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ABSTRACT 

There is currently a strong push toward improving space-borne radar technology due 

to several advantages provided, the most important being the ability to achieve global 

coverage. Yet due to the inherent tradeoff between size, weight and power, relatively 

few space-borne radars have been implemented. One proposed approach to mitigate 

this space-size-power tradeoff was to implement a cluster of satellites called a 

constellation. But the disadvantage of a constellation of formation-flying satellites is 

that the array formed by the constellation will be sparsely populated, three-

dimensional, and non-uniformly spaced, so specific methods have to be developed for 

processing of the data obtained from them. Three filters were proposed so far, the 

matched filter, maximum-likelihood filter (ML), and minimum mean-squared error 

(MMSE) filter for processing. But each of these filters pose their own problems. The 

Matched filter is unable to eliminate measurement error due to clutter, while the ML 

filter is unable to minimize error due to noise, and the MMSE filter though being able 

to give a good estimate has inherent computational complexities. So a new method is 

needed to process the obtained data as efficiently as the MMSE while being able to 

reduce the computational problems inherent in it. In this thesis, we implemented 

Kalman Filter (KF), an iterative approach to MMSE, to minimize the processing load. 

The developed KF is tested for different real-time SAR applications and for different 

target scenarios. KF is fully optimized and many tradeoff scenarios are proposed 

between the processing load and the accuracy of the estimate. Finally, parallel 

processing has been implemented for distributing the computational load.
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1. INTRODUCTION AND MOTIVATION 

There is currently a strong push toward improving space-borne radar 

technology. This is due to several advantages provided by space-borne radar, the most 

important of which is the ability to achieve global coverage. Moreover space-borne 

radars do not require refueling or a monitoring crew and are also not susceptible to 

any military threat or bad weather conditions. Yet relatively few space-borne radars 

have been implemented due to the many technical challenges associated with this 

task. The most significant being the tradeoff between size, weight and power. In order 

to compensate for the extreme distances from targets, a space-borne radar has to 

generate and transmit sufficient energy. The relatively long wavelengths of the 

microwave region result in comparable apertures, which are physically large. Not 

only does this increase sensor weight but also additionally makes deployment of these 

large structures problematic.  

Other factors requiring large apertures are ambiguity and resolution. For 

Synthetic Aperture Radar (SAR), the minimum antenna size is governed by the 

minimum SAR antenna area constraint. Complying with this constraint ensures the 

range-Doppler ambiguities are not illuminated.  Moreover, as antenna beam-width 

and size are inversely related, a large antenna can only illuminate a small region. So, 

for global coverage more number of visits are required to get more information about 

a particular region of interest. One approach to mitigate the space-size-power tradeoff 

is to implement a cluster of satellites called a constellation. Each satellite has a 

coherent receiver, and the constellation flies in formation to create an antenna array. 
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The individual satellites in this concept are small, with relatively small apertures; 

hence, they are termed microsats. The data from each microsat and the spatial 

sampling of the constellation are combined to form a single, virtual radar.  

Several advantages are achieved by breaking the radar system into multiple, 

free-flying components. The effective aperture of the system is still determined by its 

total energy-collecting area, but that area is now divided between many satellites. The 

sum of the aperture sizes of all the satellites determines the total effective aperture of 

the system, but it is more cost effective to launch and deploy a constellation of 

formation-flying microsats than to launch a similar monolithic satellite. The second 

advantage is in the added spatial sampling. For SAR, it is possible that the spatial 

samples obtained from multiple receivers can be used to distinguish between range-

Doppler ambiguities since ambiguous cells have different angles of arrival. The 

increased illumination area results in a higher search rate without sacrificing the 

angular resolution necessary for detecting slow-moving targets. Other advantages of 

satellite constellations include graceful performance degradation and ease of 

replacing or upgrading satellites. 

The disadvantage of a constellation of formation-flying satellites is that the 

array formed by the constellation will be sparsely populated, three-dimensional, and 

non-uniformly spaced. It may be possible to temporarily propel the microsats into a 

regular, well-formed pattern, but the amount of propulsion necessary to maintain a 

regular formation puts this option beyond any reasonable fuel budget. Therefore, the 

radar designer has essentially no control of the array structure formed by the 
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constellation except, possibly, for some input about the general, overall size of the 

constellation. The question now becomes what is the best method for processing this 

data obtained from sparsely populated multiple aperture spaceborne radar. 

Research has been done to develop algorithms for processing of this sparsely 

populated multiple aperture spaceborne radar [2, 3, 4, 6, 8]. Three filters have been 

proposed so far, the matched filter, maximum-likelihood filter, and minimum mean-

squared error filter. Even though the matched filter is able to maximize the received 

energy with respect to noise, it is unable to minimize the error due to presence of 

clutter in target response. So, if the responses from the illuminated targets are 

significantly correlated, a correspondingly large error will result. Generally, for the 

sparse array case, the responses of some resolution cells will be significantly 

correlated, and thus a different linear processor must be implemented. Some earlier 

work has been done to develop a simulator for multi-aperture spaceborne radar [7]. 

The maximum likelihood (ML) estimator when applied to the present scenario 

is able to minimize the error due to clutter, where clutter is defined as responses from 

all other resolution cells. But it does nothing to minimize the error due to noise. As a 

result the estimate error (i.e., the SAR image) quickly degrades as measurement SNR 

declines.  

Given that some a priori knowledge of the radar SNR is available, a minimum 

mean-squared error estimator can be implemented. This estimator is the discrete 

implementation of a wiener filter and minimizes the estimate error due to both noise 

and clutter. In other words if the matched filter maximizes signal to noise, and the 
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ML estimator maximizes signal to clutter, the MMSE estimator can be said to 

maximize signal to interference, where interference is defined as the summation of 

both clutter and noise energy. Accordingly, this estimator provides SAR images 

superior to both correlation and ML processing for all SNR.  

The only disadvantage of the MMSE processor is the huge additional 

complexity in determining the linear estimator. Additionally, for large problems, the 

matrix inverse operation required to implement the MMSE estimator is very 

problematic. Especially in the field of radar signal processing computing the inverse 

of the large matrices can really slow down the processing speed. An iterative 

implementation of the MMSE algorithm can be developed where the data vector is 

split into smaller segments to reduce processing time.  

So a Kalman filter (KF) algorithm, an iterative implementation of the MMSE 

estimator is proposed, developed, analyzed and optimized. It has been shown that the 

processing speed can be decreased, by breaking the data vector into an optimal 

number of segments. It had also been proposed, that the overall estimation error could 

be decreased by implementing a KF. The KF has been thoroughly analyzed for 

different kinds of target scenarios, for different SNRs, for different number of 

receivers and for different initial values for the error correlation matrix.  

Much work has been done to optimize the overall KF algorithm and to 

decrease the processing time even further. The order of matrix multiplications has 

been chosen in an optimal way so as to decrease the overall computations required, 

thereby reducing the processing time. A number of different ways have been explored 
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to decrease the huge number of computations required for operations related to the 

error covariance matrix. Simulations are done to analyze the performance of the KF 

for different approximations made to the error correlation matrix so as to decrease the 

number of computations to a great extent. It has been shown that though it is possible 

to reduce the processing time by making approximations to the error correlation 

matrix, some loss is accrued in the accuracy of the final image. For some 

approximations made to the error correlation matrix it is possible to obtain a trade off 

between the accuracy of the final estimate and the processing time. 

The KF algorithm consists of 5 major matrix multiplications and 1 matrix 

inverse for a case where the data vector is undivided or for the MMSE case, with the 

matrix inverse operation constituting the dominant part of the overall processing time. 

But as the data vector is divided into smaller and smaller segments, the matrix 

multiplication operations become the dominant part. So if a procedure is implemented 

so as to decrease this dominance of matrix multiplications in the processing, then it 

will be possible to decrease the overall processing time. 

It is possible to speed up matrix multiplication operations by implementing 

distributed or parallel processing. But it is very difficult to implement existing 

algorithms for speeding up of matrix inverse operations. So algorithms are developed 

and implemented to perform matrix multiplications over parallel multiple processors. 

A Parallel Virtual Machine comprising of multiple fast to medium processors has 

been built to test the algorithms. Finally numerous simulations have been performed 
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to analyze and quantify the overall parallel processing of KF implementation of 

sparsely populated multiple aperture spaceborne radar. 

In the following chapters of this thesis draft, the methodology to implement 

parallel processing for KF for SAR processing of data obtained from sparsely 

populated, irregularly spaced, radar arrays is investigated. Chapter two begins with 

the basic radar model that is the foundation used to build effective signal processing 

algorithms. Brief information is given regarding the simulator developed earlier for 

multi-aperture spaceborne radar. The performance of matched, maximum-likelihood 

and minimum mean-squared error (MMSE) filters proposed earlier for SAR 

processing of sparse-satellite clusters is discussed. The need for the implementation 

of a new filter for the specific problem is discussed. 

In chapter three, a detailed description of the methodology used for 

implementation of KF for processing of data obtained from multi-aperture spaceborne 

radar is given. The performance of the developed KF algorithm for different 

scattering characteristics is investigated. A comparison study is made between the 

existing filters and the developed KF filter for different system parameters such as 

SNR and number of receivers is investigated. The improvement obtained in the data 

processing as result of the KF is discussed.  

In chapter four, a detailed analysis is presented regarding the performance and  

characteristics of the developed KF algorithm. The variation of the filter parameters 

with processing is discussed. Explanation is given regarding the experiments 

performed to observe the dependence of the final estimate on the input parameters to 
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the KF algorithm, and the results are discussed. Some significant conclusions are 

drawn regarding the optimal input parameters to the KF algorithm.  

In chapter five, different methods for decreasing the overall computation time 

and processing load of KF are investigated. Initially the order of the various matrix 

operations performed in the filter implementation is chosen in an optimal way to 

reduce the number of required computations. Timing plots are provided to signify the 

importance of the number of divisions made of the measurement vector for the 

different iterative implementations possible. Experimental results are presented to 

explain the different methods pursued to reduce the number of computations taken for 

operations relating to the error correlation matrix. A method to quantify the amount of 

measurements required for optimal processing is proposed. There are still many 

inherent problems relating to the computational load and processing time in the 

overall filter implementation. The enhancements that could be made to decrease the 

severity of the problems are discussed. 

In Chapter six, the necessity and use of parallel processing is discussed. The 

methodology behind the parallel implementation of KF is described in detail. An 

explanation is given regarding the changes made in the parallel implementation to 

accommodate the huge data sizes of the matrices present in the system.  Finally 

results are shown to represent the enhancement obtained in the overall data 

processing. In chapter seven, conclusions and recommendations for future work are 

made. 
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2. PROCESSING OF MULTIPLE-APERTURE SPACE-BORNE 

ARRAYS FOR WIDE-AREA SAR 

2.1 Signal Space Representation of the Radar System 

The radar geometry is shown in Figure 2.1 The space-borne system travels in 

the positive x-direction at velocity, v , and the array phase reference at time zero is 

located at the origin of the coordinate system. Therefore, assuming a flat earth, the z-

coordinate of all targets on the ground is h- , where h  is the altitude of the array 

phase reference. There is a single transmitter located at the array phase reference.  

 

Figure 2.1 Radar Geometry for a constellation of radar satellites with the flat earth 

approximation [8] 



9

In this section a signal-space representation of the radar system is presented 

[6]. The signal-space representation presented here helps in implementation of 

estimation algorithms through well-established linear algebra techniques and 

facilitates interpretation of the SAR filters that are used. The complex signal that a 

radar constellation measures, ( , )rr x t , can be written as [6] 

0( , ) ( ) ( , , , ) ( ) ( , ).r r
A T

r rr x t x h x x t t s t dt dA n x tg ¢ ¢ ¢= +ò ò                                                    (2.1) 

Where rx is the position vector to the receiver, x  is the position vector 

describing surface location, ( )0 xg  is the complex reflectance per unit area at x , 

( , , , )rh x x t t ¢  is a complex, time-variant function impulse response describing the 

propagation from the moving radar to the surface and back, ( )s t ¢  is the complex 

representation of the transmitted signal, T  is the time over which the transmitted 

signal exists, A  is the radar�s illumination area, and ( ),rn x t is complex noise. The 

integration in time is performed over the length of the transmit signal and is 

represented by ( , , )rx x tr  to get  

0( , ) ( ) ( , , ) ( , ).r r r
A

r x t x x x t dA n x tg r= +ò                           (2.2) 

( , , )rx x tr  is basically the complex response received by a receiver positioned 

at rx  due to an imaginary scatterer of unit magnitude positioned at x .Therefore, the 

response from a differential area on the ground, which depends on its position as well 

as the transmit signal, is characterized by ( , , )rx x tr  to within a multiplicative 

constant. The signal received at each receiver can be viewed as a superposition of the 
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responses from each point of the illuminated surface ( ( , , )rx x tr ), weighted by the 

complex scattering amplitude of the surface.  If the integration in (2.2) is 

approximated by a summation, the received signal becomes 

0( , ) ( ) ( , , ) ( , ).r i r i r
i

r x t x x x t A n x tg r= D +å                                                           (2.3) 

where AD defines a section of surface area that is less than or equal to the resolution 

of the radar. The index i includes all discrete areas AD  that are illuminated and ix is 

the position vector to the center of the ith discrete area. If the signal is sampled in 

space according to the position of the receiver in the constellation and in time 

according to the signal�s bandwidth, the mth sample at the nth receiver becomes 

0( , ) ( ) ( , , ) ( , ).n n n
r m i r i m r m

i

r x t x x x t A n x tg r= D +å                                                   (2.4) 

Finally, the entire set of measurements can be represented using matrix-vector 

notation 

                                             +r = P ng                                                     (2.5) 

where                             

                 

�1 1  
1 2

 �
1 2

1 1 �
1 2

0

[ ( , ) ( , ) ( , )]

[ ]

[ ( , ) ( , ) ( , )]
( )

N
r r r BT

M

N
r r r BT

i i

r x t r x t r x t

n x t n x t n x t
x A

g g g

g g

üï= ïïïï= ïïýïï= ïïï= D ïïþ

r

n

L

L

L

g                                          (2.6) 

The elements of r and n are the time sampled values of ( )r t  and ( )s t  for each 

receiver. ()�×  is the matrix or vector transpose, BT  is the received time-bandwidth 

product of a single receiver, and N  is the number of receivers in the constellation. 
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1 1 �
1 2

[ ]

[ ( , , ) ( , , ) ( , , )]N
i r i r i r i BTx x t x x t x x tr r r

ü= ïïýï= ïþ

P L

L
1 2 Mr r r

r
                                          (2.7)      

The response vector, ir , is the full set of measurements obtained by a radar at 

a discrete set of space and time locations, again due to a unit reflectance scatterer. M  

is the number of resolution cells of size AD . If the number of resolution cells M  

exceeds the number of measurements, NBT , then any estimate of the complex RCS 

(Radar Cross Section) vector g  will contain error due to ambiguities. 

The radar response can therefore be represented as a summation of the 

responses from each resolution cell ir , weighted by the complex scattering amplitude 

of each cell ig plus noise. This representation helps in direct application of linear 

algebraic techniques to the radar problem. 

Given that the radar parameters (e.g., position, velocity, wavelength, transmit 

signal, antenna pattern) are known accurately, the response vectors ir  are known a 

priori. The SAR problem is therefore to estimate the values in the RCS vector g , 

given some measurement vector r contaminated by noise. As seen in (2.5) the radar 

process can be approximated in a linear fashion. So an estimator is required that could 

be applied as a linear process. A weight vector, or filter, is found for each resolution 

cell. When the inner product of the received measurements is taken with each of the 

weight vectors, the estimated RCS vector �g is 

                                             � = Wrg                                                           (2.8) 

where                                       [ ]1 2� � � � Mg g g= Lg                                            (2.9) 
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and                                         1 2[ ]M= HW w w wL                                        (2.10) 

w i is the weight vector for the ith resolution cell, and ()×H denotes the 

conjugate-transpose operation. It is also important to note that this is the type of 

processing traditionally done in SAR, where iw is typically matched to measurements 

received from the i th resolution cell. Although some algorithms require more 

computation for finding each iw , the data-dependent process of calculating inner 

products is equivalent for all linear estimators. 

 

2.2 Single-Aperture SAR 

It could be observed from (2.8) that a necessary condition for estimating g  is 

that the dimension of r  must be equal to or more than that of g . In other words, to 

estimate the scattering ofN number of illuminated resolution cells (or image pixels), a 

minimum ofN number of independent measurements must be acquired by the radar 

system. In spotlight mode, SAR focuses on a particular area for some time, T .  

During that time, the maximum rate at which independent complex samples can be 

collected depends on the signal bandwidth B . Therefore, the maximum number of 

independent, complex samples that be collected is equal to BT , also known as the 

time-bandwidth product. The problem is that bandwidth and observation time are 

fixed by the resolution requirements of the system. The range resolution requirement 

determines bandwidth, and the azimuth resolution requirement determines 

observation time. Since it is only possible to image unambiguously as many targets as 
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there are independent samples, and since the number of independent samples is 

related through bandwidth and time to particular range and azimuth resolutions, the 

maximum imaging area is fixed. A simple example for a side-looking, spotlight SAR 

is presented in the following. Suppose the resolution requirements imposed on the 

radar are xD  and RD  in azimuth and range, respectively. Range resolution is given 

by [12] 

                                              
2
cR
B

D =                                                     (2.11) 

where c is the speed of light. For a 090 side-looking geometry where the azimuth 

extent is small compared to the range, the azimuth resolution can be approximated as  

                                          0 0 1
2
Rx
v T

lD »                                                   (2.12) 

where 0l is the wavelength at the center operating frequency, 0R is the average target 

range, and v is the along-track velocity of the radar platform. The area per pixel is 

then the product of the azimuth and range resolutions 

                                     0 0 1 .
4

c Rx R
v BT

lD D =                                            (2.13) 

The maximum area is the time-bandwidth product multiplied by the area per pixel 

                               0 0
max .

4
c RA BT x R

v
l= D D =                                      (2.14) 

As can be seen from the right hand side of (2.14), the maximum area that can be 

imaged is determined by range, wavelength, and platform velocity. 
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One solution appears to be increasing the time-bandwidth product. However 

(2.11) and (2.12) clearly show that the resolution dimensions are inversely 

proportional to bandwidth and time. For example, by increasing bandwidth and time 

each by a factor of two, it is possible to get four times as many independent samples, 

but the resolution pixels would be half the original size on each side. This would 

result in four times as many samples, but the area of each pixel would be four times, 

smaller, and the total area would remain the same.   

 

2.3 Multiple-Aperture SAR 

A necessary requirement for increasing SAR map area is to increase the 

number of independent samples, or amount of information, that is collected without 

modifying resolution cell size in the process. We have seen that this cannot be met by 

increasing bandwidth or illumination time. So isn�t there a way around this? Lets see, 

the basic requirement is to increase the amount of information collected, and we 

know that it not possible to increase the information collected by a single receiver. 

So, the only way that this problem could be solved is by adding more number of 

receivers. Since sensor resolution is determined by time (i.e., delay and Doppler) 

information, it is evident that additional spatial information can be used to increase 

the dimension of measured vector r . By adding more antenna apertures to the SAR 

system, each with its own receiver, angle of arrival information can be collected.  If 

N is the total number of receive apertures, then the number of independent samples 
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available to the system is now NBT . The maximum area is again the product of the 

number of independent samples and the area per pixel 

                             0 0
max 4

c RA NBT x R N
v

l= D D =                                  (2.15) 

which is N times larger than was possible with a single receiver. Furthermore, it is 

noted that the angle of arrival information is unique from the time and frequency 

information, making it possible to discriminate range-Doppler ambiguities.  

It should be noted that the minimum aperture area requirement that is 

associated with single aperture SAR is still retained in Multi-Aperture SAR. The 

advantage of the Multi-apertures is that this limit on aperture area does not limit the 

size of the illuminated area or the extent of the resulting image.   

 

2.4 Sparse Arrays 

The microsat concept calls for placing each receive aperture on its own, 

smaller satellite. Furthermore, the orbital dynamics of formation flying require the 

satellites to have significant, random spacing between them. Therefore, the microsat 

array is sparsely populated, and different spatial processing must be applied. It may 

be possible to temporarily propel the microsats into a regular, well-formed pattern, 

but the amount of propulsion necessary to maintain a regular formation puts this 

option beyond any reasonable fuel budget. So the apertures are randomly placed in 

three dimensions. It is assumed that the apertures have the same azimuth and 
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elevation angles at boresight; therefore, the satellites� illumination patterns on the 

ground are assumed to be identical.  

 

2.5 Correlation or Matched Filter 

The vector representation of the correlation filter for the ith resolution cell is 

the weighted conjugate transpose of its measurement vector 

                                        2
corr i
i

i

=w r
r

                                                    (2.16) 

where the superscript denotes that the filter is a correlation filter. If the matched 

filters for all resolution cells are placed into the columns of a matrix as shown in 

(2.10), then the matched-filter estimator, Wcorr , is given by 

                                           corr = -1 HW D P                                                 (2.17) 

where P is described in (2.7), and D is a diagonal matrix defined as  

                              

H
1 1

H
2 2

H

0 0
0 0

0 0 M M

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê úê úë û

D

L
L

M M O M
L

r r
r r

r r

.                                     (2.18) 

When the matched filter is applied to the measurement received, the estimate 

of the i th target is 

              ( ) ( ) ( )H H H

,

� corr corr corr
i i i i j j i

j j i

g g g
¹

= = + +åw r w w nr .                 (2.19) 

As could be seen in (2.19), the estimate error in the matched filtering 

operation comes from the last two terms. The last term represents error due to noise. 
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The matched filter minimizes this term, by maximizing the received energy with 

respect to noise. The matched-filter vector has the smallest magnitude of any filter 

vector that gives ig as its expected result. Therefore, the matched filter has the least 

noise power at its output of any linear filter.  

The second term in (2.19) represents the error due to the correlation of the 

weight vector with all other illuminated targets. The matched filter does nothing to 

minimize this term, and therefore, if the responses from the illuminated targets are 

significantly correlated, a correspondingly large error will result. Hence, it could be 

seen that the matched filter does not provide optimal estimates for cases that are 

clutter limited rather than noise limited. However, it is this lack of dependence on 

clutter that also makes the matched-filter vectors the least computationally expensive 

to generate.  

Generally, for the sparse array case, the responses of some resolution cells 

will be significantly correlated. As matched filter is unable to eliminate error due to 

clutter so it becomes very ineffective for this case. Thus, a different linear processor 

must be implemented.  

 

2.6 Maximum-Likelihood Filter 

The Maximum Likelihood (ML) estimator provides the estimate of g that 

maximizes the likelihood function ( )p rg , where ( )p rg is the conditional 

probability density (pdf) of r given g and is given as  
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( ) ( ) ( )11 1exp .
22

H
n

n

p
p

-é ù
= ê- - - ú

ê úë û
r P K r P

K
r g gg                                          (2.20) 

Using (2.20), the maximum-likelihood (ML) estimator is obtained by 

maximizing the argument of the exponential function 

                              ( ) ( )11max .
2 n

-- - -Hr P K r P
g

g g                                (2.21) 

The ML estimator then becomes  

                                  ( ) 11 1.ml n n

-- -= H HW P K P P K                                      (2.22) 

If it is assumed that the noise samples are independent, then the noise covariance 

matrix is diagonal 

                                             2
n ns=K I                                                       (2.23) 

where I is the identity matrix. The ML estimator then reduces to  

                                             ~1
ml =W P                                                      (2.24) 

where ~1( )×  denotes the pseudo inverse operation. The inverse in this case is a pseudo 

inverse, since the dimension of r exceeds that of g .  

The estimate of the ith pixel�s RCS due to the ML filter is then  

                       ( ) ( )� .ml ml
i i i ig g= = +

H H
w r w n                                           (2.25) 

Comparing the forms of (2.25) and (2.19), it is seen that the clutter term is 

absent in (2.25). The last term in (2.25) however, becomes important. The pseudo 

inverse operation is basically a de-convolution operation, and generally results in 

inferior performance for the single aperture SAR. This is due to the fact that for a 
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single aperture radar the dimension of r is not significantly more than that of g  

resulting in not so well conditioned P matrix. If P is ill conditioned (close to 

singular), then the pseudo inverse operation is not dependable. However, for multi-

aperture SAR, the dimension of the measurement vector r can significantly exceed 

that of g so that P  is generally well conditioned.  

The accuracy of the estimate obtained by ML filter is largely dependent on the 

SNR. For high SNR cases the processor finds a weight vector that is orthogonal to the 

responses of all other pixel targets, thus eliminating the clutter. However, since this 

orthogonal filter does nothing to minimize noise, the processing performance 

diminishes as SNR drops.  Thus, SNR and the condition of P  matrix become crucial 

factors in determining the accuracy of the estimate obtained through the ML filter. 

There is also a huge increase in the computational load required to calculate W due to 

the pseudo inverse operation.  

An ideal processor therefore would maximize the Signal-to-Interference Ratio 

(SIR), where interference is defined as the sum of both clutter and noise energy. 

 

2.8 MMSE Filter 

Given that a priori knowledge of the radar SNR is available, a minimum 

mean-squared error estimator can be implemented.  The MMSE filter maximizes the 

SIR and acts as an ideal processor. The MMSE filter therefore could be said to be the 

mathematically optimum compromise between the correlation and ML filters. 
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The derivation of the linear MMSE filter is based on the orthogonality 

principle, and could be finally written as [15] 

                    ( )mmse
é ù é ù é ù= E E + Eë û ë û ë û

H H H H HW P P P nngg gg                      (2.26) 

If the elements of the RCS vector, g , are assumed to be independent with 

identical statistics, and é ùE ë û
Hnn is recognized as the noise covariance matrix, nK , then 

(2.26) reduces to  

                              2 2 ~1( )mmse t t ng g= +H HW P PP K                                    (2.27) 

where the expected value of the squared RCS magnitude for each target is 

2 .t i ig g gé ù= E ë û
H    

     Some important insight gained from (2.27) about the behavior of the 

MMSE filter. First, in a low-noise or zero-noise case, nK will be negligible and 

mmseW  becomes 

                            ( )~12 ~1 ~1
2

1
mmse t

t

g
g

» =H HW P P P P                                (2.28) 

which is the same for the ML filter. In the low noise case, therefore, the MMSE filter 

maximizes SCR.  However, in high-noise case, nK dominates and mmseW  becomes 

                                  
2

2 1
2
t

mmse t n
n

gg
s

-» =H HW P K P                                     (2.29) 

It could be seen from (2.29) that the MMSE filter vector is in similar direction 

to that of the Matched-filter vector for low-SNR case. An important difference, 

however, is that the MMSE filter becomes inversely proportional to the noise 
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variance. Hence the magnitude of the MMSE filter approaches zero, as the noise 

variance approaches infinity. Therefore it is inherent in the equation for the MMSE 

filter that in the presence of overwhelming noise, it is best to estimate the RCS values 

not by the measurements but by the statistical properties of the targets. 

Though MMSE filter gives good results at both low SNR and low SCR 

scenarios, the major problem with it is the huge computation and processing load 

introduced in the system due to the inverse. The problem is hugely aggravated in 

radar signal processing where huge amounts of data makes the computation of inverse 

a very difficult and time consuming process. Taking this into consideration, an 

iterative implementation of the MMSE algorithm, known as Kalman Filtering is 

developed and investigated in the coming sections. Moreover, as there is a possibility 

in Kalman Filtering to model the uncertainty in the parameter that is to be estimated, 

it is expected that there will be an overall decrease in the error of the estimate. 
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3. KALMAN FILTER IMPLEMENTATION 

The main motivation factor behind the development and implementation of 

KF to data obtained from sparse aperture radars is to decrease the computation load 

inherent in the MMSE filtering while being able to obtain similar or even better 

estimates in all types of SNR and SCR scenarios. KF is basically an iterative 

implementation of the MMSE filtering, thereby reducing the complexity involved 

with calculating inverse for a huge matrix. In this section a brief review of the 

Kalman Filter Theory along with a detailed explanation of the implementation of KF 

for the present scenario is given. The performance of the developed KF along with a 

comparison to the filters proposed earlier is also provided. 

 

3.1 Kalman Filter Theory 

R.A. Fisher introduced the idea of maximum likelihood estimation and this 

has provided the platform for future developments in estimation theory [16]. 

Kolmogorov in 1941 and Wiener in 1942 independently developed a linear minimum 

mean-square estimation technique that received considerable attention and provided 

the foundation for the subsequent development of Kalman filter theory [16]. Kalman 

published his first paper on discrete-time, recursive mean square filtering in 1960 

[17].  A summary of the Kalman filter problem and its solution is provided in this 

section. The system is composed of two essential ingredients, the state or process 

equation and the measurement or observation equation. 
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The state equation models the expected variation in the parameter ( )if  that is to be 

estimated, during the period of time of the measurement process 

                                ( ) ( ) ( 1) ( )i i i i= - +f C f m                                          (3.1) 

where ( )iC  known as the �state transition matrix�, models the expected variation in 

the value of ( )if  from instant 1i -  to i . ( )im  known as process noise expresses the 

uncertainty in the modeling of this expected variation and is modeled as guassian 

noise. 

 The observation equation relates the obtained measurements to its state and is 

of the form,   

                                    ( ) ( ) ( ) ( )i i i i= +y B f v                                             (3.2) 

where ( )iB  describes the relationship between the signal vector and the observation 

vector. ( )iv  represents the measurement errors that occur at each observation time 

and is modeled as guassian noise. 

   The Kalman filtering problem, namely, the problem of jointly solving the 

state and observation equations for the unknown state in an optimal manner may be 

formally stated as follows: 

The entire observed data, consisting of the observations ( ) ( ) ( )1 , 2 , ,iy y yL  is 

used to find, for each 1b ³ , the minimum mean-square estimate of the state ( )f a . 

The problem is called filtering if ,a i=  prediction if ,a i>  and smoothing if 

1 a i≤ <  [11]. 
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In the next section a detailed explanation is given about the application of the 

KF problem to SAR processing of Multi-Aperture spaceborne radar and the 

corresponding KF solution. 

 

3.2 Kalman Filter Implementation: 

In this section a detailed explanation is given for the implementation of 

Kalman filtering for radar processing.  

From (2.5) we have     

                                         
M

m m
m

g= +år nr                                                 (3.3) 

The Kalman filter is an iterative implementation of the MMSE estimator. So, 

it can be implemented by operating on sections of the radar response vector r , rather 

than on the entire length of the vector. 

So the radar response vector r is divided into L smaller vectors. For example 

r could be divided into smaller vectors, each with a dimension of 3 as shown below. 

1 2 3 4 5 6 2 1
(1) (2) ( )

, , , , , , , , ,NBT NBT NBT
L

r r r r r r r r r- -

é ù
ê ú= ê ú
ê úë ûr r r

r L L1442 443 1442 443 1444444442 444444443                                    (3.4) 

The normalized response vectors can equivalently be segmented into smaller 

sections: 

               
�� � �  (1) , (2) , , ( )m m m m Lé ù= ê úë ûLr r r r                                             (3.5) 
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Therefore P can also be defined as  

                                         

1

2

(1)
(2)

( )M L

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê úê úë û

p
p

P

p
M

                                                        (3.6) 

Finally, the noise vector can likewise be segmented: 

                           
��  � �  (1) , (2) , ( )Lé ù= ê úë ûn n n nL                                             (3.7) 

Now, the parameter that is to be estimated in this case is g  and r  is the observation 

vector. Basing on (3.1) the state equation for this application can be written as  

             ( ) ( ) ( 1) ( )l l l l= - +A ug g            State Equation                            (3.8) 

where l  represents the iteration number or the section of data (out of a total of L  

sections of data) on which the processing is being done. So, l  varies from 1 to L . 

( )lA  is the state transition matrix described in (3.1) and ( )lu is process noise and 

represents the uncertainty in ( )lA . 

The equation (3.5) gives a linear relationship between the measurement vector and 

the state vector and is similar to the observation equation (3.2). Therefore, the 

observation equation for this case can be written as 

             ( ) ( ) ( ) ( )l l l l= +r P ng                  Observation Equation                 (3.9) 

These measurements are obtained over time, space, and frequency. It is 

generally assumed that the state vector comprising of the scattering coefficients 

mg are approximately constant with respect to time, space, and frequency over the 

extent of the radar measurement. In other words the scattering from the illuminated 
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targets can be assumed to be constant. Therefore state transition matrix ( )lA  will be 

an identity matrix and the state equation of (3.8) can be written as: 

                            ( 1) ( 1 1) .l l l l- = - - + ug g                                      (3.10) 

Basing on (3.9) and (3.10) it is possible to describe the Kalman filtering process. 

After processing ( 1)l -r , information is available about ( )� 1 1l lg - -  and the error 

correlation matrix ( )1 1l lg - -K . The way in which this information could be used 

to update the estimate is given below. Initially the state-error correlation matrix (it is 

referenced as error correlation matrix in the thesis document) is updated as follows 

                     
( ) ( )( ){ }

( ) ( )

� �1 ( ) ( 1 ( ) ( 1

( ) 1 1 ( ) .u

l l l l l l l l

l l l l l

g

g

- = E - - - -

= - - +

H

H

K

A K A K

g g g g
                  (3.11) 

Now as ( )lA  is taken as an identity matrix, therefore ( )1l lg -K  becomes                              

                     ( ) ( ) ( )1 1 1 .ul l l l lg g- = - - +K K K               Step 1                   (3.12) 

where ( )u lK  the correlation matrix of process noise u                           

                                              { } ( ) ( ) ( ) .u l l l= E HK u u                                            (3.13) 

The gain matrix ( )lG  is computed so that the mean square error is minimized, which 

basing on the orthogonality theorem is minimum when the error in the estimate is 

orthogonal to the measurement data.  

       ( ) ( )
1  ( ) 1 ( ) ( ) 1 ( ) ( )nl l l l l l l l lg g

-é ù= - - +ê úë û
H HG K P P K P K       Step 2          (3.14) 

where                                      { }( ) ( ) ( ) .n l l l= E HK n n                                           (3.15) 
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The next step involves the computation of error between the expected measurement, 

which could be obtained from the previous estimate, and the observed measurement. 

This error obtained ( )lu  is termed as the innovation and the process is termed as the 

innovation process and is as follows 

                          ( )�( ) ( ) ( ) 1 1l l l l lg= - - -r Pu                       Step 3                   (3.16) 

The innovation ( )lu  associated with the observed data ( )lr  representing the essence 

of the Kalman Filtering Theorem [17], is orthogonal to all the past observations and 

so could be used to make an optimal estimate of g . 

The estimate is updated basing on the Kalman Gain and innovation as follows 

                     ( ) ( )� � 1 1 ( ) ( ).l l l l l lg g= - - + G u                       Step 4                   (3.17) 

Finally the error correlation matrix is updated as follows 

                    ( ) [ ] ( )( ) ( ) 1 .l l l l l lg g= - -K I G P K                     Step 5                   (3.18) 

Steps 1, 2, 3, 4 and 5 are repeated until all the radar measurements are used. 

The initial ( )0g , ( )0gK , and ( )0uK have to be set to initiate the filtering process. 

The implementation is initially done in Matlab and is later implemented in C 

for optimal memory utilization. Later PVM (Parallel Virtual Machine) software is 

used to parallelize the most computationally intensive part of the implementation. 
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3.3 Performance of the developed Kalman Filter  

In this section the test results of the developed KF for a general scattering 

scenario is presented. The radar data is obtained from a multi-aperture spaceborne  

                      Table 3.1 Input parameters for the Radar Simulator that are kept constant 

 
radar simulator developed earlier [7]. The system parameters given as input to the 

radar simulator reflect the physical parameters of an actual Low earth orbiting (LEO) 

satellite and hence present a realistic condition under which the simulator operates.  

Table 3.1 shows the input parameters that are fixed for all the simulations done in the 

thesis investigation.                   

     A number of parameters like M, the number of resolution cells considered, 

the number (N) and position of apertures, the number of frequency points and the 

number of time samples can be varied in the radar simulator. Table 3.2 shows the 

input parameters to the radar simulator for a specific M value of 1024. Where the 

number of receivers can again be varied. Different types of target scenarios can be 

given as input to the radar simulator by means of an image with the pixels 

Radar System Height 183000 m 

Center frequency of transmit signal 10 GHz 

Radar System Velocity 7800 m/s 

Tilt of apertures to target 0.7855 (450) 

Look angle of antenna pattern from normal to aperture 00 

Pulse Repetition Frequency 20.645kHz 
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representing the scattering characteristics of the targets. The receiver configuration is 

chosen to be sparse and randomly spaced. The parameters that are chosen remain 

constant for all experiments presented in the document. 

                        Table 3.2 Input parameters for the Radar Simulator for M=1024 

 

3.3.1 Performance of KF for random scattering coefficients  

 
 Will the developed KF be able to make a good estimate of the 

scattering coefficients g  irrespective of the complex nature of g  for measurements 

obtained from a sparsely located multiple aperture spaceborne radar? To answer this 

question the KF is tested for a scenario where the scattering coefficients are chosen 

randomly. Each of the scattering coefficients is given a random magnitude and a 

random phase. The magnitudes are chosen as a random value out of a 256-level gray 

scale. An image is generated by substituting the complex values of g  for the 

corresponding pixel values. This image representing the scattering coefficients of all 

target pixels is given as input to the radar simulator. The numbers of pixels 

Number of Receivers in the Constellation 13 

Number of pixels in target along x axis 32 

Number of pixels in target along y axis 32 

Number of samples taken 400 

Length of apertures in along-track dimension 0.13 m 

Length of apertures in across-track dimension 0.18 m 
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considered in the image are 32 by 32 or 1024 (= M). The time bandwidth product of 

the received signal was 400; therefore, only about 0.39 of the original 32 by 32 input 

can be unambiguously imaged by a single aperture system.  

Guassian noise was added to the obtained radar measurement vector r . The 

signal to noise ratio (SNR) is taken to be 30dB, where signal is the radar response 

vector. The SNR is defined as the ratio of the average signal power in a single data 

sample to the average power of a single noise sample. The radar measurements 

obtained after adding the Guassian noise is given as input to the developed KF. The 

normalized vectors mr representing the normalized radar response obtained from mth 

scatterer position are also obtained from the radar simulator.  The total measurement 

vector consisting of 5200 ( ( ) ( )13 400N BT= ´ = ) vectors is divided into 10 ( L= ) 

smaller vectors.  

The input parameters to the KF are chosen as follows: 

Basing on the assumption that the reflectance values from pixel (1 resolution 

cell) to pixel are uncorrelated and the mean scattering value is zero, the initial error 

correlation matrix becomes { } 2(0)g gs= E =HK Igg  where 2
gs is the expected value 

of the squared reflectance magnitude for each target. The average pixel magnitude for 

a 256-level gray scale is 128. So the expected value of the squared reflectance 

magnitude for each target will be 1282 for this particular case. 

The process noise correlation matrix (0)uK , which expresses the uncertainty 

in the state transition matrix is neglected, on the assumption that the scattering 
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obtained from each target for different space, time and frequencies remains constant. 

The validity of this assumption is reviewed in later sections of the report. 

Now the expected value of the average of the complex scattering coefficients is zero 

and so the initial value for (0)g  is taken to be a null vector. 

The performance of the KF is expressed in terms of the variation in error vs. 

the fraction of data processed ε  as it gives information regarding both the final 

estimate and the rate of convergence. The error criterion chosen is the mean-squared 

error (MSE) of the pixel magnitudes normalized by the image�s mean-squared pixel 

magnitude 

                                        
( )� �( )

.
- -

=
H

MSE H

g g g g
g g

                                (3.19) 

Figure 3.1 shows the variation of the Normalized MSE with the fraction of 

measurement vector processed. The fraction of measurement vector processed, ε is 

given by  

                                                         .l
L

e =                                               (3.20) 

where l , is the number of data vectors processed by KF out of a total of L vectors. 

The KF uses the information contained in the radar measurements to make a good 

estimate of g . The Kalman Gain ( )lG , for each iteration, ( l ) is computed in a way so 

as to reduce the MSE. It could be seen from Figure 3.1 that the MSE initially 

decreases rapidly with ε . This could be attributed to the fact that the initial 

information contained in the measurements helps in eliminating the clutter associated 
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with the measurements to resolve the range and Doppler ambiguities. But once these 

ambiguities are resolved and the clutter eliminated the information obtained from the 

new measurements is used by the filter to eliminate the noise. The slow rate of 

decrease of MSE at the end of the processing could be attributed to the elimination of 

the noise. 
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          Figure 3.1 Performance of the developed KF for randomly chosen scattering 

coefficients. 

 
The final estimate ( )Lg  after all the measurements are processed is quite 

close to the actual g  as could be seen from the low value of MSE at the end. From 

this, we could conclude that the developed KF is independent of the complex nature 

of g  and is able to make a good estimate by using the measurements obtained from 

sparsely located multi-aperture spaceborne radar. 
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3.3.2 Performance of KF for a real SAR Scenario 

In this section the performance of the developed KF can be seen in action. 

Figure 3.2 shows the magnitude of the image given as input to the radar simulator. It 

was taken from a photograph of the football stadium of the University of Kansas, in 

Lawrence, Kansas. The photograph was scanned, changed to a 256-level grayscale 

image, and cropped to be 64 by 64 pixels. The pixel intensities were given a random 

phase, and the resulting set of complex pixel values was used as the vector of 

scattering coefficients, g  in the radar simulations. The image was chosen because it 

realistically represents what could be seen in a SAR scenario.  A picture of higher 

resolution is not chosen due to the memory and computation constraints. 

 

 

 

 

 

 

 

 

Figure 3.2 Image of the KU football Stadium used as the Input to the Radar Simulator 

The time bandwidth product of the received signal was 1600; therefore, only 

about 0.39 of the original 64 by 64 input can be unambiguously imaged by a single 
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aperture system. The improvement in the estimate of the scattering versus the fraction 

of measurements used in the KF processing can be viewed in the images given in 

Figure 3.3. The fraction indicated at the top of each image, is the value of the fraction 

of measurements processed ( e) by the KF to obtain that particular estimate. 

It could be also seen from the figures that there is a lot of improvement in the 

estimate in the initial stages of the processing. This rapid improvement in the estimate 

in the early stages could be attributed to the reduction of interference between the 

targets present in the radar measurement. As the clutter associated with the 

 

 

 

 

 

 

 

 

 

 

                                      

                                                

                                            

                                             

                             Figure 3.3 KF estimate obtained for each iteration  
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measurements is eliminated to resolve the range and Doppler ambiguities a huge 

improvement is made in the estimate as could be seen in the pictures obtained after 

the initial iterations.  It could also be seen that not much of an improvement is made 

in the last three stage of the processing. The final estimate is as shown in Figure 3.4 

and could be seen to be very close to the actual image shown in Figure 3.2. 

 

 

 

 

 

 

 

                 

  Figure 3.4 KF Result for KU Football stadium Image 

 

3.4 Comparison between Matched, Maximum Likelihood, 

MMSE and Kalman Filters 

A detailed comparison is made between the performance of the developed KF 

and the three filters, the Matched filter, the ML estimator and MMSE developed in 

earlier research works. A detailed review of the methodologies of operation for all the 

three filters is already given in chapter two. The performance of the filters is tested 

for different system parameters such as SNR and the number of receivers in the 
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constellation. Finally the computational load of all the four filters is compared for 

different number of receivers in the constellation. 

Figure 3.7 shows the results for the four filters when applied to three different 

SNR cases: low SNR (-10dB), moderate SNR (10dB) and a high SNR (30dB). The 

target image is as shown in Figure 3.5. It was taken from a smaller photograph of the 

football stadium of the University of Kansas, in Lawrence, Kansas.  

 

 

 

 

 

 

                                          Figure 3.5 A smaller Image of KU Football stadium 

 
The photograph was scanned, changed to a 256-level grayscale image, and 

cropped to be 32 by 32 pixels. Each pixel intensity was given a random phase, and the 

resulting set of complex pixel values was used as the vector of scattering coefficients, 

g  in the radar simulations.  

The apertures for Figure 3.5 are in a sparse randomly located 13-element 

array. The time bandwidth of the signal was 400, and so the total number of 

measurements taken for 13 receivers is 5200. Before analyzing the performance of 

the filters let us look at the expected correlation a  between the responses obtained 

from the illuminated targets. This expected correlation a  gives detailed information 
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about the clutter that could be expected in the measurements and so helps in 

analyzing the performance of the filters. a  is obtained as follows. 

                                               
�

�
( , ) .i j

i j

i j =
r r

a
r r

                                        (3.21) 

where ir  and jr represent the normalized response vectors for target pixels i  and j  

respectively and × is defined as the absolute magnitude. 

The absolute magnitudes of the individual elements of a  are plotted to obtain the 

picture shown in figure 3.6. �a � is basically the expected correlation between the  

 

          Figure 3.6 A pictorial representation of the Expected Correlation between the 

responses obtained from the illuminated targets  
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High SNRModerate SNRLow SNR

Matched 

ML 

MMSE 

KF 

responses obtained for two unit ground scatterers for the present scenario. The off 

diagonal elements in a  represent the cross correlation between the responses 

obtained from the illuminated target and so signify the clutter component present in 

the normalized response. It could be seen that many of the off diagonal elements have 

significant values indicating that there is a significant presence of clutter in the 

measurements obtained for the scenario of sparse arrays being considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

   Figure 3.7 Comparison of Matched, ML, MMSE and Kalman filters performance 

versus SNR 
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Once information is obtained about the clutter present in the measurements, 

the filters could be analyzed more thoroughly. It could be seen from Figure 3.7 that, 

for all the SNR scenarios considered, MMSE and KF give better estimates than the 

Matched filter. This could be easily understood as the matched filter, though able to 

maximize the signal to noise ratio is highly clutter limited. Even though the matched 

filter estimate of the scattering coefficients improves with SNR, it is still unable to 

make an optimal estimate in any of the cases. This could be attributed to the fact that 

the matched filter is unable to eliminate the error in the estimate due to clutter. As the 

clutter present in the measurements for this scenario is significant (as seen in figure 

3.6) the matched filter is unable to give good estimates.  

It is also seen that the KF gives better estimates than ML for the LOW and 

Moderate SNR scenarios, while for high SNR all the three, ML, MMSE, and KF 

seem to give the same results. This is due to the fact that, as explained earlier, the ML 

filter though being able to minimize signal clutter, is unable to reduce the noise 

contained in the signal.  

The major thing that could be seen from the figure is that the developed KF 

gives the same estimate as given by MMSE for all the SNRs considered.  This could 

mean that the initial assumption made regarding the process noise correlation 

matrix (0)uK  could be wrong, or it might be due to some other reasons. A detailed 

investigation is done to find out the reasons behind this, the results of which will be 

presented in the later chapters. 
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The effect of SNR on performance can be clearly seen in the Figure 3.8. The 

results presented clearly validate the conclusions stated about the performance of the 

filters. It could be once again seen that though KF performs better than matched and 

ML filters it gives the same result as MMSE.  
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Figure 3.8 Matched, ML, MMSE, and Kalman Filters performance versus Input SNR 

for 13 receiver sparse random array 

 

The rapid increase in error as SNR decreases for the ML filter and the 

flattening of the matched filter curve for high SNR could also be seen. In the case of 

ML, MMSE filters and KF it could be seen that the error continues to decrease as the 

SNR rises. 
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As the number of receivers in the constellation is increased, more number of 

measurements could be obtained, thereby providing more information to the filters for 

resolving the ambiguities present in the system. It is therefore expected that the 

estimation error decreases with increase in number of receivers. Figure 3.9 validates 

this expected result. The estimation error versus number of receivers is relatively flat 

for the matched filter because it cannot use the additional information being provided 

to eliminate the clutter. It only uses the additional information to maximize the gain 

on the target.  

 

 

 

 

 

 

 

 

           

Figure 3.9 Matched, ML, MMSE and Kalman Filters performance versus number of 

receive apertures for a sparse, random array and moderate SNR 

 

A significant improvement in estimate could be seen in ML, MMSE and KF 

as the number of receivers are increased from 9 to 13. But there doesn�t seem to be 

much improvement when the number of receivers is varied from 13 to 19. This 
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improvement in the estimate occurs because each additional aperture increases the 

amount of signal energy collected.  

The most important reason behind the development and implementation of KF 

has been to decrease the processing load inherent in the MMSE filter. The decrease in 

processing load is achieved by means of reducing the dimension of the huge inverses 

that need to be calculated in the MMSE scenario. The Figure 3.10 shows this 

improvement obtained. The processing times for KF for different number of receivers 

is obtained for a fixedL value of 10, where L is the number of smaller vectors the 
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Figure 3.10 Matched, ML, MMSE and Kalman Filters processing speed versus number 

of receive apertures for a sparse, random array  

 
radar measurement vector is divided into. The processing is done in Matlab on an 

Intel Pentium III processor offering a processing speed of 697 MHz. The processor is  
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part of a multiprocessor system, which is used to test the parallel version of KF the 

details of which will be presented in Chapter 6. The results validate the main reason 

behind the development of the KF. It could be seen that as the number of radar 

measurements are increased, the processing time for MMSE increases huge fold. But 

in the case of the KF, there is only a slight change in the processing time. It could also 

be seen that the processing time for KF is even less than that taken by ML filter. This 

could be attributed to the fact that the ML filter, like MMSE filter has to compute the 

inverse (pseudo) of a huge matrix. It could also be seen that of all the filters Matched 

filter processing is the fastest, but as it doesn�t give an optimal estimate it cannot be 

considered as an option. 

We have seen in the previous case that the developed KF takes less processing 

time than MMSE for a fixed L value of 10. This improvement is basically obtained 

due to the fact that instead of performing a single iteration involving operations on 

huge matrices multiple iterations are performed involving operations on smaller 

matrices. So is there an optimal value of L for which the processing time is least? 

Figure 3.11 gives an answer to the above question. It shows the processing time for 

KF versusL . The processing times are obtained for 9 apertures, for a total of 3600 

(=9*400) measurements. It could be seen from the figure that the time is dependent 

onL  and is actually minimum (=358secs) for aL value of 6.  

So the developed KF gives the same estimate as given by MMSE but it greatly 

reduces the processing time and computational load. Further analysis is made of the 
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mode of operation of KF to optimize its performance by finding ways to obtain an 

even better estimate, at a much faster speed.  
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                    Figure 3.11 Processing Speed of KF versus L 

 
Even though the KF decreases the overall computational load existent in 

MMSE filter, it still consists of a huge number of computations. The computations 

pertaining to the operations performed on the target correlation matrix constitute the 

dominant factor in the overall computation load. Numerous ways are pursued to 

decrease these computations.  

But initially various simulations were performed to analyze the dependence of 

the performance of KF on the initial values chosen for the error correlation matrix 

( 0 )gK , and the process noise correlation matrix (0)uK . The simulations results are 

also analyzed to answer a number of questions. For examples, how does the diagonal 

and non-diagonal elements of the error correlation matrix vary with iterations? Out of 
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clutter and noise which one plays a major part in the computation of the Kalman 

Gain? How does the innovation energy (energy contained in ( )lu ) vary with 

iterations? In the next chapter a detailed presentation is made of the experiments 

performed and the results obtained to answer the above questions.  
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4. PERFORMANCE CHARACTERISTICS OF THE KF 

To perform any optimization on the developed KF, it is necessary to gain 

knowledge about its functioning and performance. In this section, a detailed analysis 

is made on the performance characteristics of the KF. Experiments were performed to 

analyze the variation of kalman gainG , error correlation Matrix ( 0 )gK  and 

innovation energy, versus the amount of data processed. From this we can obtain 

detailed knowledge about the functioning of the KF. Experiments are also conducted 

to quantify the dependence of KF performance on the initial values given for error 

Correlation Matrix, and process noise correlation matrix (0)uK .  

            The following scenario is considered for the experiments presented in 

this and later chapters. The target image is as shown in Figure 3.5. The photograph 

was scanned, changed to a 256-level grayscale image, and cropped to be 32 by 32 

pixels. Each pixel intensity was given a random phase, and the resulting set of 

complex pixel values was used as the vector of scattering coefficients g  in the radar 

simulations. The apertures were placed in a sparse randomly located 13-element 

array. The time bandwidth of the signal was 400, and so the total number of 

measurements taken for 13 receivers is 5200. A higher number of apertures than the 

required minimum are considered so as to obtain a clear picture of the dependence of 

KF on the various other parameters. The number of iterations or the number of 

divisions made to the measurement vector is 10 (= L). 
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4.1 Variation of Kalman Gain, Error Correlation Matrix and 

Innovation Energy with Processing 

Expressions for the kalman gain G , and error correlation matrix gK are given 

earlier in Section 3.2. The initial value given for (0)gK  is 2
gs I  where 2

gs is the 

expected value of the squared reflectance magnitude for each target and I is an 

identity matrix. The (0)uK , which expresses the uncertainty in the state transition 

matrix is neglected, and the initial values for the scattering coefficients vector ( )0g  

are taken as zeros. The reasons for the above three initializations were explained in 

section 3.3.1. The signal to noise ratio is taken as 30dB.  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-35

-30

-25

-20

-15

-10

-5

0

Fraction of Measurements Processed ε ----->

N
or

m
al

iz
ed

 M
S

E
 (d

B
) -

--
--

>

 

Figure 4.1 Normalized MSE (dB) vs. the fraction of Measurements Processed (e) for the 

smaller version of the KU Football Stadium Image 
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The expected correlation between the responses of the illuminated targets for 

the present scenario was shown earlier in Figure 3.6.  Figure 4.1 shows the variation 

of the Normalized MSE (in dB) vs. the fraction of measurement vector (e) processed.  

The variation of the MSE with processing is discussed while explaining about the 

variations of the other matrices in the KF. 

Now, the initial value of the error correlation matrix (0)gK  was taken as an 

identity matrix with the diagonal elements scaled to the expected correlation between 

the scattering coefficients. It could be expected that due to the significant presence of 

clutter in the measurements, the non-diagonal elements are not going to remain 

 

Figure 4.2 A pictorial representation of the Error Correlation Matrix after processing of 

half the measurement data 
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negligible. So how do the diagonal and non-diagonal elements vary with processing? 

Or in other words how is the clutter scenario present in the system, reflected in 

( )lgK ? To get answers to some of the questions ( )lgK  is plotted for 5l = out of a 

total of 10 (L) iterations (after processing of 50% of the data) and is shown in Figure 

4.2. 

It could be seen that along with the diagonal elements there is a significant 

presence of cross diagonal elements in the updated error correlation matrix. This 

demonstrates that there is significant presence of interference or clutter in the 

obtained radar measurements. The error correlation matrix basically adjusts itself to 

the clutter scenario present in the measurements. A more detailed analysis of the 

variation of the diagonal elements and non-diagonal elements is presented in Figure 

4.3.  

The variation in magnitudes of the diagonal and non-diagonal elements of the 

error correlation matrix is represented in terms of their respective RMS (root mean 

square) values. The RMS values of the diagonal elements and non-diagonal elements 

of ( )lgK  are obtained as follows 

                              ( )
( )2

1

( , )
( )

M

i
DRMS

i i
K l

M

g

g
==
å K

                                     (4.1) 

where the subscript DRMS represents the RMS value of the diagonal elements of a 

matrix 
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                          ( )
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1 1,
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M M

i j j i

NDR MS

i j
K l

M

g

g
= = ¹=
å å K

                              (4.2) 

where the subscript NDRMS stands for the RMS of the non-diagonal elements of a 

matrix. 
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Figure 4.3 Shows the Variation of the ratio between the RMS values of the diagonal and 

non-diagonal elements of the error correlation matrix 

 
Figure 4.3 shows the variation of the ratio between the RMS values of the 

diagonal elements and non-diagonal elements ( ) ( )( )( ) ( )
DRMS NDRMS

K l K lg g . The error 

in the estimate decreases with processing of new measurements and so along with 

that it could be expected that all the elements in the error correlation matrix decrease 

with processing. It could be seen that the cross diagonal elements too play a 
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significant part in the overall processing or in other words even though the RMS 

value of the non-diagonal elements is very less when compared to the that of the 

diagonal elements they are huge in number and so still contribute to the estimation 

process. Almost throughout the processing the ratio between the DRMS and NDRMS 

of the error correlation matrix varies adjusting to the clutter (cross correlation 

components) present in the obtained measurements. But it could be seen that during 

the last stages of the processing there is not much of a change in the ratio as the filter 

is able to adjust to the clutter actual clutter scenario. 

There is an interesting fact to observe about the way in which the Kalman gain ( )lG is 

updated during each iteration. We know that the Kalman Gain G  is updated so as to 

minimize the mean square error of the estimate and is obtained by (3.14)  

                            ( ) ( )
1  ( ) 1 ( ) ( ) 1 ( ) ( )nl l l l l l l l lg g

-é ù= - - +ê úë û
H HG K P P K P K  

 
Now as the magnitudes of the normalized response vectors are very low so the 

magnitude of elements in the Kalman gain matrix depend significantly on the inverse 

term. Lets say b represents the resultant matrix of the product ( )( ) 1 ( )l l l lg - HP K P . 

Then bbasically represents the clutter while ( )n lK  represents the variance of the 

noise. We have also seen that the diagonal elements of the error correlation matrix are 

much larger than the don-diagonal elements. Then the ratio  
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tells us whether the clutter term bor the noise term nK  plays a major part in 

computation of the Kalman Gain. Figure 4.4 shows the variation of IR obtained for 

each iteration. It could be seen that for the last three iterations the value of IR is in the 

orders of 10-1 to 10-3 which means that the noise term represented by nK dominates 

and plays the major role in computation ofG .  
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 Figure 4.4 The ratio between the absolute mean of the diagonal elements of b to that of 

the variance of noise vs. the fraction of measurements processed e  

 
So, basically at the initial stages of the processing the KF mainly eliminates 

the error due to clutter while at the final stages it mainly nulls the guassian noise 

present in the system. That is the reason why there is not much of a variation in the 

MSE at the end of the processing as the KF basically works or eliminating the small 

error present in the estimate due to noise. So we have seen that the Kalman Gain ( )lG  
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computed during the last stages of the processing doesn�t depend on the error 

correlation matrix. Will this information be useful to reduce the number of 

computations in the error correlation matrix? We will know about that in chapter 5.  

A novel feature in Kalman Filtering is the concept of innovation. Innovation 

tells about the error between the expected measurement, which could be obtained 

from the previous estimate, and the observed measurement. It basically gives an idea 

about the new information present in the latest measurement data. The normalized 

value of innovation energy present in the new measurement can be computed as 

follows 

                                          
�

�
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 Figure 4.5 Innovation energy vs. the fraction of measurement data processed  



54

It could be seen from Figure 4.5 that the variation in innovation energy is 

more of a random change depending on the obtained new measurement. For example 

measurements obtained from one receiver might be more informative than some other 

receiver depending on their position in the constellation. Moreover some 

measurements can be more noise prone than some others depending on the time of 

observation.  

As explained a lot of information is obtained about the variation of various 

parameters in the KF from the above simulations. This knowledge helped to develop 

strategies for optimization of the KF to still reduce the processing load. The 

developed strategies, their implementation and performance will be presented in the 

next chapter.  

In all the experimental scenarios considered until now the initial values for 

gK , uK , and g have been kept constant. So how far are these initial assumptions 

optimal? How will variation in the initial conditions affect the performance of the 

KF? Will the KF be able to converge to a better estimate if the final estimate and the 

final error correlation matrix obtained after processing the measurement data are 

taken as the initial conditions and the whole processing is redone over the same 

measurement data? The answers to the above questions are presented in the next 

section.  Basically this analysis is performed to quantify the dependence of the KF 

performance on the initial conditions and if possible find more optimal initial values 

for these parameters so as to obtain a better estimate. 
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4.2 Dependence of the final estimate on the Initial Conditions 

In this section different set of values are given to (0)gK , (0)uK , and L as part 

of initiating the KF and its performance is analyzed. It is often observed that for many 

estimation problems the accuracy of the estimate increases with L. The reason for this 

increase in accuracy with L is due to the fact that as the number of iterations are 

increased the KF is able to accommodate the variation in the signal (to be estimated) 

during the observation time (modeled by state transition matrix) and the process noise 

( u ) more clearly, thereby giving a better estimate. But, as observed in the section 3.4, 

the developed KF is giving the same estimate as given by MMSE. Is this because L 

taken is too small or is it due to any of the earlier assumptions made while 

implementing the KF. The next section gives details of the experiment performed to 

answer the above questions. 

 
4.2.1 Significance of the Number of divisions, L chosen 

Figure 4.6 shows the performance of the KF for different values of L. The 

number of aperture used is 9. It could be seen that the obtained estimate is not 

dependent on L. Not only is the final estimate equal for all L, but it could be seen that 

the rate of convergence of the estimate per iteration is also same. So there isn�t any 

improvement obtained as the L value is increased. This might be due to the initial 

assumption made regarding the state transition matrix ( )lA  and the process noise 

correlation matrix uK . Both the above matrices are neglected basing on the on the 

assumptions that the scattering obtained from each target for different space, time and 
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frequencies remains constant. This assumption is not right as in a real scenario the 

scattering from each target is not constant for different space, time and frequencies. In 

reality the scattering varies rapidly with frequency and is very much different for 

different frequencies. But this assumption is necessitated basing on the fact that the 

radar simulator [7] developed earlier assumes that the scattering remains constant. 
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Figure 4.6 Normalized MSE versus the fraction of measurement data processed for 

different L 

 
It will be really laborious and difficult to incorporate this real variation 

scenario in scattering in the radar simulator. Moreover as the main aim of the thesis 

investigation is to develop algorithms, which decrease the processing, and 

computation load inherent in SAR processing, more effort was put into decreasing 

this computational load than to improve the already good estimation results being 
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provided by MMSE. But in a real scenario the developed KF is bound to provide 

better results than MMSE and the accuracy should increase with L  [9].  

 

4.2.2 Significance of the Initial value chosen for Error Correlation 

Matrix 

So how robust and stable is the developed KF? Is it not going to converge to 

an optimal estimate if it is not initiated properly? How do the initial parameters 

chosen for (0)gK  affect the final estimate and the rate of convergence of the filter? 

Experiments are done to analyze the significance of (0)gK  for optimal performance 

of the filter. These experiments and the final conclusions made are presented in this 

section. The basic reason being that by analyzing this dependence of the performance 

of KF on (0)gK , it will be helpful to choose a particular value for (0)gK  which 

increases the accuracy and the rate of convergence.  

 
4.2.2.1 Diagonal matrix 

It is still assumed that the reflectance values from pixel to pixel are 

uncorrelated and so (0)gK  is taken as an identity matrix. The diagonal elements are 

then scaled to different random values ( 2s ). So, basically a random value is taken for 

the expected value of the squared reflectance magnitude for each target. The initial 

value for ( )u lK is taken as zero as in the previous scenarios. The target scenario is 

same as the one in section 4.1 and the number of apertures considered is 13.  
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Figure 4.4 shows the variation of normalized MSE versus the fraction of 

measurement data processed for different values of 2s . The actual expected value of 

the squared reflectance magnitude for each target, 2
gs is 129.812. It could be seen that 

for values of 2s which are closer to the average value, the rate of convergence is high 

and for those farther from this average value have lower convergence rates. It could 

also be seen that if the chosen 2s is far too smaller than the average value than the KF 

is unable to converge at all. While for large 2s values it could be seen that even 

though the filter goes haphazard at the initial stages, it is still able to converge at the 

same estimate as that obtained for a 2s value of 2
gs . 
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     Figure 4.7 Variation of Normalized MSE versus the fraction of measurement data 

processed for processing, for different 2s values for diagonal matrix (0)gK  



59

Two important criteria could be deduced from the performed experiment 

regarding the initialization of the error correlation matrix. The number one criterion is 

that the error correlation matrix has to be initialized so as to comprise the whole 

uncertainty region of the estimated parameter. If the error correlation matrix is 

initialized to, too small uncertainty region (lesser than the region comprising of the 

expected value of the squared reflectance magnitude) then the KF is unable to 

converge. The second one is that the rate of convergence of the KF depends on how 

well the boundaries of the uncertainty region comprising the estimated parameter are 

defined.  

 

4.2.2.2 Random Correlation Matrix 

This experiment is really going to test the stability and robustness of the 

developed KF. (0)gK  is taken as a random correlation matrix. A correlation matrix d 

is obtained as shown below. Initially a random complex vector hof M (number of 

resolution cells) elements is generated as follows 

                                             ( )i jV V= +h                                                   (4.5) 

where Vis random number between 0 and 1. Then  

                                                 = Hd h h                                                       (4.6) 

Now, the performance of the KF is tested for three different cases of (0)gK . 

Case I:  The initial error correlation matrix is taken as (0)gK , where 

                                                    2( , ) ( , ).i j i jg gVs=K d                                             (4.7) 
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where Vis random number between 0 and 1, 2
gs is the expected value of the squared 

reflectance magnitude for each target, and ( , )i jgK represents the element at ith row 

and jth column. 

So basically the obtained matrix (0)gK is a random correlation matrix and no 

assumptions are made about the correlation between the reflectance values from pixel 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

20

30

40

Percentage of Measurement Vector Used ε----->

N
or

m
al

iz
e

d 
M

S
E

 (
dB

) -
--

--
>

Kγ(0) where γ(i,j)=σ2
γς δ(i,j)         

γ
(0) where 

γ
(i,j)=|α (i,j)|δ(i,j)            

γ
(0) where 

γ
(i,j)=σ2

γ
|α (i,j)|δ(i,j)

γ
(0) is taken as σ2

γI, I is Identity Matrix         

 

Figure 4.8 Variation of Normalized MSE versus the fraction of measurement data 

processed for processing for different (0)gK  

 
to pixel. It could be seen from Figure 4.8 that though the filter goes astray initially it 

later on converges to an optimal estimate. This further proves the point made in the 
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the last section that the error correlation matrix has to be initialized so as to comprise 

the whole uncertainty region comprising the reflectance from pixels. The 

performance of the KF for 2(0)g gs=K I is given for comparison purposes. 

Case II: The initial error correlation matrix is taken as (0)gK , where 

                                               ( , ) ( , ) ( , )i j i j i jg =K a d                                            (4.8) 

where a  is the expected correlation between the normalized responses obtained from 

the illuminated targets given in (3.21).  

Basically this initialization of the (0)gK is done to seen how the filter 

performs if it is assumed that the correlation between the reflectance values obtained 

from pixel to pixel is taken to be similar to the expected correlation between the 

responses obtained from the targets a . It could be seen from the figure that the KF is 

unable to converge for this initialization. This is because (0)gK  is initialized to a very 

small region of uncertainty, which doesn�t include the estimate. 

Case III: The initial error correlation matrix is taken as (0)gK , where 

                                               2( , ) ( , ) ( , )i j i j i jg gs=K a d                                         (4.9) 

It could be seen that the basic difference between (4.8) and (4.9) is that in the 

second case the error correlation matrix gK  is initiated to a larger region of 

uncertainty.  It could be seen from the figure that the performance of the filter 

improves rapidly with changes made. It could also be seen that the final estimate 

obtained for Case III is actually less accurate than the one obtained for Case I. In 

Case I no sort of assumptions are made regarding the correlation scenario of the 
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reflectance values from pixel to pixel. While in case III the cross correlation 

components of the reflectance values from pixel to pixel are assumed to be less. But 

still estimate for case I is more accurate than Case I. This might be due to the factor 

that there are ample numbers of measurements for the KF for Case I to converge. Had 

there been like 50% of measurements than Case III would perform better than Case I.  

The initial value for (0)gK  in Case III might be a good one in a real scenario as it 

takes into consideration the expected correlation between targets.  

 

4.2.3 Perfect Initial Conditions 

We have seen in section 4.1 that though the innovation energy decreases 

gradually with processing it is still has random characteristics and depends on the 

new measurement obtained. As the filter processes measurements more and more 

information is obtained and according to that the accuracy of the estimate is 

improved. Now is the KF able to extract all the available information contained in a 

measurement sample or is some information left out? So will the KF be able to 

extract this lost information (supposing some information is lost)? To obtain answers 

for the above question an experiment was performed, the details of which are as 

follows. 

Initially KF is done on the obtained measurements with the initial error 

correlation matrix taken as 2(0)g gs=K I  and the mean scattering value as zero. The 

filtering process is continued until all the measurements are used to converge to a 

final estimate. Then the final error correlation matrix and the final estimate obtained 
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at the end of the processing are saved. These saved values are taken as the initial 

conditions and the KF is redone on the same measurements.  
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Figure 4.9 Variation of Normalized MSE versus the fraction of measurement data 

processed for a case where the final values obtained for g and gK are taken as the initial 

values and the processing is done again. 

 
From Figure 4.9 it could be seen that the KF is unable to converge to a better 

estimate. This shows that the KF has already extracted all the information that is 

available in the measurements and there is no more innovation energy left in the 

measurement vectors that could be used to converge to a better estimate. 

From these experiments, a lot of information is gained about the working, 

performance and stability of the developed KF. The first thing that is learnt is that 

initially the clutter present in the system dominates and the Kalman Gain is computed 

so as to minimize the error in the estimate due to this clutter. In the final stages the 
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measurement noise dominates and the Kalman gain is updated to reduce the error in 

the estimate due to this noise. Information is also obtained about the variation of 

target correlation matrix, and innovation energy with processing. It will be shown in 

the later chapters how this information has been useful in optimizing the developed 

KF. It was also seen that the developed Kalman filter is very stable and the final 

estimate is not dependent on the initial values set for the error correlation matrix if the 

uncertainty region of the estimate is properly represented in the initial error 

correlation matrix.  

The KF implementation is fully done on matrices and so it is expected that 

matrix operations consume a major portion of the overall processing time. So, it 

becomes important initially to quantify the processing times consumed by each of 

these operations in the KF. This will help in developing optimization techniques 

tailored to the specific application.   
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5. OPTIMIZATION OF DEVELOPED KALMAN FILTER 

5.1 Optimization of Matrix Operations 
 

The KF operation consists of a number of matrix operations, for that matter, 

all the operations performed are related to matrices. So if the total processing time has 

to be decreased then the order in which these operations are performed has to be 

perfectly optimized. From Figure 3.11 it is also known that the overall processing 

time depends on the number of divisions made to the measurement vector (L) or the 

number of iterations performed.  

The Traditional measure of the efficiency of a numerical algorithm is based on 

a flop count. Flop is an abbreviation for �floating point operation�. The flop count is 

simply the number of flops that the algorithm would execute when used to solve a 

particular problem. Flops count are usually given in terms of the problem �size�, in 

the present case, it is the size of the matrices. The numbers of flops required for 

multiplication and inverse are a lot higher than that for addition, subtraction, and 

transpose and so while measuring, the numbers of flops for the latter operations are 

not considered. 

The number of operations required for calculating the inverse of a square 

matrix of order P  is 3P . Some algorithms have been developed earlier, which 

implement matrix inverse in lesser number of operations. For example Winograd and 

Strassen developed algorithms for implementation of matrix inverse in lesser number 
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of operations.  But these algorithms are difficult to implement and lots of extra effort 

has to be put to develop parallel versions for them. 

The number of operations required for multiplying two matrices (of orderR by 

S  and S by T ), are R S T´ ´  multiplications and ( )1R T S´ ´ -  additions. As 

explained earlier the addition operations will be discarded.  
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                     Figure 5.1 Required number of Significant Operations versus L 

 
Now basing on the above facts, the order of matrix operations in the KF 

implementation are chosen in a particular way so as to reduce the overall number of 

flops required for processing. The total number of operations required versus L, for 

the KF Implementation for a resolution of 1024 (32 by 32) and for 5200 (13 by 400) 

measurements obtained are as shown in Figure 5.1. It shows that the number of 
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required operations decreases with L, or its states that the processing time decreases 

with L. But in real time software implementation the variation in processing time will 

be as shown in Figure 5.2. It shows that the processing time decreases initially as L 
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                         Figure 5.2 Processing time taken versus L for KF Implementation in Matlab 

 
 
is increased but later on keeps on increasing. This is due to the fact that apart from the 

processing time taken for executing the operations, a lot of time is also taken for 

calling on subroutines and accessing memory. As L is increased the number of 

subroutine calls increases and the time taken for memory access operations also 

increases. If high speed processors are used then it will be better to reduce the number 

of calls made to the subroutines and opt for a point where the inverse times and 
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multiplications times intersect (for an L value of 2 in the Figure 5.2). It should be 

noted that as the required resolution increases there will be a more significant change 

in the processing times as L increase.  
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   Figure 5.3 Total Processing time taken versus L for KF Implementation in Matlab 

 
It also shows that the time taken for matrix multiplications dominates the 

overall processing time. So if the matrix multiplication operations are speeded up 

then the overall processing time also decreases. Work has been done to implement 

this and will be presented in later chapters. Figure 5.3 shows the improvement made 

in processing efficiency and also shows that the least time is taken when L =40, as 

compared to L =8 for the earlier implementation. So now it will be possible to obtain 

faster estimates while inverting smaller matrices, thereby reducing further the 

computational problems involved with inverting huge matrices. 
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It could also be seen that the time taken for higher L is far less for the 

optimized KF when compared to the un-optimized KF. Figure 5.4 shows the 

comparison between times taken for optimized KF versus un-optimized KF versus the 

number of receivers.  
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 Figure 5.4 Comparison between performance of optimized and unoptimized KF versus 

number of receive apertures in the sparse satellite cluster 

 
Further modifications could be done in the real time (software or hardware) 

implementation of the KF to further optimize it.  But is there a way to improve the 

processing efficiency by changing the very way in which the KF is implemented? A 

number of experiments have been performed and the results analyzed to answer this 

question.  The experiments and their results are presented in the next sections. 
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5.2 Number of Measurements required for processing to 
making an Optimal Estimate (Sequential Estimation) 

 
It could be seen from Figure 3.3 that KF is able to give good results for 

random complex scattering coefficients. It could also be noticed from the above 

figure that the Normalized MSE reaches �25dB even before processing of 60% of the 

data. This means that if a way is found to quantify this position where the filter 

reaches an optimal solution then the processing could be stopped at that position 

thereby reducing the processing time. Though there is a loss in accuracy of the 

estimate, a huge increase in processing speed could be achieved. In this section 

investigation results of the experiments performed to find a solution to quantity this 

behavior are presented. The basic methodology is to choose a parameter in the filter, 

which varies in a similar fashion as the Normalized MSE, so that processing could be 

stopped when the parameter reaches a preset limit. For this reason the variation of the 

parameters in KF with processing of data is analyzed and the important results 

observed are presented here.  

It is also necessary that the variation in the chosen parameter is stable for all 

scattering scenarios. So experiments are performed for four types of scattering 

coefficients. The scattering coefficients are simulated by generating M (number of 

resolution cells) random complex numbers. These numbers are generated for four 

cases as follows 

i. They are real and equal  

ii. The phase is kept constant white randomizing their magnitudes 
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iii. Their magnitudes are kept constant while randomizing their phase 

iv. Both phase and magnitudes are randomized 

The magnitudes are chosen as a random value out of a 256-level gray scale. 

An Image is generated by substituting the random sets of the above-generated 

numbers of g  for the corresponding pixel values. This image representing the 

scattering coefficients of all target pixels is given as input to the radar simulator. Then 

Kalman Filtering is applied on the obtained measurements. Variations in the 

parameters of the KF are saved while the filtering process is being performed.  

First of all how does the Normalized MSE vary with processing for all the 

above cases? Is it going to vary in a similar fashion for all the cases or is it going to 

be different? Figure 5.5 shows that it varies in a similar fashion for all the cases. The 

KF converges to the final estimate in a similar way given that the number of receivers 

in the constellation are fixed (fixed number of measurements taken and fixed 

resolution). So a parameter has to be found in the filter, which sort of emulates this 

variation in Normalized MSE and flattens out when there is not much of an 

improvement in the estimate. 

A number of parameters could be expected to vary in a similar fashion. For 

example the innovation energy contained in the latest measurement (dealt in section 

4.1) could be expected to decrease as the filter processes more and more number of 

measurements. But we have seen that in Figure 4.5 that though the innovation energy 

decreases gradually, it still has a small random component attached to it depending on 

the obtained measurement. Figure 5.6 demonstrates this hypothesis. 
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Figure 5.5 Normalized MSE (dB) vs. the fraction of measurement data processed for 

random scattering coefficients 
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Figure 5.6 Innovation Energy vs. the fraction of measurement data processed for 

random scattering coefficients 
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Kalman gain could be considered basing on the assumption that as the filter 

converges to a better estimate the gain required to reduce the estimate error decreases. 

The Kalman gain computed for each iteration is quantified in terms of the RMS value 

of all its elements as  
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1 1
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                                             (5.1) 

Finally the obtained �G� for all iterations are normalized. It could be seen from 

Figure 5.7, that though the Kalman gain decreases gradually the flattening out at the  
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Figure 5.7 RMS value of elements of Kalman Gain Matrix vs. the fraction of 

measurement data processed for random scattering coefficients 

 
end is not very obvious. Moreover it could be seen that (for the last iteration) it too 

has a random component depending upon the obtained measurement.  
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Another parameter that could be considered is �m� which quantifies the update made 

in the present estimate when compared to the estimate obtained for the previous 

iteration. 
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Figure 5.8 Variation of the update in present estimate as compared to the previous 

estimate versus the fraction of measurement data processed. 

 
 
From Figure 5.8 it could be seen that the variation in m is constant for all the cases 

considered. But the problem with it is that, it doesn�t flatten out at the end, or in other 

words it keeps on varying throughout the processing.  
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One other parameter that could be considered is the trace of the error correlation 

matrix ( )lgK , updated for each iteration. The obtained trace is normalized as follows 

                       Normalized trace of 1
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As the 2(0)g gs=K I so the above value will be 1 for the initial error correlation 

matrix. It could be seen from Figure 5.9 that the trace of the Error Correlation Matrix 
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Figure 5.9 Trace of the Target Correlation matrix versus the fraction of measurement 

data processed. 

 
varies in a way very similar to that of the Normalized MSE. It decreases gradually 

and then at the end sort of flattens out. Therefore this measure could be used to 

quantify the amount of data required for obtaining an optimal solution. The filter 
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processing could be stopped at a prefixed value for the trace of ( )lgK  by 

incorporation of a logic control quite easily. As the time taken for processing of each 

iteration is the same, the processing speed increases by 40% for this particular case. 

In general, the gain in speed of processing depends on the target clutter and 

measurement noise.  More experiments have to be performed to verify the above 

sequential estimation process for different configurations of satellite constellation and 

noise scenarios. It should be noted that there is no possibility for this kind of an 

implementation in Matched, ML and MMSE filters. 

5.3 Methods Pursued to reduce Error Correlation Matrix 
Computations 

 
The processing time consumed by operations defining the Error Correlation 

matrix, gK , in the KF constitutes a major part of the overall processing time. For 

example for M=322 (32 by 32) the total number of elements in the Target Correlation 

Matrix are more than a million, and if M is increased to 2562 for a fixed target region 

then the number of elements increases to a whopping 4.2 billion. Even initializing a 

matrix of such a huge order requires huge RAM and operations involving that will 

create huge complexities in the implementation. However huge the measurement 

vector may be, it can be divided into smaller vectors of optimal size. A similar sort of 

thing could be done for the Target Correlation Matrix too, but that itself will add a lot 

more complexity in the implementation, and will also increase the time taken for 

read, write memory operations.  
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So, a detailed investigation is carried on to find out if a fewer number of 

elements in the target correlation matrix could be considered while being able to 

maintain its important features intact. The first thing that could be tried out is by 

considering only the diagonal elements of the target correlation matrix. In other 

words this is based on the assumption that the measurements obtained from a target 

pixel is uncorrelated to other target pixels. 

  
5.3.1 Only Diagonal Elements in the Error Correlation Matrix are 

updated 
 

The performance of KF is tested for a scenario where only the diagonal 

elements are updated in the error correlation matrix gK . It is tested for different 

values of L. The Figure 5.10 shows the performance of the KF versus L in terms of 

the accuracy of its final estimate. 

As could be seen from the figure that for smaller values of L the KF is able to 

converge to a good estimate. But as L increases the performance of the KF degrades. 

It was shown earlier in Figure 4.2 that the non-diagonal elements of the target 

correlation matrix too have significant values. So how could it be possible to obtain a 

good estimate when the non-diagonal elements are neglected in the processing? A lot 

of analysis was made to find answers to this question and finally were able to make 

some significant conclusions.  

The first thing that was found was that even though only the diagonal elements were 

considered, the Kalman Gain produced is quite close to the one obtained by 

considering all the elements. 
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Figure 5.10 Normalized MSE (dB) versus L for a case where only the diagonal elements 

are updated in the gK matrix 

 
The Normalized difference between the Kalman Gain obtained when only the 

diagonal elements are considered in target correlation matrix uG , and the normal 

kalman gain obtained when all the elements are considered G is given by 
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It could be seen in figure 5.11 that for L=2, the computed Kalman Gain for 

this case is somewhat similar to the normal scenario. This could be explained on the 

basis of two reasons. One being the fact that during the initial stages of processing the 

diagonal elements of the target correlation matrix are significantly larger than the 
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non-diagonal elements. So during the initial stages of processing the effect of 

neglecting the non-diagonal elements is not realized. 
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Figure 5.11 x  The normalized Variation between uG  and G  versus fraction of 

measurement vector processed for L=2 and L=4 

              

 
The other reason being that during the final stages of the processing (as 

explained in section 4.1 the variance of the noise plays a major role in the 

computation of Kalman Gain and so the variation made in the target correlation 

matrix doesn�t make an effect. But as L increases it is seen that the diagonal elements 

do not decrease with processing as in the case where all the elements are considered. 

This causes more variations in the Kalman Gain computed. 

So for smaller values of L it is possible for the KF to converge to an optimal 

estimate even though the correlation between reflectance values obtained for pixel-to-
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pixel are neglected. But for smaller values of L the complexity in the system due to 

the matrix inverse computation is still present. Basing on the accuracy required and 

the processing power available a tradeoff could be reached to decide upon a particular 

L value. But the overall processing time reduces to a great extent as only a fraction of 
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Figure 5.12 Processing time taken versus L for a case in which only the diagonal 

elements are considered in the error correlation matrix gK  

 
the total elements present in the target correlation matrix need to be computed. Figure 

5.12 shows this huge reduction in processing time.  

 

5.3.2 Diagonal Spread is considered 

As there is a high probability that the reflectance values obtained from 

neighboring resolution cells are highly correlated it was expected that further 

improvement could be obtained in the accuracy of the estimate by considering 



81

elements adjacent to the main diagonal. Figure 5.13 shows the elements considered in 

gK  for a case in which elements lying in 64 cross diagonal lines adjacent to the main 

diagonal are considered on one side, i.e. a total of 128, (64*2) cross diagonal lines are 

considered. It could be seen from Figure 5.14 that as the considered spread of the 

diagonal increases the MSE decreases. So this offers an effective solution to the 

tradeoff between accuracy and processing time. But it should be noted this 

improvement in accuracy is limited and if the spread is increased to more than a 

certain extent than non linear processing error occurs (the last element in Figure 5.14, 

256*2+1 = 513 adjacent diagonals) and the KF goes astray. 

 

 

                                                      

 

 

 

 

Figure 5.13 Elements of gK considered for a diagonal spread consisting of 129 lines 

adjacent to the diagonal on either side 

 

It could also be noted that the final estimate is going to depend on the value of L as 

explained in the previous section. 
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Figure 5.14 Normalized MSE versus the number of adjacent diagonal lines considered 

on one side 

 

5.3.3 Error Correlation Matrix is updated based on the Expected 
Measurement Correlation Matrix  

 
The expected correlation between the responses obtained from the illuminated targets 

a could be computed from the normalized response vectors and was given in (3.21). 

The question is whether the KF will be able to converge to an optimal estimate if only 

the corresponding elements in a  signifying higher correlation are updated in the 

Error Correlation Matrix gK . In other words, it is desired to see how far the expected 

measurement correlation matrix is close to the correlation between the reflectance 

values obtained from pixel to pixel.  If the KF is able to reach a good estimate than 

new procedures could be implemented to update only those points thereby reducing 

the processing time.  
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Figure 5.15 Normalized MSE versus the number of adjacent diagonal lines considered 

on one side 

 

Experiments were performed to answer this question. Four experiments were 

performed by considering only those elements in ( )lgK  which have significant values 

in a . The significant elements in a  are chosen by comparing them to a preset 

threshold. The threshold is obtained in terms of the absolute mean value of all the 

elements in the a . Figure 5.15 shows the thresholds used and the points updated in 

the target correlation matrix.  

 
Figure 5.16 shows the convergence of the KF for corresponding thresholds used to 

choose the elements (where L = the percentage of elements considered out of a total 
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number of M2 elements in ( )lgK ). It could be seen that the KF is unable to give a 

good estimate. So basically this method cannot be pursued to reduce the computation 

load as it affects the estimation process. 
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Figure 5.16 Normalized MSE versus the fraction of measurement data processed, for 

different thresholds 

 

5.3.4 Correlation of only targets closer to each other is considered 

 
It is highly probable that the scattering characteristics of target pixels very close to 

each other are similar.  For example in the picture of the football stadium all the 

target pixels constituting the structure of the stadium exhibit similar scattering 

characteristics. Similarly all the target pixels constituting of grass exhibit similar 

scattering characteristics. If SAR pictures are taken of huge grasslands or of large 

forests than the scattering scenario exhibited by many target pixels will be quite 



85

similar. Based on this logic the KF performance is tested by considering only those 

points in the target correlation matrix, which are expected to have high correlation. 

Assuming different kinds of correlation scenarios different experiments are 

performed. For example say, a target pixel has high correlation with target pixels that 

are positioned at a distance less than two times the resolution considered for each 

target pixel. The situation is depicted in Figure 5.17. 

 
 
 
 
 
 
 
 
 

 

Figure 5.17 Shows the target pixels (dark shade) supposed to be highly correlated to the   

concerned target pixel (�star�) located at different parts of the region 

concerned   

 
 

The first picture form the left in the figure shows a scenario where the target 

pixel is well inside the target boundaries. The dark shaded squares in the figures are 

supposed to be highly correlated to the square consisting of the �star�. The other 

pictures depict scenarios for target pixels lying at the edge of the target boundary. The 

targets considered to be highly correlated to the particular target pixel are dark 

shaded. The other boundaries of the target pixel represent the area outside the 

concerned target region. 

Figure 5.18 shows the points updated in the target correlation matrix for 

corresponding correlation scenarios. For example, the plot on the top-left shows the 
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Just Neighbour Target Pixels 

Neighbouring 4 Target Pixels Neighbouring 8 Target Pixels 

Neighbouring 2 Target Pixels 

points chosen for consideration in the target correlation matrix for a scenario where it 

is assumed that a target pixel is highly correlated to its just neighbor target pixels and  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.18 Points considered in the target correlation matrix for corresponding 

correlation assumptions   

 
is uncorrelated to the other target pixels. So as could be seen in the plot a very few 

number of points are considered. It is very hard to predict the actual dependencies of 

the target pixel correlations, it depends on the area where the target the SAR is 

mapping. Figure  

Figure 5.19 shows the performance of the KF for different correlation 

dependencies. It could be seen that as the number of neighboring targets supposed to 

be highly correlated with the desired target pixel is increased the MSE decreases. But 

as this number is increased further the KF gives random estimates.  

If different target correlations are characterized earlier, then that information 

could be used to optimize the KF. If certain approximations could be made to 
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characterize the target correlations, then it will help in choosing the significant points 

in the gK matrix. 
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Figure 5.19 Normalized MSE versus the fraction of measurement used for different 

correlation characteristics 

 
 

In all the scenarios considered above the accuracy of the estimate is traded for 

higher processing speeds and reduced computational load. But is it possible to 

maintain the accuracy of the estimate while being able to speed up the process? If 

there are any solutions for this, are they economically and technologically viable? 

Much research and development is being done to develop faster processors, and more 

optimal software�s. Could these be used to fasten the processing? To get answers for 

the above questions the thesis investigation has ventured into the world of �parallel 

processing�. The details and results of which are given in the next chapter.  
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 6. PARALLEL IMPLEMENTATION OF KF 

The scenarios considered in earlier chapters for KF implementation and 

testing represent a scaled down versions of the real SAR scenario. In a practical 

scenario, there is requirement for a finer resolution, which in turn needs large number 

of measurements. As showed in section 5.1 the matrix multiplications play a major 

part in the overall processing and if they could be done faster, the overall speed of the 

filter also improves linearly. Moreover, as the RAM required for implementing KF in 

Matlab is high, so the implementation should be redone using a programming 

language, which requires lesser RAM. Matlab allocates 8 bytes of memory for storing 

either float or double variables. If a more flexible and procedural language like C is 

chosen, then the memory efficiency will improve. Again, as the inbuilt functions in 

Matlab (matrix multiplication and inverse function calls) are replaced by user-defined 

functions, it is possible to obtain a clearer picture of the optimization scenario.  

6.1 C code 

The main reasons behind opting for a procedural language like C is to 

improve the processing efficiency and memory utilization. It also facilitates 

introduction of new modules for future variations in the functionality of the code and 

debugging. A lot of highly tested and popular software procedures are already 

available in C for implementation of parallel processing using multithreads or 

multiple processors. Most of the parallel processing softwares available for Matlab 

introduce parallelism by compiling Matlab scripts into a parallel C code. Moreover, 
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the validity of these available softwares have not been proven as they have come 

quite recently. 

The implementation was done in a modular fashion for easier understanding 

of the flow of the algorithm. Subroutines were developed for various matrix 

operations. Lot of care has been taken to reduce the time taken for memory access 

operations and other program latencies. For example all the matrices are initialized by 

allocating memory in a regular organized fashion. A lot of time will be required for 

memory access operations if the matrices were allocated memory randomly. 

6.2 Parallel Processing 

6.2.1 Necessity and use of Parallel Processing  

There are many other approaches to speed up the implementation of Kalman 

Filter apart from parallel processing. The most significant one is to make the 

standalone single-processor design larger (e.g., increase the amount of memory it can 

directly address, and for SAR applications the requirement is huge) and more 

powerful (e.g., increase its basic word length and computational precision) and faster 

(e.g., by using smaller-micron etching technology, packing more transistors into less 

space, and coupling everything with larger and faster communications pathways). But 

these upgrades will make it very expensive. 

Parallel processing offers higher and reliable performance, at affordable 

prices. The basic logic in parallel processing is to divide an unmanageable large task 

into smaller tasks, which are more manageable. The divided smaller tasks could then 

be run on multiple processors. For example many of the research institutions and 
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small companies have access to large number of small to medium scale CPU�s 

offering reasonable speed and RAM. These institutions could use parallel processing 

as a tool to solve large problems, as they cannot afford to buy a super computer 

necessary for solving large problems. Moreover most of the available processors are 

underutilized or not utilized at all.  Programs are not run on a CPU at all times of the 

day and even the usual programs that are run on a CPU utilize less than 20% of the 

available processing power. Hence, all this wasted processing power could also be 

used to solve problems, which usually require high-speed processors. In some cases 

multiple processors solve a large problem faster than a single high-speed processor. 

 

6.2.2 Building a Parallel Virtual Machine 

PVM version 3.4.4 [14] has been used for building a parallel virtual machine. 

PVM allows programmers to exploit a wide variety of computer types. A single 

parallel virtual machine comprising of a collection of heterogeneous computer 

systems could be built using PVM. The main components of a PVM system are a 

daemon (a program that runs in the background while performing the required task), 

called pvmd3 (or pvmd) that resides on all the computers making up the virtual 

machine and a library consisting of PVM interface routines. The PVM interface 

routines are needed for cooperation between tasks of an application. This library is 

used for calling routines for message passing, generating processes, coordinating 

tasks, and modifying the virtual machine.  
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The method that has been used for parallelizing matrix multiplication is data 

parallelism. In this method all the tasks are the same, but each one only knows and 

solves a small part of the data. This is also referred to as the SPMD (single-program 

multiple-data) model of computing. All PVM tasks are identified by an integer task 

identifier (TID).  

The Kalman filtering program written in C invokes calls to the PVM library. 

The program is compiled for all architectures in the host pool (machines used to build 

the parallel virtual machine), and the resulting object files are placed at a location, 

which is accessible from all machines in the host pool. To execute an application, a 

copy of one task (called as �master�) is started by hand from a machine within the 

host pool. This process subsequently starts PVM tasks (called as �slaves�), creating a 

collection of active tasks that then compute locally and exchange messages with each 

other to solve the large problem.  

 

6.2.3 Working Methodology 

Figure 6.1 gives a pictorial description of the working methodology of the 

parallel implementation of KF. A network (�host pool�) is built by adding on any 

number of accessible processors. These processors can be single processors of 

different architectures, or can be part of a multiprocessor system. The working of the 

developed system can be explained briefly as follows: 

• PVM is started and a parallel virtual machine is built by adding on multiple 

processors 
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• The main program for Parallel implementation of KF is compiled and run on 

any one of the processors (acts as the �Master�) of the host pool  

• The main program initiates PVM thereby spawning processes on all the 

processors of the host pool 

• The program starts the Kalman loop which calls the subroutine for performing 

matrix multiplications 

• The Master processor then sends the matrix data to the slaves.  Each Slave is 

sent one row number of the 1st matrix in the multiplication, in sequential order 

• Each Slave works on the row that is assigned to it and computes the 

corresponding row of the resultant matrix after multiplication. After 

completion the computed row is sent back to the Master 

• The Master doesn�t wait for all slaves to complete their computations to send 

the next row number. It sends the next row number to the first Slave sending 

the next row information. In this way dynamic load balancing (effective 

resource utilization) is introduced in the system, and hence the work done by 

each slave depends on its processing speed. So faster slaves need not wait for 

slower slaves to finish their work and so no processor stays idle 

• Finally after calculating all the rows of the resultant matrix, the Master stops 

the slave processors and sends the output matrix to the main program 

• The main program then continues on with the other functions and the whole 

process continues for the next matrix multiplication 
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• Finally after the processing is done on all the measurement data, the main 

program finalizes PVM 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          

 

 

Figure 6.1 Diagram depicting the Parallel processing structure implemented in KF 
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6.2.4 Provisions made for huge matrix sizes 

Changes could be easily made to vary the information transfer between the 

Master and the Slaves. For example in the earlier case, the Master sends both the 

matrices to the slaves and sends the row numbers of the first matrix in sequential 

order. Instead of that it could be made to send only the smaller matrix to the Slaves 

and send row data (single or multiple rows) of the larger matrix in sequential order. In 

this way processors having less main memory could also be added to the virtual 

machine. If both the matrices to be multiplied are large then change could be made so 

that the Master sends the row data of the first matrix and column data of the second 

matrix to each slave. Care should be taken to combine the information obtained from 

each slave to form the resultant matrix. 

 

6.2.5 Testing and Results 

A multiprocessor system consisting of 4 Intel Pentium III processors with 

processing speed of 697 MHz each has been used for testing the developed parallel 

KF software (testing for Matlab implementation has also been done on a similar 

processor). Testing is also done by adding another dual processor (Intel Xeon) system 

offering a processing speed of 2.2GHz per processor to the above system. The results 

obtained are presented in Figure 6.2. 

It could be seen that the processing time for the C implementation of KF is 

higher than that taken for implementation in Matlab. This is due to the incorporation 

of LAPACK (Linear Algebra Package, is a large multi-author, which Fortran library 
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for numerical linear algebra), and machine-dependent optimized BLAS (Basic Linear 

Algebra Subprograms) for matrix computations in Matlab. LAPACK uses block 

algorithms, which operate on several columns of a matrix at a time. On machines with 

high-speed cache memory, these block operations can provide a significant speed 

advantage. Hence further work can be done to incorporate BLAS in the developed KF 

code. 

But as we go for finer resolutions and as the data and matrix sizes increase 

further, the developed parallel C code performs better than the Matlab code. This is 

because for coarse resolutions, the potential of parallel processors is not fully realized 

as a significant amount of time is consumed for inter-processor communication and 
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Figure 6.2 Processing time versus L for different number of parallel processors used 
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for spawning multiple tasks and actually starting them. But as the resolution becomes 

finer the processing time consumed by these latencies is less significant when 

compared to that taken for the required computations, and the worth of the developed 

parallel code becomes more discernable. The most important advantage offered by 

the developed parallel code is that it could be run on any processor and could be 

easily modified to adjust to the available RAM in the machines. In other words the 

developed code could be run on any machine independent of its hardware 

characteristics, and the speed of processing could be increased by just adding more 

machines. 

The improvement in speed obtained by adding multiple processors is evident 

from Figure 6.2. For example for L=10 there is a speed improvement of almost two 

fold when the number of processors are doubled. While for L=1300 it could be seen 

that the processing speed actually decreases with addition of a processor. This is 

because more time is consumed for communication between processors than the 

actual processing time. This could also be seen for L=400, the processing time gets 

reduced to half in this case when the number of processors are increased from 2 to 4, 

but when they are increased to 6, the processing time taken increases. Moreover since 

the two newly added processors are of a different multiprocessor system, so there is a 

significant increase in the communication time. This shows the importance of the 

connection network of the multiple processors. It is always advisable that the slave 

processors used be connected directly to the master processor. 
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It could also be seen from the figure that though for 1,2 and 4 processors the 

processing is fastest for L=100, the speed improvement between L=100 and L=40 

goes on decreasing. The figure also shows the increase in communication time as the 

number of iterations is increased. All these factors have to be taken into account 

while using the developed parallel KF. 
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7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 
 

Matched, ML and MMSE filters have been designed to process data obtained 

from sparsely populated multiple aperture spaceborne radar. But these filters have 

their own disadvantages. Matched filter is unable to eliminate measurement error due 

to clutter, while the ML filter is unable to minimize error due to noise. The MMSE 

filter though being able to give a good estimate, has inherent computational 

complexities. A new filter is developed to give the same accuracy offered by MMSE 

while being able to reduce the computational load inherent in MMSE. 

The developed Kalman Filter (KF) is an iterative implementation of the 

MMSE, and is tested for different real-time SAR applications and for different target 

characteristics. It is highly optimized by considering all the matrix operations 

involved. It is tested for dependencies on the initial parameters given to it, and 

optimal values are chosen for them.  

Many tradeoff scenarios between the accuracy of the estimate and processing 

load have been proposed. Some of these proposed methods decrease the processing 

load many fold for a small loss in the accuracy of the estimate.  

Finally a parallel version of KF is developed so as to distribute the processing 

load on multiple processors. This parallel code neutralizes the dependency of KF 

processing on super-computers or high-speed processors, and could be implemented 

on any kind of a processor environment.  
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7.2 Future Work 
 

The first enhancement that could be made is by testing the system on real data 

obtained from spaceborne radar instead of a simulated version. This can determine 

the performance benefit of the proposed filter more effectively. Further the different 

optimization scenarios can be tested on the real data and quantitative results could be 

obtained. LAPACK (Linear Algebra Package) and BLAS (Basic Linear Algebra 

Subprograms) routines should be incorporated in the developed parallel code to 

further improve its processing speed. Further testing should be done for different 

resolution scenarios and different parallel network configurations. 
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