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Introduction
• Traffic in LAN is often “bursty” in nature

• Burst - In data communications, a sequence of 
signals counted as one unit in accordance with some 
specific criterion or measure -
http://business.cisco.com/glossary/

• Effects of burstiness reflected in poor QOS for 
network clients.
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Introduction
Why?

Limited buffering available in network.
How?

– Rapid filling of buffer space followed by slower 
draining as traffic calms

– Excessive packet loss in both access networks and 
backbone networks

– Delivery delays due to various effects, retransmissions 
for instance

– Large queuing delays due to full buffers and the time it 
takes to empty
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Introduction
Did anyone notice this?

– Yes, much effort expended to determine analytical 
explanation of the causes of this random burstiness and 
its effect upon the buffering medium. 

– Effect of burstiness on a single LAN well understood.

Potential research area
Little work done to analyze how the burstiness, 
filtered through the buffering medium, affects the 
backbone network performance.
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Introduction
Our contribution

– Examine the effect of merging the output of several 
access networks with bursty traffic, onto a backbone 
network.

– Propose to do this analytically using dependent matrix-
exponential queuing network models, developed recently. 

Reasons
Exploration of merging of these models is expected    
to yield insight into what the merging of bursty
streams of traffic does to the performance of 
backbone queues
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Background
• Using dependent matrix-exponential (MED) queuing models.
• Complex models are developed, involving many dimensions of 

state space, hence we use Kronecker operations and hat spaces.
• Exploit concepts of nearly completely decomposable (NCD) 

matrix exponential (ME) modes to represent traffic.
• Input traffic stream is made up of multi-time-scale strongly 

dependent modes of traffic, each with different average traffic 
rates, switched among by slower process.

• According to Jelenkovic, two kinds of modes are present –
stable & unstable.
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Modes

• Unstable mode:
• Average arrival rate > Average service rate

• Stable mode:
• Average arrival rate < Average service rate

• If one or more NCD classes of states have arrival rates > 
average arrival rate, then they are called burst mode.

• Time spent on burst modes << time spent on base mode.
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Fig 1:  Modes in traffic
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Weak Stability
• Weakly stable state:

• Average arrival rate < Average service rate BUT there 
exists one unstable mode.

• Weak stability explains buffer overflow even with large 
buffers.

• Weakly stable state signifies that though whole process is 
stable, it sometimes becomes unstable from time to time.

• To strike balance between utilization and buffer size, new 
models are needed.



University of Kansas11 of 38

MED – Marginals and Covariances

• ME – defined as probability distribution represented as 

• Probability density function is defined as

• The covariance of a sequence of MEs

Where, 
– p is the equilibrium starting vector, such that  p=pY
– is the summing operator
–
–
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Kronecker product -
• Complex models developed involve combining many state 

spaces.
• Improve algebraic intuition and effectiveness.
• In order to preserve the independence of each space, the 

operators in the disjoint spaces are combined in the system 
space using the Kronecker product.

• Kronecker product of two matrices, K1 and K2 is
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Understanding Kronecker operations

• , signifies simultaneous transitions in both spaces.

• , the transitions in ‘2’ space extended to ‘1’ space.

• , the transitions in ‘1’ space extended to ‘2’ space.
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Hat spaces

• As dimensions increase, Kronecker representation gets more 
complicated.

• For a more intuitive representation, hats are introduced.

• Example: If matrix in space 1 is extended to N spaces
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Modeling Techniques

Each access queue is represented by a multi-dimensional 
stochastic process consisting of five state spaces.

• Mode space – identifies modes the process is in.
• Arrival space – generates MED inter-arrival times within current 

mode.

• Burst duration space – generates MED duration of mode before 
change

• Queue space – identifies the number of packets in buffer queue.

• Service space – generates MED service time distribution.
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Network Description

B matrix 
• Represents the changes in state which do not 

result in generation of an output event.
• The effect is autogenous, within the module.
• Usually called the progress rate matrix.

µ1 – service rate

B
LE
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Network Description

L matrix 
• Represents changes in state which result 

simultaneously, in generation of an output event.
• The effect is endogenous, specific to the module 

affecting the world outside the module.
• Usually called the event rate matrix.

E matrix 
• It’s a new matrix introduced and is called the event 

transition matrix.
• Represents changes in state resulting from input 

events & denoted by a probability matrix.
• The effect is exogenous, i.e. the effects inside the 

module are as a result of the events from outside 
the module.
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Simple Network

• Effect of module X felt on module Y
• Autogenous events extend into the joint space. Hence     .
• Endogenous transitions join with simultaneous exogenous 

events of connected module, 
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The XY space

• Kronecker representation in <X,Y> ordered state space. 

• Kronecker representation in <Y,X> ordered state space, for better insight
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Solution for MED networks

• Computation of the infinitesimal generator matrix, Q
QXY = LXY –BXY

XY
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On expanding the Q matrix
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Lossy Finite Queue

• For finite buffers, losses occur. 

• This modifies the ‘E’ matrix.

• In contrast to the infinite queues, the last term of the E matrix  
is a 1 since the buffer size is finite.
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Modeling backbone traffic
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Model description

• Insight invoking model used.
• Two access networks and one backbone network.
• Restricted, by choice to 2 modes in the access networks when 

merged with similar access networks to give 4 modes in the 
backbone.

• Incoming traffic into access network is exponential per mode 
but multi-modal with multi-time-scales.

• Burst durations are exponential, per mode.
• Output traffic from access networks, merged to become the 

input traffic to the backbone network.
• Merging of traffic can result in the polynomial increase in  

number of modes.
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Mathematical solution – Mode algebra

- Infinitesimal rate of occurrence of shift from base mode to     
any of the burst modes.

- Rate of occurrence of the shift from base to   
burst mode.

- Rate of occurrence of the shift from mode i to the  
base mode
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Contd…

• Overall process rate matrix after merging

• Event rate matrix for the entire network

• Infinitesimal generator matrix

• Steady state probability vector is XYZ space

• Final state probability – arrivals are function of modes.



University of Kansas27 of 38

Calculation of results

Independent variables – Those that would typically be
controlled by us for design purposes

• Buffer capacity of access networks
• Burst arrival rate in the access network
• Burst duration in the access network
• Base arrival rate in the access network
• Base duration in the access network
• Backbone/access network service rate
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Calculation of results

Dependent variables – Those  that are observed as
measurements of performance.

• Network cell loss probability
• Backbone cell loss probability
• Throughput
• Output stream distributions
• Output stream auto-covariances
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Calculation of results

• Mean arrival rate of the access network

• The service rate of the access network can be found using

• Burst to base ratio (BBTR)
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Calculation of results

• The BBTR is the ratio of the packets in burst to the total packets
• To increase the BBTR, one of the following must be done

– Decrease 
– Decrease cycle time
– Increase burst duration or burst arrival

• Varying base arrival rate has most significant change to ratio.
• As BBTR increases overall cell loss probability increases (CLP)
• CLP is the probability of arrival occurring while buffer is full.
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Results and insights
The analysis of the model was classified into the following 
cases as described below.

• Case 1 : Sanity check

• Case 2 : Relative contribution by backbone and access 
network towards changes in CLP

• Case 3 : Significance of backbone parameters in regulating 
the total CLP.
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Case 1 Conclusions:
• Keeping backbone service rate fixed, increase in 

BBTR, increases the CLP as expected.
• Notice the high CLP in access network as the 

traffic ratio increases.
• As the service rate of the backbone decreases, an 

upward shift in the curves is noted. Indicating the 
generic increase of total CLP as backbone service 
rate decreases.
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Case 2 Conclusions:
• The flat curve of the backbone CLP indicates 

that beyond a certain BBTR, any changes in 
BBTR has relatively less effect on backbone 
CLP unlike access network.

• As BBTR increases, total CLP increases but 
contribution towards the increase is 
predominantly from access networks.
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Backbone service rate
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Case 3 Conclusions:
• Matches the expected value of the utilization of the backbone. 
• CLP as a measure to determine the optimal value.
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Conclusions
• Introduction of new methodology, contributing to general 

understanding of the dynamics of bursty traffic on larger 
networks, that can be used to gain more detailed insight, even 
with simplified models.

• Relationship between burstiness in ethernet traffic and its 
effect on backbone network performance has been explored 
using new tools for construction and analysis of MED 
network models.

• Introduces a much needed flexibility in analyzing networks.
• The analysis of the burstiness in the access network, filtered 

through the buffering medium, reaching the backbone was 
done successfully.
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Future Work
• Future work could address the numerical efficiency issues in 

solving for state probabilities and other measures of 
performance.

• Further understanding of the modular traffic can be obtained 
by increasing the number of modes entering the access 
network.

• Modeling the access network with hyper-exponential arrival 
streams.

• Scope of this project can be extended based on the insights 
sought by the researcher.
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Thank you !!!

Questions?
Concerns?

Samosas and donuts?


