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o State of the Art
— Genetic algorithms
— Traditional programs

o Implementation
e EXperiments and Results

e Conclusion
— Contributions
— Limitations
— Future
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e Perfect Information
e Board is 19 by 19

e TWO players

e Territory

o Capturing
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Problem Overview and M otivation

e GO0 has simple rules, but tactics and strategies are com-
plex
— Go has emergent complexity
— Multiagent systems have emergent complexity

e Current go programs play on a beginner level, why?

Search Ply Go Chess Checkers

1 361 20 7

e Search space 2 129,960 400 49
3 445,145,640 | approx. 10,000  approx. 343
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Goals of ThisProject

e Use multiple agents to suggest solutions based on a nar-
row world perspective

e Bring these solutions together to obtain a better overall
solution

e Agents are not fully decentralized
o Algorithmic composition of individual agent solutions
e lllustrate this method in a non-trivial environment: go
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Research Approach

e Multiagent Architecture

— Specialized agents
— Each has its own perspective of the game

— Outputs an array representing move qualities
e Agents connected via a summation network to generate

output
— No communication
— Allows a passive combination of agent output into a

solution
e Weights for this network were evolved using genetic al-

gorithms
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Chromosome Description

e Network weights are four-bit integers
e T hese four-bit integers make up chromosome

e EXtra bits at the end of chromosome are available
— Extra bits for internal use by agents
— Extender agent uses these extra bits



Diagram of Summation Networ k
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Why Use Go?

o Traditional search provides little help
e Complex

e Heavily pattern-oriented

e Unsolved now and In the near future

» Analogues to more complex environments
— Local versus global concerns
— Many choices at any point
— Adversarial



The Go Board
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Playing Go (continued)

e Groups
o EVES
e Live and Dead Stones
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Playing Go (continued)

e SCOrINg
o Other board sizes
e Handicaps
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Genetic Algorithms

e Random search

e Populations

e Chromosomes representing parameters or solutions
e FItness functions

e Crossover, mating, and mutations
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Multiagent Systems

o AUtONOMoOuUs agents

e SENse environment

e INnteracts with environment
e Cooperative or adversarial
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Good Traditional Programs

e NO Soft Methods

e Muller
— Patricia trees variant
— 3000 pattern database

e Many Faces of Go
— Opening database of 45,000 moves
— Pattern database of 1000 patterns
— 200 rules hardcoded

e Others
— Patterns |
— Try to create small set of possible moves to look Into
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Other Programs Using Genetic Algorithms

e Da Silva
— Evaluation function evolved

o Jeffrey Greenberg
— Evolved Prolog-like statements

oy ={olo] [o]o [or=1 M|V [o]0 [c] £
— Sets of rules were evolved

e Neural Network Hybrids: SANE
— Neural network configuration and weights evolved
— Entire board fed into neural network

o« Common Themes
— Small Boards
— No Meta-processing
— Not multiagent
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Support Classes

e Bit-level operations for Stone class for speed
e Board class iIs a 1D array of stone classes
e Game class is a linked list of Boards

e Probability Board class
— Parallel to board array
— Each offset I1s a move quality
— Summation, normalization, and scaling provided
— Spin
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| nter faces

e Moderator class, a template
e Multiagent genetic algorithm player

e Genetic algorithm trainer player
— Fitness function
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Graphical User Interface

Black to play
Pass Cant Lozl Hext
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Agents

e Random

e FOllower

o Opener

o Capture

e Tiger’s Mouth

e Extender
— Uses GA values internally
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Experiments Overview

e Each Agent Individually
e Random Agent
e Multiagent

o GA parameters
— Crossover 0.4

— Mutation 0.0333
— Population size: 10 and 100



Results of Single Agents, Capturer

Generation  Max Min Mean Std. Dev. Sumfitness
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Results of Single Agent Experiment: Extender

Generation  Max fin fean Std. Dev. Sumfitness
0.0415 0.0301  0.0365 0.00428 .36
0.0689 0 (.0:35¢ 0.0319 0.354
0.0777  0.0037  0.0389 0.0347 0.389
00788  0.00656  0.0394 0.0641 0.394
0.0753 2.76e-10 0.0409 0.0667 0.409
0.0821 B.1e-09  0.0436 0.0899 0.436
5.57e-09  0.0458 0.0893 0.458
: 0.0468 0.102 0.468
0 0.0449 0.105 0.449
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Results of Multiagent Experiment

Generation
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Max
0.0881
0.108
0121
0.119
0.105
0.109
0.108
0.134
0.14

Min

0.0435

0.0245

0.0106
3.4%-10
3.15e-09
2.82e-09

2.15e-09

Mean

537
0.0539
0.0604
0.0694
0.0812
0.0848
0.0877
0.087
0.0798

Std. Dev.

0.0575
0.0865
0.0867
0.103
0.103
0.113
0.118

Fitness By Generation (All Agents)

Genegration

Sumfitness

0.812
0.848
0.877
0.87
0.798




Results of Multiagent Experiment: Large Population

Fitness By Generation (All Agents) Population of 100

1 1

Generation




Comparison Plot

Comparison of Best Fitness Achieved

| 1 I 'Il'esting F{esullts
Training Results
Random Agent Baseline

|
Follower GroupStats Extention All Agents Large Pop.
Agent




Results Summary (Multiagent, Population 100)
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Results Summary (Multiagent, Population 100)

e 0.143 Highest fitness
¢ 0.076 Highest mean fitness

o Student’s T-test
— T-test, 100 population confidence: 3.89E-21
— T-test, 10 population confidence: 5.04E-4



Contributions

e Unique approach to go



Contributions

e Unique approach to go
e Probabilistic methods for go



Contributions

e Unique approach to go
e Probabilistic methods for go
e Multiagent paradigm



Contributions

e Unique approach to go

e Probabilistic methods for go
e Multiagent paradigm

e Scalability
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Limitations

e Board Size

e Number of Agents

e TIme to run genetic algorithms
— Training sets
— Populations

— Larger summation networks
— (Generations

e Programmer’s knowledge of go



Future

o Larger population size



Future

o Larger population size
e Larger board size



Future

o Larger population size
e Larger board size
o More agents



Future

o Larger population size

e Larger board size

o More agents

e Agents of higher complexity



Future

o Larger population size

e Larger board size

o More agents

e Agents of higher complexity
e Larger summation network
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Questions

o Thank You

e [ hread Pools

e Search

e Minimax

e Dr. Arvin Agah
o« COmmittee

o IEXTS
— Genetic Algorithms in Search Optimization, and Ma-
chine Learning
— Numerical Recipes in C: The Art of Scientific Com-
puting



