by generating the test scenarios from the speci�cation.

The test scenarios give us a set of values for the input variables. Unfortunately, this set

of values could be huge and it is not feasible to exhaustively test the system. Hence, it is

necessary to know what values the variables are likely to take and how many tests need

to be performed for adequate coverage. These are called the test requirements and are

provided by the user. These test requirements given by the user might also include some

initial vectors that drive the system to a particular state before the test case is executed. We

also address the problem of generating the actual values for the input variables, when the

3

been added does not interfere, or cause problems, with previously tested code. Thus black

box testing establishes whether the implementation of component satis�es its requirements.

It makes use of speci�cation based testing strategies.

In implementation based testing techniques, the intended behavior of implementation is

overlooked. The disadvantage of this approach is that while it may help verify that the

implementation is correct, it does not ensure that the correct system has been implemented.

This can be overcome by using speci�cation based testing techniques. The relationship be-

tween speci�cations and testing includes ways where information derived from a formal or

informal speci�cation can be used to assist testing but also other issues such as testabil-

ity. This includes both dynamic testing, where we execute the implementation under test

(IUT) and compare the output with that expected and static testing where we compare the

speci�cation and the code without actually executing the IUT.

Speci�cation based veri�cation uses conventional testing methods where the program under

test is repeatedly stimulated and outputs and/or other values are observed and compared

against expected values. The advantages of speci�cation based veri�cation are:

1. It helps testing intended behavior as well as actual functionality.

2. It helps to expose any ambiguities or inconsistencies in the speci�cations.

3. Test cases can be designed as soon as the speci�cations are complete.

4. Tests are done from a user's point of view

1.1 Motivation

As systems become increasingly complex, the design process e�ectively uses abstraction to

manage the complexity. Such abstraction techniques initially result in a series of operational

decomposition techniques, used for small or medium scale systems. For complex systems,

declarative speci�cations are gaining acceptance in the industry. The formalisms provide

better understanding of system requirements and requisite rigor for mission-critical systems.

2

Chapter 1

Introduction

A typical development process for reliable systems consists of cyclic iterations of requirements

analysis, system design, implementation, and validation. Such a development process should

support validated transitions from requirement speci�cations to system models and from

abstract design speci�cations to detailed implementation. There are two common methods

for validation, namely veri�cation and testing. In the face of complexity as well as acceptance

problems in industry as encountered by veri�cation techniques such as model checking and

theorem proving, there is increasing need for testing. Traditionally, there are two main

approaches to testing: white-box (or structural) testing and black-box (or functional) testing.

White box testing is carried out using implementation-based testing techniques. The control

structures of procedural design are used to derive the test cases. These test cases are such

that they test each independent path of implementation at least once. They also test the loop

and logical-decision constructs along with the internal data structures. Hence, white box

testing ensures that the algorithm to build the component has been implemented correctly,

in terms of data and control structures. Black box testing is based upon systems level

requirements.

Black box testing is used to �nd whether valid inputs are accepted and the obtained outputs

conform to the requirements. Exhaustive black box testing is usually impossible, thus a small

set of tests is used. Regression tests should also be run to be sure that any new code that has

1

List of Tables

3.1 Scenarios for AND operator when expression is false 23

3.2 Scenarios for OR operator when expression is evaluated to true 24

3.3 Scenarios for NAND operator when expression is evaluated to true 27

3.4 Scenarios for NOR operator when expression is evaluated to false 29

3.5 Scenarios for IMPLIES operator when expression is evaluated to true 30

3.6 Truth table for the If-Then-Else operator . 30

3.7 Test conditions for relational operators . 32

iv

List of Figures

1.1 Testing of implementation against the speci�cation 4

1.2 Test case Generation Information
ow . 5

2.1 Schmidt Trigger Rosetta Speci�cation . 10

2.2 Domains and Interaction . 11

3.1 Test Scenario Generation Process . 21

3.2 Tree Structure for the expression (A AND B) OR (D') 33

4.1 Requirements Package . 38

4.2 Matlab Package . 40

4.3 Test Cases when initial vectors are speci�ed in Requirements 42

4.4 Algorithm for generation of Test Vectors . 43

4.5 WAVES-VHDL Simpli�ed Test Bench Con�guration. 44

4.6 WAVES test vectors for Schmidt Trigger . 45

5.1 Structural representation of the Alarm Clock 48

5.2 Alarm Clock Speci�cation . 49

5.3 Alarm Clock Speci�cation . 50

5.4 Alarm Clock User-De�ned Requirements . 51

5.5 Alarm Clock WAVES �le . 53

5.6 Requriements for Satellite Communication Example 57

5.7 Schmidt Trigger Test Scenarios . 61

5.8 Test requirements for Schmidt Trigger . 62

iii

4 Test Requirements and Test Vectors 37

4.1 Test Requirements . 37

4.1.1 Generic Requirements . 38

4.1.2 Requirements for a property of the input 39

4.1.3 Initial Vectors and Test Cases . 40

4.2 Generation of Abstract Test Vectors . 41

4.3 Conversion of Vectors to WAVES Format . 43

4.3.1 Background on WAVES . 43

4.3.2 Conversion . 45

5 Examples 46

5.1 Alarm Clock . 46

5.1.1 Functionality . 46

5.1.2 Test Scenarios . 48

5.1.3 Initial Vectors and Test Cases . 51

5.2 Satellite Communication Preprocessor System 53

5.2.1 Functionality . 53

5.2.2 Requirements . 56

5.3 Schmidt Trigger . 60

5.3.1 Functionality and Speci�cation . 60

5.3.2 Generated Test Scenarios and Test Requirements 61

5.3.3 Test Vectors . 63

6 Summary and Future Work 64

6.1 Summary . 64

6.1.1 Evaluation . 66

6.2 Future Work . 66

6.3 Conclusion . 67

ii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem statement . 3

1.3 Proposed Solution . 4

1.4 Organization of the thesis . 6

2 Background and Related Work 8

2.1 Rosetta Speci�cation Language . 8

2.2 Background on Speci�cation Based Testing 9

2.2.1 Speci�cation based testing . 10

2.2.2 Approaches to Speci�cation based testing 12

2.3 Related Work . 14

2.3.1 Generating Tests from UML Speci�cations 14

2.3.2 Testing object-oriented programs from formal speci�cation 15

2.3.3 Other related work . 16

2.4 Terminology . 17

3 Generation of Test Scenarios 19

3.1 Test Scenarios . 19

3.2 Generation of test scenarios from speci�cation 20

3.2.1 Logical Operators . 21

3.2.2 Relational Operators . 31

3.3 Implementation Details . 33

i

Abstract

Implementation based testing techniques select test data based on the information obtained
from the implementation. They tend to ignore the intended behavior of a system and
focus on the actual behavior [3]. Speci�cation-based veri�cation uses conventional testing
methods where the program under test is repeatedly simulated and outputs and/or other
values are observed and compared against the expected values. Selecting test data from the
speci�cations enables testing intended behavior as well as actual functionality [3]. Testing
the implementation against the speci�cation ensures that the implementation satis�es its
speci�ed functionality. We thus try to ensure that the correct system has been built.

In this thesis, we present a methodology for generating test scenarios and test vectors from
Rosetta speci�cations. The methodology used is derived from speci�cation based testing
techniques that are an extension of implementation based testing applied to formal speci�-
cation languages. This is done by generating test scenarios from the speci�cation giving us a
set of values for input variables. Unfortunately, this set of values could be huge and it is not
feasible to exhaustively test the system for each of these values. Actual values that an input
variable can take are obtained from user de�ned requirements. These test requirements given
by the user might also include some initial vectors that drive the system to a particular state
before a test case is executed. When the requirements provided by the user do not specify
the actual values for input variables, we use Matlab tool to generate the actual values of
input variables.

Abstract test vectors are generated from user de�ned requirements and test scenarios. These
abstract test vectors, represented in Rosetta, can be directly translated into concrete test
vectors that are used as speci�c inputs to simulation runs. The mechanism to translate
the generated test cases into a format that is speci�c to some testing software is also ad-
dressed. We transform the abstract Rosetta vectors into WAVES test vectors suite for VHDL
simulation.

Acknowledgments

I would like to thank Dr. Perry Alexander, my advisor and committee chairman, for his
guidance and support through this project. I am thankful for the suggestions, and freedom
that I received during the course of this work. I would also like to thank him for providing
me with an opportunity to work under him and for guiding me through my graduate studies.

I would like to thank Dr. Jerry James and Dr. David Andrews for consenting to be on my
committee.

I would also like to thank all the members in SLDG group for their support. Thanks to all
and sundry who have made my stay and experience in Lawrence a memorable one.

4

To my parents

c
 Copyright 2001 by Srinivas Akkipeddi

All Rights Reserved

Advanced Test Vector Generation from Rosetta
by

Srinivas Akkipeddi

B.E. (Electronics & Communications Engineering),
University of Allahabad, Allahabad, India, 1999

Submitted to the Department of Electrical Engineering and Computer Science and the
Faculty of the Graduate School of the University of Kansas in partial ful�llment of the

requiremet for the degree of Master of Science

Professor in Charge

Committee Members

Date Thesis Accepted

