Genetic Algorithms for a Multiagent Approach to the Game of Go

>3

by
Todd Blackman

B.S. Computer Engineering, University of Kansas, 2000

Submitted to the Department of Electrical En-
gineering and Computer Science and the Fac-
ulty of the Graduate School of the University
of Kansas in partial fulfillment of the require-
ments for the degree of Master of Science.

Dr. Arvin Agah, Professor in Charge

Dr. Victor Frost, Committee Member

Dr. Costas Tsatsoulis, Committee Member

Date Defended: April 25, 2003

Abstract

Many researchers have written or attempted to write pro-
grams that play the ancient Chinese board game called go.
Though some of these programs play quite well compared
to beginners, few play extremely well, and none of the best
programs rely on soft computing Al techniques such as ge-
netic algorithms or neural networks. This thesis explores
the advantages and possibilities of using genetic algorithms
to evolve a multiagent go player. We show how each indi-
vidual agent plays poorly, while the agents working together
play the game significantly better.

il

Acknowledgments

I would like to thank Dr. Arvin Agah for all of his advice
and cajoling. His intelligence and humor made my research
experience both enjoyable and rewarding. I would also like
to thank Dr. Costas Tsatsoulis and Dr. Victor Frost, both
committee members. Dr. Tsatsoulis has been a great men-
tor and teacher during my years at the University of Kansas
while Dr. Frost has been an inspiration and has impacted
my future in countless ways. I would also like to recog-
nize the significant use of code from Genetic Algorithms in
Search, Optimization, and Machine Learning [6] and Nu-
merical Recipes in C: The Art of Scientific Computing [15].
On a more jovial note, I would like to thank Linus Tor-
valds for allowing me the opportunity of not using any Mi-
crosoft (TM) products including, but not limited to, Word
(TM), Excel (TM), Powerpoint (TM), Internet Explorer
(TM), and Windows (TM). Revision control was handled
by CVS, and this document was typeset using IXIgpX. Hay-
ley Chapnick and Mara Reichman both gave of their time
to proofread this work. Finally, I would like to thank Kristy
Blackman for dealing with all of the time I spent in my office
working on my computer and Shawn Steiman for inspiring
me to finish my thesis in a timely manner.

iii

Contents

List of Figures

List of Tables

1 Introduction

1.1

Organization

2 Background and Related Work

2.1

2.2

The Gameof Go L.
2.1.1 Surrounding Territory
2.1.2 CQCapturing oL
213 Eyes . . . o
2.1.4 Live and Dead Stones
215 RuleofKo.
2.1.6 Seki (Stalemate) L.
2.1.7 Scoring
2.1.8 Other Board Sizes
2.1.9 Go Player Ranking
Relevant Al and Computational Techniques
2.2.1 Search Techniques
2.2.2 Neural Networks L.
2.2.3 Multiagent Systems
2.2.4 Genetic Algorithms oL
225 Thread Pools

v

xii

23 Aland Gameso 21
2.3.1 Minimax Search oL 21

2.3.2 Al and Other Games 23

24 ATand Go e 25
2.4.1 Search Space 25
2.4.2 Neural Network Techniques 26
2.4.3 'Traditional Techniques in Go Programs 27
2.4.4 Genetic Algorithm Techniques in Go Programs. 29
2.4.5 Other Techniques and Hybrids 31

3 Methodology 33
3.1 Design Overview e 33
3.2 Stone, Board, and Game Classes 34
3.3 User Interfaces L. 36
3.4 Genetic Algorithm oo 37
3.5 Moderator 38
3.5.1 Probability Board 0000000 38

3.6 Agent Network Architecture 39
3.7 Genetic Algorithm Trainer 41
3.8 Genetic Algorithm Player 42
3.8.1 GA Player Details 42
3.8.2 Fitness Function 0L 42

3.9 Agents 43
3.9.1 Random Agent 43
3.9.2 Follower Agent 43
3.9.3 Opener Agent 44
3.9.4 Capturer Agent L oo 44
3.9.5 Tiger’s Mouth Agent 45
3.9.6 Extender Agent L. 45

3.10 Regressionso 46
3.11 Unimplemented Features 47

4 Experiments and Results
4.1 Individual Agent Experiments
4.1.1 Opener Agent
4.1.2 Single Random Agent
4.1.3 Extension Agent
414 Capturer Agent oo
4.1.5 Follower Agent
4.1.6 Tiger’s Mouth Agent
4.2 Multiagent Experiments
4.2.1 Five Random Agents
4.2.2 Multiagent Configuration.
4.2.3 Multiagent Configuration, Large Population

4.3 Summaryo e e

5 Conclusion
5.1 Contributions
5.2 Limitations L

5.3 Future Work
Bibliography

Appendix A: Doxygen Code Reference
A.1 Cross-references L
A.1.1 Exodus Class Hierarchy
A.1.2 Exodus Compound List
A13 Exodus File List
A.1.4 Exodus Related Pages
A.2 Exodus Class Documentation
A.2.1 Agent Class Reference
A.2.2 AgentShell Class Reference
A.2.3 Blackboard Class Reference
A.2.4 Board Class Reference

vi

48
49
49
ol
23
o4
o6
o7
o7
29
29
62
64

65
65
66
67

68

A.2.5 DummyGenerator Class Reference 88

A.2.6 ExtenderAgent Class Reference 89
A.2.7 FollowerAgent Class Reference 92
A.2.8 Ga Class Reference 96
A.29 Game Class Reference 112
A.2.10 GaTrainerInterface Class Reference 123
A.2.11 GenAlgoGenerator Class Reference 126
A.2.12 global data_t Struct Reference 134
A.2.13 GoModemlInterface Class Reference 135
A.2.14 GroupStatsAgent Class Reference 136
A.2.15 GUIInterface Class Reference 138
A.2.16 IGS_Interface Class Reference 141
A.2.17 Individual Struct Reference 142
A.2.18 Interface Class Reference 144
A.2.19 Moderator Class Template Reference 146
A.2.20 move_t Struct Reference 148
A.2.21 msgt Struct Reference L. 149
A.2.22 NeuralNetGenerator Class Reference 150
A.2.23 NNGS_Interface Class Reference 150
A.2.24 OpenerAgent Class Reference 151
A.2.25 Population Struct Reference 153
A.2.26 PreCodex Class Reference 154
A.2.27 ProbBoard Class Reference 155
A.2.28 RandomAgent Class Reference 159
A.2.29 Stone Class Reference 160
A.2.30 Subthread Class Reference 165
A.2.31 Subthread_test Class Reference 168
A.2.32 testCodex Class Reference 169
A.2.33 TextInterface Class Reference 170
A.2.34 TigersMouthAgent Class Reference 173
A.3 Exodus File Documentation 177

vii

A.3.1 agent.cpp File Reference 177

A.3.2 agent.h File Reference 178
A.3.3 bdemo.cpp File Reference 179
A.3.4 blackboard.cpp File Reference 181
A.3.5 blackboard.h File Reference 182
A.3.6 board.cpp File Reference 182
A.3.7 board.h File Reference 183
A.3.8 config.h File Reference 184
A.3.9 dummygenerator.cpp File Reference 185
A.3.10 exodus.h File Reference 186
A.3.11 extenderagent.cpp File Reference 189
A.3.12 followeragent.cpp File Reference 190
A.3.13 ga.cpp File Reference 191
A.3.14 ga.h File Reference 192
A.3.15 gafunc.h File Reference 193
A.3.16 game.cpp File Reference 194
A.3.17 game.h File Reference 196
A.3.18 gatypes.h File Reference 197
A.3.19 genalgogenerator.cpp File Reference 198
A.3.20 ginterface.cpp File Reference 199
A.3.21 groupstatsagent.cpp File Reference 200
A.3.22 iinterface.cpp File Reference 201
A.3.23 interface.cpp File Reference 202
A.3.24 interface.h File Reference 202
A.3.25 main.cpp File Reference 203
A.3.26 moderator.t File Reference 210
A.3.27 move.cpp File Reference 211
A.3.28 move.h File Reference 212
A.3.29 openeragent.cpp File Reference 213
A.3.30 outputgen.h File Reference 214
A.3.31 probboard.cpp File Reference 215

viii

A4

A.3.32 probboard.h File Reference
A.3.33 randomagent.cpp File Reference
A.3.34 stone.cpp File Reference
A.3.35 stone.h File Reference
A.3.36 subthread.cpp File Reference
A.3.37 subthread.h File Reference
A.3.38 testcodex.cpp File Reference
A.3.39 tigersmouthagent.cpp File Reference
A.3.40 tinterface.cpp File Reference
A.3.41 tools.cpp File Reference
A.3.42 tools.h File Reference
A.3.43 traingainterface.cpp File Reference
Exodus Page Documentation
A41 TodoList
Ad42 Buglist

Appendix B: Running the Program

Glossary

Index

ix

242

244

245

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Summation Network Architecture. 4
AGoBoard.. 7
Surrounded Territory.o 8
White Stones to be Captured on Next Move (in Atari). 9
Capturing.o 9
Capturing IT. o 10
Dead Group.. L 11
Example of Go Without the KoRule. 12
Seki. . . .o 13
Board Locations Fora 9 x 9 Board. 35
An ASCIT Board. 36
Graphical User Interface Screen Shot. 37
Tiger’s Mouth Formation. 45
Extensions. o 46
GA Data Plot With Opener Agent. 50
GA Data Plot With Randomly Playing Agent. 52
GA Data Plot With Extension Agent. 54
GA Data Plot With Capturer Agent. 55
GA Data Plot With Follower Agent. 57
GA Data Plot With Tiger’s Mouth Agent. 58
GA Data Plot With Five Random Agents. 60
GA Data Plot With All Agents. 61

4.9 GA Data Plot With All Agents (Large Population). 63
4.10 Agent Comparison.o oo 64

xi

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Opener Agent Data. 50
Randomly Playing Agent Data. 51
Extension Agent Data. 53
Capturer Agent Data., 55
Follower Agent Data. 56
Tiger’s Mouth Agent Data.. o8
Five Random Agent Data. 59
All Five Agents Data. 60
All Five Agents Data (Large Population). 63

xii

Chapter 1

Introduction

Games have often been used to test new concepts in artificial intelligence because
of their relative simplicity compared to other more complex possibilities such as
simulations and real-world testing. GGo has the potential to excel as a testbed for
AT concepts because of the complexity of the tactics and strategies used to play
the game well. These complexities resemble real-world problems better than most
other games. Brute-force search cannot be used exclusively to play this game, as
in other games, because of go’s huge branching factor which starts out at 361 at

the beginning of a game and approximately decreases by one after each move.

With pure search ruled out as a viable method for playing go, one must turn
to more intelligent methods such as pattern recognition or rule-based deduction.
Complexity often plagues go programmers because of the intricacies of how a

player must think about the game—often remote locations on the board influence

a local situation. Sometimes, what one would hastily consider the best move
really reveals itself as the worst move because of global concerns on the board.
Current go programs play at only the level of a skilled novice, and we believe that
these limitations exist because of the programs’ architectures and their insistence
on using only traditional methods such as pattern-matching, hard-coded rules in

computer code, and minimax with alpha-beta pruning.

What we propose is that programs should play go using relatively simple agents
that combine to play the game well. Traditional methods have their place in
go programs, but to play an abstract and multi-faceted game one must use an
abstract and multi-faceted approach. Genetic algorithms have been employed to
play complex games, but these genetic algorithms often use evolved values that
are too low-level to allow the program to attain the skill required to play well. By
low-level, we mean that these values allow for the evolution of useful information
such as patterns or algorithmic code, but to play the game on a professional level
one would need too many of these individual pieces of information. Analogously,
it would be like creating a neural network with 3 x 192 inputs (representing the
192 board locations and the three possible states for each location: white, black,
empty) and 192 outputs. Training an artificial neural network of this size will
remain inconceivable for quite some time. Likewise, trying to evolve a set of rules
using a genetic algorithm would fail in much the same way. Too many rules exist,

and evolving them would take too long.

Our program and approach differ from most current go programs. Other pro-
grams are extremely complex, representing huge amounts of go knowledge. They
eventually become unwieldy, difficult to maintain, hard to follow, and tricky to

improve upon.

The motivation for this work is thus to study whether a set of relatively sim-
ple agents can each look at the problem from their own perspective after which
genetic-algorithm-evolved weights will allow the agents’ solutions to be summed
together to produce a final solution. This approach exchanges the ability to fine-
tune the program with the ability to incorporate more agents, and thus more
knowledge, in a consistent and scalable way. Our research will illustrate a novel
multiagent approach to playing games that uses a multilayer network to suggest

moves based on the moves suggested by each individual agent.

The problem is therefore to develop a set of agents that generate a value for
each location on the board (higher values representing a more highly recommended
move). These values are entered into a matrix such that each location on the go
board corresponds to a place in the matrix. These matrices are then normalized
and combined non-linearly using genetic-algorithm-evolved weights. The summa-
tion network architecture, shown in Figure 1.1, resembles a neural network in
that the resulting matrix of values is generated from a weighted sum of a set of
weighted sums. The resulting move to play will then be either the highest value

in the matrix or chosen probabilistically with higher values receiving a greater

First Layer

Second Layer

t put Layer

Figure 1.1: Summation Network Architecture.

probability of being chosen. Thus, our goal is to:

1. Show that as the genetic algorithm evolves, the program plays better.

2. Show that as more agents are added and the chromosomes evolved, the

program plays better.

3. Show that simple agents can be used to achieve better performing meta

behavior.

4. Illustrate a novel multiagent approach to programming games.

These considerations are obviously limited by our ability to program knowledge
about go; consequently, we have an additional goal of becoming better players so
as to program the game better. Also, we tried to develop agents that were not
exceedingly complex. They should have specific and well-defined expertise and a

clear focus.

1.1 Organization

Chapter 2 begins with information about the game of go including the rules of the
game, a few direct implications of the rules, basic concepts, how to score a game,
and how players are ranked. This is followed by a description of some techniques
relevant to this thesis. Following these, we consider how Al relates to games, and

in particular, to the game of go.

The next chapter (Chapter 3) explores the design of the program written for
this thesis. It explains all of the main components of the program and provides a

top-level view of the program’s architecture.

In Chapter 4 we explain all of the experiments performed along with the results
of these experiments. In addition to the results, some conclusions are drawn as
to the relevance of the data and what the interpretation of the data is. The next
chapter wraps up this thesis and summarizes the contributions, limitations, and

future of this work.

Chapter 2

Background and Related Work

2.1 The Game of Go

The game of go (also called goe, igo, baduk, wei-chi, weichi, weiqi, wei-qi, etc.)
is a board game of perfect information' played by two opponents on a 19 x 19
grid as shown in Figure 2.1. Each player takes turns placing his or her piece
(called a stone) on an intersection starting with the individual playing black.
The opponent, as white, places his or her stone, and the game continues until
both players pass their turns in succession. No stone can be moved unless it is
captured (as will be explained later), and all stones are completely equal in power

unlike pieces in games such as chess.

! Perfect information is a term used to describe games that allow the players to see the entire
state of the game at all times. No guessing or probability is involved as in games such as
backgammon or bridge which have uncertainty and hidden state respectively.

ABCDEFGHJ KLMNOPQRST

19
18
17
16
15
14

N W CTOY ~J00©

)
./

)
./

Notice that the letter I is not used which is to prevent

confusion with the letter J when transcribing games.

Figure 2.1: A Go Board.

003;%% 3

Figure 2.2: Surrounded Territory.

2.1.1 Surrounding Territory

The goal of the game is to surround more territory than your opponent with a sec-
ondary goal of capturing your opponent’s stones. Each surrounded intersection or
captured stone is worth one point?. In general, surrounding territory is considered
much more important by anyone versed in go. Figure 2.2 shows three examples
of surrounded territory: The black group on the left surrounds nine points, the
white group surrounds four points, and the right-most black group surrounds two

points.

2.1.2 Capturing

As stated, there is also a secondary way to gain points—capturing the opponent’s
stones. To capture a single stone, one must play on all adjacent intersection points
that are at right angles to the stone(s) to be captured. Figure 2.3 shows three
examples of a white stone about to be captured by a black stone if black were to

play on the locations marked A. The white stone is in atari.

2An exception exists when a stalemate condition arises as will be explained later

@)

rd

Figure 2.3: White Stones to be Captured on Next Move (in Atari).

Figure 2.4: Capturing.

To capture groups® one must play on all the liberties* of the group. Figure 2.2
illustrates three disjoint groups, and Figure 2.4 shows an example of a possible
state of the board during a game. In this figure, if it were white’s turn, she could
play at the location marked A to capture ten black stones. On the other hand, if
it were black’s turn to play, he could also play at A to capture four white stones.
Furthermore, if white were to play at location B in Figure 2.5, then white would
only capture seven stones as the two black stones at the top of the board are not

part of the black group below it.

3A group is defined as a set of stones that connect adjacently to each other through the
straight lines on the board (i.e., at right angles). Diagonals do not count.
4A liberty is simply an empty location adjacent to a group.

Figure 2.5: Capturing II.

2.1.3 Eyes

It follows that any group is unconditionally safe if it can partition itself into at least
two sections (also called eyes). Figure 2.2 illustrates multiple groups that have
two eyes each—the two rightmost groups. These groups are unconditionally safe
because if the opponent plays in an eye with a single intersection inside that eye,
then it commits suicide (all of its liberties are taken). One can logically rationalize
the unconditional safeness of a group with two or more eyes by imagining that
to kill the group, one would have to play in all eyes at the same time (after
surrounding the group first) which is of course illegal. If the eyes are too big,
one’s opponent could create a living group inside an eye and then the eye could
become useless. As an aside, the group on the left in Figure 2.2 has an uncertain

living ability; it is neither alive nor dead as it stands.

2.1.4 Live and Dead Stones

Surrounding territory is crucial while playing go, but there is a very important

twist that can make what seems like one’s territory actually one’s opponent’s.

10

Figure 2.6: Dead Group.

If a group of stones (at the end of the game after both sides pass in succession)
could not possibly survive an attack (i.e., it does not have two eyes or the ability to
make them if pressed), then that group is removed from the board and given to the
opponent. After playing many games, one soon learns how to identify hopelessly
dead groups of stones—if a disagreement arises about whether a group is alive,
then the game continues. Figure 2.6 shows a black group that is hopelessly dead

and the resulting board fragment after it is removed.

2.1.5 Rule of Ko

The last important concept in go is that of the rule of ko. This rule states that
no board state may be repeated. Stated another way, livelock is not allowed to
occur. The sequence of plays in Figure 2.7 illustrates an example of what could

happen if this rule were not in effect. The first move by white (Sy — S;) captures

11

L Sl

1 S,
Figure 2.7: Example of Go Without the Ko Rule.

a black stone, while the second move (S; — S;) captures a white stone. This
second move (S; — S») is illegal, and black must play somewhere else. One can
see that without the ko rule, a livelock situation would arise and both sides would

continually gain the same number of prisoners (stones).

2.1.6 Seki (Stalemate)

Seki can be viewed as a localized stalemate condition. In the game of go, there
are situations when neither side can count his or her territory because both sides
would have dead groups if they played first. Figure 2.8 illustrates this condition.
If it were white’s turn, she could not play at A (suicide), while playing at C' would
fill in her own eye. The only option is for white to play at B, but that would allow

black to play at C' on the next turn, capturing the white group. Likewise, if it

12

.__

L

Figure 2.8: Seki.
were black’s turn to play, C' would be suicide and A would be filling in his own
eye. A play by black at B would allow his small group to be killed with a white

play at A. Thus, the three locations A, B, and C are not counted as territory.

2.1.7 Scoring

Many variations exist for scoring finished go games, but for simplicity a player’s
score is calculated by first removing dead groups (which become prisoners), then
counting the number of captured prisoners, and finally counting the number of
intersections completely surrounded by one’s own color. In many games the person
to play second may get additional points called a komi to compensate for going

second which can vary from 0.5 to 5.5 points.

2.1.8 Other Board Sizes

Go can be played on boards of any size, but historically, games have been played on
boards of size 19, 17, 13, and nine (for a total of 361, 289, 169, and 81 intersections

respectively). Nine is used to teach beginners and is also often used in computer

13

go games because it has a smaller search space by orders of magnitude. Boards
of size 17 are usually used when one wants to have the essence of a full game but
does not have the time for a full 19 x 19 board. A 9 x 9 board, for example, has

a very different character than a 17 x 17 or a 19 x 19 board.

2.1.9 Go Player Ranking

Go has a well standardized hierarchy of skill levels that allow players to compete
on a fairly equal basis with standardized handicaps. A complete beginner that has
played a game and knows the rules starts off at 30 kyu. The scale progresses to one
kyu which is the best kyu ranking one can attain. After this, the scale continues
at one dan up to nine dan, the highest amateur ranking possible. Thus, for the
kyu ranks, lower values imply a better player, while for the dan ranks, higher
values imply a better player. To confuse the issue, professionals rank themselves
on the dan scale as well from one to nine, but their rankings are usually considered
stronger. Thus, a five dan professional and a five dan amateur would not usually
be able to play an equal game (with no handicap). Further complicating the
matter, different countries and groups may not completely coincide with each
other on strength. For example, a Korean eight kyu might not be equal to a
British eight kyu. Computer programs are often given honorary diplomas of a
certain level, but these can be misleading as the programs often play well but

make horrible mistakes every once in a while.

14

2.2 Relevant AI and Computational Techniques

Numerous Al and computational techniques exist that find uses in go programs.
Search techniques, neural networks, thread pools, multiagent systems, and genetic
algorithms make up what can be considered relevant paradigms to programming

the game of go [12, 19, 20].

2.2.1 Search Techniques

Many methods of search exist in the repertoire of most computer scientists. Quite
a few are a variation on either breadth-first or depth-first search. These meth-
ods include uniform-cost, iterative deepening, bidirectional, and depth-limited
searches. Canonical breadth-first search expands a new tree layer at every iter-
ation while depth-first search expands one element from the next layer at every
iteration. Uniform-cost search, a variant of the breadth-first search, expands the
next cheapest node at every iteration, and iterative deepening search is simply
breadth-first with the number of layers increased at each iteration. Bidirectional
search attempts to search from both the goal and the starting state simultane-
ously. Finally, depth-limited search is a variant of depth-first search that includes

a provision for the maximum depth that will be searched before backing up.

These search methods can be improved upon by incorporating knowledge about

the problem space to help make the search more efficient. The simplest informed

15

method is a greedy search that always expands the node that appears closest to the
solution. Another method is A* and its close relative IDA* (iterative deepening
A*) [19]. In A* the next node to be expanded is the node that has the lowest
value for a variable ¢. This variable ¢ is defined as the cost from the initial node
to the current node in question plus the estimated cost of the best path from that

node to the goal.

2.2.2 Neural Networks

A neural network can be viewed as a random search method that yields a function
that sometimes cannot be found by more traditional methods. Neural networks
are often composed of multiple layers of neurons, and each neuron in each layer
can be connected to all of the neurons in the immediately adjacent layer. Each
connection has a weight associated with it, and each input neuron receives some
part of an input signal which is passed through a non-linear activation function
(which determines if the neuron will fire). A neuron that fires has its output
signal multiplied by the aforementioned weights which is then directed into all the
connected neurons in the next layer. Each neuron in this layer receives a signal
from each input neuron, and these signals are then summed and once-again passed
through an activation function to determine its output. This process continues
for all neurons in all layers until an output is received on the output layer of the

neural network.

16

Many paradigms exist for training neural networks, but the most common is
the backpropagation technique which compares the output of the network with a
correct training example. The delta between the expected and actual output is
backpropagated through the network to modify the weights between the neurons.

Other methods exist to modify the weights [16].

The usefulness of neural networks is heavily influenced by a number of factors:
the number of neurons, the number of layers, the choice of whether to allow
connections within a layer, the choice of whether to allow connections back to
previous layers, the choice of training data, the learning rate, and the choice of
the training method. These all can affect the quality of the resulting network.

There is much trial-and-error involved in neural network design.

2.2.3 Multiagent Systems

As described in Gerhard Weiss’s book, “An agent is a computer system that is
situated in some environment, and that is capable of autonomous action in the
environment in order to meet its design objectives” [20]. Though there is much
disagreement on the exact definition of an agent, most agree that agents are indeed
autonomous. Intelligent agents have the characteristics of agents but also have
intelligent traits such as reactivity, pro-activeness, and social ability [20]. A robot
capable of interacting in its environment might be considered an intelligent agent,

while the thermostat in one’s home would not be.

17

There are many issues that must be resolved if one wants to create a multiagent
system. One must consider what kind of information the agent will have about
the environment that it exists in. A computer program running a single thread
for each agent is quite different from a robot traversing ice-sheets at the poles of
the earth. Is the environment real or virtual? Will the agent receive all inputs
through a socket, via shared memory, or by way of an external bump sensor? All
of these questions are important to designing a multiagent system. Closely related
to this concept of an agent’s environment is the idea of an ontology which is, “...a

specification of the objects, concepts, and relationships in an area of interest” [20].

All agents must exist within some framework.

Agents that simply exist in an environment that they can sense are different
from cases where a method of communication becomes important to consider. If
the agents exist in a virtual world on a single computer they might communicate
via shared memory or via sockets, while distributed agents might communicate

over a wireless network or even with physical means such as actual speech.

Being able to communicate is of little use if one does not have a common
language and protocol for exchanging messages, thus these concerns arise and must
be considered by a multiagent system designer. Many languages and protocols
exist for agent communication [8], but the important idea is that these issues must

be carefully considered for the application at hand.

A high-level goal must exist that enables the agents to actually achieve some-

18

thing useful. Even if no single entity has established a clear plan or goal, often a
goal is inherent in the behavior of each single agent. For example, one could argue
that a goal of human society is to survive. This goal is exemplified in each indi-
vidual human-being’s actions. Analogously, computer agents interact together to
produce some type of useful output. Agents can be cooperative or self-interested
which both lead to different types of agent interactions. Cooperative agents may
actually negotiate an agreed upon goal, while self-interested agents might achieve

their own personal goals leading to a net benefit to at least themselves.

2.2.4 Genetic Algorithms

Genetic algorithms are search methods that approximate biological genetics (i.e.,
simulate evolution) in an attempt to find a solution or goal for a particular problem
[11, p. 1-6]. Essentially, a genetic algorithm (or GA) begins with the creation
of a set of entirely random chromosomes of alleles. These “arrays of bits” are
translated into parameters or data that can then be tested to see how well they
approximate the solution that is being searched for. This function that finds how
well an individual chromosome performs is called a fitness function or objective

function.

GAs progress by first creating a population of randomly generated chromo-
somes. The fitness of each of these chromosomes is calculated and then pairs

of chromosomes are picked (with higher fitness values more likely to be picked).

19

These pairs possibly undergo crossover and/or mutation. The resulting chromo-
some then becomes a new member of the new population. The process repeats
itself for each generation until a chromosome with some minimum cutoff fitness is

found, or until a maximum number of generations have transpired.

GAs perform a form of directed random search. The efficacy of using this
approach relies heavily on the choice of fitness function, the size of each generation,
the maximum number of generations, the crossover rate, the mutation rate, and

sometimes a scaling factor [6, p. 1-86].

Many variations have been proposed that modify the basic GA paradigm. For
example, Rosin and Belew describe [18] a co-evolution method that evolves two
separate populations that compete with each other after each generation. The idea
is that as population « evolves an individual that can beat individuals in popula-
tion 3, population £ will have to evolve in order to keep up. This competition is

analogous to different species competing in the wild.

2.2.5 Thread Pools

Though not an AT technique, thread pools are important for our program. Thread
pools begin by starting a finite number of threads, each capable of doing some
work. When work becomes available, it is given to a thread in the thread pool to
do. If there is more work to do than threads available, then the work must simply
wait to be done. This method saves some overhead because each time work must

20

be done, the operating system does not need to create and destroy a new thread

which can take much time.

A problem with this method is that one must determine an optimal number of
threads to start within the pool. The number of processors, the complexity of the
problem, and the amount of work to be done all affect the usefulness and size of

thread pools.

2.3 Al and Games

The field of artificial intelligence has been applied to the development of game
playing programs, particularly two-person games of perfect information. One of

the most important ideas is minimax search along with alpha-beta pruning.

2.3.1 Minimax Search

Minimax search involves enumerating all possible moves for one of the two players
followed by enumerating every possible response to each of these initial choices.
This process is continued until all the leaves of the tree represent final game states.
A tree such as this allows the program to play a game perfectly, but for all but

the most trivial games this approach requires too much time and memory.

As a compromise, programmers might only allow the tree to expand to a cer-

tain level and then assign an estimate of the quality of the game state with an

21

evaluation function. At any given point in the game, the minimax tree allows the
programmer to pick the best move assuming the evaluation function is accurate.
The problem with this approach is that this evaluation function only approximates
the quality of a position and may take quite some time to evaluate. Additionally,
if the evaluation function is accurate, then there would be no need to have any

tree in the first place.

Alpha-Beta Pruning As an improvement to using an evaluation function and
limiting the number of levels, one can use alpha-beta pruning which keeps two
values: an « value and a [value. These values store the highest and lowest
evaluation values. Low values are good for one side, while high values are good
for the other player. Assuming that players always play the best move possible,
one can prune tree branches that are worse than some other possible move that
the algorithm has seen before. For example, while performing a depth-first search
one finds that one player can achieve an evaluation of 10. Then, deeper in the
search, a possible sequence of moves leads to a value of five. The subtree with the
value five will be pruned and no further moves from that path will be considered.
This method always returns the same value as pure minimax search with depth-
limitation, so this pruning method is almost always used along with minimax

search.

22

2.3.2 Al and Other Games

Other games of perfect information such as Reversi, Pente, checkers, chess, and
go-moku can derive benefits from AI techniques just as go can. The main differ-
ence, in our opinion, lies in their branching factors and the manner in which each
piece affects other pieces. Reversi, checkers, and chess all have relatively small
branching factors making them much more conducive to traditional approaches
such as alpha-beta search with move-ordering and other advanced pruning tech-
niques. Pente and go-moku, on the other hand, have similar branching factors to

go, but have much simpler interactions between the pieces.

Peter Norvig [13] discusses in depth the construction and refinement of a Lisp
program to play Othello. The evaluation function and some of the details are
useless for programming go, but the work has much to contribute relative to
efficiency issues, searching, and other miscellaneous topics. For example, Norvig
uses minimax search with alpha-beta pruning, but he also suggests improvements
upon this method. One improvement is to order the moves at each node in the
search tree in an attempt to allow pruning to remove more nodes. This ordering
can be accomplished if certain locations on the board are more advantageous than

others, i.e., better moves are placed first.

Another method is to find the evaluation value for each successor of the current
node and then proceed to traverse these, not in an uninformed depth-first manner,

but rather in order by evaluation value so that the best successor node is searched

23

next. This potentially allows for a greater number of pruned nodes as well.

Another improvement to playing games of perfect information is to keep track
of killer moves. This method would have the programmer store moves that were
exceedingly bad (moves which were discounted while performing minimax search).
If these moves show up later in the search then they are placed first, before other

nodes in the minimax tree.

Norvig continues with the idea of generating abstract heuristic values that are
relevant to the game such as mobility in the game of Othello or pawn structure
in the game of chess. Go, for example, has potential candidates for approaches
of this nature such as thickness and good shape which both describe abstract
concepts that relate to good moves. One usually wants to build thickness and to

make good shape.

Another method is forward pruning which requires a function that removes
obviously poor moves from the search. It is difficult to do and very subjective.
While out of favor as a rigorous method, it is a necessity for games with large

branching factors.

Programs that think while the opponent is playing can gain some advantage,
and the use of board hashing and opening book databases can help programs’
strengths as well. Also, exhaustive searching near the end of a game can be an

option for some games such as Othello, but may not be feasible in go.

24

2.4 Al and Go

2.4.1 Search Space

The number of possible states S on a go board of size 19 is S = 31 & 1.74x 10172,
There are 19 x 19 = 19? intersections on the board, and each location has three
possible states: black, white, or empty. Though many of the states are very
unlikely to occur, one can appreciate the size of the complete search tree. Even
accounting for symmetries such as color-inversion symmetry, rotational symmetry,
reflection symmetry, and the fact that the number of stones of each color are

usually roughly the same, the number is huge.

One of the greatest difficulties in programming go is the immense branching
factor in the game. The first move in a game of go can be any one of 19?2 = 361
moves, while chess has only 20 initial moves. Reversi only has four moves possible
at the onset. Though the number of possible moves fluctuates as play progresses,
these games cannot be compared to the order of magnitude difference in the
branching factor of go. Chess has 20 x 20 = 400 game states after the initial two
moves, while go has 19 x (19% — 1) = 129,960 game states after the initial two
moves! Including a third move brings chess up to approximately 400 x 25 = 10, 000
states, while go has 129,960 x (19% — 2) = 46,655,640 states. This example
illustrates why nobody has (and possibly ever will) play go well by brute force—

there are already three orders of magnitude difference in the size of the search

25

space after just three moves. One can prune many moves throughout the game,
but even the ability to prune three-fourths of the moves would result in a huge

search space.

2.4.2 Neural Network Techniques

Many programmers and researchers have used neural networks to attempt to play
go well including neural networks with GA-evolved weights. For example, Markus
Enzenberger [4] created an architecture for his program NeuroGo that evaluated
the board using a neural network with backpropagation and temporal difference
learning. The network received its input from a feature expert, while a relation
expert controlled the connections between the layers of the neural network. In
addition, there existed an external expert that could override the neural network’s
output for a small class of problems. The idea of using experts to extract features
from the gobans ° is interesting, but few details of the inner workings of NeuroGo

were available.

Paul Donnelly et al. [3] studied neural networks that were evolved using genetic
algorithms. They used a 9 x 9 board along with a three layer non-recurrent
network. They also postulated that recurrent networks with more than a single
hidden layer might be better suited for the non-linearities of go. Their experiments

consisted of creating a population of 32 networks that all played each other. The

5A goban is simply another term for a board for playing go.

26

network winning the most games overwrote the network that lost the most at
the end of the cycle. They used the networks to evaluate the quality of a given
position which was accomplished via a single output neuron and input neurons
that derived their inputs directly from the goban. Each location on the board
corresponded to three individual input neurons (one each for white, black, and
empty positions). The resulting input layer thus had 9 x 9 x 3 = 243 neurons.
The authors found that the networks slowly got better, but the network still
played poorly compared to modern go programs. This approach theoretically has
merit, but to implement this architecture on a full board using only two hidden
layers each analogous to those in the paper, one would need 19 x 19 x 3 = 1083
input neurons and 19 x 19 = 361 neurons in each hidden layer. This results in
1083 x 361 + 361 x 361 + 361 = 521,645 connections. A network of this caliber
could be constructed, but recurrent connections might be required for it to play

well, and training time would be prohibitive.

2.4.3 Traditional Techniques in Go Programs

Some go programs do not use any soft computing techniques, i.e., they do not
rely on learning, genetic algorithms, neural networks, cellular automatons, or

other similar approaches.

In Computer Go as a Sum of Local Games: An Application of Combinatorial

Game Theory [10], Miiller studied methods of playing go that generate moves by

27

first enumerating possible moves based on small, local views of the goban. These
moves are filtered, ordered, checked, and refiltered. The best move is executed.
If a ko ensues, a special ko module is called. If no move survives this process,
the program passes. At the core of this approach is a pattern matching database
that uses Patricia trees which is a method normally used to search large text
databases such as dictionaries. This program contained about 3000 patterns, and
pattern matching was its chief element. This reflects a very prominent trend
across many go programs: they often rely heavily on vast databases of patterns
that have been built by hand. These pattern databases make these programs
better, and the implementation of these databases is not a trivial task. The use of
large databases proves nothing about a program’s “intelligence” since it becomes
in essence a sophisticated lookup table. There does remain the possibility of
learning patterns as the program plays, but techniques such as these would not

fall under the category of traditional techniques.

Another prominent program, The Many Faces of Go [5], as of 1993 had an open-
ing move database that contained around 45,000 moves and a pattern database
of about 1,000 patterns. This program contained a rule-based expert system with
around 200 rules that were used to suggest moves to look into further. Addi-
tionally, dynamic knowledge was stored about the state of the board which was

generated with algorithmic C-code [5].

Though this investigation of traditional techniques has been very cursory, these

28

programs represent some prominent themes in most strong go programs: they
construct meta-data based on the state of the board and use this meta-data along
with large databases of patterns to decide what move to play next. Rarely does

learning or extensive minimax-style search play a role in the skill of these games.

2.4.4 Genetic Algorithm Techniques in Go Programs

Many attempts have been made to create a program that plays go by using genetic
algorithms. None have been successful at creating a world-class player, but nobody
has accomplished this feat without genetic algorithms either. What follows is a

perusal of some attempts to use genetic algorithms to play this game.

Da Silva [2] used GAs to evolve a go evaluation function for 7 x 7 boards. The
evaluation function worked by attempting to translate a given board into a new
board that represented how the final configuration of the game would be. The
evaluation function then looked at who won to calculate the fitness. Essentially,
the genetic algorithm attempted to evolve an evaluation function that could be
used in minimax searches with alpha-beta pruning. The evolved parameters were
a set of low-level functions that performed simple calculations based on the board
state. These functions, organized as the chromosome dictates, produced what
the author called an S-ezxpression, which is a significant component of calculating
a board evaluation and consequently the fitness. Da Silva’s approach yielded

a player that on average never beat a defacto opponent called Wally, a freely

29

available public domain go program.

Jeffrey Greenberg has written a program using genetic algorithms to play go
[7]. He feels that go represents a good test-bed that approaches the complexity of
real problems while not being as complex as a commercial application. One could
argue with this premise since go is easily as complex to program as a modern
commercial software package—why else would modern go programs remain such
poor players? Aside from this point of view, he wrote a GA engine in C++
independent of go. Knowledge in this program is represented entirely by triples
reminiscent of Prolog predicates such as IfPointAt(z, y, z). These statements can
be nested. Detailed descriptions were scant, but it appears that each variable (x,
y, or z) is comprised of a board location, the color (white, black, or empty), and
the action to take (move, pass, or resign). If the parameter x is satisfied, then
y is checked, otherwise z is checked. Through this possibly layered traversal of

the statements, moves are chosen. The program,

...was very poor at breeding
individuals that could match. And when it did, the individual would often resign

after but a few moves” [7].

In [9], the researchers used genetic programming and the game of go to create
genetic algorithms that incorporate qualities of true human experts. One inclusion
was to incorporate useful but infrequently used rules, and another was to model
ecological systems. The ecological models dictate that many species coexist. Their

ideas revolve around the fact that species live together in an environment, yet

30

they can be radically different. Rules, in their system, increase in number and
eat virtual food. Rules whose activations decrease to zero, die, while rules whose
activations become too high split into the original rule and a more specific rule.
A training datum is considered food, which is eaten by a rule that matches it; the
activation value of the rule then increases. These researchers used their genetic
algorithm entirely to evolve rules based on patterns found on the board. The
authors did not report the playing skill of their program, but they did present
the rules that the program generated to go experts. These experts decided that

41.6% were good, 21.1% were average, and 37.3% were bad [9].

2.4.5 Other Techniques and Hybrids

In [17], the authors describe their SANE architecture that evolves neural networks
to play go by using genetic algorithms. The program starts with no prior go
knowledge at all. The process involves evolving individual neurons using crossover
mutations and random point mutations. Each neuron is defined as a set of bits
that describe connections and the connection weights. Each neuron has a fixed
number of connections, but each connection can be attached to either the output
or the input layer. Network blueprints are also evolved along with the individual
neurons. Entire networks are evolved based on the final state of the game rather
than assigning credit to individual moves, which the authors state is unreasonable;

however, it could be argued that one can simply assume that game records between

31

two masters represent on average the best move at each point in the game. This

may not actually be true, but it is a close enough approximation.

In [14], the researchers discuss the evolution of neural networks on a variant of
the SANE architecture that evolves individual neurons, but evaluates the fitness
of entire networks. In addition, blueprints (i.e., sets of neurons that work well
together) are evolved. The neurons in question are only for the single hidden
layer of the network. SANE has been shown to work well in continuous domains
and games with hidden state information. The authors describe their EuSANE

architecture:

“The core idea of EuA is to select every allele of the offspring sep-
arately, based on explicit analysis of the allele fitness distributions in
the population. It furthermore contains a restriction operator that
focuses the analysis on members of the population most relevant for
determining the next allele. In every generation only one new individ-

ual is generated, implementing a steady-state replacement.” [14]

32

Chapter 3

Methodology

Our approach consists of a three layer summation network with each layer fully
connected to its adjacent layers. Each connection is characterized by an integer
weight, and each node sums arrays. These arrays each contain an element that
corresponds to locations on the board (i.e., it is a one-to-one mapping). The
cornerstone of our design is to evolve these weights using our genetic algorithm,
thus each chromosome specifies a set of integer weights for the summation network.

The initial inputs to the network are the outputs from the individual agents.

3.1 Design Overview

Exodus, as the program we wrote is called, provides the end user with the ability

to run regressions, evolve a GA player using stored game training sets, and play a

33

human player with extensibility in mind to allow IGS ! and gomodem? connectivity

in the future.

Exodus was designed in a highly object-oriented fashion as will be described in
this chapter. It consists of a moderator that allows two move generation classes
(called interfaces) to play against each other. Through this abstract interface
class, we have developed an ASCII text player that interfaces with a human user,
a simple Perl/Tk? interface that also interfaces with a human user, a GA player
that will be described in detail below, and a GA trainer that is designed to play
against the GA player in order to calculate the fitness of the GA player. The
interface’s simplicity allows for the potential future development of interfaces that
can play go over the Internet or interfaces that communicate over a serial line,

i.e., as used in competitions.

3.2 Stone, Board, and Game Classes

The stone class represents a single location on the goban, which was implemented
with speed as the primary concern. It uses bit operations to test various traits of
a location such as if the location has a black stone or a white stone. This feature

eliminates many potential modulo operations that would be necessary otherwise.

!Internet Go Server

2 A protocol for serial communication between two computers, each playing go.

3Tk is a graphical package, originally implemented for use by the language TCL, that provides
basic graphic capabilities such as window creation, buttons, frames, text boxes, etc.

34

A B C D E F G H]
o 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35
37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53
94 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71
72 73 74 75 76 77T 78 79 80
o 1 2 3 4 5 6 7 8

=N Wk Ctoy = 0 ©
w
(@]
OO Ot W N H—H O

Figure 3.1: Board Locations For a 9 x 9 Board.

It also has functions that test if the location is on an edge. This class can be

found in section A.2.29.

The next layer of abstraction encapsulates the concept of a board, which is
simply a one-dimensional array of stones. A one-dimensional array was chosen
in an attempt to speed up board manipulations by reducing the need for pointer
arithmetic that is required in multiarray offset calculations. Figure 3.1 shows
how a 9 x 9 board is represented and shows how the two-dimensional structure is
mapped onto a one-dimensional array. Stones on the edges are marked as such to

allow tests such as stone/9].left() or stone[32].nottop().

On top of the board abstraction there is a game class which stores a linked
list of boards and keeps track of which side’s turn it is. The game class enforces
certain optional rules such as whether or not to allow suicide. It also provides
functions such as play_move and legal, both of which have obvious uses. The

source code for this class is found in section A.2.9.

35

9l #
8| #
71 o
6] o
5| #
4| . .
3l .. #

=+
= N WP 01O N 0 ©

1]

Figure 3.2: An ASCII Board.

3.3 User Interfaces

The Exodus program contains two distinct user interfaces, each of which inherits
from a superclass Interface found in section A.2.18: a text interface and and a
graphical interface. The text interface displays the goban using ASCII characters
with a # representing black and an o representing white. Figure 3.2 shows an
ASCII board for a 9 x 9 game. This interface is useful when visual appeal is not

an issue (i.e. testing code, not directly related to the output of the board).

Another user interface is a GUI interface that uses an external Perl/Tk program
to display the goban. Figure 3.3 shows a screen shot. This interface is important
for playing games against the program (a graphical board is easier to interact
with). This interface was also useful while developing the board and game classes
as it made debugging easier. A graphical user interface allowed for a quicker way

to play with the program in an attempt to find problems or bugs.

36

Figure 3.3: Graphical User Interface Screen Shot.

3.4 Genetic Algorithm

The code for performing genetic algorithms was originally taken from David E.
Goldberg [6]. The code in this text was converted to C++ and syntactically
modified to better suit an object-oriented approach like ours. The code can be

found in section A.2.8.

The GA code was made as generic as possible and supplies a member function
called set_codex which allows the reception of a pointer to a class of type PreCoder,

which is a superclass of any class that wishes to supply a fitness function.

The program keeps statistics on the performance of the GA and tracts the
minimum, maximum, sum, average, variance, and standard deviation of the fit-
nesses from each generation. In addition to these, F-test and T-test values are
computed for each generation, comparing the statistics to the initial generation.
The F-test value calculates whether two distributions have significantly different

variances. The T-test (Student’s T-test) measures whether two distributions have

37

significantly different means. Two versions of the T-test were used. One version
is used for distributions with statistically different variances and the other for dis-
tributions with statistically identical variances. These numbers allow us to better

determine the significance of the data.

3.5 Moderator

The moderator class, found in section A.2.19, essentially loads two move genera-
tors which can manifest themselves as anything from a user interface to a random
move generator or a genetic algorithm player. There also exists a genetic algorithm

trainer which is described in section 3.7.

The moderator class is multi-threaded, allowing a thread for each move gener-
ator. This design allows both sides to have processing time throughout the entire
game—not just during a side’s turn. Another feature of this class is that it was
implemented as a template, which allows the two players to be specified when one
instantiates a moderator class. Message passing is used to allow communication

between the moderator and the two move generators.

3.5.1 Probability Board

The probability board class, found in section A.2.27, is a conceptually simple

abstraction that stores an array of values which correspond with the locations on

38

the goban. The semantics are such that the values at each element represent how
highly that location is valued as a possible next move. Each agent constructs one
of these, and to facilitate the aforementioned use of this class, a spin function was
implemented (to choose a move probabilistically), and a normalize function was
implemented to facilitate the addition of two or more of the boards together, each
from a potentially difference source. Also, the ability to multiply each board by

a scalar value was added (whose use will become apparent in section 3.6).

3.6 Agent Network Architecture

The GA player uses a thread pool to run multiple agents that each generate a
numerical value for each board location. These arrays are multiplied by GA-
evolved weights, added together, normalized, and fed through a second layer of
summation nodes. The resulting array is then normalized. The highest value in
this result array then becomes the move played. Figure 1.1 shows a graphical

representation of this process which is described algorithmically as follows:

1. Each of N agents computes a value for each location on the goban.
This probability board is a vector and shall be denoted as 3,, where

n is the agent number.

39

2. Each of the K second level nodes vy, sum all 3, values multiplied

by a scalar value wy ,. Thus,

N
Yk = z Wg,n - Br
n=0

3. These 7y, are vectors that are then normalized so that the values
add up to 1 in each vector unless all of the values in a vector are

zero, in which case they are left that way.

4. These normalized y-vectors are then multiplied by a second set

of weights and added together:

K
€= wy Y
k=0

5. This final vector, ¢, is normalized and represents a distribution of
which move to play. To make training the GA simpler, we simply
choose the first highest value rather than choosing the move to

play probabilistically, though either way is possible.

This approach theoretically allows for a large number of agents, limited primar-
ily by the size of the thread pool and the number of processors available to the
program. A major goal of this project was to create a design that was scalable and

could benefit from a highly parallel machine. Though scalability was not tested,

40

the possibility of adding more agents could easily be realized. Figuring out what

each agent would do could become a significant bottleneck, though.

3.7 Genetic Algorithm Trainer

This move generator was designed to play against the genetic algorithm player.
It reads a sequence of moves from a data file (which were derived from recorded
games of professionals in the public domain). It sets up the board and then allows
the genetic algorithm player to play. After the GA player has played, the trainer
resets the game state to whatever the professional actually played in the game
record. The colors on the board are flipped, and the GA player is allowed to
play again. The colors are flipped to allow the GA player, which plays a single
color, to gain benefit from the entire game record and not just from the plays of
a single color. After all, the recorded games are from two professionals playing,
and each player can be assumed to be playing well. The usefulness of this GA
trainer player, which is shown in section A.2.10, will become apparent in section

3.8.2, which describes the fitness function in detail.

41

3.8 Genetic Algorithm Player

3.8.1 GA Player Details

This code, found in section A.2.11, loads the parameters for the weights in the
summation network (described in section 3.6) and computes the move to play by
running the agents, filtering their values through the summation network, and
then picking either the first highest value or normalizing and then choosing the
move probabilistically. This class also inherits from PreCodez which implies that

it provides a fitness function (that the GA uses).

3.8.2 Fitness Function

The fitness is calculated by setting up a goban as dictated by stored games from
the Internet. If the GA player chooses the correct next move, an accumulator
is incremented. The fitness is then simply the percentage of moves correctly
played. Many other GA go programs calculate fitness by using some variation
of attempting to guess how the current board configuration relates to the final
division of points at the end of the game. Our approach sidesteps this difficulty
which relates closely with the difficulty of simply scoring a finished game. The

fitness function code is shown in section A.2.11.

42

3.9 Agents

We have designed and implemented six different agents that each choose moves in
significantly different ways. Currently, there is a random agent that plays random
legal moves, a follower agent that tries to play close to the enemy, an opener agent
that plays in the locations usually played in at the beginning of a game, a capture
agent that attempts to kill groups by reducing other groups’ liberties, an agent
that attempts to create a strong configuration known as a tiger’s mouth, and an

extension agent that favors moves close to friendly stones.

3.9.1 Random Agent

An agent that plays random legal moves was developed to allow the testing of
code that directly uses the agents and to allow the testing of the code that lets
the agents interact. Additionally, the random agent was used as a baseline with
which the other agents can compare themselves. For example, the standard by
which the success of the genetic algorithms is judged is the set of five random

agents. Section A.2.28 contains the code for the random agent.

3.9.2 Follower Agent

The follower agent, found in section A.2.7, values playing on locations adjacent to

enemy stones. As is often found in games of go, many good moves are often near

43

enemy stones, i.e., attacking them. Playing close to enemy stones not only attacks

them, but also attempts to push the enemy group in the opposite direction.

3.9.3 Opener Agent

This agent, found in section A.2.24, suggests moves around the perimeter of the
board near the third or fourth row. The values decrease the further the game
progresses. The reasoning behind this type of agent is that at the very beginning
of most games, stones are played near the edges and sides because this is where it
is easiest to make territory. In a corner, one only has to worry about attacks from
two directions. On a side, attacks are only possible from three directions, while
in the middle, attacks can be made from all directions. These considerations are

what justifies having an opener agent.

3.9.4 Capturer Agent

This agent attempts to capture enemy stones by filling in their last liberties. It has
no knowledge of living or dead groups, thus it plays simply by calculating which
groups have one or two liberties left and then plays in those liberties. Located in
section A.2.14 and called GroupStatsAgent, this agent does not take into account
moves that would reduce a friendly group’s liberty count down to one. What this
means is that this agent would be perfectly content to play a move that reduced
an enemy’s group to a single liberty while that very same move would allow the

44

Figure 3.4: Tiger’s Mouth Formation.

enemy to capture a friendly group on the next turn.

3.9.5 Tiger’s Mouth Agent

The tiger’s mouth agent (section A.2.34) attempts to create a powerful configu-
ration called a tiger’s mouth. Figure 3.4 shows what a tiger’s mouth looks like.
This formation retains the same name regardless of all symmetries. This config-
uration is considered strong because it allows three stones to NOT be connected
while retaining the ability to become connected by playing in the center location.
Another strength of this configuration is that if an enemy stone tries to keep these
stones from connecting, that enemy stone can be captured on the next turn if it is
not part of another group. The versatility of this formation provides justification

for the inclusion of this agent.

3.9.6 Extender Agent

This agent plays many of the common extensions. Each type of extension has a

different weight (or value) which is derived from the GA chromosome. It is also

45

)
o/

)
/

1o

Extensions starting at the upper-left
and continuing clockwise. 1. Ex-
tension e 2. Ome-point extension e
3. Two-point extension e 4. Three-
point extension e 5. Shoulder exten-
sion e 6. Knight’s move e 7. Large
Knight’s move

Figure 3.5: Extensions.

the only agent that uses alleles from the chromosomes to set these internal values
(in this case, the alleles specify the relative value of each of the extension types).

These types of extensions are shown in Figure 3.5.

3.10 Regressions

We have written extensive amounts of code to test the validity and accuracy of
much of the code. Nearly every function in every class has some sort of regres-
sion. The regressions for each source file are located within that file. One cannot
guarantee program correctness by running the regressions, but the regressions do
serve to instill a greater feeling of security that incremental changes to the code

do not break anything coded previously.

46

3.11 Unimplemented Features

Over the course of designing and implementing this program many ideas that
were designed into the original program were not actually implemented, though
integration of these parts would be relatively simple given enough time. These

unimplemented features include:

The ability to have the program play against real people on IGS (Internet

Go Server).

e A blackboard architecture for agent communication.

e The ability to play another program via a protocol called the gomodem

protocol.

e The ability to track time during games.

e The modification of agents to allow the use of time when the opponent is

thinking to do useful work.

e The incorporation of interagent communication.

e The ability to score finished games.

47

Chapter 4

Experiments and Results

The experiment descriptions and results that follow attempt to show the successful
evolution of summation network weights for a multiagent approach to playing go.
The key point is that we want to illustrate that though each individual agent may
play poorly, the agents playing together actually play better. We wish to further
show that random search (using a GA), finds weights for the summation network

that improve over multiple generations.

The fitness function for our experiments uses recorded games; we used recorded
9 x 9 games between professionals from the public domain that occurred between

1995 and 2000 on an international go server [1].

48

4.1 Individual Agent Experiments

The genetic algorithm was run for eight generations with the program configured
to use only a single agent. These agents were the random-move-generating agent,
the extension agent, the follower agent, the capture agent, the opening move agent,
and the tiger’s eye agent. In each case, the populations contained ten individuals.
Such a small population and small number of generations were used because of the
large amount of time it took to run the GAs even with this configuration. These
runs took around three days on a dual-processor, 1.2GHz machine. Additionally,
most of the single-agent configurations do not benefit from the GA on their own,
making the time required for a larger population or a larger number of generations
of questionable use. The crossover percentage was 40% with a mutation proba-
bility of 0.0333. Additionally, the F-multiplier was two. The random agent was
used as a baseline. After evolution by the genetic algorithm, the best individual
in the final population was used to play against a testing data-set representing
game records that were different than those used to train during the run of the

genetic algorithm.

4.1.1 Opener Agent

Table 4.1 shows the results of the genetic algorithm run using only the opener

agent. These data (fitness values) are also shown in Figure 4.1. Since the genetic

49

Fitness

0.2

0.15

0.1

0.05

Generation Max Min Mean Std. Dev. Sumfitness
0 0.0114 0.0114 0.0114 0 0.114
1 0.0114 0.0114 0.0114 0 0.114
2 0.0114 0.0114 0.0114 0 0.114
3 0.0114 0.0114 0.0114 0 0.114
4 0.0114 0.0114 0.0114 0 0.114
5 0.0114 0.0114 0.0114 0 0.114
6 0.0114 0.0114 0.0114 0 0.114
7 0.0114 0.0114 0.0114 0 0.114
8 0.0114 0.0114 0.0114 0 0.114
Table 4.1: Opener Agent Data.
Fitness By Generation (Opener Agent)
T e - - - e —+mmmmmmmma- e
0 1 2 3 4 5 6 7

Generation

Figure 4.1: GA Data Plot With Opener Agent.

20

Generation Max Min Mean Std. Dev. Sumfitness
0 0.00622 0.00622 0.00622 4.91e-10 0.0622
1 0.00622 0.00622 0.00622 7.39¢-06 0.0622
2 0.00622 0.00622 0.00622 7.39e-06 0.0622
3 0.00622 0.00622 0.00622 0.000906 0.0622
4 0.00622 0.00622 0.00622 0.000906 0.0622
5 0.00622 0.00622 0.00622 0.01 0.0622
6 0.00622 0.00622 0.00622 0.01 0.0622
7 0.00622 0.00622 0.00622 0.0334 0.0622
8 0.00622 0.00622 0.00622 0.0334 0.0622

Table 4.2: Randomly Playing Agent Data.

algorithm-evolved weights are not effective if a single agent is used, one would
expect that the fitness values would not change, which is exactly what appears
to have happened here. The best chromosome (which incidentally is arbitrary)
of the last generation chose 1.14% of the training moves correctly and 1.55% of
the testing moves correctly. Considering that this agent was designed to play
opening moves, this is not a surprise that it fared so poorly. The F-test and T-
test (described in section 3.4) have little use here in a straight-forward example
such as this. Each distribution of each generation is clearly identical to each other,

so nothing was gained from the genetic algorithm.

4.1.2 Single Random Agent

The single randomly playing agent did not fare well as shown in the data (Table
4.2 and Figure 4.2). Since the random agents always at least pick legal moves,
the number of possible moves near the end of any game becomes smaller, which in-

creases the likelihood that a random guess would be correct. These considerations

o1

Fitness By Generation (Random Move Generating Agent)

0.2 T T T T T T T
0.15 | i
n
g 01r -
=]
[
0.05 | —
- Fommmmmaa- Hommmmm———a- Hmmmmmm——aa- Hommmmm——aae e YR U -+
ol A
! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8

Generation

Figure 4.2: GA Data Plot With Randomly Playing Agent.

aside, one should note that the random agents are not actually randomly choosing
locations to play, but rather assigning the same value for every legal position to
move to. The final resulting probability board (see section 3.5.1 above) contains
an array of values (which in this case would all be the same). The program can
be configured to either pick the first highest or to pick one probabilistically. For
this experiment (and all of the others as well), the first, more deterministic path
was taken. The result of this is that the first legal move is always chosen, which
ends up being correct a static number of times. We hypothesize that the 0.622%
of the moves that the best chromosome of the eighth generation got correct was a

result of this effect. If one keeps choosing the same legal location as one’s guess, it

52

Generation Max Min Mean Std. Dev. Sumfitness
0 0.0415 0.0301 0.0365 0.00428 0.365
1 0.0689 0 0.0354 0.0319 0.354
2 0.0777 0.0037 0.0389 0.0347 0.389
3 0.0788 0.00656 0.0394 0.0641 0.394
4 0.0753 2.76e-10 0.0409 0.0667 0.409
5 0.0821 8.1e-09 0.0436 0.0899 0.436
6 0.0797 5.57e-09 0.0458 0.0893 0.458
7 0.0669 0 0.0468 0.102 0.468
8 0.0861 0 0.0449 0.105 0.449

Table 4.3: Extension Agent Data.

eventually becomes correct. An interesting feature of these data are that the test-
ing data yielded 0.62% correct moves which is not surprising given the previous

explanation.

4.1.3 Extension Agent

The extension agent is more interesting, in that there are internal parameters
to the agent that derive their values from the evolved chromosomes. Table 4.3
shows the results of the genetic algorithm run using only the extension agent, and
the data are also shown graphically in Figure 4.3. The genetic algorithm-evolved
weights still do not matter for this single agent, but this agent has internal param-
eters that could benefit from evolution. As one would hope, as the generations
progressed, the mean fitness and the maximum fitness rose. Additionally, the
minimum fitness had a net decrease of 0.0301 by the end of the eighth genera-
tion. To back up these observations, the F-test predicts that the first and the

final generations have insignificantly different variances which allowed us to use

93

Fitness By Generation (Extention Agent Only)
0.2 T T T T T T T

Mean ======--
Min seeeeees
Max e
0.15 .
[2]
g 01 —
=
L_L
oost." | (1 | B i .
ob el -
1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Generation

Figure 4.3: GA Data Plot With Extension Agent.

the T-test to predict with a probability of 99.9642% that the improvement is real
and not a result of chance. The decrease of the minimum is not a concern due
to the increase of the maximum and the mean. The best chromosome of the last
generation chose 5.18% of the training moves correctly and 3.88% of the testing

moves correctly.

4.1.4 Capturer Agent

The data for this agent (shown in Table 4.4 and graphically in Figure 4.4) shows
the same lack of improvement as other individual agents because this agent has

no internal parameters that might benefit from evolution. An interesting feature,

o4

Fitness

0.2

0.15

0.1

0.05

Generation

Generation Max Min Mean Std. Dev. Sumfitness

0 0.0777 0.0777 0.0777 7.85e-09 0.777

1 0.0777 0.0777 0.0777 2.95e-05 0.777

2 0.0777 0.0777 0.0777 2.95e-05 0.777

3 0.0777 0.0777 0.0777 0.00181 0.777

4 0.0777 0.0777 0.0777 0.00181 0.777

5 0.0777 0.0777 0.0777 0.0142 0.777

6 0.07r7 0.0777 0.0777 0.0142 0.777

7 0.0777 0.0777 0.0777 0.0397 0.777

8 0.0777 0.0777 0.0777 0.0397 0.777
Table 4.4: Capturer Agent Data.
Fitness By Generation (Capturer Agent)

0 1 2 3 4 5 6 7

Figure 4.4: GA Data Plot With Capturer Agent.

95

Generation Max Min Mean Std. Dev. Sumfitness
0 0.0415 0.0415 0.0415 3.93e-09 0.415
1 0.0415 0.0415 0.0415 2.09e-05 0.415
2 0.0415 0.0415 0.0415 2.09e-05 0.415
3 0.0415 0.0415 0.0415 0.00152 0.415
4 0.0415 0.0415 0.0415 0.00152 0.415
5 0.0415 0.0415 0.0415 0.013 0.415
6 0.0415 0.0415 0.0415 0.013 0.415
7 0.0415 0.0415 0.0415 0.038 0.415
8 0.0415 0.0415 0.0415 0.038 0.415

Table 4.5: Follower Agent Data.

though, is the change in standard deviation, which probably resulted from nu-
merical round-off errors that resulted from the summation network calculations.
The best chromosome from the last generation got 7.77% of the moves correct

and 4.03% of the testing moves correct.

4.1.5 Follower Agent

The follower agent followed in the footsteps of the other single agents with its lack
of improvement. No internal parameters for the genetic algorithm were used. The
best chromosome of the last generation got 4.15% of the training moves correct,

while it got 3.26% of the testing moves correct. The data can be found in Table

4.5 and in Figure 4.5.

o6

Fitness By Generation (Follower Agent)

0.2 T T T T T T T
0.15 | i
n
g 01r -
=]
[
0.05 | —
[S — R Hmmmmm———— Hmmmmm———— Hmmmmm————— emmmm———— emmmm———— emmmm———— -+
ol i
! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8

Generation

Figure 4.5: GA Data Plot With Follower Agent.

4.1.6 Tiger’s Mouth Agent

The last single-agent configuration’s data are shown in Table 4.6 and in Figure
4.6. The tiger’s eye agent showed no improvement due to a lack of internal genetic
algorithm parameters. The best chromosome from the final generation got 2.38%

of the moves correct, while it got 2.17% of the moves correct on the testing data.

4.2 Multiagent Experiments

The multiagent experiments closely mirrored the individual agent experiments

with the exception that in these cases the program was run with all of the agents

o7

Fitness

0.2

0.15

0.1

0.05

Generation = Max Min Mean Std. Dev. Sumfitness
0 0.0238 0.0238 0.0238 0 0.238
1 0.0238 0.0238 0.0238 0 0.238
2 0.0238 0.0238 0.0238 0 0.238
3 0.0238 0.0238 0.0238 0 0.238
4 0.0238 0.0238 0.0238 0 0.238
5 0.0238 0.0238 0.0238 0 0.238
6 0.0238 0.0238 0.0238 0 0.238
7 0.0238 0.0238 0.0238 0 0.238
8 0.0238 0.0238 0.0238 0 0.238
Table 4.6: Tiger’s Mouth Agent Data.
Fitness By Generation (Tiger's Mouth Agent)
0 1 2 3 4 5 6 7
Generation

Figure 4.6: GA Data Plot With Tiger’s Mouth Agent.

o8

Generation Max Min Mean Std. Dev. Sumfitness
0 0.00622 0.00622 0.00622 4.91e-10 0.0622
1 0.00622 0.00622 0.00622 7.39¢-06 0.0622
2 0.00622 0.00622 0.00622 7.39e-06 0.0622
3 0.00622 0.00622 0.00622 0.000906 0.0622
4 0.00622 0.00622 0.00622 0.000906 0.0622
5 0.00622 0.00622 0.00622 0.01 0.0622
6 0.00622 0.00622 0.00622 0.01 0.0622
7 0.00622 0.00622 0.00622 0.0334 0.0622
8 0.00622 0.00622 0.00622 0.0334 0.0622

Table 4.7: Five Random Agent Data.

at once excluding the random-move-generating agent. A separate run that used

five random-move-generating agents was used as a baseline.

4.2.1 Five Random Agents

Not surprisingly, the genetic algorithm configured with five identical random legal
move generating agents performed rather poorly. The results were nearly identical
to those of the single random agent above. The results are shown in Table 4.7

and in Figure 4.7.

4.2.2 Multiagent Configuration

Table 4.8 and Figure 4.8 show the results of evolving the genetic algorithm using
five agents: Opener, Extension, GroupStats, Follower, and TigersMouth agents.
Three hidden-layer nodes were used, and each generation had 10 individuals.

Initially, the maximum fitness was 0.0881 and the mean fitness was 0.0537. By

99

Fitness

0.2

0.15

0.1

0.05

Fitness By Generation (Five Randomly Playing Agents Only)

| S - . B . B mmmmmmm———— mmmmmmm————
0 1 2 3 4 5 6 7
Generation
Figure 4.7: GA Data Plot With Five Random Agents.
Generation Max Min Mean Std. Dev. Sumfitness
0 0.0881 0.0435 0.0537 0.0138 0.537
1 0.108 0.0245 0.0539 0.0454 0.539
2 0.121 0.0106 0.0604 0.0575 0.604
3 0.119 3.49e-10 0.0694 0.0865 0.694
4 0.105 3.15e-09 0.0812 0.0867 0.812
5 0.109 2.82e-09 0.0848 0.103 0.848
6 0.108 2.15e-09 0.0877 0.103 0.877
7 0.134 0 0.087 0.113 0.87
8 0.14 0 0.0798 0.118 0.798

Table 4.8: All Five Agents Data.

60

Fitness By Generation (All Agents)
02 T T T T T T T

Mean ======--

Min seeeeees

Max e
0.15 .

» ‘.“““.- """"""""""""""""""""""""""""""""""""""

g 01p]

[[Y R [— B i It LN
0.05 T .
O L e L -

1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8

Generation

Figure 4.8: GA Data Plot With All Agents.

the final generation, the maximum fitness had risen to 0.14 and the mean fitness
had risen to 0.0798. The question then becomes one of deciding if this difference
should be attributed to chance or to legitimate improvement. Using the F-test,
the difference in the variances was not significant. The T-test value of the final
generation was —4.23 which implied a probability of 0.000504 that these results
were from chance and not from a different population as the initial population, i.e.,
the confidence interval was 99.95% that the difference in the means was significant.
The best chromosome from the final generation got 10.2% of the moves correct

while it got 5.558% of the testing set correct.

The agents were loaded in the following order: OpenerAgent, TigersMouthA-

61

gent, GroupStatsAgent (capturer), FollowerAgent, and ExtenderAgent. The final
best network configuration had weights from the agents to the second layer of the

network as. ..

12 15 13
11 8 15

Weights = | 10 15 14

10 3 1

where each row corresponds to an agent and each column corresponds to a node

in the next layer. The weights from this next layer to the output node is. ..

4.2.3 Multiagent Configuration, Large Population

Table 4.9 and Figure 4.9 show the results after seven generations of the multiagent
configuration with a population size of 100. All parameters were the same as
the smaller multiagent configuration except for the population size. These data

support the results from the smaller multiagent experiment.

62

Fitness

0.2

0.15

0.1

0.05

Generation Max Min Mean Std. Dev. Sumfitness
0 0.0995 0.0321 0.0549 0.0142 5.49
1 0.115 0.0203 0.0573 0.0273 5.73
2 0.126 0.0198 0.063 0.0296 6.3
3 0.134 4.88¢-10 0.069 0.0352 6.9
4 0.143 0 0.073 0.0458 7.3
5 0.137 3.93e-09 0.0762 0.043 7.62
6 0.135 4.03e-09 0.0782 0.0371 7.82
7 0.14 0 0.0786 0.0409 7.86

Table 4.9: All Five Agents Data (Large Population).

Fitness By Generation (All Agents) Population of 100

T T T T T T
Mean =------
Min =reesees
Max e
1 1 1 1 1 1
0 1 2 3 4 5 6
Generation

Figure 4.9: GA Data Plot With All Agents (Large Population).

63

Comparison of Best Fithess Achieved

02 I ' T T T — T
Training Results
Testing Results -------
Random Agent Baseline --------
0.15 | |
2]
(%]
g o01p |
Z
0.05 | |
J S — PN S SRR AR N S e e
Opener Tiger Follower GroupStats Extention All Agents Large Pop.
Agent

Figure 4.10: Agent Comparison.

4.3 Summary

Figure 4.10 shows a comparison of the best fitnesses achieved by all of the agent
configurations. The randomly playing agent played the poorest, and the two
configurations that could benefit from the genetic algorithm (extension agent and
all of the agents combined) actually did . The testing data shows some variability,
and in some cases an agent that performed better on the training data did worse
on the testing data (compared to the other agents). Mostly, though, there appears

to be a benefit of using the genetic algorithm to evolve go players.

64

Chapter 5

Conclusion

5.1 Contributions

We have found that a multiagent approach using a summation network does in-
deed yield a viable go player. Furthermore, improvement was gained over the
course of multiple generations. In addition to these results, a unique approach to
playing go was illustrated. As far as we know, nobody has written a program that
plays go using probabilistic methods incorporating multiple agents whose interac-
tions (the summation network) have been evolved or learned in some way. This
approach shows that it may be possible to break down certain large intractable
problems and use genetic algorithms to combine multiple sources of information
without knowing exactly how the information interacts to form a solution. This

architecture exemplifies the possibility of trading the ability to fine-tune the be-

65

havior of a system with the ability to scale the system indefinitely, limited mainly

by the number of processing nodes.

5.2 Limitations

This approach to playing go has many potential limitations. Foremost, it re-
lies heavily on the ability of the programmer to create agents that contribute to
the skill of the program. As we are not go experts, creating good agents was a

challenge.

Another limitation is that genetic algorithms take long periods of time to run.
Larger training sets, larger testing sets, larger populations, more intricate sum-
mation networks, and more generations could all help improve the program, but

unfortunately all of these would contribute to a significantly slower program.

Though scalability was an important goal, the realization of a massively parallel
multiagent go program must be quelled by the prohibitive cost and the scarcity of
machines with dozens of processors. The future may not hold a limitation such as
this, but currently it is a very real limitation to increasing the number of agents

extensively.

Yet another restrictive aspect of this work was the use of only 9 x 9 boards for
all experiments. This enabled us to complete the research in a reasonable amount

of time. Trying to use 19 x 19 boards would have likely taken too long.

66

The program does not play go very well, though the GA does allow the program
to improve which was one of the goals of this project. Many authors often compare
their programs to standard programs such as one called Wally, but our program
does not yet have an interface that would allow automatic matches. Though
this is a limitation, not playing well may not matter as much as showing that
our program improves. Clearly, the program that we developed does not play go

better than its peers.

5.3 Future Work

The future of this approach remains unclear, but additional research to test larger
networks utilizing a larger number of agents could yield positive results. Scalabil-
ity was a secondary goal—a goal that seems within reach given the prominence
and proliferation of multiprocessor machines. Perhaps in the decades to come
someone will create a go program that can play at the level of the masters. This

is a goal that many await patiently.

67

Bibliography

[1] Anonymous. http://www.daimi.au.dk/ tusk/nngs/1995-2000-go9.z1ip,
June 2001.

[2] S.F. da Silva. Go and Genetic Programming: Playing Go with Filter
Functions. Master’s thesis, Universiteit Leiden, Computer Science
Department, November 1996.

[3] Paul Donnelly, Patrick Corr, and Danny Crookes. Evolving Go Playing
Strategy in Neural Networks.
http://hyperion.advanced.org/18242/data/resources/nn_go.pdf.

[4] Markus Enzenberger. The Integration of A Priori Knowledge into a Go
Playing Neural Network.
http://www.cgl.ucsf.edu/go/Programs/neurogo-html/neurogo.html,
September 1996.

[6] David Fotland. Knowledge Representation in the Many Faces of Go.
http://www.smart-games.com/knowpap.txt, February 1993.

[6] David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[7] Jeffrey Greenberg. Breeding Software to Play the Game of Go.
http://www.inventivity.com/OpenGo/Papers/jeffg/breed.html.

[8] Michael N. Huhns and Larry M. Stephens. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence, chapter 2, pages 79-118. The
MIT Press, first edition, 1999.

[9] Takuya Kojima, Kazuhiro Ueda, and Saburo Nagano. Evolutionary
algorithm extended by ecological analogy and its application to the game of
go. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence(IJCAI-97), pages 684-689. The University of Tokyo,
College of Arts and Sciences, 1997.

68

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Martin Miiller. Computer Go as a Sum of Local Games: An Application of
Combinatorial Game Theory. PhD dissertation, ETH Ziirich, 1995.

Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press,
first edition, 1999.

Bradford Nichols, Dick Buttlar, and Jackie Farrell, editors. Pthreads
Progamming, chapter 1-2, pages 1-60. O’Reilly & Associates, Inc., first
edition, 1998.

Peter Norvig. Paradigms of Artificial intelligence Programming: Case
Studies in Common Lisp, chapter 18, pages 596-653. Morgan Kaufmann
Publishers, 1992.

Daniel Polani and Risto Miikkulainen. Eugenic neuro-evolution for
reinforcement learning. In Darrell Whitley, David Goldberg, Erick
Cantu-Paz, Lee Spector, lan Parmee, and Hans-Georg Beyer, editors,
Proceedings of the Genetic and FEvolutionary Computation Conference
(GECCO-2000), pages 1041-1046, Las Vegas, Nevada, USA, 10-12 July
2000. Morgan Kaufmann.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes in C: The Art of Scientific Computing, pages
227,616-619. The Press Syndicate of the University of Cambridge, second
edition, 1997.

Valluru Rao and Hayagriva Rao. C++ Neural Networks and Fuzzy Logic.
MIS:Press, a subsidiary of Henry Holt and Company, Inc., second edition,
1995.

Norman Richards, David Moriarty, and Risto Miikkulainen. Evolving
neural networks to play go. Applied Intelligence, 8:85-96, 1998.

Christopher D. Rosin and Richard K. Belew. Methods for competitive

co-evolution: Finding opponents worth beating. In L.J. Eshelman, editor,
Proceedings of the Sizth International Conference on Genetic Algorithms,
La Jolla, CA, March 1995. Cognitive Computer Science Research Group,

Department of Computer Science and Engineering, University of California,
ICGA.

Stuart J. Russell and Peter Norvig, editors. Artificial Intelligence: A
Modern Approach, chapter 5, pages 122-145. Prentice Hall, first edition,
1995.

Michael Wooldridge. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, chapter 1, pages 28-31. The MIT Press,
first edition, 1999.

69

Appendix A: Doxygen Code
Reference

The code index was generated automatically using a tool called Dozygen that
parses the source files’ comments. . .

A.1 Cross-references

A.1.1 Exodus Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Agent e 73
ExtenderAgent 89
FollowerAgent 92
GroupStatsAgent L 136
OpenerAgent L 151
RandomAgent L 159
TigersMouthAgent 173

Blackboard e 7l

Board 78

Ga . e, 96

Game e e 112

globaldatat 134

Individualo 142

Moderator e e e e 146

move_t e e e 148

MSEb . . e e 149

Population 153

PreCodex e e 154
GenAlgoGenerator 126
testCodex e 169

ProbBoard 155

Stone e e e e 160
Subthread e 165
AgentShello 76
Interface e 144
DummyGenerator. Lo 88
GaTrainerInterface 123
GenAlgoGenerator Lo 126
GoModemlInterface 135
GUIInterface oo 138

IGS. Interfaceo 141
NeuralNetGenerator 150
NNGSdnterface e 150
TextInterfaceo 170
Subthread_test e 168

A.1.2 Exodus Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

Agent (Defines the basic structure of an agent) 73
AgentShell (Represents a single thread in a thread pool) 76
Blackboard (This class contains globaly relavent information) 77
Board (Defines a goban abstraction)o 0L 78
DummyGenerator (A dummy move generator that generates random

legal moves) 88
ExtenderAgent (Suggests moves that extend from friendly stones) . . . 89
Follower Agent (Suggests moves near opponent’s last move) 92
Ga (Defines a Genetic Algorithm) 96
Game (A class that defines a series of boards) 112
GaTrainerInterface (Used to train a GA to work correctly) 123
GenAlgoGenerator (A genetic algorithm move generator) 126
global data t (Global data structure) 134
GoModemInterface (Go modem interface) 135
GroupStatsAgent (Agent (p.73) to calculate group information) . . . 136
GUlIInterface (Graphical User Interface (p.144)) 138
IGS_Interface (Internet Go Server (IGS) Interface (p.144)) 141
Individual (An individual in a population of a GA) 142
Interface (The interface between a move generator (outside) and the

inside of the program) 144
Moderator (Encapsulates two interfaces and has them play together) . 146
move_t (A single move on the goban) 148

71

msg-t (A message to or from a thread), 149

NeuralNetGenerator (A Neural Network move generator) 150
NNGS Interface (No Name Go Server Interface (p.144)) 150
OpenerAgent (Suggests good opening moves) 151
Population (A single population withina GA) 153
PreCodex (Allows other classes to profide a fitness function) 154
ProbBoard (Agent (p.73)’s probability output board) 155
RandomAgent (Suggests random legal moves) 159
Stone (Defines a point (stone) on the board) 160
Subthread (Defines a sub-thread) 165
Subthread_test (For debugging) 168
testCodex (A testing fitness function provider) 169
TextInterface (Text Interface (p.144)) 170
TigersMouthAgent (Tries to make tiger’s mouths) 173

A.1.3 Exodus File List

Here is a list of all documented files with brief descriptions:

agent.cpp (Implementation of Agent (p.73) and AgentShell (p.76)

classes)o 177
agent.h (Header file for Agent (p.73) related classes) 178
bdemo.cpp (Prints a demo board for numerical reference) 179
blackboard.cpp (Implementation of Blackboard (p.77) class) 181
blackboard.h (Header file for the Blackboard (p.77) class) 182
board.cpp (Implementation for Board (p.78) class) 182
board.h (Header file for board class) 183
config.h (System configuration definitions) 184
dummygenerator.cpp (Implementation of random move generator

called DummyGenerator (p.88)) 185
exodus.h (Global constants declarations) 186
extenderagent.cpp (Implementation of an ExtenderAgent (p.89)

that attempts to extend from friendly stones) 189
followeragent.cpp (Implementation of FollowerAgent (p.92) which

plays moves close to opponent) 190
ga.cpp (Implementation for Ga (p.96) class) 191
ga.h (Header file for genetic algorithm related classes) 192
gafunc.h (Header file for GA testing and aux. functions) 193
game.cpp (Implementation of the Game (p.112) class) 194
game.h (Header file for game class) 196
gatypes.h (Header file for genetic algorithm types and defaults) 197
genalgogenerator.cpp (A genetic algorithm player using agents) 198

72

ginterface.cpp (Implementation of a GUI interface) 199
groupstatsagent.cpp (Provides an agent to calculate group information)200
iinterface.cpp (Implementation of IGS interface class (IGS_Interface

(0. 141))) o oo 201
interface.cpp (Implementation for abstract Interface (p.144) classes) . 202
interface.h (Header file for interfaces) 202
main.cpp (Main, cmd-line, init-file functions) 203
moderator.t (Implementation and definition of Moderator (p.146)

template) 210
move.cpp (Implementation of the move_t (p.148) stuct) 211
move.h (Describes a Move struct) 212
openeragent.cpp (Opening move agent) 213

outputgen.h (Header file for GenAlgoGenerator (p.126), Neural-
NetGenerator (p.150), and DummyGenerator

(p-88) classes) 214
probboard.cpp (The implementation for the probability board) 215
probboard.h (Probability matrix for an agent’s next move) 216
randomagent.cpp (Random agent implementation) 217
stone.cpp (Implementation of the Stone (p.160) class) 218
stone.h (Header file for Stone (p.160) class) 219
subthread.cpp (Implementation for abstract class Subthread (p.165)) 220
subthread.h (Defines virtual class for a running sub-thread) 221
testcodex.cpp (Stub code for fitness function for GAs) 223
tigersmouthagent.cpp (Implementation of tiger’s mouth class) 224
tinterface.cpp (Implementation of text interface) 225
tools.cpp (Utilities) 226
tools.h (Defines useful utilities) 233
traingainterface.cpp (Implementation of Trainer class for GAs) 240

A.1.4 Exodus Related Pages

Here is a list of all related documentation pages:

Todo List e 241
Bug List 241

A.2 Exodus Class Documentation

A.2.1 Agent Class Reference

Defines the basic structure of an agent.

73

#include <agent.h>

Inheritance diagram for Agent::

| ExtenderAgent || FollowerAgent || GroupStatsAgent || OpenerAgent || RandomAgent ||TigersMouthAgent

Public Methods

e Agent ()

Constructor.

e virtual ~Agent ()

Destructor.

e void set_id (int id)
Sets agent ID.

e int get_id (void)
Gets agent ID.

e void set_bb_ptr (Blackboard *bb_p)
Set the blackboard pointer.

e void set_pb_ptr (ProbBoard *pb_p)
Set the probboard pointer.

e virtual void force (void)=0

Force agent to make a move.

e virtual void update (Game *)=0

Updates the game for the agent. Refresh agent with a new game state.

e virtual bool dowork (void)=0

Main agent work function.

e virtual void notify (void %)=0

Tell the agent something.

74

e virtual unsigned int query_bits needed from GA (void)=0
Ask the agent how many bits it needs from GA.

e virtual void send_bits (chromosome_t chrom, int start)=0

Allows the agent to get the bits it needs.

Protected Attributes

e int ID

Unique agent identification number.

e Blackboardx bb_ptr
Blackboard (p.77).

e ProbBoardx* pb_ptr
Probability board.

e Game theGame

The game in question.

A.2.1.1 Detailed Description

Defines the basic structure of an agent.

Warning:
This is an abstract class.

A.2.1.2 Member Function Documentation

void Agent::set_id (int ¢d) Sets agent ID.

Sets the agent ID number which can be used to uniquely order all agents to
prevent dealocks due to possible future agent dependences and the use of thread
pools. Thread pools only allow a finite number of agents to run at a time, and if
the first agents to run depend on another agent that isn’t running, then deadlock
will occur. Agent IDs prevent this.

75

Warning:
IDs are currently not used, but in the event that they do become used, then

it shall be expected that agents with higher IDs have dependences on only
agents with lower IDs (if any at all).

0074 { this->ID = id; };

A.2.2 AgentShell Class Reference

Represents a single thread in a thread pool.
#include <agent.h>

Inheritance diagram for AgentShell::

Subthread

AgentShell

Public Methods

e AgentShell ()

Constructor.

e ~AgentShell ()

Destructor.

Private Methods

e void processing (void)

Represents a single thread of the thread pool’s main processing loop.

e void init (void)

Performs any initialization that is needed.

76

Private Attributes

e Agentx theAgent
Agent (p.73) identity to assume.

A.2.2.1 Detailed Description
Represents a single thread in a thread pool.
This class shall be able to ”turn” into any of the agents via the proper messages.

A.2.2.2 Constructor & Destructor Documentation

AgentShell::AgentShell () Constructor.

Note:
Stores a copy of the game, not a pointer.

0080 {
0081

0082 theAgent = NULL;

0083 7

A.2.2.3 Member Function Documentation

void AgentShell::init (void) [private]l Performs any initialization that is
needed.

Note:
Currently, this function is a stub.

0092 { }

A.2.3 Blackboard Class Reference

This class contains globaly relavent information.

#include <blackboard.h>

7

Public Methods

e void set_game_ptr (Game xgamePtr)
Tell the blackboard what game to look at.

e void update (void)

Instructs Blackboard to update internal data-structures.

Static Private Attributes

e Gamex g _ptr

Points to the current game.

A.2.3.1 Detailed Description

This class contains globaly relavent information.
A blackboard is a paradigm whereby agents write information or data to a single
localized location. This class provides an interface to this global scratchpad.

Warning:
Set gptr before doing anything. After this is set, all function calls are unde-
fined until update is called at least once. Note that this class is a stub and
currently provides no actual functionality.

A.2.3.2 Member Function Documentation

void Blackboard::update (void) Instructs Blackboard to update internal
data-structures.

This function causes the blackboard class to regenerate all data-structures it
stores locally.

0041 {
0042 }

A.2.4 Board Class Reference

Defines a goban abstraction.

#include <board.h>

78

Public Types

e enum flags t { FUNKNOWN, FSAFE, FEMPTY }

Flags for board capture state-machine.

Public Methods

e Board ()

Constructor 1I.

e Board (const Board &other)
Copy Constructor.

e ~Board ()

Destructor.

e bool valid_location (loc_t) const

Tells if the location s playable.

e loc_t get_bsize (void) const

Gets board size.

e Stonex get_goban (void) const

Gets goban array.

e string raw_output (void)
Output function for GUL

e pair<usi_t, usi_t> play move (loc_t, color_t)

Plays a move on the board.

e void invert (void)

Inverts the stones’ colors.

e bool operator== (Board &)
Equality operator.

e bool operator!= (const Board &)

79

Inequality operator.

Board operator= (Board)

Assignment operator.

color_t get_color_played (void)
Returns the color played for this board.

loc_t get_ move_played (void)
Gets the move that was played for this board.

color_t operator[] (loc_t location)

Offset operator.

Static Public Attributes

e const usi_t PASS = OxFFFF
Offset into board array of PASS is used to represent a pass.

e usi_t BSIZE
Default board size.

e usi_t HANDICAP
Size of handicap.

o list<usi_t> HANDICAP PLACES

Force handicap locations.

Private Methods

e void del_stone (loc_t)

Removes a stone from board.

e usi_t del group (color_t)

Remowves groups with no liberties.

80

e void setup ()

Bulk of the constructors’ logic.

e void fill safety (vector< flags_t > &, int, color_t)

Recursive flood for finding safe stones.

e void put_stone (loc_t, color_t)

Sets a board location to a specific color.

Private Attributes

e loc_t loc_played
Location played to make this board.

e Stonex goban
Actual board.

e color_t color_played

Who’s turn is it?

e loc_t actual size
size of goban vector (BSIZE"2).

Static Private Attributes

e bool PRINTEXTRA

Print extra right and bottom information on board.

Friends

e ostream& operator<< (ostream &strm, Board &aBoard)

Output operator.

81

A.2.4.1 Detailed Description

Defines a goban abstraction.

This class stores a board as an array of Stone (p.160) classes. It provides all
functions that would be expected from a board abstraction.

A.2.4.2 Constructor & Destructor Documentation

Board::~Board () Destructor.
Deallocates array of Stone (p.160) classes

0112 {

0113 //cerr << '"pre " << flush;
0114 delete goban;

0115 //cerr << "post" << endl;
0116 }

A.2.4.3 Member Function Documentation

usi_t Board::del group (color_t color) [private] Removes groups with no
liberties.

Parameters:
color The color of the groups to remove

0238 {

0239 TAU_PROFILE("Board::del_group()", "", TAU_DEFAULT);
0240

0241 color_t enemy_color = INV(color);

0242 vector<flags_t> scratch(actual_size, FUNKNOWN);

0243

0244 // Mark enemy stones as safe

0245 for (int x=0; x<actual_size; ++x) {

0246 if (enemy_color==goban[x].getcolor()) scratch[x]=FSAFE;
0247 }

0248

0249

0250 // Do a flood fill on each empty spot, filling over friendly
0251 // stones but not passing enemy stones.

0252 for (int x=0; x<actual_size; ++x) {

0253 if (EMPTY==goban[x].getcolor()) {

0254 fill_safety(scratch, x, color);

0255 X

0256 }

0257

82

0258 // Remove "unknown" stones as they are now dead.
0259 usi_t count=0;

0260 for (int x=0; x<actual_size; ++x) {
0261 if (FUNKNOWN==scratch[x]) {

0262 ++count;

0263 goban[x] .setcolor (EMPTY) ;
0264 }

0265 }

0266

0267 return count;

0268 }

void Board::fill safety (vector< flags t > & scratch, int loc, color_t
color) [private] Recursive flood for finding safe stones.

Does a flood fill of all safe pieces. Any stone that is safe automatically (logically)
gives its safeness to all adjacent stones of the same color.

Parameters:
scratch A pass-by-reference scratch-pad used in this algorithm to figure
what stones are safe/dead

loc Location to start at when looking for safety.

color The color to check for safety.

0285 {
0286 TAU_PROFILE("Board::fill_safety()", "", TAU_DEFAULT);
0287

0288 if (scratch[loc] != FSAFE) {

0289 scratch[loc] = FSAFE;

0290 if (goban[loc].notleft() &&

0291 (color==goban[loc-1].getcolor()))

0292 fill_safety(scratch, loc-1, color);

0293 if (goban[loc].notright() &&

0294 (color==goban[loc+1].getcolor()))

0295 £ill_safety(scratch, loc+l, color);

0296 if (goban[loc].nottop() &&

0297 (color==goban[loc-BSIZE].getcolor()))

0298 fill_safety(scratch, loc-BSIZE, color);

0299 if (goban[loc].notbottom() &&

0300 (color==goban[loc+BSIZE] .getcolor()))

0301 fill_safety(scratch, loc+BSIZE, color);

0302 }

0303 }

83

loc_t Board::get_move_played (void) Gets the move that was played for this
board.

Precondition:
play_move was called already for this board.

0330 { return loc_played; }

void Board::invert (void) Inverts the stones’ colors.
This function makes all white stones black and all black stones white.

0478 {

0479 TAU_PROFILE("Board::invert()", "", TAU_DEFAULT);
0480 for (int x=0; x<actual_size; ++x) {

0481 if (goban[x].getcolor() != EMPTY) {

0482 goban[x] .setcolor (INV(goban[x].getcolor()));
0483 }

0484 }

0485 }

pair< usi_t, usi_t > Board::play move<usi_t, usi_ t> (loc_t offset, color_t
color) Plays a move on the board.

Parameters:
offset Move to play

color Color to play

Returns:
A pair such that the second element is a count of the stones removed for
called color and the first element is a count of the stones removed for the
opposite of the called color. The first element is thus the most important.

Precondition:
color is BLACK or WHITE but not EMPTY

0211 {

0212 TAU_PROFILE("Board: :play_move()", "'", TAU_DEFAULT);
0213

0214 assert (offset < actual_size);

0215

0216 loc_played = offset;

0217

84

0218 goban[offset].setcolor(color);

0219

0220 // Check and delete for dead of opposite color
0221 usi_t them = del_group(INV(color));

0222

0223 // Check and delete for dead of our color

0224 usi_t us = del_group(color);

0225

0226 // Record with this board the color of the move just played
0227 color_played = color;

0228

0229 return make_pair (them, us);

0230 7

void Board::put_stone (loc_t loc, color_t color) [private] Sets a board
location to a specific color.

Parameters:
loc location as a single-dimention array offset

color The color of the stone to place

Warning:
Does not check for captures or suicide

0341 {
0342 goban[loc] .setcolor(color) ;
0343 }

string Board::raw_output (void) Output function for GUI.
Raw board output

0307 {

0308 string tmp;

0309

0310 //parsable board
0311 tmp += "board ";

0312 for (int loc=0; loc<actual_size; ++loc) {

0313 switch (goban[loc].getcolor()) {

0314 case BLACK: tmp += "B"; break;

0315 case WHITE: tmp += "W"; break;

0316 case EMPTY: tmp += "N"; break;

0317 }

0318 if ((loc !'= (actual_size-1)) &&

0319 ((BSIZE - 1) == (loc % BSIZE))) tmp += ":";

85

0320 }

0321 tmp += "\n";
0322

0323 return tmp;
0324 }

void Board::setup () [private]l Bulk of the constructors’ logic.

This function performs the actual setup of the board. It allocates the Stone
(p.160) class array and sets variables to initial values.

Precondition:
size is a natural number, and all elements in the list handicapPlaces are less
than sizexsize. A board smaller than three or four probably is not useful as
well.

Postcondition:
All variables are initialized and goban especially is setup. The exception is
the variable loc_played which is undefined.

Warning:
loc_played is defined upon exit as the last of the setup moves played. If the
board starts with a move at A13 then H2 as a handicap, then H2 is the logical
value stored here.

0137 {

0138

0139 // Allocate board and define its size
0140 actual_size = BSIZE * BSIZE;

0141 //bsize=size;

0142

0143 goban = new Stone [actual_size];

0144

0145 // Check memory allocation

0146 if (!goban) {

0147 LOG("-BRD -E- Goban memory allocation failed.");
0148 cerr << "-E- Goban memory allocation failed.";
0149 exit(1);

0150 }

0151

0152 PRINTEXTRA = false;

0153

0154 // Setup which turn. If a non-handicap game, black plays first on this

0155 // board which means that the "mext turn" is white. On the other hand,

0156 // if there is a handicap, white plays first as black’s handicap was his
0157 // virtual first move.

86

0158 if (HANDICAP_PLACES.empty()) {

0159 color_played=WHITE;

0160 } else {

0161 color_played=BLACK;

0162 }

0163

0164 // Setup each spot in goban as empty (also setup column/row information)
0165 Stone tmp_stone;

0166 int col, row;

0167 for (int x=0; x < actual_size; ++x) {

0168 tmp_stone.clear();

0169

0170 // Offset mod the board size yield column number
0171 col=x%BSIZE;

0172

0173 // Offset divided by board size yields row number when truncated
0174 row=static_cast<usi_t>(x / BSIZE);

0175

0176 tmp_stone.setcol(col);

0177 tmp_stone. setrow(row) ;

0178 if (col == (BSIZE - 1)) tmp_stone.setlastcol();
0179 if (row == (BSIZE - 1)) tmp_stone.setlastrow();
0180

0181 goban[x] = tmp_stone;

0182 }

0183

0184 // Setup handicaps

0185 std::1list<loc_t>::iterator pos;

0186 for (pos=HANDICAP_PLACES.begin(); pos != HANDICAP_PLACES.end(); ++pos) {
0187 // Only black gets handicap stones

0188 goban [*pos] .setcolor (BLACK) ;

0189 loc_played = *pos;

0190 }

0191 }

bool Board::valid location (loc_t loc) const Tells if the location is playable.

This function takes no rules into account other than ”cannot play on an already
taken spot.”

Parameters:
loc offset into board vector

Warning:
Doesn’t check for loc less than zero, but it’s unsigned so it doesn’t matter.

0466 {
0467 TAU_PROFILE("Board: :valid_location()", "", TAU_DEFAULT);

87

0468
0469 return ((loc < actual_size) && goban[loc].empty());
0470 %

A.2.5 DummyGenerator Class Reference

A dummy move generator that generates random legal moves.
#include <outputgen.h>

Inheritance diagram for DummyGenerator::

| Subthread |

T

| Interface |

T

| DummyGenerator |

Public Methods

¢ DummyGenerator ()

Constructor.

Private Methods

e void processing (void)

Main processing function.

Private Attributes

e unsigned int rndbuf

State variable for random number generation.

A.2.5.1 Detailed Description

A dummy move generator that generates random legal moves.

88

A.2.6 ExtenderAgent Class Reference

Suggests moves that extend from friendly stones.
#include <agent.h>

Inheritance diagram for ExtenderAgent::

Agent

ExtenderAgent

Public Methods

e ExtenderAgent ()

Constructor.

e ~ExtenderAgent ()

Destructor.

e void force (void)

Force this agent to move.

e void update (Game)

Updates the game for the agent. Refresh agent with a new game state.

e bool dowork (void)

work thread.

e void notify (void *)

Tell the agent something.

e unsigned int query_bits needed from GA (void)
Asks the agent how many bits it needs in the GA.

e void send_bits (chromosome_t chrom, int start)

Sends to this agent the bits it needs from the GA.

89

Private Methods

e void attempt (int value, int locations|], int start)

A helper function.

e unsigned int getval (chromosome_t chrom, int start)

Calculates extention value from chromosome.

Private Attributes

e unsigned int bits_per_value

Number of GA bits to use for each of the extention types.

e unsigned int num_values

Number of extention types below.

e int extendValue

Simple extention value.

e int extendLocations [5]

Locations.

e int onePointExtendValue

1-point extention value.

¢ int onePointExtendLocations [5]

Locations.

e int twoPointExtendValue

2-point extention value.

e int twoPointExtendLocations [5]

Locations.

e int threePointExtendValue

3-point extention value.
e int threePointExtendLocations [5]

90

Locations.

e int shoulderValue

Shoulder extention value.

e int shoulderLocations [5]

Locations.

e int knightValue

Knight’s move value.

e int knightLocations [9]

Locations.

e int largeKnightValue

Large knight’s move value.

e int largeKnightLocations [9]

Locations.

A.2.6.1 Detailed Description

Suggests moves that extend from friendly stones.

A.2.6.2 Member Function Documentation

unsigned int ExtenderAgent::getval (chromosome_t chrom, int start)
[private] Calculates extention value from chromosome.

Parameters:
chrom The chromosome

start Offset in chromosme where ExtenderAgent parameters are stored.

Returns:
The value read from the chromosome as an integer

91

0184 {

0185 int sum = 0;

0186

0187 for(unsigned int x=start; x<start+bits_per_value; x++) {

0188 sum += static_cast<int>(chrom[x] * pow(2, x-start));

0189 }

0190

0191 return sum;

0192 }

unsigned int ExtenderAgent::query_bits needed -
from GA (void) [virtual]l Asks the agent how many bits it needs in the
GA.

Returns:

Number of bits needed in GA chromosome

Reimplemented from Agent (p.75).

0170 {
0171 return bits_per_value * num_values;
0172 %

A.2.7 FollowerAgent Class Reference

Suggests moves near opponent’s last move.
#include <agent.h>

Inheritance diagram for FollowerAgent::

Agent

FollowerAgent

Public Methods

e FollowerAgent ()

Constructor.

e ~FollowerAgent ()

92

Destructor.

e void force (void)

Force the agent to make its mowve.

e void update (Game x)

Update this agent with the latest state of the game.

e bool dowork (void)

work thread.

e void notify (void *)
Tell the agent something.

e unsigned int query_bits needed from GA (void)
Tells how many bits this agent needs from the GA.

e void send_bits (chromosome_t chrom, int start)

Sends to this agent the bits it needs from the GA.

Private Methods

e void imprint (loc_t loc, Board &b)

Helper function for internal algorithm.

A.2.7.1 Detailed Description

Suggests moves near opponent’s last move.

A.2.7.2 Member Function Documentation

void FollowerAgent::imprint (loc_t loc, Board & b) [private] Helper
function for internal algorithm.

Adds a probability to a location based on how close it is to enemy stones

Parameters:
loc The location to check

93

b The go board to consult

0095 {

0096 Stone *stones = b.get_goban();

0097 Stone s = stones[loc];

0098 color_t color = theGame.get_turn();

0099

0100 if (color == BLACK) {

0101 if (s.notleft()) {

0102 // Due left

0103 if (stones[loc-1].white()) (*pb_ptr)[loc] += 1.0;
0104

0105 // Top left

0106 if (s.nottop() && stones[loc-Board::BSIZE-1].white()) {
0107 (xpb_ptr) [1loc] += 0.5;

0108 }

0109

0110 // Bottom left

0111 if (s.notbottom() &&

0112 stones[loc+Board: :BSIZE-1] .white()) {
0113 (*pb_ptr) [loc] += 0.5;

0114 }

0115

0116 // Level 2: TODOD

0117 }

0118 if (s.notright()) {

0119 // Due right

0120 if (stones[loc+1].white()) (*pb_ptr)[loc] += 1.0;
0121

0122 // Top right

0123 if (s.nottop() &&

0124 stones[loc-Board: :BSIZE+1] .white()) {
0125 (*xpb_ptr) [loc] += 0.5;

0126 }

0127

0128 // Bottom right

0129 if (s.notbottom() &&

0130 stones[loc+Board: :BSIZE+1] .white()) {
0131 (*pb_ptr) [1loc] += 0.5;

0132 }

0133

0134 // Level 2: TODO

0135 }

0136 if (s.nottop()) {

0137 // Due top

0138 if (stones[loc-Board::BSIZE].white())

0139 (*pb_ptr) [loc] += 1.0;

0140 // level 2

0141

0142 }

0143 if (s.notbottom()) {

94

0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194

¥

//

Due bottom

if (stones[loc+Board::BSIZE].white())
(xpb_ptr) [loc] += 1.0;

//

level 2

} else {

if

if

if

if

(s
//
if

//
if

//
if

//

(s
//
if

//
if

//
if

//

(s
//
if
//

(s
//
if
//

.notleft()) {
Due left

(stones[loc-1].black()) (*pb_ptr) [loc] += 1.0;

Top left

(s.nottop() && stones[loc-Board::BSIZE-1].black()) {

(xpb_ptr) [loc] +=

Bottom left
(s.notbottom() &&
stones[loc+Board
(xpb_ptr) [loc] +=

Level 2: TODO

.notright()) {
Due right

0.5;

: :BSIZE-1] .black()) {
0.5;

(stones[loc+1].black()) (*pb_ptr) [loc] += 1.0;

Top right

(s.nottop() && stones[loc-Board::BSIZE+1].black()) {

(xpb_ptr) [loc] +=

Bottom right
(s.notbottom() &&
(xpb_ptr) [loc] +=

Level 2: TODO

.nottop()) {

Due top
(stones[loc-Board
level 2

.notbottom()) {
Due bottom
(stones[loc+Board
level 2

0.5;

stones[loc+Board: :BSIZE+1] .black()) {
0.5;

::BSIZE] .black()) (*pb_ptr)[loc] += 1.0;

::BSIZE] .black()) (*pb_ptr)[loc] += 1.0;

95

0195 %

A.2.8 Ga Class Reference

Defines a Genetic Algorithm.
#include <ga.h>

Public Methods

e Ga ()

Constructor.

e ~Ga ()

Destructor.

e void init ()

Initialize first generation.

e void set_codex (PreCodex)
Tells GA what class has the fitness function to use.

e int loadpop (string name="")

Loads a generation from disk.

e int savepop (string name="")

Saves a generation to disk.

e int savebest (string name="")

Saves the best chromosome to disk.

e void start (void)
Starts the GA process.

Static Public Attributes

e usit MAXGEN

Mazimum number of generations.

96

usi_t POPSIZE
Size of the population.

float FITNESS_CUTOFF
Unused.

float PCROSS

Probability of crossover.

float PMUTATION
Probability of mutation.

float FMULTIPLE

Linear scaling parameter.

string FILENAME _IN

For loading generations from disk.

string FILENAME _OUT

For saving generations to disk.

string BEST FILENAME OUT

For saving a chromosome.

string TRAIN_FILE
SGF-derived data for training.

Private Methods

e void ftest (float *f, float xprob)
Compute the F-test.

e void ttest (float *t, float xprob)
Compute (Student’s) T-test.

e void tutest (float xt, float *xprob)

97

Compute the T-test (Student’s) if the variances aren’t the same.

e int select (Population &pop)

selects a chromosome.

e bool flip (float)
Bernoulli probability.

e allele mutation (allele alleleval)

Mutates an allele.

e void crossover (chromosome t &parentl, chromosome_ t &parent2,
chromosome_t &childl, chromosome t &child2, usi_t &jcross)

Crosses the two parents to create the children.

e void generation (void)

Increments the generation.

e float scale (float, float, float)
Scales the fitness.

e void scalepop (void)

Scales the fitness of the population.

e void prescale (float &, float &)

Calculates linear parameters.

Private Attributes

e pthread_mutex_t interrupt_watcher
e Populationx oldpop

Pointer to old population.

e Populationx newpop

Pointer to new population.

e usi_t lchrom

98

Length of a chromosome.

usi_t gen

Generation counted.

bool stop
Interrupt flag.

usi_t nmutation

Number of mutations performed.

usi_t ncross

Number of crossovers performed.

float osumfitness

1st generation fitness sum.

float oavg

Awverage fitness in the first generation.

float omax

Mazimum fitness in the first generation.

float omin

Minimum fitness in the first generation.

float ostdev

Standard deviation in the first generation.

float ovar

Variance in the first generation.

unsigned int rndbuf

Used for thread-safe random number generation.

PreCodexx leader
Points to the class that has the fitness function get_fitness().

99

A.2.8.1 Detailed Description

Defines a Genetic Algorithm.

The genetic algorithm needs a fitness function, thus one must make a call to
set_codex() (p.108) before this class can be used.

A.2.8.2 Member Function Documentation

bool Ga::flip (float val) [private] Bernoulli probability.

Returns:
True if val is greater or equal to a uniform pseudo-random variable generated
over [0,1]

0435 {

0436 TAU_PROFILE("Ga::flip()", "", TAU_DEFAULT);

0437 float res = static_cast<float>(rand_r(&rndbuf)) /

0438 static_cast<float>(RAND_MAX) ;

0439 return (res <= val) 7 true : false;

0440 }

void Ga::ftest (float * f, float x prob) [private] Compute the F-test.
Computes statistics that help evaluate whether two distributions have different

variances.

Author:
Numerical Recipes in C, modified by Todd Blackman, page 619

0735 {

0736

0737 if (ovar > newpop->var) {

0738 xf = ovar / newpop->var;

0739 if (fabs(newpop->var - 0.0) < 0.0000001) {
0740 if (!global_data.reg_on) {

0741 cerr << "-E- Bad variance of zero." << endl;
0742 LOG("-E- Bad variance of zero.");

0743 }

0744 *f = -1;

0745 *prob = -1;

0746 return;

0747 }

0748 } else {

0749 *f = newpop->var / ovar;

100

0750 if (fabs(ovar - 0.0) < 0.0000001) {

0751 if (!global_data.reg_on) {

0752 cerr << "-E- Bad variance of zero." << endl;
0753 LOG("-E- Bad variance of zero.");
0754 }

0755 *f = -1;

0756 *prob = -1;

0757 return;

0758 }

0759 }

0760 float df = POPSIZE - 1;

0761

0762 *prob = 2.0 * betai(0.5%df, 0.5%df, df/(df + 4f * (*£)));
0763 if (*prob > 1.0) {

0764 *prob = 2.0 - *prob;

0765 }

0766

0767 }

void Ga::init (void) Initialize first generation.

This function creates the newpop and oldpop structures which are both iden-
tical after this function finishes.

0118 {

0119 assert(leader !'= 0);

0120

0121 //LOG("- GA -M- Entered init().");
0122

0123 oldpop->sumfitness = 0.0;
0124 oldpop->stdev = 0.0;
0125 oldpop->var = 0.0;

0126 oldpop->max = 0.0;
0127 oldpop->min = 10000;
0128

0129 gen = 0;

0130

0131 // Loop through each individual and initialize it
0132 for (int i=0; i<POPSIZE; ++i) {

0133 Individual indv;

0134

0135 assert(indv.chrom.empty());
0136

0137 for (int a=0; a<lchrom; ++a) {
0138 indv.chrom.push_back(f1ip(0.5));
0139 }

0140 indv.parent1=0;

0141 indv.parent2=0;

0142 indv.xsite=0;

0143

101

0144 indv.fitness=leader->get_fitness(indv.chrom);

0145 indv.ofitness = indv.fitness;

0146

0147 assert(indv.fitness >= 0.0);

0148

0149 oldpop->individuals.push_back(indv) ;

0150

0151 oldpop->sumfitness += indv.fitness;

0152

0153 if ((*oldpop).individuals[i].fitness > oldpop->max) {
0154 oldpop->max = (*oldpop).individuals[i].fitness;
0155 oldpop->whichmax = ij;

0156 }

0157 if ((*oldpop).individuals[i].fitness < oldpop->min) {
0158 oldpop->min = (*oldpop).individuals[i].fitness;
0159 oldpop->whichmin = i;

0160 }

0161

0162 // This is to make the other vector know its size
0163 newpop->individuals.push_back(indv) ;

0164 }

0165

0166 //assert (oldpop->sumfitness > 0.0);

0167 //assert (oldpop->max > 0.0);

0168

0169 oldpop->avg = oldpop->sumfitness / POPSIZE;

0170

0171 // Calculate the standard deviation of the values
0172 float diffsquare;

0173 for (int i=0; i<POPSIZE; ++i) {

0174 diffsquare = (*oldpop).individuals[i].fitness -
0175 oldpop->avg;

0176 diffsquare *= diffsquare;

0177 oldpop->var += diffsquare;

0178 }

0179 oldpop->var /= POPSIZE - 1;
0180 oldpop->stdev = sqrt(oldpop->var) ;

0181

0182 newpop—>avg = oldpop->avg;

0183 newpop—>max = oldpop->max;

0184 newpop—>min = oldpop->min;

0185 newpop—>sumfitness = oldpop->sumfitness;

0186 newpop->stdev = oldpop->stdev;

0187 newpop->var = oldpop->var;

0188 newpop—>whichmax = oldpop—>whichmax;
0189 newpop->whichmin = oldpop->whichmin;

0190

0191 osumfitness = newpop->sumfitness;
0192 oavg = newpop->avg;

0193 omax = newpop->max;

0194 omin = newpop->min;

102

0195 ostdev = newpop->stdev;
0196 ovar = newpop->var;
0197 %

int Ga::loadpop (string name = ””) Loads a generation from disk.

Parameters:
name The file name containing the population

Author:
Todd Blackman

0263 {

0264 int chrom_length;

0265 int pop_size;

0266 chromosome_t tmpchrome;
0267 Individual tmpindev;
0268 char c;

0269 //int x=0;

0270

0271 if (leader == NULL) {

0272 cout << "-E- use set_codex() first." << endl;
0273 exit(1);

0274 }

0275

0276 if (name == "") name = Ga::FILENAME_IN;
0277

0278 oldpop->individuals.clear();

0279 newpop->individuals.clear();

0280

0281 newpop->max = 0.0;

0282 newpop->min = 10000;

0283 newpop—>sumfitness = 0.0;

0284

0285 //L0OG("- GA -M- Loading.");

0286 ifstream fin(name.c_str());

0287 if (fin) {

0288 fin >> pop_size;

0289 fin >> chrom_length;

0290

0291 if (pop_size != POPSIZE) {

0292 cerr << "-E- datafile population size doesn’t match." << endl;
0293 cerr << POPSIZE << endl;

0294 cerr << pop_size << endl;

0295 LOG("- GA -E- Invalid popsize or chromosome_t length read");
0296 return -1;

0297 }

0298 if (chrom_length != lchrom) {

103

0299 cerr << "-E- datafile chromosome length doesn’t match." << endl;
0300 cerr << lchrom << endl;

0301 cerr << chrom_length << endl;

0302 LOG("- GA -E- Invalid popsize or chromosome_t length read");
0303 return -1;

0304 }

0305

0306 int i=0;

0307 fin.get(c); // newline grab

0308 while (!fin.eof()) {

0309 fin.get(c);

0310 if (c == ’1’) tmpchrome.push_back(true);

0311 if (c == ’0’) tmpchrome.push_back(false);
0312 if (c == ’"\n’) {

0313 i++;

0314 tmpindev.chrom = tmpchrome;

0315 //LOG("- GA -M- chrome is " << tmpchrome) ;
0316 tmpindev.parentl = 0;

0317 tmpindev.parent2 = 0;

0318 tmpindev.xsite = 0;

0319

0320 // Fitness and stats calculate

0321 tmpindev.fitness =

0322 leader->get_fitness(tmpindev.chrom);
0323 tmpindev.ofitness = tmpindev.fitness;

0324 assert(tmpindev.fitness >= 0.0);

0325 newpop—>sumfitness += tmpindev.fitness;
0326 if (tmpindev.fitness > newpop->max) {

0327 newpop->max = tmpindev.fitness;

0328 newpop—>whichmax = i;

0329 }

0330 if (tmpindev.fitness < newpop->min) {

0331 newpop->min = tmpindev.fitness;

0332 newpop—>whichmin = i;

0333 }

0334

0335

0336 //oldpop->individuals[x++] = tmpindev;
0337 if (tmpchrome.size() > 0) {

0338 newpop->individuals.push_back(tmpindev) ;
0339 oldpop->individuals.push_back(tmpindev) ;
0340 }

0341 //L0G("- GA -M- iter10.");

0342 tmpchrome.clear();

0343 }

0344 T

0345 fin.close();

0346

0347 newpop->avg = newpop->sumfitness / POPSIZE;

0348

0349 scalepop();

104

0350

0351 // Calculate the standard deviation of the values
0352 float diffsquare;

0353 newpop—>stdev = 0.0;

0354 newpop->var = 0.0;

0355 for (int i=0; i<POPSIZE; ++i) {

0356 diffsquare = (*newpop).individuals[i].fitness -
0357 newpop—>avg;

0358 diffsquare *= diffsquare;

0359 newpop->var += diffsquare;

0360 }

0361 newpop->var /= POPSIZE - 1;

0362 newpop->stdev = sqrt(newpop->var) ;

0363

0364 osumfitness = newpop->sumfitness;

0365 oavg = newpop->avg;

0366 omax = newpop->max;

0367 omin = newpop->min;

0368 ostdev = newpop->stdev;

0369 ovar = newpop->var;

0370

0371 //LOG("- GA -M- Checking loaded values "
0372 //<< "for integrety.");

0373

0374 return 0;

0375

0376 } else {

0377 LOG("- GA -E- Error opening datafile " << name);
0378 return -1;

0379 }

0380

0381 7

void Ga::prescale (float & a, float & b) [private] Calculates linear pa-
rameters.

Parameters:
a Slope

b Intercept

Note:
Page 79
0497 {
0498 TAU_PROFILE("Ga: :prescale()", "", TAU_DEFAULT);
0499 float delta;
0500

105

0501 //LOG("- GA -M- Entering prescale().");
0502

0503 // Non-negative test

0504 if (newpop->min > ((FMULTIPLE * (newpop—>avg) -

0505 (newpop->max)) /

0506 (FMULTIPLE - 1.0))) {

0507 delta = (newpop->max) - (newpop->avg);

0508 if (delta == 0) {

0509 a=1;

0510 b = 0;

0511 } else {

0512 a = (FMULTIPLE - 1.0) * (newpop->avg) / delta;
0513 b = (newpop->avg) *

0514 ((newpop->max) - FMULTIPLE * (newpop->avg)) /
0515 delta;

0516 }

0517

0518 // Negative. Scale as much as possible
0519 } else {

0520 delta = (newpop->avg) - (newpop->min);

0521 if (delta == 0) {

0522 a=1;

0523 b= 0;

0524 } else {

0525 a = (newpop->avg) / delta;

0526 b = -(newpop->min) * (newpop->avg) / delta;
0527 }

0528 }

0529

0530 //LOG("- GA -M- Prescale a = " << a << " b="
0531 //<< b << " delta = " << delta);

0532 }

int Ga::savebest (string name = ””) Saves the best chromosome to disk.

Warning:
Untested
0237 {
0238 if (name == "") name = Ga::BEST_FILENAME_OUT;
0239
0240 ofstream fout(name.c_str());
0241 if (fout) {
0243 fout << lchrom << endl;
0244 fout << newpop->individuals[newpop->whichmax].chrom << endl;
0245 fout.close();
0246 return 0;

0247 } else {

106

0248 LOG("- GA -E- Error opening best chromosome output datafile "
0249 << name) ;

0250 return -1;

0251 }

0252

0253 7

float Ga::scale (float obj, float a, float b) [private] Scales the fitness.

Note that the code in the text does not cut off at zero

Parameters:
obj objective value to scale

Note:
See page 79 of ”Genetic Algorithms in Search, Optimization, and Machine
Learning”

0545 {

0546 TAU_PROFILE("Ga::scale()", "", TAU_DEFAULT);

0547

0548 //LOG("- GA -M- Entering scale().");

0549

0550 float res;
0551 res = a * obj + b;
0552 if (res < 0.0) {

0553 return 0.0;

0554 } else {

0555 //LOG("- GA -M- a ="<<a<<" obj="
0556 // << obj << " b =" << b);

0557 assert(res >= 0.0);

0558 return res;

0559 }

0560 }

int Ga::select (Population & pop) [private] selects a chromosome.

This function selects a chromosome based on a roulette wheel paradigm

Note:
Taken from page 63.

0392 {
0393 TAU_PROFILE("Ga::select()", "", TAU_DEFAULT);
0394

107

0395 float randn; //<' Point on roulette wheel
0396 float partsum = 0.0; //<! Accumulator

0397 int j=0; //<! LCV (population index)
0398

0399 //LOG("- GA -M- Entered select()");

0400

0401 // Wheel location
0402 randn = static_cast<float>(rand_r(&rndbuf)) /

0403 static_cast<float>(RAND_MAX) * pop.sumfitness;
0404

0405 //L0OG("- GA -M- randn = " << randm);

0406 //LOG("- GA -M- sumfitness = " << pop.sumfitness);
0407 //LOG("- GA -M- rndbuf = " << rndbuf);

0408 //L0OG("- GA -M- RAND_MAX = " << RAND_MAX);

0409

0410 assert(randn <= pop.sumfitness);

0411 assert (pop.sumfitness >= 0);

0412

0413 // Find which individual it landed on.

0414 do {

0415 partsum += pop.individuals[j++].fitness;

0416 //} while ((partsum < randn) &% (j !'= POPSIZE));
0417 } while ((partsum < randn) && (j < POPSIZE));
0418

0419 //L0OG("- GA -M- Leaving select() with value of " << j-1);
0420

0421 assert(j-1 >= 0);

0422 assert(j-1 < POPSIZE);

0423

0424 // Return the index of the individual

0425 return (j-1);

0426 }

void Ga::set_codex (PreCodex * f) Tells GA what class has the fitness func-
tion to use.

This function also obtains the length of the chromosome.

Parameters:
f A pointer to a class of type PreCodex (p.154) through inheritance.

Author:
Todd Blackman

0104 {

0105 leader
0106

0107 lchrom = leader->get_chrom_size();

f;

108

0108
0109
0110 }

assert(lchrom < 10000);

void Ga::start (void) Starts the GA process.

Author:
Todd Blackman

0825 {
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863

pthread_mutex_lock(&interrupt_watcher) ;
stop=false;
pthread_mutex_unlock(&interrupt_watcher) ;
LOG("- GA -M- Using population size of " << POPSIZE);
LOG("- GA -M- Using maximum generation of " << MAXGEN);
LOG("- GA -M- Using crossover percentage of " << PCROSS);
LOG("- GA -M- Using mutation percentage of " << PMUTATION);
LOG("- GA -M- Using F multiplier of " << FMULTIPLE);
LOG("- GA -M- Chromosome length is " << lchrom);
// could put a mutex in loop, but so what if we read the wrong value. On
// the next loop iteration it will read the correct one.
LOG("- GA -M- gen max min mean stdev\
sumfitness F-value F-prob T-value T-prob");
LOG("- GA M- = s e e \
__ ||);
// Compute statistics
float t,f;
float tprob, fprob;
ftest(&f, &fprob);
string tsig, fsig;
if (fprob < SIGCUTOFF) {

tutest (&t, &tprob);

fsig = "diff";
} else {

ttest (&t, &tprob);

fsig = "same";
¥
if (tprob < SIGCUTOFF) {

tsig = "diff";
} else {

tsig = "same";
}

109

0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914

// Output statstics
LOG("- GA -M- " << setprecision(3)

<< setw(4) << gen << " "

<< setw(10) << (newpop->max) << " "

<< setw(10) << (newpop->min) << " "

<< setw(10) << (newpop->avg) << " "

<< setw(10) << (newpop->stdev) << " "
<< setw(10) << (newpop->sumfitness) << "

do {

«< " " << fsig << " "
<< setw(10) << fprob << " "
<< " " << t << " "
<< setw(10) << tprob << " "
)3

generation();

// Compute statistics
ftest(&f, &fprob);

if (fprob < SIGCUTOFF) {
tutest (&t, &tprob);
fsig = "diff";

} else {
ttest(&t, &tprob);
fsig = "same";

}

if (tprob < SIGCUTOFF) {
tsig = "diff";

} else
tsig

}

=~

"'same";

// Qutput statistics

LOG("- GA -M- " << setprecision(3)

<< setw(4) << gen << " "

<< setw(10) << (newpop->max) << " "
<< setw(10) << (newpop->min) << " "
<< setw(10) << (newpop->avg) << " "
<< setw(10) << (newpop->stdev) << " "
<< setw(10) << (newpop->sumfitness) << "
<< n n << fsig << n n

<< setw(10) << fprob << " "

<< setw(10) << t << " "

<< setw(10) << tprob << " "

)

pthread_mutex_lock(&log_mutex) ;
assert (thread_count <= MAX_THREADS) ;
assert(thread_count == 1);
pthread_mutex_unlock(&log_mutex) ;

110

0915

0916 } while(!stop && gen<MAXGEN) ;
0917

0918 leader->summary (newpop) ;

0919 }

void Ga::ttest (float = t, float * prob) [private]l] Compute (Student’s)
T-test.

Computes statistics that help evaluate whether two distributions have different

means

Author:
Numerical Recipes in C, modified by Todd Blackman, page 616

0779 {

0780 float df,svar;

0781

0782 df=POPSIZE+POPSIZE-2;
0783

0784 // Compute pooled variance
0785 svar = ((POPSIZE-1)*ovar+(POPSIZE-1)*newpop->var)/df;
0786 if (fabs(svar - 0.0) < 0.0000001) {

0787 xt = -1;
0788 xprob = -1;
0789 return;
0790 }

0791 *t = (oavg-newpop->avg)/sqrt(svar*(1.0/POPSIZE+1.0/POPSIZE)) ;
0792 *xprob=betai(0.5%df,0.5,df/ (df+(*xt)*(xt)));
0793 %

void Ga::tutest (float * t, float * prob) [private] Compute the T-test
(Student’s) if the variances aren’t the same.

Computes statistics that help evaluate whether two distributions have different
means

Author:
Numerical Recipes in C, modified by Todd Blackman, page 617-8

0806 {

0807 float df;

0808

0809 *t = (oavg-newpop->avg) /

0810 sqrt (ovar/POPSIZE + newpop->var/POPSIZE);

111

0811

0812 // Degrees of freedom calculation

0813 df=SQR(ovar/POPSIZE + newpop->var/POPSIZE) /
0814 (SQR(ovar/POPSIZE) / (POPSIZE-1) +

0815 SQR (newpop->var/POPSIZE) /(POPSIZE-1));
0816

0817 *prob=betai(0.5%df, 0.5, df/(df+SQR(*t)));
0818 }

A.2.8.3 Member Data Documentation

pthread mutex t Ga:interrupt_watcher [privatel
rupting GA

Warning:

(unused)

A.2.9 Game Class Reference

A class that defines a series of boards.

#include <game.h>

Public Methods

e Game (void)

Constructor 1I.

Game (Game &other)
Copy Constructor.

~Game ()

Destructor.

void reset (void)
void play_move (loc_t 1)

Play a mowe.

void play_move (int x, int y)

Plays a move given (z,y) coordinates.

112

MUTEX for inter-

void play_move (move_t m)

Plays a move given a move_t (p.148) struct.

void retract (usi_t num)

Retracts mowves.

move_t last (void)

Returns the last move made.

bool legal (loc_t)
bool legal (int, int)

Is the mowe legal?

bool is_over (void)

Is the game over yet?

Board get_board () const

Returns the current board.

usi_t get_bsize () const

Returns the board size.

color_t wturn ()

Whose turn is it?

color_t get_turn ()

Whose turn is it?

void set_turn (color_t c)

Overide game conventions and just set whose turn it is.

list<loc_t> enumerate_legal locations (void)

Returns legal locations.

void invert_board (void)

Changes black to white and vice versa.

void lock (void)

113

void unlock (void)
Unlocks the class.

int get_captures (color_t col)
Stub.

int movenum (void)
bool operator== (const Game &)

Equality operator.

bool operator!= (const Game &)
Game operator= (Game)

Assignment operator.

Static Public Methods

e void set_super_ko (bool a)

Set super KO checking.

e void set_suicide (bool a)

Set suicide checking.

Static Public Attributes

e bool SUPER _KO

Is superko rule in affect?

e bool SUICIDE

Is suicide allowed?

o float KOMI

Komi points to give.

e usi_t INITTAL_TIME

Inital game time.

114

e usi_-t BYOMI_TIME

Time per byomi period.

e usi_t BYOMI_STONES

Stones per byomi period.

Private Methods

e void inv_turn (void)

Change whose turn it is.

e void setup ()

Initializes things.

Private Attributes

e list<Board> theGame
Actual list of boards.

color_t whose_turn

Color whose turn it is.

list<Board>::iterator currentBoard

Iterator pointing to board.

list<usi_p> capStones

captured stones. 1st is black; 2nd white.

bool enum_memoize _flag

Used for memoizing legal moves.

pthread _mutex_t mutex

MUTEX for operating on internal structures.

115

Static Private Attributes

e bool super_ko

Is superko rule in affect?

e bool suicide

Is suicide allowed?

e float komi

Points to white for having to play second.

Friends

e ostream& operator<< (ostream &strm, Game &aGame)

Stream operator.

A.2.9.1 Detailed Description

A class that defines a series of boards.

This class stores the game as a linked-list of Board (p. 78) classes.

A.2.9.2 Member Function Documentation

list< loc.t > Game::enumerate_legal locations<loc t> (void) Returns
legal locations.

Returns:
a list of integers (locations)

0245 {

0246 TAU_PROFILE("Game: : enumerate_legal_locations()", "", TAU_DEFAULT);
0247

0248 list<loc_t> tmp;

0249

0250 //int lent = 0;

0251

0252 //L0G("-GAM -M- Entered enumerate_legal_locations().");
0253

0254 for (loc_t x=0; x<(Board::BSIZE * Board::BSIZE); ++x) {

116

0255 if (legal(x)) {

0256 tmp .push_back(x);

0257 //lcnt++;

0258 }

0259 }

0260

0261 //LOG("-GAM -M- Did enumerate_legal_locations(): There were "
0262 // << lent << " legal moves excluding passing.");
0263

0264 return tmp;

0265

int Game::get_captures (color_t col) Stub.

Returns how many stones captured by ”col”

Parameters:
col Color that has captured the other color’s stones

0371 {

0372 TAU_PROFILE("Game::get_captures()", "", TAU_DEFAULT);
0373

0374 usi_p captures;

0375

0376 captures.first = 0;
0377 captures.second = 0;

0378

0379 for (list<usi_p>::iterator pos = capStones.begin();
0380 pos != capStones.end();

0381 pos++) {

0382 captures.first += pos->first;
0383 captures.second += pos->second;
0384 }

0385

0386 if (col == BLACK) {

0387 return captures.first;

0388 } else if (col == WHITE) {

0389 return captures.second;

0390 } else {

0391 return -1;

0392 }

0393 ?

void Game::invert_board (void) Changes black to white and vice versa.

This function does not alter whose turn it it nor the number of stones captured
semantics. The board is inverted using a call to the Board (p.78) class invert
function.

117

0139 {

0140 TAU_PROFILE("Game: :invert_board()", "", TAU_DEFAULT);
0141

0142 //Board b = *theGame.rbegin();

0143 Board b = theGame.back();

0144 theGame. pop_back() ;

0145 b.invert();

0146 theGame. push_back(b) ;

0147 }

bool Game::is_over (void) Is the game over yet?

This is determined by there being two passes (two identical boards in a row)

0273 {

0274 TAU_PROFILE("Game::is_over ()", "", TAU_DEFAULT);
0275 list<Board>::reverse_iterator posi;

0276 list<Board>::reverse_iterator pos2;

0277 list<Board>::reverse_iterator pos3;

0278

0279 posl = theGame.rbegin();
0280 pos2 = theGame.rbegin();
0281 pos2++;

0282

0283 if ((theGame.empty()) ||

0284 (posl == theGame.rend()) ||
0285 (pos2 == theGame.rend())) {
0286 return false;

0287 } else {

0288 pos3 = pos2;

0289 pos3++;

0290 // Only two moves in record
0291 if (pos3 == theGame.rend()) {
0292 return false;

0293 } else {

0294 return ((*posl == *pos2) && (*posl == *pos3));
0295 }

0296 }

0297 }

move_t Game::last (void) Returns the last move made.

Warning:
Games with no moves yet return an undefined value.

0165 {
0166 TAU_PROFILE("Game::last()", "", TAU_DEFAULT);

118

0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189 7

static move_t mv;

if (theGame.size() == 1) {
cout << "-E- No moves made yet. Cannot get last move." << endl;

return mv;

} else {

//Board b = *theGame.rbegin();

Board b = theGame.back();

mv.loc = b.get_move_played();

mv.color = b.get_color_played();

if (mv.loc == Board::PASS) { mv.pass = true; };

if (theGame.size() == 2) {
mv.newboard = true;

} else {
mv.newboard = false;

}

mv.setup_phase = false;
//mv.bsize = this->bsize;
return mv;

bool Game::legal (int z, int y) Is the move legal?

Warning:
Passes are always legal. This function does not accept semantics of ” pass”

0357 { return legal(y * Board::BSIZE + x); 7}

bool Game::legal (loc_t loc) Tests if a move is legal.

Todo:
Add memoizability—> store vector of legal /not-legal that is updated as moves
are made.

0306 {

0307 TAU_PROFILE("Game::legal(O", "", TAU_DEFAULT);

0308

0309 usi_p captures;

0310

0311 // Only locations on board and not taken already...

0312 if (!currentBoard->valid_location(loc)) {

119

0313 return false;

0314 }

0315

0316 // KO violation checking. Go back to the move before the previous
0317 // move. It should not be the same board.

0318 1list<Board>::reverse_iterator pos;

0319 pos=theGame.rbegin();

0320 if (pos!=theGame.rend()) ++pos;

0321 // If there are less than two previous boards, can’t check for KO
0322 if (pos!=theGame.rend()) {

0323 Board b(*currentBoard);

0324 captures = b.play_move(loc, whose_turn);

0325 // b is current board with suggested move played and *pos is

0326 // potential KO violation board (i.e. the same exact board)

0327 if (#pos == b) return false;

0328

0329

0330 #if (SUPERKO_CHECK == 1)

0331 // Super KO violation. Could store a hash to make this quicker, but
0332 // it’s not worth it since I probably won’t use this functionality.
0333 if (super_ko) {

0334 // Loop through all boards

0335 while (++pos != theGame.rend()) {

0336 if (*pos == b) return false;

0337 }

0338 }

0339 #endif

0340

0341 }

0342

0343 #if (SUICIDE_CHECK == 1)

0344 // Suicide violation

0345 if (!suicide && (captures.second > 0)) return false;
0346 #endif

0347

0348 return true;

0349 }

void Game::lock (void) Locks the class

0397 {
0398 pthread_mutex_lock(&mutex) ;
0399 }

int Game::movenum (void) Tells the current move number

This function calculates this value based on the number of boards in the game.

120

0155 {
0156 return (theGame.size()-1);
0157 }

bool Game::operator!= (const Game & other) Inequality operator

0439 {
0440 return (!(*this == other));
0441 }

void Game::play_move (loc_t) Play a move.

Parameters:
loc A location to play a move on (must be legal!)

Warning:
Does not do error checking or validity checking

0199 {

0200 TAU_PROFILE("Game: :play_move()", "", TAU_DEFAULT);
0201

0202 Board b;

0203 pair<usi_t, usi_t> captures;

0204

0205 captures.first = 0;

0206 captures.second = 0;

0207

0208 // Copy the last board onto the end of the list
0209 b=*currentBoard;

0210 theGame. push_back(b) ;

0211 ++currentBoard;

0212

0213 //enum_memoize_flag = false;

0214

0215 if (loc != Board::PASS) {

0216 captures = currentBoard->play_move(loc, whose_turn);
0217 if (whose_turn==WHITE) {

0218 swap (captures.first, captures.second);
0219 }

0220 }

0221 capStones.push_back(captures) ;

0222

0223 // Make it the other color’s turn
0224 inv_turn();
0225 }

121

void Game::reset (void) Totally clears and resets the game to initial state.

0481 {
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498

Board b;

theGame.clear () ;
theGame. push_back(b) ;

capStones.clear();

usi_p capturedStones;
capturedStones.first=0;
capturedStones.second=0;
capStones.push_back(capturedStones) ;
whose_turn = BLACK;

//enum_memoize_flag = false;

currentBoard = theGame.begin();

void Game::retract (usi_t num) Retracts moves.

This function completely destroys all record of the previous num moves. Since
the moves/board-states are stored in a list, retracting is a very simple matter.

Parameters:
num The number of moves to retract

0107 {
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125

TAU_PROFILE("Game: :retract()", "", TAU_DEFAULT);
// Protect against retracting past first move.
if (theGame.size() <= num) {

num = theGame.size() - 1;

}

// Remove last "num" boards
for (int x=0; x<num; ++x) { theGame.pop_back(); }

// Remove last "num" captured stones pairs
for (int x=0; x<num; ++x) { capStones.pop_back(); }

assert (theGame.size() == capStones.size());

// Set whose turn it is.
if (odd(num)) { inv_turn(); }

122

0126 // Set current board iterator as the last board in the list

0127 currentBoard = theGame.end();
0128 —-currentBoard;
0129 }

A.2.9.3 Friends And Related Function Documentation

ostream & operator<< (ostream & strm, Game & aGame) [friend]
Stream operator.

This is used to output the latest state of the game

0412 {
0413 Board b = aGame.get_board();

0414 strm << b;

0415 return strm;

0416 }

A.2.10 GaTrainerInterface Class Reference

Used to train a GA to work correctly.
#include <interface.h>

Inheritance diagram for GaTrainerInterface::

| Subthread |

T

| Interface |

T

| GaTrainerInterface |

Public Methods

e GaTrainerInterface ()

Constructor.

e ~GaTrainerInterface ()

Destructor.

e void load (string fname)

Loads into memory the training data.

123

e float get_percentage ()

Figures fraction of correct guesses.

Private Methods

e void processing (void)

Main processing loop.

e void handle_move (void)

Handles modifications to setup board for opponent given the correct mowve.

e void init (void)

Initializes Interface (p.144).

Private Attributes

e int totalmoves

Movwves played.

e int movesGuessed

Mowves played correctly.

e list<move_t> movestream

The correct moves (from recorded games).

e list<move_t>::iterator movestream_iter

Iterator for movestream.

A.2.10.1 Detailed Description

Used to train a GA to work correctly.

124

A.2.10.2 Member Function Documentation

float GaTrainerInterface::get_percentage () Figures fraction of correct
guesses.

This function looks at the number of moves in the game record and the num-
ber of moves guessed correctly and calcualtes the fraction of the moves guessed
correctly.

Returns:
Fraction of the recorded game moves guessed correctly

0222 {

0223 if (totalmoves == 0) { return static_cast<float>(0); };
0224

0225 float perc = static_cast<float>(movesGuessed) /

0226 static_cast<float>(totalmoves) ;

0227

0228 LOG("-GAT -M- Got " << perc << " right.");

0229

0230 return perc;

0231 }

void GaTrainerInterface::init (void) [private] Initializes Interface
(p. 144).

Precondition:
movestream has been loaded with data via the load() (p.125) function call.

0074 {

0075 // Point to data start

0076 movestream_iter = movestream.begin();
0077 }

void GaTrainerInterface::load (string frname) Loads into memory the
training data.

The format is a space delimited record with records marked with newline
characters PASS MOVE_LOCATION COLOR IGNORE IGNORE BOARDSIZE.
all fields are one character except MOVE_LOCATION which is three MOVE_-
LOCATION is an offset into a single-dimention array.

125

0118 {

0119 ifstream fin(fname.c_str());

0120 move_t move;

0121

0122

0123 if (fin) {

0124 while (!fin.eof()) {

0125 fin >> move;

0126

0127 if (move.bsize != Board::BSIZE) {

0128 cout << "-E- Requested board size and board size in training "
0129 << "data do not match: " << move.bsize << " and "
0130 << Board::BSIZE << endl;

0131 exit (0);

0132 }

0133

0134 assert(move.bsize == Board::BSIZE);

0135

0136 //cout << move.loc << " " << flush;

0137

0138 movestream. push_back (move) ;

0139 }

0140 fin.close();

0141 if (fin) {

0142 cout << "-E- Error closing training data file." << endl;
0143 }

0144

0145 // Why?

0146 movestream.pop_back();

0147

0148 } else {

0149 cout << "-E- Error opening training data file." << endl;
0150 }

0151

0152 //cout << "Movestream is sized at " << movestream.size() << endl;
0153 }

A.2.11 GenAlgoGenerator Class Reference

A genetic algorithm move generator.
#include <outputgen.h>

Inheritance diagram for GenAlgoGenerator::

126

| Subthread |

T

| Interface | | PreCodex

t i
l

| GenAlgoGenerator |

Public Methods

e GenAlgoGenerator ()

Constructor.

e ~GenAlgoGenerator ()

Destructor.

e void load (string filename="")

Loads GA parameters from a file on disk.

e void printweights (void)
Prints the weights for the network to the log file.

e void decode (const chromosome_t &chrom)

Decodes chromosome.

e float get_fitness (const chromosome_t &chrom)

Objective Function.

e void summary (Population *newpop)

QOutputs the best chromosome and the weights.

Private Methods

e void init (void)

Sets up agent/generator connections.

e loc_t get_move (void)

Generate a probability board and etc.

127

e void processing (void)

Main processing loop.

Private Attributes

e int weights [SECONDLEVELNODES|[MAX_AGENTS]
Weights to optimize.

e int secondLevelWeights [SECONDLEVELNODES]

Second level weights.

e Agentx theAgents [MAX AGENTS]

Pointers to all agents we use.

e AgentShell theThreads [MAX_THREADS]
The threads for working.

e ProbBoard results [MAX AGENTS]

Agents put results here.

e Blackboard bb

Information viewable by all agents.

e int num_agents

Number of active agents.

e int num_threads

Number of running threads for agents.

e unsigned int rndbuf

State var used for random number generation.

e bool weights_loaded
Are the weights set yet?

e unsigned int bits_per_weight

Bits used for each weight in the net.

128

e unsigned int num_second_level nodes

Number of nodes in level 2.

e unsigned int total_bits

Total number of bits in chromosome.

A.2.11.1 Detailed Description

A genetic algorithm move generator.

A.2.11.2 Member Function Documentation

void GenAlgoGenerator::decode (const chromosome t & chrom) De-
codes chromosome.

This function reads chromosome as a string of three integer weights encoded
as four bits each (12 bits total)

Author:
Todd Blackman

0406 {

0407 TAU_PROFILE("GenAlgo: :decode()", "", TAU_DEFAULT);

0408

0409 int z=0;

0410 int tmpweight=0;

0411

0412 set_chrom_size(total_bits);

0413

0414 //cout << "-M- " << chrom.size() << " " << total_bits << endl;
0415

0416 assert(chrom.size() == total_bits);

0417

0418 LOG("-GAG " << setw(7) << childt << "-M- Loading chromosome: "
0419 << chrom) ;

0420

0421 unsigned int count=0;

0422 unsigned int count2=0;

0423 int endOfWeights = num_agents * bits_per_weight * num_second_level_nodes +
0424 num_second_level_nodes * bits_per_weight;

0425 for (int x=0; x<=end0fWeights; ++x) {

0426 if ((x>0) && (!'(x % bits_per_weight))) {

0427

129

0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466 }

if (count < (num_agents * num_second_level_nodes)) {
weights[count/num_agents] [countnum_agents] = tmpweight;
LOG(" " << "-M- weights[" << count/num_agents << "J["
<< countlnum_agents << "]=" << tmpweight);
} else if (count < (num_agents*num_second_level_nodes +
num_second_level_nodes)) {
secondLevelWeights[count2] = tmpweight;
LoG(" " << "-M- secondLevelWeights[" << count2
<< "]=" << tmpweight);
count2++;
}

count++;

z=0;

tmpweight=0;
}
tmpweight += chrom[x] * static_cast<int>(pow(2, 2));
++z;

I

}

// Get extra bits now
int start = end0fWeights;
for (int x=0; x<num_agents; ++x) {
int bits_needed = theAgents[x]->query_bits_needed_from_GAQ);

if (bits_needed+end0fWeights <= lchrom) {
theAgents[x]->send_bits(chrom, start);
LOG(" " << "-M- Extra bits for agent " << x
<< " at " << start
<< " and consisting of " << bits_needed);
start += bits_needed;
} else {
cerr << "-E- Bit count mismatch." << endl;
exit (0);
}

weights_loaded = true;

float GenAlgoGenerator::get fitness (const chromosome t & chrom)
[virtuall Objective Function.

This objective function is exceedingly complex though one cannot tell just by
looking here. This function creates a moderator with two players, the GA player
and a GA-trainer player. This is then allowed to run until the trainer exhausts
its series of moves to play.

130

Returns:
Fitness value

Reimplemented from PreCodex (p.155).

0486 {

0487 TAU_PROFILE("GenAlgo::get_fitness()", "", TAU_DEFAULT);
0488

0489 float fitness;

0490

0491 //LOG("-GAG " << setw(7) << childt << "-M- Entered get_fitmess().");
0492

0493 //Connect the trainer and trainee with a moderator

0494 Moderator<GenAlgoGenerator, GaTrainerInterface> trainpair;
0495

0496 cerr << " " << flush;

0497

0498 // Setup the trainer and trainee (Do we need this at all?)
0499 //Interface *trainee;

0500 GenAlgoGenerator *trainee;

0501 //Interface *trainer;

0502 GaTrainerInterface *trainer;

0503

0504 trainee = static_cast<GenAlgoGenerator *>(trainpair.get_I0());
0505 trainer = static_cast<GaTrainerInterface *>(trainpair.get_I1());
0506

0507 // Adjust weights based on chromosome

0508 trainee->decode(chrom) ;

0509

0510 // prepare the trainer

0511 //static_cast<GaTrainerInterface *>(trainer)->load(".test.dat");
0512 static_cast<GaTrainerInterface *>(trainer)->load(Ga::TRAIN_FILE);
0513

0514 LOG("-GAG " << setw(7) << childt

0515 << "-M- About to call mainloop from get_fitness().");
0516

0517 // Run moderator till trainer says done.

0518 trainpair.mainloop();

0519

0520 LOG("-GAG -M- Done with mainloop in fitness-finding function.");
0521

0522 // Get stat from trainer interface.

0523 fitness = static_cast<GaTrainerInterface *>(trainer)->get_percentage();
0524

0525 LOG("-GAG -M- Fitness has been calculated.");

0526

0527 // Return percentage of moves correctly guessed.

0528 return fitness;

0529 }

131

loc_t GenAlgoGenerator::get_move (void) [private] Generate a proba-
bility board and etc.
This function calls all agents to the task of creating a probability board. This

function then proceeds to sum these boards as defined by the genetic algorithm
weight parameters.

0305 {

0306 TAU_PROFILE("GenAlgo::get_move()", "", TAU_DEFAULT);
0307

0308 loc_t loc;

0309 ProbBoard pbtmp;

0310 ProbBoard pbresult;

0311 msg_t msg;

0312

0313 //LOG("-GAG " << setw(7) << childt << "-M- Entered get_move()");
0314

0315 // Fill up as many threads as we have.

0316 for (int x=0; x<num_threads; x++) {

0317 assert (theAgents[x] != NULL);

0318

0319 // Load the next agent

0320 msg.id = LOAD;

0321 msg.data = static_cast<void *>(theAgents[x]);
0322 theThreads[x] . send_msg (msg) ;

0323

0324 // Update the agent

0325 msg.id = UPDATE;

0326 //pthread_mutex_lock (&update_mutex) ;

0327 msg.data = static_cast<void *>(gptr);

0328 //pthread_mutex_unlock(&update_mutex) ;

0329 theThreads[x].send_msg(msg) ;

0330 }

0331

0332 int count=0;

0333 while(count < num_threads) {

0334 msg = theThreads[count].get_msg_nb();

0335 if (msg.id == FINISHED) count++;

0336 }

0337

0338 //LOG("-GAG " << setw(7) << childt << "-M- Got all finished messages.");
0339

0340 // Compute probablity board

0341 pbresult.clear();

0342 for (unsigned int lcv=0; lcv<num_second_level_nodes; ++lcv) {
0343 pbtmp.clear();

0344 // Calcualte results second level results.

0345 for (int x=0; x<num_agents; ++x) {

0346 pbtmp += results[x] * weights[lcv][x];

0347

0348 //cout << "results[" << x << "]=" << endl << results[x]
0349 // << endl;

132

0350 //cout << "weights[" << lcv << "]J[" << x << "]="

0351 // << weights[lcv] [x] << endl;

0352 //cout << "pbtmp = " << endl << pbtmp << endl;
0353 //cout << "°tthnannn " << endl;

0354

0355 }

0356 pbtmp.normalize();

0357 //cout << "pbtmp = " << pbtmp << endl;

0358 //cout << "=======" << endl;

0359 pbresult += pbtmp * secondLevelWeights[lcv];

0360

0361 //cout << "secondLevelWeights[" << lcv << "]="
0362 // << secondLevelWeights[lcv] << endl;
0363 //cout << "pbresult = " << pbresult << endl;
0364

0365 }

0366 pbresult.normalize();

0367

0368 //cout << "pbresult = " << pbresult << endl;

0369 //cout << M———— - " << endl;
0370

0371 #if SPIN

0372 loc = pbresult.spin();

0373 assert(false); // SPIN shouldn’t be used unless you really want to
0374 #else

0375 loc = pbresult.maxloc();

0376 #endif

0377

0378 if (loc == (Board::BSIZE * Board::BSIZE)) {

0379 loc = Board: :PASS;

0380 }

0381

0382 assert((loc <= (Board::BSIZE * Board::BSIZE)) || (loc == Board::PASS));
0383

0384 return loc;

0385 }

void GenAlgoGenerator::load (string filename = ?”) Loads GA param-
eters from a file on disk.

Author:
Todd Blackman

0170 {
0171 ifstream fin;
0172 chromosome_t tmpchrome;

0173 unsigned int chrom_length;
0174 char c;

133

0175

0176 if (name == "") name = Ga::BEST_FILENAME_OUT;

0177

0178 fin.open(name.c_str());

0179

0180 if (fin) {

0181 fin >> chrom_length;

0182

0183 // Check that datafile has correct cromosome length

0184 if (chrom_length != total_bits) {

0185 cerr << "-E- datafile chromosome length doesn’t match: ";
0186 cerr << total_bits << "!=" << chrom_length << endl;
0187 LOG("-GAG -E- Invalid chromosome_t length read");
0188 return;

0189 }

0190

0191 while (fin) {

0192 fin.get(c);

0193 if (c == ’1’) tmpchrome.push_back(true);

0194 if (c == ’0’) tmpchrome.push_back(false);

0195 }

0196 fin.close();

0197

0198 if (tmpchrome.size() != total_bits) {

0199 cerr << "-E- datafile chromosome length doesn’t match: ";
0200 cerr << total_bits << "!=" << tmpchrome.size() << endl;
0201 LOG("-GAG -E- Invalid chromosome_t length read");
0202 return;

0203 }

0204

0205

0206 } else {

0207 LOG("-GAG -E- Cannot load Genetic Algorithm data from disk.");
0208 7}

0209

0210 decode(tmpchrome) ;

0211

0212 }

A.2.12 global data_t Struct Reference

global data structure.

#include <exodus.h>

Public Attributes

e bool welcome

134

Show welcome screen to user.

e bool train

Train GA or not.

e int verbosity

How much output to output (unused).

e charx resume

File name to resume a GA run.

e bool version

Show version number or not.

e bool help

Show help message or not.

e bool reg_on

Run regression or not.

e color_t my_color

Human player’s color (untested).

e charx handicap_placement

Where to place the handicap stones.

A.2.12.1 Detailed Description

global data structure.

Make this as small as possible

A.2.13 GoModemlInterface Class Reference

Go modem interface.
#include <interface.h>

Inheritance diagram for GoModemInterface::

135

| Subthread |

T

| Interface |

T

| GoModeminterface |

Public Methods

e GoModemlInterface ()

Constructor.

A.2.13.1 Detailed Description

Go modem interface.

A.2.14 GroupStatsAgent Class Reference

Agent (p.73) to calculate group information.
#include <agent.h>

Inheritance diagram for GroupStatsAgent::

Agent

GroupStatsAgent

Public Methods

e GroupStatsAgent ()

Constructor.

e ~GroupStatsAgent ()

Destructor.

e void force (void)

Force the agent to mowve.

136

e void update (Game x)

Updates the agent with the latest state of the game.

e bool dowork (void)
work thread. Kills groups.

e void notify (void *)
Tell the agent something.

e unsigned int query_bits_needed_from GA (void)
Asks the agent for the number of bits it needs from GA.

e void send_bits (chromosome_t chrom, int start)

Private Methods

e void printScratch (void)
Prints the group scratchpad to STDOUT.

e void recurse (Stone goban||, int loc, int gnum)

Recursive function to label a group by number.

Private Attributes

e int scratch [19 *19]

Holds a bitmap that shows the group numbers. Each group is uniquely identified
by a number.

e int numgroups

Number of groups.

e bool dead [MAXGROUPS]
Which groups are dead and which alive.

e color_t grpcolor [MAXGROUPS]
Color of the group.

137

unsigned int gsize [MAXGROUPS]
Size of the group.

unsigned int liberties [MAXGROUPS]

Number of liberties.

bool liberty_locations [MAXGROUPS][19 *19]

Liberty locations as a bitmap.

list<loc_t> liberty_locations_list [MAXGROUPS]

Liberty locations as a list of locations.

A.2.14.1 Detailed Description

Agent (p.73) to calculate group information.

A.2.14.2 Member Function Documentation

void GroupStatsAgent::send_bits (chromosome_t chrom, int start)
[virtual]l Sends to this agent the bits it needs from the GA

Reimplemented from Agent (p.75).

0069 {

0070 //int end = start + query_bits_needed_from_GA();
0071

0072 %

A.2.15 GUllInterface Class Reference

Graphical User Interface (p.144).
#include <interface.h>

Inheritance diagram for GUIInterface::

138

GUIInterface

Public Methods

e GUlIlInterface (usi_t size=19)

Constructor.

e GUIInterface (string thepath, usi_t size=19)

Constructor.

e ~GUIInterface ()

Destructor.

Static Public Attributes

e string GPATH
Path to GUI frontend.

Private Methods

e loc_t get_move (void)
Gets move from GUL

e void send_board (Board b, color_t whose_turn)

Sends the current board to the interface from engine.

e void init (void)
Forks off the gui.

e void figure path (void)
Sets path to gui.

139

e void processing (void)

Main logic loop of the interface.

Private Attributes

e int m2s [2]

Master to slave flow (interface to outside).

e int s2m [2]

Slave to master flow (outside to interface).

e int pid
Child Process ID.

e usi_t bsize
Board (p.78) size.

e string path
Path to gui program.

Static Private Attributes

e const int READ =0

Constant.

e const int WRITE =1

Constant.

A.2.15.1 Detailed Description

Graphical User Interface (p.144).

140

A.2.16 1IGS_Interface Class Reference

Internet Go Server (IGS) Interface (p.144).
#include <interface.h>

Inheritance diagram for IGS Interface::

Interface

IGS Interface

Public Methods

e IGS_Interface ()

Constructor.

e ~IGS Interface ()

Destructor.

Private Methods

e void setup (void)

Initializes the class.

Private Attributes

e string host1
First IGS server to try.

e string host2
Second IGS server to try.

e usi_t portl
Port on first host.

141

e usi_t port2

Port on second host.

e sockaddr my_addr
Local IP address.

e int sfd

File descriptor for socket connection.

A.2.16.1 Detailed Description

Internet Go Server (IGS) Interface (p.144).

Warning:

This class is a stub.
A.2.17 Individual Struct Reference
An individual in a population of a GA.

#include <ga.h>

Public Methods

e bool operator== (const Individual &) const

Equality operator.

e bool operator!= (const Individual &) const

Inequality operator.

e Individual operator= (Individual)

Assignment operator.

Public Attributes

e chromosome_t chrom

The chromosome that represents this individual.

142

float ofitness

Original fitness.

o float fitness

Fitness after scaling.

e usi_t parentl

First parent chromosome.

e usi_t parent2

Second parent chromosome.

usi_t xsite

Site of crossover.

A.2.17.1 Detailed Description

An individual in a population of a GA.

A.2.17.2 Member Function Documentation

bool Individual::operator== (const Individual & other) const Equality
operator.

Warning:
Not used for now. This will be useful when the algorithm is multi-threaded
which it currently isn’t.

void Ga:interrupt() { pthread mutex lock(&interrupt_watcher); stop=true;
pthread mutex_unlock(&interrupt_watcher); }

0959 {
0960 return(this->chrom == other.chrom) ;
0961 }

143

A.2.18 Interface Class Reference

The interface between a move generator (outside) and the inside of the program.
#include <interface.h>

Inheritance diagram for Interface::

| Subthread |

|

| Interface |

DummyGenerator |

GaTrainerInterface |

GenAlgoGenerator |

GoModeminterface |

GUlInterface |

IGS _Interface |

NeuralNetGenerator |

NNGS_Interface |

PLLLL L]

TextInterface |

Public Methods

e Interface ()

Constructor.

e ~Interface ()

Destructor.

e void set_my turn_on (void)

Moderator (p.146) class uses these to control who is ”active” meaning.
e bool get_ made_a_move (void)

144

Moderator (p. 146) class uses these to control who is ”active” meaning "whose
turn is it?”.

e void set_my_color (const color_t col)

Protected Attributes

e bool my_turn

Is it my turn?

bool made_a_move

Have I made my move for this round?

Gamesx gptr
Points to current Game (p.112).

e color_t my_color

My color.

color_t their_color

Opponent’s color.

A.2.18.1 Detailed Description
The interface between a move generator (outside) and the inside of the program.

Warning:
This is an abstract class

set_die_ptr of the Subthread class must be set before using any
interface. In addition to this, gptr and resign_ptr need to be set before sub-
thread’s start() (p.165) function is called.

A.2.18.2 Member Function Documentation

void Interface::set_my _color (const color_t col) [inline] Sets interface’s
color

0070 { my_color = col;
0071 their_color = INV(col); };

145

A.2.19 Moderator Class Template Reference

Encapsulates two interfaces and has them play together.

Public Methods

e Moderator ()

Constructor.

e ~Moderator ()

Destructor.

e Interfacex get_I0 (void)

Retrieves the first interface.

e Interfacex get I1 (void)

Retrieves the second interface.

e Gamesx get_game (void)

Retrieves the game.

e void mainloop (void)

Lets the interfaces play with each other.

e void swap_interfaces (void)

Swaps semantics of 10 and 11.

Private Attributes

o 10_tx IO
First Interface (p.144) (0).

o I1 tx1I1
Second Interface (p.144) (1).

e bool whose_turn

Which interface’s turn is it?

146

¢ Game theGame

The game.

A.2.19.1 Detailed Description

template<class I0_t, class I1_t> class Moderator Encapsulates two inter-
faces and has them play together.

The first interface, 10, Is the black player and thus I1 receives the handicap
by definition. To alter this, one needs only to swap the two interfaces using the
method swap_interfaces() (p.146).

Warning:
The functions get_I0() (p.146), get _I1() (p.146), and get_game() (p. 146)
should be used wisely. They are sources of error and potential faults, but I’ll
trust myself and potential future programmers to not screw the semantics up
like making two interfaces think the board is a different size than it is.

Todo:
Add time-keeping code.

A.2.19.2 Constructor & Destructor Documentation

template<class 10_t, class I1.t> Moderator< 10_t, 11 t
>::Moderator<I0_t, I1_t> () Constructor.

Warning:
10 always goes first

0110 {

0111

0112 I0 = new(IO_t);

0113 I1 = new(I1_t);

0114 if ((110) | (111)) {

0115 LOG("-MOD -E- Interface memory allocation failed.");
0116 cerr << "-E- Interface memory allocation failed.";

0117 exit(1);

0118 }

0119

0120 // Set Game class for two opponents
0121 msg_t msg;
0122 msg.id = SET_GAME_PTR;

147

0123 msg.data = static_cast<void *>(&theGame) ;
0124 I0->send_msg(msg) ;

0125 I1->send_msg(msg) ;

0126 }

A.2.20 move_t Struct Reference

A single move on the goban.

#include <move.h>

Public Methods

e bool operator== (move_t &m)

equality operator.

e move_t operator= (move_t other)

assignment operator.

e void regression (void)
Unused.

Public Attributes

e bool pass

Is the move a pass?

loc_t loc

Where the move is played.

color_t color

Color of the move played.

bool newboard
Is this the first of a new board?

bool setup_phase

Still setting up handicaps?

148

e int bsize
Size of the board.

A.2.20.1 Detailed Description

A single move on the goban.

A.2.21 msg t Struct Reference

A message to or from a thread.

#include <subthread.h>

Public Methods

e msg t operator= (msg_t)

Assignment operator.

Public Attributes

e msg_id_t id
Message ID (type).

e voidx data

Message payload.

A.2.21.1 Detailed Description

A message to or from a thread.

A.2.21.2 Member Function Documentation

msg_t msg_t::operator= (msg_t tmpmsg) Assignment operator.

equality operator for a message

149

0073 {

0074 this->id = tmpmsg.id;
0075 this->data = tmpmsg.data;
0076 return *this;

0077

A.2.22 NeuralNetGenerator Class Reference

A Neural Network move generator.
#include <outputgen.h>

Inheritance diagram for NeuralNetGenerator::

| Subthread |

T

| Interface |

T

| Neural NetGenerator |

Public Methods

e NeuralNetGenerator ()

Constructor.

A.2.22.1 Detailed Description

A Neural Network move generator.

Warning:
This is a STUB

A.2.23 NNGS _Interface Class Reference

No Name Go Server Interface (p.144).
#include <interface.h>

Inheritance diagram for NNGS_Interface::

150

| Subthread |

T

| Interface |

T

| NNGS Interface |

Public Methods

e NNGS_Interface ()

Constructor.

A.2.23.1 Detailed Description

No Name Go Server Interface (p.144).

Warning:
This class is a STUB.

A.2.24 OpenerAgent Class Reference

Suggests good opening moves.
#include <agent.h>

Inheritance diagram for OpenerAgent.::

Agent

OpenerAgent

Public Methods

e OpenerAgent ()

Constructor.

e ~OpenerAgent ()

Destructor.

151

e void force (void)

Force agent to mowe.

e void update (Game x)

Update the agent with the current game.

e bool dowork (void)

work thread.

e void notify (void *)
Tell the agent something.

e unsigned int query_bits needed from GA (void)
Ask the agent how many bits it needs in GA.

e void send_bits (chromosome_t chrom, int start)

Private Attributes

e ProbBoard pb19
Stores choices for 19z19 board.

e ProbBoard pb17
Stores choices for 17¢17 board.

e ProbBoard pb9

Stores choices for 9z9 board.

A.2.24.1 Detailed Description

Suggests good opening moves.

A.2.24.2 Member Function Documentation

void OpenerAgent::send bits (chromosome t chrom,
[virtuall Sends to this agent the bits it needs from the GA

Reimplemented from Agent (p.75).

152

int

start)

0122 {
0123 //int end = start + query_bits_needed_from_GA();
0124 }

A.2.25 Population Struct Reference

A single population within a GA.
#include <ga.h>

Public Methods

e bool operator== (const Population &) const

Equality operator.

e bool operator!= (const Population &) const

Inequality operator.

e Population operator= (Population)

Population assignment operator.

Public Attributes

e vector<Individual> individuals

The individuals in the chromosome.

float sumfitness

Sum of all fitness values in this generation.

float avg

Awverage fitness in this generation.

float max

Mazimum fitness in this generation.

float min

Minimum fitness in this generation.

153

float stdev

Standard deviation in this generation.

float var

Variance deviation in this generation.

int whichmax

Which in population is maz.

int whichmin

Which in population is min.

Friends

e ostream& operator<< (ostream &strm, const Population &pop)

Population output operator.

A.2.25.1 Detailed Description

A single population within a GA.

Every GA has two populations: An old one and a new one.

A.2.26 PreCodex Class Reference

Allows other classes to profide a fitness function.
#include <gafunc.h>

Inheritance diagram for PreCodex::

| PreCodex |
t
|
| GenAlgoGenerator | | testCodex |

Public Methods

e void set_chrom size (int s)

154

Sets the chromosome size to s.

e int get_chrom size (void)

Gets the current chromosome size.

e virtual float get_fitness (const chromosome_t &chrom)=0

Decoder and Objective function.

e virtual void summary (Population *newpop)=0

Outputs testing results after training is done.

Protected Attributes

e int lchrom

Length of chromosome in bits (alleles).

A.2.26.1 Detailed Description

Allows other classes to profide a fitness function.

A.2.27 ProbBoard Class Reference

Agent (p.73)’s probability output board.
#include <probboard.h>

Public Methods

e ProbBoard ()

Constructor.

e ~ProbBoard ()

Destructor.

e void set_val (int offset, float value)

Sets weight.

155

float get_val (int offset)
Gets weight.

void normalize (void)

Normalizes the weights.

int spin (void)

Chooses a random offset in probability board based on probabilties.

loc_t maxloc (void)

Choose the location with the highest value.

void clear (void)

Clears board.

ProbBoard operator= (ProbBoard)

Assignment operator.

bool operator== (ProbBoard)

equality overloaded operator.

bool operator!= (ProbBoard)

Inequality operator.

bool operator+= (ProbBoard)

Addition assignment operator.

ProbBoard operator * (float) const

Multiplication operator.

ProbBoard operator+ (ProbBoard)
Addition operator.

float& operator[] (loc_t location)

Offset and Array-use operator.

156

Private Attributes

e int actualSize

Size of internal array.

e float internal board [19 x19+1]

Single dimention array.

e unsigned int rndbuf

Seed for random number generator.

Friends

e ostream& operator<< (ostream &strm, ProbBoard &aBoard)

Stream operator.

A.2.27.1 Detailed Description

Agent (p.73)’s probability output board.

A.2.27.2 Member Function Documentation

loc_t ProbBoard::maxloc (void) Choose the location with the highest value.

Heuristic would have the FIRST of any tie values chossen.

0184 {
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197 %

TAU_PROFILE("ProbBoard::maxloc()", "", TAU_DEFAULT);
float max=0;
loc_t loc=Board::PASS;

for(loc_t j=0; j<actualSize; j++) {
if (internal_board[j] > max) {
max = internal_board[j];
loc = j;
}

return loc;

157

void ProbBoard::normalize (void) Normalizes the weights.

Normalization makes the sum of all weights equal to 1.

0080 {

0081 TAU_PROFILE("ProbBoard::normalize()", "", TAU_DEFAULT);
0082

0083 float sum = 0.0;

0084

0085 // Find the sum

0086 for (int lcv = 0; lcv < actualSize; ++lcv) sum += internal_board[lcv];
0087

0088 // Convert board into percentage board (normalize)

0089 if (sum != static_cast<float>(0.0)) {

0090 for (int lcv = 0; lcv < actualSize; ++1cv)

0091 internal_board[lcv] = internal_board[lcv] / sum;
0092 }

0093 }

int ProbBoard::spin (void) Chooses a random offset in probability board
based on probabilties.

Precondition:
The sum of the probibility board locations is very close to 1 or else the sum
is zero.

Returns:
The chosen location

0208 {

0209 TAU_PROFILE("ProbBoard::spin()", "", TAU_DEFAULT);
0210 float target;

0211 float current = 0.0;

0212 int j = 0;

0213

0214 // Pick a number between zero and one

0215 target = static_cast<float>(rand_r(&rndbuf)) / static_cast<float>(INT_MAX);
0216

0217 assert(target >= 0);

0218 assert(target <= 1.0);

0219

0220 // todo: Rewrite (simplify, it’s easy)

0221 //while (((current < target) && (j < actualSize)) ||

0222 // ((internal_board[j] == 0) && (j < actualSize))) {

0223 while ((j < actualSize) &&

0224 ((current < target) || ((j>0) && (internal_board[j-1] == 0)))) {
0225 current += internal_board[j++];

0226 }

158

0227 j——;

0228

0229 //if (j == actualSize) { --j; }
0230

0231 assert(j < actualSize);

0232

0233 return j;

0234 }

A.2.28 RandomAgent Class Reference

Suggests random legal moves.

#include <agent.h>

Inheritance diagram for RandomAgent::

Agent

RandomAgent

Public Methods

e RandomAgent ()

Constructor.

~RandomAgent ()

Destructor.

void force (void)

Force the Random agent to make its move.

void update (Game)
Updates the game for the agent. Refresh agent with a new game state.

bool dowork (void)

work thread.

void notify (void *)
Tell the agent something.

159

e unsigned int query_bits_needed_from GA (void)
Asks the agent how many bits it needs in the GA.

e void send_bits (chromosome_t chrom, int start)

Sends to this agent the bits it needs from the GA.

A.2.28.1 Detailed Description

Suggests random legal moves.

A.2.28.2 Member Function Documentation

void RandomAgent::force (void) [virtual]l Force the Random agent to
make its move.

This function is just here for completeness.
Reimplemented from Agent (p.74).

0054 {};

unsigned int RandomAgent::query_bits needed -
from GA (void) [virtual]l Asks the agent how many bits it needs in the
GA.

Returns:

Number of bits needed in GA chromosome

Reimplemented from Agent (p.75).

0069 { return 7; }

A.2.29 Stone Class Reference

Defines a point (stone) on the board.

#include <stone.h>

160

Public Methods

e Stone ()

Constructor I.

e Stone (int)

Constructor I1.

e Stone (const Stone &other)
Copy Constructor 111

e bool white (void) const

Is stone white?

e bool black (void) const

Is stone black?

e bool empty (void) const

Is there a stone?

e bool notempty (void) const

Is there no stone?

e bool notblack (void) const

Is there a stone that isn’t black (empty or white)?

e bool notwhite (void) const

Is there a stone that isn’t white (empty or black)?

e bool notleft (void) const
Not the leftmost column.

e bool notright (void) const

Not the rightmost column.

e bool nottop (void) const

Not the topmost column.
e bool notbottom (void) const

161

Not the bottommost column.

int getrow (void) const

Get row stone is in.

int getcol (void) const

Get column stone is in.

int lastrow (void) const

Is stone in last row.

int lastcol (void) const

Is stone in last column.

color_t getcolor (void) const

Gets the color of the stone.

void setrow (stone_t)

Set stone’s row.

void setcol (stone_t)

Set stone’s column.

void setcolor (color_t)

Set stone’s color.

void setlastrow (void)

Stone is in last row.

void setlastcol (void)

Stone is in last column.

void clearlastrow (void)

Stone is not in last row.

void clearlastcol (void)

Stone is not in last column.

162

void clear (void)

clear stone’s bits.

char stoneOut (void)

text board output.

bool operator== (const Stone &) const

Stones are the same color (or empty).

bool operator!= (const Stone &) const

Stones are not the same color (or empty).

Stone operator= (Stone)

Overload the assignment operator.

Private Attributes

e stone_t theStone

Bit-map representing a stone.

Static Private Attributes

e const stone_t WHITE _BIT = 0x0001
0000 0000 0000 0001.

const stone_.t BLACK _BIT = 0x0002
0000 0000 0000 0010.

const stone_t BW_BITS = 0x0003
0000 0000 0000 0011.

const stone_t ROW _BITS = 0x007C
0000 0000 0111 1100.

const stone_t COL_BITS = 0x0F80
0000 1111 1000 0000.

163

e const stone_.t LROW_BIT = 0x1000
0001 0000 0000 0000.

e const stone_t LCOL_BIT = 0x2000
0010 0000 0000 0000.

Friends

e ostream& operator<< (ostream &strm, Stone &aStone)

Qverload the printing operator.

A.2.29.1 Detailed Description

Defines a point (stone) on the board.

A.2.29.2 Member Function Documentation

bool Stone::operator!= (const Stone & other) const Stones are not the
same color (or empty).

Warning:
The stones are compared via color only. The other bits are ignored

0163 {

0164 return ((other.theStone & BW_BITS) !=

0165 (this->theStone & BW_BITS)) 7 true : false;

0166 }

bool Stone::operator== (const Stone & other) const Stones are the same

color (or empty).

Warning:
The stones are compared via color only. The other bits are ignored
0153 {
0154 return ((other.theStone & BW_BITS) ==
0155 (this->theStone & BW_BITS)) 7 true : false;
0156 }

164

A.2.30 Subthread Class Reference

Defines a sub-thread.
#include <subthread.h>

Inheritance diagram for Subthread::

| Subthread |

1

[|
AgentShell || Interface || Subthread_test |

DummyGenerator |

GaTrainerInterface |

GenAlgoGenerator |

GoModeminterface |

GUlInterface |

IGS_Interface |

Neural NetGenerator |

NNGS _Interface |

PLLLL L]

TextInterface |

Public Methods

e Subthread ()

Constructor.

e virtual ~Subthread ()

Destructor.

e void start (void)

Starts the thread running.
e void kill (void)

165

Stops the thread from running (kills it).

e void send_msg (msg_t msg)

queues a message for this thread.

e msg_t get_msg _nb (void)

Gets a message and returns if not there.

e void join (void)

Do a thread join on this thread.

Public Attributes

e pthread_t childt

Processing thread.

Protected Methods

e void inside_send_msg (msg_t msg)

Allows thread to send out a message.

e msg._t inside_get_msg _nb (void)

Allows thread to get a message (non-blocking).

e msg t inside_get_msg b (void)
Allows thread to get a message (blocking).

e virtual void processing (void)=0

Main logic loop of the interface.

e void tell_ message (int, char x)

Used to log message types (transform from number to enum text).

166

Protected Attributes

e pthread_cond_t block_cond

Condition variable for blocking receiving of messages.

e pthread_mutex_t message_queue_mutex

Mutex for both queues.

e queue<msg t> tothreadq

Sending and receiving queues.

e queue<msg _t> fromthreadq

Sending and receiving queues.

Friends

e voidx CALL_processing (void xtmp_obj)

Calls processing thread.

A.2.30.1 Detailed Description

Defines a sub-thread.

This class supplies a child class with the ability to run in the background as a
separate thread.

This is a virtual class, but for all classes that inherit
from this class, one must be sure to call the set_die_ptr() function before
calling the function start() (p.165).

A.2.30.2 Constructor & Destructor Documentation
Subthread::~Subthread () [virtual] Destructor.

Warning:
This function does not destroy the subthread. This is because the user will
nicely kill the subthread via a QUIT message.

167

0093 {

0094 pthread_mutex_destroy (&message_queue_mutex) ;
0095 pthread_cond_destroy(&block_cond) ;

0096

A.2.30.3 Member Function Documentation

void Subthread::join (void) Do a thread join on this thread.
Joins this thread

This function joins the thread that this class created before.

0147 {
0148 assert(childt '= 0);
0149 if (pthread_join(childt, NULL)) {

0150 cout << "-E- Error in joining child." << endl;
0151 exit (823);

0152 } else {

0153 pthread_mutex_lock(&log_mutex) ;

0154 thread_count--;

0155 pthread_mutex_unlock(&log_mutex) ;

0156 childt = static_cast<pthread_t>(0);

0157 }

0158 7

A.2.31 Subthread_test Class Reference

For debugging.
#include <subthread.h>

Inheritance diagram for Subthread_test::

Subthread

Subthread_test

Public Methods

e ~Subthread test ()

Descructor.

e void regression (void)

168

Regression.

Protected Methods

e void processing (void)

Main logic loop of the interface.

A.2.31.1 Detailed Description

For debugging.

A.2.32 testCodex Class Reference

A testing fitness function provider.
#include <gafunc.h>

Inheritance diagram for testCodex::

PreCodex

testCodex

Public Methods

e testCodex ()

Constructor.

e float get_fitness (const chromosome_t &chrom)

Finds the fitness (objective) function value.

e void summary (Population *newpop)

Outputs testing results after training is done.

A.2.32.1 Detailed Description

A testing fitness function provider.

169

A.2.32.2 Member Function Documentation

float testCodex::get_fitness (const chromosome_t & chrom) [virtuall
Finds the fitness (objective) function value.

Parameters:
chrom A chromosome to decode and then find the fitness of

Returns:
fitness value

Reimplemented from PreCodex (p.155).

0052 {

0053 float res;

0054

0055 // Decode

0056 int sum = 0;

0057 for(int x=0; x<lchrom; ++x) {

0058 sum += static_cast<long int>(pow(2, x) *
0059 static_cast<long int>(chrom[x]));
0060 }

0061

0062 // Calculate fitness
0063 res = static_cast<float>(sum) /

0064 static_cast<float>(pow(2, lchrom) - 1.0);
0065

0066 res *= 10.0;

0067

0068 assert(res <= 10.0);

0069

0070 if (res < 0) res = 0;

0071

0072 return res;

0073 }

A.2.33 TextInterface Class Reference

Text Interface (p.144).
#include <interface.h>

Inheritance diagram for TextInterface::

170

TextInterface

Public Methods

e TextInterface ()

Constructor.

Private Methods

e loc_t get_user_input ()

Gets user input.

e void processing (void)

Main processing of interface.

Private Attributes

e string msg

Text message before asking user for input.

e string prompt

Prompt for user input.

A.2.33.1 Detailed Description

Text Interface (p.144).

A.2.33.2 Member Function Documentation

void TextInterface::processing (void) [private, virtuall

ing of interface.

171

Main process-

This function, which the base class Interface (p. 144) defines as a pure virtual
function, provides the main bulk of the logic of the interface.

Warning:
The interface may have outside signals that need to be seen. Thus, the
function should finish (return) periodically. It will then be recalled as it is
inside an infinite loop that checks for signals then calls this function again.

Reimplemented from Subthread (p.166).

0067 {
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105

loc_t

loc;

Board tb;

msg_t

while

if

if

packetmsg;

(true) {

(my_turn) {

packetmsg = inside_get_msg_nb();

else {

// Nothing to do here but wait for a message (block).
packetmsg = inside_get_msg_b();

(packetmsg.id == QUIT) {
LOG("-TIN " << setw(7) << childt
<< "-M- Text Interface exiting.");
pthread_exit(0);
else if (packetmsg.id == RESIGN) {
LOG("-TIN " << setw(7) << childt
<< "-M- Got RESIGN message.");
pthread_exit(0);
else if (packetmsg.id == FORCE) {
LOG("-TIN " << setw(7) << childt
<< "-W- Forcing a move not allowed.");
else if (packetmsg.id == SET_GAME_PTR) {
gptr = static_cast<Game *>(packetmsg.data);
else if (packetmsg.id == TURN) {
my_turn = true;
else if (my_turn) {

// Redisplay board (even if board hasn’t changed)

// Get a move and play it.

loc = get_user_input();

while (!gptr->legal(loc) && (loc != Board::PASS)) {
cerr << "-W- That was an illegal move." << endl;
loc = get_user_input();

172

0106 }

0107 gptr->play_move(loc);

0108

0109

0110 // Redisplay board

0111 tb = gptr->get_board();
0112 cerr << tb << endl;

0113

0114 my_turn = false;

0115

0116

0117 // Tell moderator that I’m done.
0118 packetmsg.id = TURN;

0119 inside_send_msg(packetmsg) ;
0120

0121 }

0122 }

0123 }

A.2.34 TigersMouthAgent Class Reference

Tries to make tiger’s mouths.
#include <agent.h>

Inheritance diagram for TigersMouthAgent::

| Agent |

T

TigersMouthAgent

Public Methods

TigersMouthAgent ()

Constructor.

~TigersMouthAgent ()

Destructor.

void force (void)

Force the agent to make its mowve.

void update (Game)

173

Update this agent with the latest state of the game.

bool dowork (void)
Work thread.

void notify (void *)
Tell the agent something.

unsigned int query_bits needed from GA (void)
Tells how many bits this agent needs from the GA.

void send_bits (chromosome_t chrom, int start)

Sends to this agent the bits it needs from the GA.

Private Methods

e bool findtiger (loc_t loc, Board &b)

Find tiger’s mouths.

A.2.34.1 Detailed Description

Tries to make tiger’s mouths.

A.2.34.2 Member Function Documentation

bool TigersMouthAgent::findtiger (loc_t loc, Board & b) [private]
Find tiger’s mouths.

This function takes the current board, and a location on the board. It returns
true if by playing at this location the player would make at least one tiger’s eye.

Parameters:
loc Location to check

b The board to consult

0117 {
0118 Stone *stones = b.get_goban();
0119

174

0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170

// .7 .
/] 7 . #
if ((stones[loc].notleft()) && (stones[loc-1].notleft()) &&
(stones[loc].nottop())) {
return (stones[loc-2].black() &&
stones[loc-1-Board: :BSIZE] .black());

}

// .7
// 7.
// . #

if ((stones[loc].notleft()) && (stones[loc].nottop()) &&
(stones[loc-Board: :BSIZE] .nottop())) {
return (stones[loc-1-Board::BSIZE].black() &&
stones[loc-2*Board: :BSIZE] .black());
}

/7.

/.7

/] # .

if (stones[loc].notright() && stones[loc].nottop() &&
stones[loc-Board: :BSIZE] .nottop()) {
return (stones[loc+1-Board::BSIZE].black() &&

stones[loc-2*Board: :BSIZE] .black());
}

/1.7
//#.7
if (stones[loc].nottop() &% stones[loc].notright() &&
stones[loc+1] .notright)) {
return (stones[loc+2].black() &&
stones[loc+1-Board: :BSIZE] .black());
}

/] # .7
/.7
if (stones[loc].notright() && stones[loc+1].notright() &&
stones[loc] .notbottom()) {
return (stones[loc+2].black() &&
stones[loc+1+Board: :BSIZE] .black());
}

/7l # .
/.7
/7.
if (stones[loc].notright() && stones[loc].notbottom() &&
stones[loc+Board: :BSIZE] .notbottom()) {
return (stones[loc+2*Board::BSIZE].black() &&
stones[loc+1+Board: :BSIZE] .black());

175

0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221

/.

/7
/7
if

//
//
if

/7
/.

if

/.

//
//
if

/.

//
if

//

/.

/!
if

7.
.7
(stones[loc] .notleft() && stones[loc].notbottom() &&
stones[loc+Board: :BSIZE] .notbottom()) {
return (stones[loc-1+Board::BSIZE].black() &&
stones[loc+2*Board: :BSIZE] .black());

7. #
.7
(stones[loc] .notleft() && stones[loc-1].notleft() &&
stones[loc] .notbottom()) {
return (stones[loc-2].black() &&
stones[loc-1+Board: :BSIZE] .black());

.

(stones[loc] .nottop() && stones[loc].notleft() &&

stones[loc] .notright()) {

return (stones[loc-1-Board::BSIZE].black() &&
stones[loc+1-Board: :BSIZE] .black());

.
.7
(stones[loc] .notright() && stones[loc].nottop() &&
stones[loc] .notbottom()) {
return (stones[loc+1+Board::BSIZE].black() &&
stones[loc+1-Board: :BSIZE] .black());

.

7.7

(stones[loc] .notbottom() && stones[loc].notright() &&

stones[loc] .notleft()) {

return (stones[loc-1+Board::BSIZE].black() &&
stones[loc+1+Board: :BSIZE] .black());

#

7.

(stones[loc] .notleft() &% stones[loc].nottop() &&

stones[loc] .notbottom()) {

return (stones[loc-1+Board::BSIZE].black() &&
stones[loc-1-Board: :BSIZE] .black());

176

0222 return false;
0223 }

A.3 Exodus File Documentation

A.3.1 agent.cpp File Reference

Implementation of Agent (p.73) and AgentShell (p.76) classes.

Defines

e #define LOG(x)
Macro for outputing to the log file.

Variables

e char rcsid ||

Source code identifier.

A.3.1.1 Detailed Description

Implementation of Agent (p.73) and AgentShell (p.76) classes.

Revision:
1.21

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

177

A.3.1.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: agent.cpp,v 1.21 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.2 agent.h File Reference

Header file for Agent (p.73) related classes.

Compounds

class Agent

Defines the basic structure of an agent.

e class AgentShell

Represents a single thread in a thread pool.

e class ExtenderAgent

Suggests moves that extend from friendly stones.

e class Follower Agent

Suggests moves near opponent’s last move.

e class GroupStatsAgent
Agent (p.73) to calculate group information.

e class OpenerAgent

Suggests good opening mowves.

e class RandomAgent

Suggests random legal mowves.

e class TigersMouthAgent

Tries to make tiger’s mouths.

178

Defines

o #define MAX_AGENTS 5

Mazimum number of agents allowed.

e #define MAXSTONE 10
Highest logical value for probability board element.

e #define MAXGROUPS 50

Mazimum number of distinct groups.

A.3.2.1 Detailed Description

Header file for Agent (p.73) related classes.

This file contains headers for the Agent (p.73) class, the AgentShell (p.76)
class, and all of the individual agents

Revision:
1.22

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.2.2 Define Documentation

#define MAXSTONE 10 Highest logical value for probability board element.

All probability boards generated by all agents shall output a value of MAXS-
TONE for highly suggested values and 0 for unsuggested values. No agent shall
make an element of a probability board larger than this value.

A.3.3 bdemo.cpp File Reference

Prints a demo board for numerical reference.

179

Functions

e int main (int argc, char xargv|])

Main function for printing demo boards.

A.3.3.1 Detailed Description

Prints a demo board for numerical reference.

Revision:

1.5

Date:

2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.3.2

Function Documentation

int main (int arge, char x argv[]) Main function for printing demo boards.

Demo boards are just ASCII representations of the goban that has at each
location of the board the number representing the offset into a single dimention
array. For example, a 9x9 board’s leftmost value for the second row from the top
is 79.” The third row from the top would be ”18.”

0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040 }

{
if (argc == 2) {
int val = atoi(argv[1]);
if (val < 1) A
cout << "Invalid board size." << endl;
} else {
print_demo(val);
}
} else {
cout << "Please give board size as single parameter."
<< endl;
X

return 0O;

180

A.3.4 blackboard.cpp File Reference

Implementation of Blackboard (p.77) class.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid ||

Source code identifier.

A.3.4.1 Detailed Description

Implementation of Blackboard (p.77) class.

Revision:
1.9

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.4.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: blackboard.cpp,v 1.9 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

181

A.3.5 blackboard.h File Reference

Header file for the Blackboard (p. 77) class.

Compounds

e class Blackboard

This class contains globaly relavent information.

A.3.5.1 Detailed Description

Header file for the Blackboard (p. 77) class.

Revision:
1.9

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.6 board.cpp File Reference

Implementation for Board (p.78) class.

Defines

e #define LOG(x)
Macro for outputing to log file.

Functions

e ostream& operator<< (ostream &strm, Board &aBoard)

Output operator.

182

Variables

e char rcsid || = ”$Id: board.cpp,v 1.22 2003/04/23 21:42:59 blackman Exp
$77

Source code identifier.

A.3.6.1 Detailed Description

Implementation for Board (p.78) class.

Revision:
1.22

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.7 board.h File Reference

Header file for board class.

Compounds

e class Board

Defines a goban abstraction.

Typedefs

e typedef usi_t loc_t
Offset into board 1D array.

183

Functions

e ostream& operator<< (ostream &strm, Board &aBoard)

Output operator.

A.3.7.1 Detailed Description

Header file for board class.

Revision:
1.14

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.8 config.h File Reference

System configuration definitions.

Defines

e #define STDC_HEADERS 1
e #define HAVE FCNTL _H 1

e #define HAVE MALLOC H 1
e #define MAX_THREADS 10

Mazimum number of threads that can be active at the same time.

o #define MAX_AGENT_THREADS 5

Mazimum number of threads in the thread pool. This value only includes
threads used by the agents and does not include other supplemental threads.

e #define AGENTS USED {"RandomAgent”, "end”}

Agents used in this compilation of the program.

184

e #define PERLTK 1
This tells that the Perl/TK GUI will be used.

e #define NDEBUG 1

This deactivates assertions.

A.3.8.1 Detailed Description

System configuration definitions.

Warning:
Automatically generated by ../configure script

A.3.8.2 Define Documentation

#define HAVE FCNTL_H 1 Define if you have the <fcntl.h> header file.

#define HAVE MALLOC_H 1 Define if you have the <malloc.h> header
file.

#define MAX_THREADS 10 Maximum number of threads that can be ac-
tive at the same time.

This value includes all threads running.

#define STDC _HEADERS 1 Define if you have the ANSI C header files.

A.3.9 dummygenerator.cpp File Reference

Implementation of random move generator called DummyGenerator (p. 88).

Defines

e #define LOG(x)
Macro for outputing to log file.

185

Variables

e char rcsid ||

Source code identifier.

A.3.9.1 Detailed Description

Implementation of random move generator called DummyGenerator (p. 88).

Revision:
1.11

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.9.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: dummygenerator.cpp,v 1.11 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.10 exodus.h File Reference

Global constants declarations.

Compounds

e struct global _data_t

global data structure.

186

Defines

e #define NUM_THREADS 5
Number of threads in the thread pool.

e #define VERSION "R016_000B”

Program version.

e #define LOG(x)

Log file macro.

Typedefs

e typedef unsigned short int usi_t

unsigned short int.

Enumerations

e enum color t { EMPTY, WHITE, BLACK }
Stone (p.160) color type.

Variables

e global data_t global data

Holds the minimal amount of global data required for this program.

e ofstream log_cout

Output stream for log file.

e pthread_mutex_t log_mutex
MUTEX for writing to the log file.

e int thread_count

Number of threads currently open.

187

A.3.10.1 Detailed Description

Global constants declarations.

Conventions used in this project:

1. Function braces are all in far-left

2. Loop start brace is on same line; end brace is far-left
3. Classes start with a capital letter

4. Classes with name inside have each new word in caps
5. vars use underscores

6. types end in _t

7. globals in all caps 77? maybe end in _g

8. defines in all caps

9. abbreviations:

e tmp...... temporary
e ptr......pointer
e func.....function

10. Functions start with lowercase letter (unless constructor, etc.)

11. Each new word in a function is delimited with underscores

Revision:
1.27

Date:
2003/04/30 01:57:59

Todo:
Agents need to be able to communicate for complex situations.

Author:
Todd Blackman

Copyright 2001, 2002, 2003

188

A.3.10.2 Typedef Documentation

typedef unsigned short int usi_t unsigned short int.

Used so much, this makes code neater

A.3.11 extenderagent.cpp File Reference

Implementation of an ExtenderAgent (p.89) that attempts to extend from
friendly stones.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid ||

Source code identifier.

A.3.11.1 Detailed Description

Implementation of an ExtenderAgent (p.89) that attempts to extend from
friendly stones.

Revision:
1.6

Date:
2003/04/30 01:54:48

Author:
Todd Blackman

Copyright 2001, 2002, 2003

189

A.3.11.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: extenderagent.cpp,v 1.6 2003/04/30 01:54:48 blackman Exp $"

Source code identifier.

A.3.12 followeragent.cpp File Reference

Implementation of Follower Agent (p.92) which plays moves close to opponent.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid ||

Source code identifier.

A.3.12.1 Detailed Description

Implementation of Follower Agent (p.92) which plays moves close to opponent.

Revision:
1.8

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

190

A.3.12.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: followeragent.cpp,v 1.8 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.13 ga.cpp File Reference

Implementation for Ga (p. 96) class.

Defines

e #define LOG(x)
Macro for outputing to log file.

Functions

e ostream& operator<< (ostream &strm, const Population &pop)

Population (p. 153) output operator.

e bool strchrom (chromosome_t chrom, string chrom?2)

Simple comparison function.

Variables

e char rcsid || = ”$1d: ga.cpp,v 1.28 2003/04/30 01:54:48 blackman Exp $”

Source code identifier.

A.3.13.1 Detailed Description

Implementation for Ga (p. 96) class.

Revision:
1.28

191

Date:
2003/04/30 01:54:48

WORKS CITED:

author=David E. Goldberg title=Genetic Algorithms in Search, Optimization,
and Machine Learning publisher=The University of Alabama year=1989

title=Numerical Recipes in C: The Art of Scientific Computing publisher=The
Press Syndicate of the University of Cambridge edition=Second year=1997
pages=227,616-619

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.13.2 Function Documentation

bool strchrom (chromosome_t chrom, string chrom2) [static] Simple
comparison function.

This function allows the programmer to compare a string representation of a
chromosome with the datastructure representation.

1049 {

1050 unsigned int x;

1051

1052 //cout << endl;

1053 //cout << chrom << endl;

1054 //cout << chrom2.length() << endl;

1055 for (x=0; x<chrom2.length(); x++) {

1056 bool b;

1057 b = (chrom2[x] == ’1’) 7 true : false;
1058 //cout << b << flush;

1059 if (chrom[x] '!'= b) break;

1060 }

1061 //cout << endl;

1062 if (chrom2.length() == x) return true;
1063 return false;

1064 }

A.3.14 ga.h File Reference

Header file for genetic algorithm related classes.

192

Compounds

e class Ga

Defines a Genetic Algorithm.

e struct Individual

An individual in a population of a GA.

e struct Population

A single population within a GA.

Defines

e F#define MAXPOP 10000

Mazimum size of population.

A.3.14.1 Detailed Description

Header file for genetic algorithm related classes.

This file also includes some statistics functions and definitions for Ga (p. 96),
Population (p.153), and Individual (p. 142)

Revision:
1.16

Date:
2003/04/30 01:57:59

Todo:
Get rid of vectors and replace with arrays

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.15 gafunc.h File Reference

Header file for GA testing and aux. functions.

193

Compounds

e class PreCodex

Allows other classes to profide a fitness function.

e class testCodex

A testing fitness function provider.

A.3.15.1 Detailed Description

Header file for GA testing and aux. functions.

This file provides PreCodex (p.154) and testCodex (p.169)

Revision:
1.12

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.16 game.cpp File Reference

Implementation of the Game (p.112) class.

Defines

e #define LOG(x)
Macro for outputing to log file.

Functions

e ostream& operator<< (ostream &strm, Game &aGame)

Stream operator.

194

Variables

e char rcsid ||

Source code identifier.

A.3.16.1 Detailed Description
Implementation of the Game (p.112) class.

Revision:
1.28

Date:
2003/04/23 21:42:59

Bug:
super-ko does not take rotation and symmetry into account.

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.16.2 Function Documentation

ostream & operator<< (ostream & strm, Game & aGame)
operator.

This is used to output the latest state of the game

0412 {
0413 Board b = aGame.get_board();
0414 strm << b;

0415 return strm;
0416 }

A.3.16.3 Variable Documentation
char rcsid [static] Imitial value:

"$Id: game.cpp,v 1.28 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

195

Stream

A.3.17 game.h File Reference

Header file for game class.

Compounds

e class Game

A class that defines a series of boards.

Defines

e #define SUICIDE_CHECK 1

Enable checking for suicide.

o #define SUPERKO_CHECK 0
Enable checking for superko.

Typedefs

e typedef pair<usi_t, usi_t> usi_p

Type to make code simpler.

Functions

e ostream& operator<< (ostream &strm, Game &aGame)

Stream operator.

A.3.17.1 Detailed Description
Header file for game class.

Revision:
1.21

Date:
2003/04/30 01:57:59

196

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.17.2 Function Documentation

ostream& operator<< (ostream & strm, Game & aGame) Stream op-
erator.

This is used to output the latest state of the game

0412 {
0413 Board b = aGame.get_board();

0414 strm << b;

0415 return strm;

0416 }

A.3.18 gatypes.h File Reference

Header file for genetic algorithm types and defaults.

Typedefs

e typedef bool allele
Allele type.

e typedef vector<allele> chromosome_t

Chromosome type.

Functions

e ostream& operator<< (ostream &strm, const chromosome _t &chrom)

Chromosome output operator.

A.3.18.1 Detailed Description

Header file for genetic algorithm types and defaults.

197

Revision:
1.10

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.19 genalgogenerator.cpp File Reference

A genetic algorithm player using agents.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid ||

Source code identifier.

A.3.19.1 Detailed Description
A genetic algorithm player using agents.

Revision:
1.31

Date:
2003/04/30 01:54:48

Author:
Todd Blackman

Copyright 2001, 2002, 2003

198

A.3.19.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: genalgogenerator.cpp,v 1.31 2003/04/30 01:54:48 blackman Exp $"

Source code identifier.

A.3.20 ginterface.cpp File Reference

Implementation of a GUI interface.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid || = ”$Id: ginterface.cpp,v 1.24 2003/04/23 21:42:59 blackman
EXp $”

Source code identifier.

A.3.20.1 Detailed Description

Implementation of a GUI interface.

This file provides GUIInterface (p.138)

Revision:
1.24

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

199

A.3.21 groupstatsagent.cpp File Reference

Provides an agent to calculate group information.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid ||

Source code identifier.

A.3.21.1 Detailed Description

Provides an agent to calculate group information.

This agent (GroupStatsAgent (p.136)) calculates a unique number for each
group on the board. Planned for this agent are the following tasks:

%) Assign a unique number to each group
) Count the liberties of each group
x) Calculate a safety value

This agent also acts as a ”killer” agent that tries to capture enemy stones

Todo:
Make this more memoized

Revision:
1.7

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

200

A.3.21.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: groupstatsagent.cpp,v 1.7 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.22 iinterface.cpp File Reference

Implementation of IGS interface class (IGS_Interface (p.141)).

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char resid [] = ”$Id: iinterface.cpp,v 1.11 2003/04/23 21:42:59 blackman
EXp $”

Source code identifier.

A.3.22.1 Detailed Description

Implementation of IGS interface class (IGS_Interface (p.141)).

Revision:
1.11

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

201

A.3.23 interface.cpp File Reference

Implementation for abstract Interface (p.144) classes.

Defines

e #define LOG(x)
Macro for outputing to log file.

A.3.23.1 Detailed Description

Implementation for abstract Interface (p.144) classes.

This file also includes all code for all abstract classes below Interface (p.144),
but above an actual interface or generator.

Revision:
1.16

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.24 interface.h File Reference

Header file for interfaces.

Compounds

e class GaTrainerInterface

Used to train a GA to work correctly.

e class GoModemlInterface

Go modem interface.

202

e class GUIInterface
Graphical User Interface (p.144).

e class IGS _Interface
Internet Go Server (IGS) Interface (p.144).

e class Interface

The interface between a move generator (outside) and the inside of the program.

o class NNGS_Interface
No Name Go Server Interface (p.144).

e class TextInterface
Tezt Interface (p.144).

A.3.24.1 Detailed Description

Header file for interfaces.

This file provides interfaces between the outside world and the program. The
first virtual class, Interface (p. 144), defines the functionality of the various inter-
faces that the program will have to be aware of. View this first class as a two-way
pipe. All interfaces have a public method called \emph{start} that spawns a
thread and then returns. Other Interfaces can be found in outputgen.cpp

Revision:
1.20

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.25 main.cpp File Reference

Main, cmd-line, init-file functions.

203

Defines

e #define LOG(x)
Macro for outputing to log file.

Functions

e int main (int argc, char xargv[])

Main function.

e void start_training (void)
Start a GA run.

e void start_play ()

Starts a game between GA and a human.

e void initialize ()

Runs regressions Initializes some aspects.

e void parse_cmd_line_options (int arge, char xxargv)

Reads command-line parameters.

e void parse_rc file ()

parses .exodusrc file.

e void assign_global (const char #var, const char xval)

Assign global variable values.

e void print_welcome (void)

Prints a welcome message.

e void print_help (void)

Prints a help message.

204

Variables

e char rcsid ||

Source code identifier.

global data_t global _data

Holds the minimal amount of global data required for this program.

int thread_count = 1

Number of threads currently open.

pthread _mutex_t log_mutex
MUTEX for writing to the log file.

ofstream log_cout

Output stream for log file.

A.3.25.1 Detailed Description

Main, cmd-line, init-file functions.

Main program, command-line parsing, init-file parsing

Revision:
1.43

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.25.2 Function Documentation

void assign global (const char x war, const char x wal) Assign global
variable values.

Assign the value val to the global variable var with error checking

205

Parameters:
var What global variable to assign a value to

val The value to assign to the global variable specified in the other param-
eter

Precondition:
var and val point to valid strings.

0486 {
0487 //cout << "-D- Doing " << var << " with " << val << endl;
0488

0489 //General parameters
0490 if (!strcmp(var, "welcome")) {

0491 global_data.welcome = atoi(val);

0492 } else if (!strcmp(var, "train")) {

0493 global_data.train = atoi(val);

0494 } else if (!strcmp(var, "gui")) {

0495 GUIInterface::GPATH = val;

0496 } else if (!strcmp(var, "verbosity")) {

0497 global_data.verbosity = atoi(val);

0498 if ((global_data.verbosity < 0) ||

0499 (global_data.verbosity > 10)) {

0500 global_data.verbosity=0;

0501 cout << "-W- Verbosity must be between O and 10 inclusive. "
0502 << "Set to 0." << endl;

0503 }

0504 } else if (!strcmp(var, "version")) {

0505 global_data.version = atoi(val);

0506 } else if (!strcmp(var, "help")) {

0507 global_data.help = atoi(val);

0508 // } else if (!strcmp(var, "thread_count")) {

0509 // global_data.thread_count = atoi(val);

0510 // if ((global_data.thread_count < 1) ||

0511 // (global_data.thread_count > MAX_THREADS)) {
0512 // global_data.thread_count=1;

0513 // cout << "-W- Thread_count must be between 1 and "
0514 // << MAX_THREADS << " inclusive. "

0515 // << "Set to 1." << endl;

0516 // }

0517 } else if (!strcmp(var, "reg_on")) {

0518 global_data.reg_on = static_cast<bool>(atoi(val));
0519

0520 // Go specific parameters
0521 } else if (!strcmp(var, "bsize")) {

0522 Board: :BSIZE = atoi(val);

0523

0524 if ((Board::BSIZE < 3) || (Board::BSIZE > 19)) {
0525 Board: :BSIZE=19;

0526 cout << "-W- bsize must be between 3 and 19"
0527 << " inclusive. Set to 19." << endl;

206

0528 }
0529 } else if (!strcmp(var, "super_ko")) {

0530 Game: : SUPER_KO = static_cast<bool>(atoi(val));

0531 } else if (!strcmp(var, "komi")) {

0532 Game: :KOMI = atof(val);

0533 if ((Game::KOMI < -15.0) || (Game::KOMI > 15.0)) {

0534 cout << "-W- KOMI value is strange: " << Game::KOMI << endl;
0535 by

0536 } else if (!strcmp(var, "initial_time")) {

0537 Game: : INITIAL_TIME = atoi(val);

0538 } else if (!strcmp(var, "byomi_time")) {

0539 Game: :BYOMI_TIME = atoi(val);

0540 } else if (!strcmp(var, "byomi_stones")) {

0541 Game: :BYOMI_STONES = atoi(val);

0542 } else if (!strcmp(var, "suicide")) {

0543 Game: : SUICIDE = static_cast<bool>(atoi(val));

0544 } else if (!strcmp(var, "my_color")) {

0545 } else if (!strcmp(var, "num_handicap")) {

0546 Board: :HANDICAP = atoi(val);

0547 if (Board::HANDICAP > 9) cout << "-W- Handicap is strange: "
0548 << Board::HANDICAP << endl;
0549 } else if (!strcmp(var, "handicap_placement")) {

0550 cout << "-W- handicap placement not implemented yet." << endl;

0551 // GA parameters
0552 } else if (!strcmp(var, "resume")) {

0553 // Resume implies train

0554 global_data.train=1;

0555 Ga::FILENAME_IN = val;

0556 } else if (!strcmp(var, "train_file")) {
0557 Ga::TRAIN_FILE = val;

0558 } else if (!strcmp(var, "output")) {
0559 Ga: :FILENAME_OUT = val;

0560 } else if (!strcmp(var, "best")) {

0561 Ga::BEST_FILENAME_OUT = val;

0562 } else if (!strcmp(var, "popsize")) {
0563 Ga::POPSIZE = atoi(val);

0564 } else if (!strcmp(var, "maxgen")) {
0565 Ga::MAXGEN = atoi(val);

0566 } else if (!strcmp(var, "fitness_cutoff")) {
0567 Ga: :FITNESS_CUTOFF = atoi(val);

0568 } else if (!strcmp(var, "pcross")) {
0569 Ga::PCROSS = atoi(val);

0570 } else if (!strcmp(var, "pmutation")) {
0571 Ga: :PMUTATION = atoi(val);

0572 } else if (!strcmp(var, "fmultiple")) {
0573 Ga::FMULTIPLE = atoi(val);

0574 } else {

0575 cout << "-W- Invalid parameter: " << var << endl;
0576 };

0577 };

207

void parse_rc_file () parses .exodusrc file.

Looks for a .exodusrc file in the current directory. It parses the file if it is found.

Precondition:
None, but .exodusrc must be in current directory for it to be found.

Postcondition:
variables/parameters specified in rc file have been communicated to this pro-
gram and are stored in global variables. All paths equal either the null string
or a valid path to a valid file when finished.

Returns:
none
0382 {
0383 void assign_global(const char *, const char *);
0384

0385 char line[256];

0386 char var[100], val[100];
0387 char *ptr;

0388

0389 //give global variables initial values.
0390 global_data.welcome=1;
0391 global_data.train=1;

0392

0393 GUIInterface::GPATH = "";
0394

0395 global_data.verbosity=0;
0396 global_data.version=0;
0397 global_data.help=0;

0398 //global_data.thread_count=1;
0399 global_data.reg_on=0;
0400

0401 Board: :BSIZE=9;

0402

0403 Game: : SUPER_KO = false;
0404 Game: :KOMI = 0.5;

0405 Game: : SUICIDE = false;
0406

0407 Game: : INITIAL_TIME=300;
0408 Game: : BYOMI_TIME=300;
0409 Game: : BYOMI_STONES=10;
0410

0411 // GA related

0412 Ga: :MAXGEN = 10;

0413 Ga: :POPSIZE = 20;

0414 Ga: :FITNESS_CUTOFF = 1.0;
0415 Ga::PCROSS = 0.4;

208

0416 Ga: :PMUTATION 333;
0417 Ga: :FMULTIPLE ;
0418 Ga::FILENAME_IN .
0419 Ga::FILENAME_OUT = "ga.save";

0420 Ga::BEST_FILENAME_OUT = "ga.best.save";
0421 Ga::TRAIN_FILE = "ga.train";

0422

0423 global_data.my_color=BLACK;

0424 Board: :HANDICAP=0;

0425 //global_data.handicap_placement=0;

]
N o

.0
.0

0426
0427 //Construct string containing path to rc file (which might not be there).
0428 //current_dir = get_current_dir_name();

0429 //rcfile = (char *) malloc((sizeof current_dir) + 15);
0430 //sprintf(rcfile, "Ys/.exodusrc", current_dir);
0431 //cout << rcfile << endl;

0432

0433 //Attempt to open the rc file and parse it.
0434 ifstream fin(".exodusrc");

0435 if (fin) {

0436

0437 while (!fin.eof()) {

0438

0439 fin.getline(line, 255);

0440

0441 filter_whitespace(line);

0442

0443 if ((1ine[0] !'= ’#’) && (strlen(line) != 0)) {
0444 //cout << line << endl;

0445

0446 //Construct val value from line

0447 ptr = strpbrk(line, "=");

0448 if ((ptr != NULL) && (strlen(ptr) >= 2)) {
0449 ptr++;

0450 if (xptr == ’ ’) ptr++;

0451 strcpy(val, ptr);

0452 } else {

0453 //default to true

0454 strcpy(val, "1");

0455 X

0456

0457 //Construct var value from line

0458 ptr = strpbrk(line, "=");

0459 if (ptr != NULL) {

0460 *ptr = ’\0’;

0461 if (*(ptr - 1) == 7 ?) *(ptr - 1) = ’\0’;
0462 }

0463 strcpy(var, line);

0464

0465 //cout << var << " = " << val << endl;
0466 assign_global(var, val);

209

0467
0468
0469
0470
0471
0472 %

}

}

fin.close();

¥

void print_welcome (void) Prints a welcome message.

Author:
Anonymous Web program (large text)

0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604 }

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

return;

{
=== " << endl;
- " << endl;
" / ——__/___ " << endl;
" /7 -/ - \\" << endl;
" / /_/ [/_/ /" << endl;
"The game of ____/____/ " << endl;
" << endl;
e _ " << endl;
" [l | 1 " << endl;
" [1 __ _____ 1. _ ___ " << endl;
" NN/ NN/ LT/ 1" << endl;
" ol > < (O P T2 N\ZZ \\" << endl;
"A program called |______ /_/NNCNNC_Z/ NN, CINNC, /" << endl;
endl;
"Written by Todd Blackman" << endl;
"'============ " << endl;

A.3.25.3 Variable Documentation

char rcsid [static] Initial value:

"$Id: main.cpp,v 1.43 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.26 moderator.t File Reference

Implementation and definition of Moderator (p.146) template.

210

Compounds

e class Moderator

Encapsulates two interfaces and has them play together.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsidm [] = ”$Id: moderator.t,v 1.20 2003/04/23 21:42:59 blackman
EXp $)7

Source code identifier.

A.3.26.1 Detailed Description

Implementation and definition of Moderator (p.146) template.

Revision:
1.20

Date:
2003/04/23 21:42:59

Copyright 2001, 2002, 2003

Author:
Todd Blackman

A.3.27 move.cpp File Reference

Implementation of the move_t (p.148) stuct.

211

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid ||

Source code identifier.

A.3.27.1 Detailed Description

Implementation of the move_ t (p. 148) stuct.

Revision:
1.9

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.27.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: move.cpp,v 1.9 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.28 move.h File Reference

Describes a Move struct.

212

Compounds

e struct move_t

A single move on the goban.

A.3.28.1 Detailed Description
Describes a Move struct.

Revision:
1.4

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.29 openeragent.cpp File Reference

Opening move agent.

Defines

e #define LOG(x)
Macro for outputing to log file.

Variables

e char rcsid ||

Source code identifier.

213

A.3.29.1 Detailed Description

Opening move agent.

Revision:
1.16

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.29.2 Variable Documentation
char rcsid [static] Imitial value:

"$Id: openeragent.cpp,v 1.16 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.30 outputgen.h File Reference

Header file for GenAlgoGenerator (p.126), NeuralNetGenerator (p.150),
and DummyGenerator (p.88) classes.

Compounds

e class DummyGenerator

A dummy move generator that generates random legal moves.

e class GenAlgoGenerator

A genetic algorithm move generator.

e class NeuralNetGenerator

A Neural Network move generator.

214

Defines

e #define BITSPERWEIGHT 4

Each network weight is an integer represented in this number of bits.

o #define SECONDLEVELNODES 3

Number of nodes at the second level of the network.

A.3.30.1 Detailed Description

Header file for GenAlgoGenerator (p.126), NeuralNetGenerator (p.150),
and DummyGenerator (p.88) classes.

Output generators take the agents and a blackboard and use them to generate
the next move. Essentially, this class takes a move as input and outputs a move.

Revision:
1.19

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.31 probboard.cpp File Reference

The implementation for the probability board.

Defines

e #define LOG(x)
Macro for outputing to log file.

215

Functions

e ostream& operator<< (ostream &strm, ProbBoard &aBoard)

Stream operator.

Variables

e char rcsid [| = "$Id: probboard.cpp,v 1.22 2003/04/23 21:42:59 blackman
EXp $”

Source code identifier.

A.3.31.1 Detailed Description

The implementation for the probability board.
This file provides the ProbBoard (p. 155) class.

Revision:
1.22

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.32 probboard.h File Reference

Probability matrix for an agent’s next move.

Compounds

e class ProbBoard

Agent (p.73)’s probability output board.

216

Defines

e #define SPIN 0

Spin or choose first highest location on probboard.

A.3.32.1 Detailed Description

Probability matrix for an agent’s next move.

Revision:
1.15

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.32.2 Define Documentation

#define SPIN 0 Spin or choose first highest location on probboard.

e If 1, then spin a wheel for choosing location on the board.

— If 0, just choose the last location with the maximum value.

A.3.33 randomagent.cpp File Reference

Random agent implementation.

Defines

e #define LOG(x)
Macro for outputing to log file.

217

Variables

e char resid [] = ”$Id: randomagent.cpp,v 1.5 2003/04/23 21:42:59 blackman
EXp $77

Source code identifier.

A.3.33.1 Detailed Description

Random agent implementation.

This file contains the implementation of the RandomAgent (p. 159) class

Revision:
1.5

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.34 stone.cpp File Reference

Implementation of the Stone (p. 160) class.

Defines

e #define LOG(x)
Macro for outputing to log file.

Functions

e ostream& operator<< (ostream &strm, Stone &aStone)

Owerload the printing operator.

218

Variables

e char rcsid ||

Source code identifier.

A.3.34.1 Detailed Description

Implementation of the Stone (p. 160) class.

Revision:
1.11

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.34.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: stone.cpp,v 1.11 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.35 stone.h File Reference

Header file for Stone (p. 160) class.

Compounds

e class Stone

Defines a point (stone) on the board.

219

Defines

e #define INV(x) (x==BLACK) ? WHITE : BLACK

Macro for inverting the color.

Typedefs

e typedef unsigned short int stone_t

Stone (p.160) bit-map type.

Functions

e ostream& operator<< (ostream &strm, Stone &aStone)

Overload the printing operator.

A.3.35.1 Detailed Description

Header file for Stone (p.160) class.

Anticipating that this code will be called quite a bit, the implementation in
this file sacrifices clarity for efficiency. Still, it should be fairly strait forward. It’s
just a collection of bit-masks.

Precondition:
unsigned short int is 2 bytes or more.

Warning:
Endianess of architecture may matter here.

Author:
Todd Blackman

Copyright 2001, 2002, 2003
A.3.36 subthread.cpp File Reference
Implementation for abstract class Subthread (p. 165).

220

Defines

e #define LOG(x)
Macro for outputing to log file.

Functions

e voidx CALL processing (void xtmp_obj)

Calls processing thread.

Variables

e char rcsid [] = ”$Id: subthread.cpp,v 1.14 2003/04/23 21:42:59 blackman
EXp $)7

Source code identifier.

A.3.36.1 Detailed Description

Implementation for abstract class Subthread (p. 165).

Revision:
1.14

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.37 subthread.h File Reference

Defines virtual class for a running sub-thread.

221

Compounds

e struct msg_t

A message to or from a thread.

e class Subthread
Defines a sub-thread.

e class Subthread_test
For debugging.

Enumerations

e enum msg_id_t { NOMSG, SET_.GAME_PTR, RESIGN, FORCE,
QUIT, ERROR, TURN, FINISHED, LOAD, UPDATE, NOTIFY,
SET_BB_PTR, SET_PROB_PTR }

Message types for thread communication.

A.3.37.1 Detailed Description
Defines virtual class for a running sub-thread.

Revision:
1.13

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.37.2 Enumeration Type Documentation
enum msg_id t Message types for thread communication.

Enumeration values:
NOMSG No message.

222

0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

SET_GAME PTR Data is a points to a game class.
RESIGN An interface wishes to resign.

FORCE Force interface to make a move "soon”.
QUIT quit program (usually only recved by thread).
ERROR Some error occured.

TURN Signals that it is the receiver’s turn. When sent by an interface,
it signals that the turn is finished.

FINISHED Agent (p.73) finished its work.
LOAD AgentShell (p.76) is instructed to do work as the specified agent.
UPDATE Board (p.78) has changed. Take note of this.

NOTIFY Tell agent that information is availible at bb that it might need.
(experimental feature).

SET_BB_PTR Set blackboard repository area pointer.
SET_PROB_PTR Set the result location for probability board.

{
NOMSG,
SET_GAME_PTR,
RESIGN,
FORCE,
QUIT,
ERROR,
TURN,

// Agent related
FINISHED,
LOAD,

UPDATE,
NOTIFY,

SET_BB_PTR,
SET_PROB_PTR

0042 } msg_id_t;

A.3.38 testcodex.cpp File Reference

Stub code for fitness function for GAs.

223

Functions

e ostream& operator<< (ostream &strm, const chromosome_t &chrom)

Output stream operator.

Variables

e char rcsid || = "$Id: testcodex.cpp,v 1.8 2003/04/23 21:42:59 blackman
EXp $”

Source code identifier.

A.3.38.1 Detailed Description

Stub code for fitness function for GAs.
This file provides testCodex (p.169) and PreCodex (p. 154) classes

Revision:
1.8

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.39 tigersmouthagent.cpp File Reference

Implementation of tiger’s mouth class.

Defines

e #define LOG(x)
Macro for outputing to log file.

224

Variables

e char rcsid ||

Source code identifier.

A.3.39.1 Detailed Description

Implementation of tiger’s mouth class.

This file provides TigersMouthAgent (p.173) which attempts to make a
tiger’s mouth which is a good formation in go.

Revision:
1.3

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

A.3.39.2 Variable Documentation

char rcsid [static] Initial value:

"$Id: tigersmouthagent.cpp,v 1.3 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.3.40 tinterface.cpp File Reference

Implementation of text interface.

Defines

e #define LOG(x)
Macro for outputing to log file.

225

Variables

e char rcsid [| = "$Id: tinterface.cpp,v 1.25 2003/04/23 21:42:59 blackman
EXp $77

Source code identifier.

A.3.40.1 Detailed Description

Implementation of text interface.

This file provides the class TextInterface (p.170).

Revision:
1.25

Date:
2003/04/23 21:42:59

Precondition:
The class has never been instantiated

Warning:
Only two interface classes may be instantiated at a time.

Author:
Todd Blackman

Copyright 2001, 2002, 2003
A.3.41 tools.cpp File Reference
Utilities.

Functions

e float gammln (float xx)

Computes gamma function.

e float betacf (float a, float b, float x)

226

FEvaluates continued fraction for incomplete beta function by modified Lentz’s
method.

e float betai (float a, float b, float x)

Computes the incomplete beta function I_z(a,b).

e void filter_whitespace (char line[])

Remowves whitespace.

e bool odd (int n)
Finds if the number is odd.

e void print_demo (int size)

Prints a helpful diagram.

e int pipe_getline (int fd, string &buf, char endchar="\n’)
Read from file descriptor to endchar.

e void loopy (int whichone=0, bool done=false, char *msg="...DONE”)

Prints a "waiting” rotating character.

Variables

e char resid [] = ”$Id: tools.cpp,v 1.17 2003/04/30 01:54:48 blackman Exp
$”

Source code identifier.

A.3.41.1 Detailed Description

Utilities.
Contains function to perform simple utility operations.
WORKS CITED:

title=Numerical Recipes in C: The Art of Scientific Computing publisher=The
Press Syndicate of the University of Cambridge edition=Second year=1997
pages=227,616-619

$Revsion$

227

Date:
2003/04/30 01:54:48

Author:
Todd Blackman

A.3.41.2 Function Documentation

float betacf (float a, float b, float) FEvaluates continued fraction for in-
complete beta function by modified Lentz’s method.

Author:
Numerical Recipes in C, page 227-8

0066 {

0067 int m,m2;

0068 float aa,c,d,del,h,qab,qam,qap;

0069

0070 gab=atb;

0071 gap=a+1.0;

0072 gam=a-1.0;

0073 c=1.0;

0074 d=1.0-qab*x/qap;

0075 if (fabs(d) < FPMIN) 4=FPMIN;

0076 d=1.0/4d;

0077 h=d;

0078 for (m=1;m<=MAXIT;m++) {

0079 m2=2%m;

0080 aa=m* (b-m) *x/ ((qam+m2) * (a+m2)) ;
0081 d=1.0+aaxd;

0082 if (fabs(d) < FPMIN) d=FPMIN;
0083 c=1.0+aa/c;

0084 if (fabs(c) < FPMIN) c=FPMIN;
0085 d=1.0/4d;

0086 h *= d*c;

0087 aa = -(a+m)*(qab+m)*x/((a+m2)* (qap+m2)) ;
0088 d=1.0+aa*d;

0089 if (fabs(d) < FPMIN) d=FPMIN;
0090 c=1.0+aa/c;

0091 if (fabs(c) < FPMIN) c=FPMIN;
0092 d=1.0/4d;

0093 del=dx*c;

0094 h *= del;

0095 if (fabs(del-1.0) < EPS) break;
0096 }

0097 //if ((m > MAXIT) && (!global_data.reg_on)) {
0098 if (m > MAXIT) {

0099 cerr << "-E- a or b too big, or MAXIT too "

228

0100
0101
0102
0103 }

<< "small in betacf" << endl;

}

return h;

float betai (float a, float b, float) Computes the incomplete beta function

I x(a,b).

Author:

Numerical Recipes in C, page 227

0110 {
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130 }

float bt;
if ((x < 0.0) || (x> 1.0)) cerr << "-E- Bad x value in betai()" << endl;

if ((x == 0.0) Il (x==1.0)) {

bt=0.0;
} else {
bt = exp(gammln(a + b) -
gammln(a) -
gammln(b) +
axlog(x) +

b*xlog(1.0 - x));
}

if (x < (a+1.0)/(a+b+2.0))
return btxbetacf(a, b, x)/a;
else
return 1.0 - btxbetacf(b, a, 1.0-x)/b;

void filter_whitespace (char line[]) Removes whitespace.

Removes leading whitespace, trailing whitespace, and compresses internal
whitespace.

Invariant:
xline will not get larger

Precondition:
line points to a null terminated string of chars

229

Postcondition:

line points to a null terminated string of chars that is either smaller or the

same size as the original value.

Parameters:
line A pointer to a string to remove excess whitespace from

Returns:
none

Author:
Todd Blackman

0151 {
0152 char *tmp;

0153 char tmp2[256];

0154 int offset=0;

0155 int offset2;

0156

0157 //Leading whitespace skip

0158 while (((line[offset] == ’\t’) || (linel[offset] ==’ ’)) &&

0159 (line[offset] != ’\0’)) offset++;

0160

0161 tmp = &(line[offset]);

0162

0163 //cycle through chars, looking for two whitespaces in a row. As we go,
0164 //copy char by char into tmp2. When two whitespace in a row found, copy
0165 //a single space into tmp2, and ignore rest of white space.

0166 offset=offset2=0;

0167 while (tmploffset] != ’\0’) {

0168

0169 //More than one whitespace char in a row

0170 while ((tmploffset+1] != ’\0’) &&

0171 ((tmp[offset] == ’\t’) || (tmp[offset] ==’ ’)) &&

0172 ((tmp[offset+1] == ’\t’) || (tmploffset+l] == > ’))

0173) 1

0174 if (tmploffset] == ’\t’) tmploffset]=’ ’;

0175 offset++;

0176 }

0177

0178 tmp2[offset2++] = tmp[offset++];

0179

0180 }

0181 tmp2[offset2] = tmploffset];

0182

0183 //If last char is a space, delete it from tmp2.

0184 if ((offset2 > 0) && (tmp2[offset2-1] == > ’)) tmp2[offset2-1] = ’\0’;
0185

0186 //Copy tmp2 into line

230

0187 strcpy(line, tmp2);
0188

0189 return;

0190

float gammlIn (float zz) Computes gamma function.

Author:
Numerical Recipes in C, page 214

0045 {
0046 double x,y,tmp,ser;
0047 static double cof[6]={76.18009172947146,-86.50532032941677,

0048 24.01409824083091,-1.231739572450155,0.1208650973866179e-2,
0049 -0.5395239384953e-5};

0050 int j;

0051

0052 y=x=xx;

0053 tmp=x+5.5;

0054 tmp -= (x+0.5)*log(tmp);

0055 ser=1.000000000190015;

0056 for (j=0;j<=5;j++) ser += cof[jl/++y;

0057 return -tmp+log(2.5066282746310005%ser/x) ;
0058 7

int pipe_getline (int fd, string & buf, char endchar = ’\n’) Read from
file descriptor to endchar.

Parameters:
Jd File descriptor

buf Buffer to read into

endchar Flag character to stop at

Warning:
This function is blocking. It returns when either a pipe read error occurs or
the end of a line is reached.

Returns:
The number of characters read from the pipe

231

0250 {
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271 }

int x=0;
int res;
char tempbuf [600];

if (-1 == (res=read(fd, static_cast<void *>(&tempbuf[x]), 1))) {
return -1;

}

while (tempbuf[x] != endchar) {
if (res == 1) {

//cout << endl << "Read a char: " << tempbuf[x] << endl;
++X;

}

if (-1 == (res=read(fd, static_cast<void *>(&tempbuf[x]), 1))) {
return -1;

}

}

tempbuf [x+1]=0;
buf = tempbuf;
return Xx;

void print_demo (int size) Prints a helpful diagram.

This function prints an ASCII representation of the board of the given size.

Parameters:
stze The size of the board to print

0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222

{
cout << " ",
for (char x=’A’; x<’A’+size; ++x) {
if (x < ’I7) {

cout << "___ " << x << "M
} else {
cout << "___" << static_cast<char>(x+1) << "";
}
}
cout << "_";

cout << endl;

//Rows

int count=0;

for (int x=size; x>0; --x) {
cout << setw(3) << x << "|";

for (int z=0; z<size; ++z) {
cout << " " << setw(3) << count++ << "";

232

0223 }

0224 cout << " |" << setw(2) << size - x;
0225 cout << endl;

0226 }

0227

0228 //Final Row of numbers

0229 cout << " ",

0230 for (int x=0; x<size; ++x) {

0231 cout << "" << setw(4) << x << "";
0232 }

0233 cout << endl;

0234

0235 }

A.3.42 tools.h File Reference

Defines useful utilities.

Defines

#define SIGCUTOFF 0.01

Level of significance for mean and variance comparisons required for accep-
tance.

#define SQR(x) ((x) * (x))

Find the square of a number macro.

#define MAXIT 100

Statistic constant.

#define EPS 3.0e-7

Statistic constant.

#define FPMIN 1.0e-30

Statistic constant.

Functions

float gammln (float xx)

Computes gamma function.

233

e float betacf (float a, float b, float x)

Evaluates continued fraction for incomplete beta function by modified Lentz’s
method.

e float betai (float a, float b, float x)

Computes the incomplete beta function I_z(a,b).

e void filter_whitespace (char line[])

Remowves whitespace.

e void print_demo (int size)

Prints a helpful diagram.

e int pipe_getline (int fd, string &buf, char endchar="\n’)
Read from file descriptor to endchar.

e void loopy (int which, bool done=false, char *msg="... DONE”)

Prints a "waiting” rotating character.

e bool odd (int n)
Finds if the number is odd.

A.3.42.1 Detailed Description
Defines useful utilities.

Revision:
1.10

Date:
2003/04/30 01:57:59

Author:
Todd Blackman

Copyright 2001, 2002, 2003

234

A.3.42.2 Define Documentation

#define SIGCUTOFF 0.01 Level of significance for mean and variance com-
parisons required for acceptance.

A.3.42.3 Function Documentation

float betacf (float a, float b, float) FEvaluates continued fraction for in-
complete beta function by modified Lentz’s method.

Author:
Numerical Recipes in C, page 227-8

0066 {

0067 int m,m2;

0068 float aa,c,d,del,h,qab,qam,qap;

0069

0070 gab=a+b;

0071 gap=a+1.0;

0072 qam=a-1.0;

0073 c=1.0;

0074 d=1.0-qab*x/qap;

0075 if (fabs(d) < FPMIN) d=FPMIN;

0076 d=1.0/4d;

0077 h=4d;

0078 for (m=1;m<=MAXIT;m++) {

0079 m2=2%m;

0080 aa=m* (b-m) *x/ ((qam+m2) * (a+m2)) ;
0081 d=1.0+aax*d;

0082 if (fabs(d) < FPMIN) d=FPMIN;
0083 c=1.0+aa/c;

0084 if (fabs(c) < FPMIN) c=FPMIN;
0085 d=1.0/4;

0086 h *= d*c;

0087 aa = -(a+m)*(qab+m)*x/ ((a+m2)* (qap+m2)) ;
0088 d=1.0+aaxd;

0089 if (fabs(d) < FPMIN) d=FPMIN;
0090 c=1.0+aa/c;

0091 if (fabs(c) < FPMIN) c=FPMIN;
0092 d=1.0/d;

0093 del=dx*c;

0094 h *= del;

0095 if (fabs(del-1.0) < EPS) break;
0096 }

0097 //if ((m > MAXIT) && (!'global_data.reg_on)) {
0098 if (m > MAXIT) {

0099 cerr << "-E- a or b too big, or MAXIT too "
0100 << "small in betacf" << endl;

235

0101 }
0102 return h;
0103 }

float betai (float a, float b, float) Computes the incomplete beta function
I x(a,b).

Author:
Numerical Recipes in C, page 227

0110 {

0111 float bt;

0112

0113 if ((x < 0.0) || (x> 1.0)) cerr << "-E- Bad x value in betai()" << endl;
0114

0115 if ((x==0.0) |l (x==1.0)) {
0116 bt=0.0;

0117 } else {

0118 bt = exp(gammln(a + b) -

0119 gammln(a) -

0120 gammln(b) +

0121 axlog(x) +

0122 b*xlog(1.0 - x));

0123 }

0124

0125 if (x < (a+1.0)/(a+b+2.0))

0126 return btxbetacf(a, b, x)/a;
0127 else

0128 return 1.0 - btxbetacf(b, a, 1.0-x)/b;
0129

0130 }

void filter_whitespace (char line[]) Removes whitespace.

Removes leading whitespace, trailing whitespace, and compresses internal
whitespace.

Invariant:
xline will not get larger

Precondition:
line points to a null terminated string of chars

236

Postcondition:

line points to a null terminated string of chars that is either smaller or the

same size as the original value.

Parameters:
line A pointer to a string to remove excess whitespace from

Returns:
none

Author:
Todd Blackman

0151 {
0152 char *tmp;

0153 char tmp2[256];

0154 int offset=0;

0155 int offset2;

0156

0157 //Leading whitespace skip

0158 while (((line[offset] == ’\t’) || (linel[offset] ==’ ’)) &&

0159 (line[offset] != ’\0’)) offset++;

0160

0161 tmp = &(line[offset]);

0162

0163 //cycle through chars, looking for two whitespaces in a row. As we go,
0164 //copy char by char into tmp2. When two whitespace in a row found, copy
0165 //a single space into tmp2, and ignore rest of white space.

0166 offset=offset2=0;

0167 while (tmploffset] != ’\0’) {

0168

0169 //More than one whitespace char in a row

0170 while ((tmploffset+1] != ’\0’) &&

0171 ((tmp[offset] == ’\t’) || (tmp[offset] ==’ ’)) &&

0172 ((tmp[offset+1] == ’\t’) || (tmploffset+l] == > ’))

0173) 1

0174 if (tmploffset] == ’\t’) tmploffset]=’ ’;

0175 offset++;

0176 }

0177

0178 tmp2[offset2++] = tmp[offset++];

0179

0180 }

0181 tmp2[offset2] = tmploffset];

0182

0183 //If last char is a space, delete it from tmp2.

0184 if ((offset2 > 0) && (tmp2[offset2-1] == > ’)) tmp2[offset2-1] = ’\0’;
0185

0186 //Copy tmp2 into line

237

0187 strcpy(line, tmp2);
0188

0189 return;

0190

float gammlIn (float zz) Computes gamma function.

Author:
Numerical Recipes in C, page 214

0045 {
0046 double x,y,tmp,ser;
0047 static double cof[6]={76.18009172947146,-86.50532032941677,

0048 24.01409824083091,-1.231739572450155,0.1208650973866179e-2,
0049 -0.5395239384953e-5};

0050 int j;

0051

0052 y=x=xx;

0053 tmp=x+5.5;

0054 tmp -= (x+0.5)*log(tmp);

0055 ser=1.000000000190015;

0056 for (j=0;j<=5;j++) ser += cof[jl/++y;

0057 return -tmp+log(2.5066282746310005%ser/x) ;
0058 7

int pipe_getline (int fd, string & buf, char endchar = ’\n’) Read from
file descriptor to endchar.

Parameters:
Jd File descriptor

buf Buffer to read into

endchar Flag character to stop at

Warning:
This function is blocking. It returns when either a pipe read error occurs or
the end of a line is reached.

Returns:
The number of characters read from the pipe

238

0250 {
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271 }

int x=0;
int res;
char tempbuf [600];

if (-1 == (res=read(fd, static_cast<void *>(&tempbuf[x]), 1))) {
return -1;

}

while (tempbuf[x] != endchar) {
if (res == 1) {

//cout << endl << "Read a char: " << tempbuf[x] << endl;
++X;

}

if (-1 == (res=read(fd, static_cast<void *>(&tempbuf[x]), 1))) {
return -1;

}

}

tempbuf [x+1]=0;
buf = tempbuf;
return Xx;

void print_demo (int size) Prints a helpful diagram.

This function prints an ASCII representation of the board of the given size.

Parameters:
stze The size of the board to print

0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222

{
cout << " ",
for (char x=’A’; x<’A’+size; ++x) {
if (x < ’I7) {

cout << "___ " << x << "M
} else {
cout << "___" << static_cast<char>(x+1) << "";
}
}
cout << "_";

cout << endl;

//Rows

int count=0;

for (int x=size; x>0; --x) {
cout << setw(3) << x << "|";

for (int z=0; z<size; ++z) {
cout << " " << setw(3) << count++ << "";

239

0223 }

0224 cout << " |" << setw(2) << size - x;
0225 cout << endl;

0226 }

0227

0228 //Final Row of numbers
0229 cout << " ",

0230 for (int x=0; x<size; ++x) {

0231 cout << "" << setw(4) << x << "";
0232 }

0233 cout << endl;

0234

0235 }

A.3.43 traingainterface.cpp File Reference

Implementation of Trainer class for GAs.

Defines

e #define LOG(x)
Macro for outputing to log file.

Functions

e istream& operator>> (istream &strm, move_t &tmove)

Used to read a move_t (p.148) structure from a stream.

Variables

e char rcsid ||

Source code identifier.

A.3.43.1 Detailed Description

Implementation of Trainer class for GAs.

This file provides the GaTrainerInterface (p.123) class

240

Revision:
1.22

Date:
2003/04/23 21:42:59

Author:
Todd Blackman

Warning:
Train only on boards that start empty with black moving first. Ensure that
this interface is SECOND! Not first.

Copyright 2001, 2002, 2003

A.3.43.2 Variable Documentation
char rcsid [static] Initial value:

"$Id: traingainterface.cpp,v 1.22 2003/04/23 21:42:59 blackman Exp $"

Source code identifier.

A.4 Exodus Page Documentation

A.4.1 Todo List

Class Moderator Add time-keeping code.

File exodus.h Agents need to be able to communicate for complex situations.
File ga.h Get rid of vectors and replace with arrays

File groupstatsagent.cpp Make this more memoized

Member Game::legal(loc_t) Add memoizability—> store vector of legal /not-
legal that is updated as moves are made.

A.4.2 Bug List

File game.cpp super-ko does not take rotation and symmetry into account.

241

Appendix B: Running the
Program

The program was written in ANSI C++, and simply typing ./configure in the
exodus directory followed by make in the exodus/src directory will create the
executable called exodus. Command-line options can be viewed by typing exodus
-h. Default options can be given in a file called .exodusrc when this file is located
in the current directory. Important options follow:

-reg_on Run the regressions.

-bsize=z Set the board size to z.

-train=z If z is non-zero put the program in training mode otherwise put the
program in playing mode.

-output=name Sets the file that stores the latest genetic algorithm generation to
name.

-best=name Sets the file that stores the best chromosome from the last generation
of the genetic algorithm to name. This parameter is also used to initialize
the genetic algorithm player when it plays against a human player.

-train file=name Sets the name of the data file that contains recorded games
to name.

-resume=name If the program has been set to training mode, then this option tells
the genetic algorithm to run the GA starting with the generation specified
in name

242

-maxgen=z Set the maximum generation to z.
-popsize=z Set the population size to z.
-pmutation=z Set the mutation probability to .
-pcross=z Set the crossover probability to z.

-fmultiple=z Set the F multiplier (in GA) to z.

243

Glossary

atari The single liberty left for a group.
baduk Another name of go.
dan A high ranking.

eye An open space inside of a group of stones. Two eyes make a group uncondi-
tionally alive if they are small enough.

goban A go playing board.

good shape The abstract concept that describes a set of stones that is in a
formation conducive to being able to form a living group in the future.

group A set of stones that are connected to each other by being adjacent to at
least one member of the group through a line on the board (i.e., not adjacent
via diagonals).

liberty The adjacent locations to a stone that contain no other stones.

ko A situation involving the possible repetition of the state of the board which
is not allowed.

komi Points of compensation given to white (always the second player) to equal-
ize the effect of having to move second when the game begins. Usually it is
0.5 or 5.5 points so that a tie is impossible.

kyu A lower ranked go player.

seki Localized stalemate situation characterized by two groups sharing at least
one liberty such that if one player were to play there first, his or her group
would die. Neither side should play first, and neither side gains points for
the territory surrounded by the two groups in sek:.

thickness The abstract concept that describes how much a set of stones radiates
influence, usually in a specific direction.

244

Index

A, 16 RandomAgent, 157
A* search, see search techniques ~Subthread
~Agent Subthread, 165
Agent, 72 ~Subthread _test
~AgentShell Subthread_test, 166
AgentShell, 74 ~TigersMouthAgent
~Board TigersMouthAgent, 171
Board, 80 -
~ExtenderAgent actual size
ExtenderAgent, 87 Boa_rd, 79
~FollowerAgent actualSize
FollowerAgent, 90 ProbBoard, 155
~GUlInterface Agent, 71
GUlIlInterface, 137 ~Agent, 72
~Ga Agent, 72
Ga, 94 bb_ptr, 73
~GaTrainerInterface dowork, 72
GaTrainerInterface, 121 force, 72
~Game get_id, 72
Game, 110 ID,_73
~GenAlgoGenerator notify, 72
GenAlgoGenerator, 125 pb_ptr, 73
~GroupStatsAgent query_‘plts_needed_from_GA, 73
GroupStatsAgent, 134 send_bits, 73
~IGS _Interface Set_bb_ptr, 72
IGS_Interface, 139 set_id, 73
~Interface set_pb_ptr, 72
Interface, 142 theGame, 73
~Moderator update, 72
Moderator, 144 agent.cpp, 175
~QOpenerAgent LQG, 175
OpenerAgent, 149 resid, 176
~ProbBoard agent.h, 176
ProbBoard’ 153 MAX_AGENTS, 177

~RandomAgent MAXGROUPS, 177

245

MAXSTONE, 177
agents, 17
AGENTS_USED

config.h, 182
AgentShell

~AgentShell, 74

AgentShell, 75

processing, 74

theAgent, 75
AgentShell, 74

AgentShell, 75

init, 75
allele

gatypes.h, 195
alpha-beta, see alpha-beta pruning
alpha-beta pruning, 22
alpha/beta, see alpha-beta pruning
assign_global

main.cpp, 203
attempt

ExtenderAgent, 88
avg

Population, 151

baduk, 6
bb
GenAlgoGenerator, 126
bb_ptr
Agent, 73
bdemo.cpp, 177
main, 178
BEST_FILENAME_OUT
Ga, 95
betacf
tools.cpp, 226
tools.h, 233
betai
tools.cpp, 227
tools.h, 234
bidirectional search, see search tech-
niques
bits_per_value
ExtenderAgent, 88

246

bits_per_weight
GenAlgoGenerator, 126
BITSPERWEIGHT
outputgen.h, 213
black
Stone, 159
BLACK_BIT
Stone, 161
Blackboard, 75
g_ptr, 76
set_game_ptr, 76
update, 76
blackboard.cpp, 179
LOG, 179
resid, 179
blackboard.h, 180
block_cond
Subthread, 165
Board, 76
~Board, 80
actual_size, 79
Board, 77
BSIZE, 78
color_played, 79
del_group, 80
del_stone, 78
fill_safety, 81
get_bsize, 77
get_color_played, 78
get_goban, 77
get_move_played, 81
goban, 79
HANDICAP, 78
HANDICAP_PLACES, 78
invert, 82
loc_played, 79
operator<<, 79
operator=, 78
operator==, 77
operator| |, 78
PASS, 78
play_move, 82

PRINTEXTRA, 79
put_stone, 83
raw_output, 83
setup, 84
valid_location, 85
board.cpp, 180
LOG, 180
operator<<, 180
resid, 181
board.h, 181
loc_t, 181
operator<<, 182
breadth-first search, see search tech-
niques
BSIZE
Board, 78
bsize
GUIInterface, 138
move_t, 147
BW _BITS
Stone, 161
BYOMI_STONES
Game, 113
BYOMI_TIME
Game, 113

CALL_processing
Subthread, 165
subthread.cpp, 219

capStones
Game, 113

Capturing, 8

checkers, 23

chess, 23, 25

childt
Subthread, 164

chrom
Individual, 140

chromosome_t
gatypes.h, 195
clear
ProbBoard, 154
Stone, 161

247

clearlastcol
Stone, 160
clearlastrow
Stone, 160
COL_BITS
Stone, 161
color
move_t, 146
color_played
Board, 79
config.h, 182
AGENTS_USED, 182
HAVE_FCNTL_H, 183
HAVE_MALLOC_H, 183
MAX_AGENT_THREADS, 182
MAX_THREADS, 183
NDEBUG, 183
PERLTK, 183
STDC_HEADERS, 183
crossover
Ga, 96
currentBoard
Game, 113

dan, 14
data
msg_t, 147
dead
GroupStatsAgent, 135
decode
GenAlgoGenerator, 127
del_group
Board, 80
del_stone
Board, 78
depth-first search, see search tech-
niques
depth-limited search, see search tech-
niques
dowork
Agent, 72
ExtenderAgent, 87
FollowerAgent, 91

GroupStatsAgent, 135 largeKnightLocations, 89

OpenerAgent, 150 largeKnight Value, 89
RandomAgent, 157 notify, 87
TigersMouthAgent, 172 num_values, 88
DummyGenerator onePointExtendLocations, 88
DummyGenerator, 86 onePointExtendValue, 88
processing, 86 send_bits, 87
rndbuf, 86 shoulderLocations, 89
DummyGenerator, 86 shoulderValue, 89
dummygenerator.cpp, 183 threePointExtendLocations, 88
LOG, 183 threePointExtendValue, 88
resid, 184 twoPointExtendLocations, 88
twoPoint ExtendValue, 88
empty update, 87
Stone, 1_59 ExtenderAgent, 87
enum_memoize flag getval, 89
Game, 113 _ query_bits_needed_from_GA, 90
enumerate_legal locations extenderagent.cpp, 187
Game, 114 LOG, 187
EPS resid, 188
tools.h, 231 extendLocations
ERROR ExtenderAgent, 88
subthread.h, 221 extendValue
exodus.h, 184 ExtenderAgent, 88
global data, 185
LOG, 185 figure_path
log_cout, 185 GUIInterface, 137
log_ mutex, 185 FILENAME_IN
NUM_THREADS, 185 Ga, 95
thread_count, 185 FILENAME_OUT
usi_t, 187 Ga, 95
VERSION, 185 fill safety
ExtenderAgent Board, 81
~ExtenderAgent, 87 filter_whitespace
attempt, 88 tools.cpp, 227
bits_per_value, 88 tools.h, 234
dowork, 87 findtiger
ExtenderAgent, 87 TigersMouthAgent, 172
extendLocations, 88 FINISHED
extendValue, 88 subthread.h, 221
force, 87 fitness
knightLocations, 89 Individual, 141
knightValue, 89 fitness function, 42

248

FITNESS_CUTOFF
Ga, 95
flip
Ga, 98
FMULTIPLE
Ga, 95
Follower Agent,
~FollowerAgent, 90
dowork, 91
FollowerAgent, 90
force, 91
notify, 91
query_bits needed_from_GA, 91
send_bits, 91
update, 91
Follower Agent, 90
imprint, 91
followeragent.cpp, 188
LOG, 188
rcsid, 189
FORCE
subthread.h, 221
force
Agent, 72
ExtenderAgent, 87
FollowerAgent, 91
GroupStatsAgent, 134
OpenerAgent, 150
RandomAgent, 158
TigersMouthAgent, 171
forward pruning, 24
FPMIN
tools.h, 231
fromthreadq
Subthread, 165
ftest
Ga, 98

g-ptr

Blackboard, 76
GA, see Genetic Algorithms
Ga, 94

~Ga, 94

249

BEST_FILENAME_OUT, 95
crossover, 96
FILENAME_IN, 95
FILENAME_OUT, 95
FITNESS_CUTOFF, 95
flip, 98
FMULTIPLE, 95
ftest, 98

Ga, 94

gen, 97

generation, 96

init, 99
interrupt_watcher, 110
Ichrom, 96

leader, 97

loadpop, 101
MAXGEN, 94
mutation, 96
ncross, 97

newpop, 96
nmutation, 97
oavg, 97

oldpop, 96

omax, 97

omin, 97

ostdev, 97
osumfitness, 97
ovar, 97

PCROSS, 95
PMUTATION, 95
POPSIZE, 95
prescale, 103
rndbuf, 97
savebest, 104
savepop, 94

scale, 105
scalepop, 96

select, 105
set_codex, 106
start, 107

stop, 97
TRAIN_FILE, 95

ttest, 109
tutest, 109

ga.cpp, 189
LOG, 189
operator<<, 189
resid, 189
strchrom, 190

ga.h, 190
MAXPOP, 191

gafunc.h, 191

Game, 110
~Game, 110
BYOMI_STONES, 113
BYOMI_TIME, 113
capStones, 113
currentBoard, 113
enum_memoize flag, 113
enumerate_legal locations, 114
Game, 110
get_board, 111
get_bsize, 111
get_captures, 115
get_turn, 111
INITIAL_TIME, 112
inv_turn, 113
invert_board, 115
is_over, 116
KOMI, 112
komi, 114
last, 116
legal, 117
lock, 118
movenum, 118
mutex, 113
operator!=, 119
operator<<, 121
operator=, 112
operator==, 112
play_move, 110, 111, 119
reset, 119
retract, 120
set_suicide, 112

set_super_ko, 112
set_turn, 111
setup, 113
SUICIDE, 112
suicide, 114
SUPER_KO, 112
super_ko, 114
theGame, 113
unlock, 112
whose_turn, 113
wturn, 111
game.cpp, 192
LOG, 192
operator<<, 193
resid, 193
game.h, 194
operator<<, 195
SUICIDE_CHECK, 194
SUPERKO_CHECK, 194
usi_p, 194
gammln
tools.cpp, 229
tools.h, 236
GaTrainerInterface
~GaTrainerInterface, 121
GaTrainerInterface, 121
handle_move, 122
movesGuessed, 122
movestream, 122
movestream_iter, 122
processing, 122
totalmoves, 122
GaTrainerInterface, 121
get_percentage, 123
init, 123
load, 123
gatypes.h, 195
allele, 195
chromosome_t, 195
operator<<, 195
gen
Ga, 97

250

GenAlgoGenerator
~GenAlgoGenerator, 125
bb, 126
bits_per_weight, 126
GenAlgoGenerator, 125
init, 125
num_agents, 126
num _second _level nodes, 127
num_threads, 126
printweights, 125
processing, 126
results, 126
rndbuf, 126
secondLevel Weights, 126
summary, 125
theAgents, 126
theThreads, 126
total_bits, 127
weights, 126
weights_loaded, 126

GenAlgoGenerator, 124
decode, 127
get_fitness, 128
get_move, 129
load, 131

genalgogenerator.cpp, 196
LOG, 196
resid, 197

generation
Ga, 96

Genetic Algorithms, 19

get_board
Game, 111

get_bsize
Board, 77
Game, 111

get_captures
Game, 115

get_chrom _size
PreCodex, 153

get_color_played
Board, 78

251

get_fitness

GenAlgoGenerator, 128

PreCodex, 153

testCodex, 168
get_game

Moderator, 144
get_goban

Board, 77
get 10

Moderator, 144
get_I1

Moderator, 144
get_id

Agent, 72
get_made_a_move

Interface, 142
get_move

GenAlgoGenerator, 129

GUIInterface, 137
get_move_played

Board, 81
get_msg_nb

Subthread, 164
get_percentage

GaTrainerInterface, 123
get_turn

Game, 111
get_user_input

TextInterface, 169
get_val

ProbBoard, 154
getcol

Stone, 160
getcolor

Stone, 160
getrow

Stone, 160
getval

ExtenderAgent, 89
ginterface.cpp, 197

LOG, 197

resid, 197

global_data
exodus.h, 185
main.cpp, 203
global data_t, 132
handicap_placement, 133
help, 133
my _color, 133
reg_on, 133
resume, 133
train, 133
verbosity, 133
version, 133
welcome, 132
go-moku, 23
goban
Board, 79
goe, 6
GoModemlInterface
GoModemInterface, 134
GoModemInterface, 133
GPATH
GUllInterface, 137
gptr
Interface, 143
GroupStatsAgent
~GroupStatsAgent, 134
dead, 135
dowork, 135
force, 134
GroupStatsAgent, 134
grpcolor, 135
gsize, 136
liberties, 136
liberty_locations, 136
liberty locations_list, 136
notify, 135
numgroups, 135
printScratch, 135

query_bits needed_from_GA, 135

recurse, 135
scratch, 135
update, 135

GroupStatsAgent, 134
send_bits, 136
groupstatsagent.cpp, 198
LOG, 198
resid, 199
grpcolor
GroupStatsAgent, 135
gsize
GroupStatsAgent, 136
GUlIlInterface, 136
~GUlIInterface, 137
bsize, 138
figure_path, 137
get_move, 137
GPATH, 137
GUlIlInterface, 137
init, 137
m?2s, 138
path, 138
pid, 138
processing, 138
READ, 138
s2m, 138
send_board, 137
WRITE, 138

HANDICAP
Board, 78
handicap_placement
global data_t, 133
HANDICAP_PLACES
Board, 78
handle_move
GaTrainerInterface, 122
HAVE_FCNTL_H
config.h, 183
HAVE_MALLOC_H
config.h, 183
help
global data_t, 133
host1
IGS_Interface, 139
host?2

IGS_Interface, 139 INITTAL_TIME

Game, 112
10 initialize
Moderator, 144 main.cpp, 202
1 inside_get_msg_b
Moderator, 144 Subthread, 164
ID inside_get_msg_nb
. Agent, 73 Subthread, 164
id inside_send_msg
' msg_t, 147 Subthread, 164
igo, 6 intelligent agents, 17
IGS_Interface, 139 Interface, 142
~IGS_Interface, 139 ~Interface, 142
host1, 139 get_made_a_move, 142
host2, 139 gptr, 143
IGS_Interface, 139 Interface, 142
my_addr, 140 made_a_move, 143
portl, 139 my _color, 143
port2, 140 my_turn, 143
setup, 139 set_my_color, 143
sfd, 140 set_my_turn_on, 142
iinterface.cpp, 199 their_color, 143
LOG, 199 interface.cpp, 200
resid, 199 LOG, 200
imprint interface.h, 200
FollowerAgent, 91 internal_board
Individual, 140 ProbBoard, 155
chrom, 140 interrupt_watcher
fitness, 141 Ga, 110
ofitness, 141 INV
operator=, 140 stone.h, 218
operator==, 141 inv_turn
parentl, 141 Game, 113
parent2, 141 invert
xsite, 141 Board, 82
individuals invert_board
Population, 151 Game, 115
init is_over
AgentShell, 75 Game, 116
Ga, 99

iterative deepening, see search tech-

GaTrainerInterface, 123 nigues

GenAlgoGenerator, 125
GUllInterface, 137 join

253

Subthread, 166

kill
Subthread, 163
killer moves, 24
knightLocations
ExtenderAgent, 89
knightValue
ExtenderAgent, 89
KOMI
Game, 112
komi
Game, 114
kyu, 14

largeKnightLocations
ExtenderAgent, 89
largeKnightValue
ExtenderAgent, 89
last
Game, 116
lastcol
Stone, 160
lastrow
Stone, 160
Ichrom
Ga, 96
PreCodex, 153
LCOL_BIT
Stone, 162
leader
Ga, 97
legal
Game, 117
liberties, 9
liberties
GroupStatsAgent, 136
liberty_locations
GroupStatsAgent, 136
liberty locations_list
GroupStatsAgent, 136
Lisp, 23
livelock, see ko

LOAD
subthread.h, 221

load
GaTrainerInterface, 123
GenAlgoGenerator, 131

loadpop
Ga, 101

loc
move_t, 146

loc_played
Board, 79

loc_t
board.h, 181

lock
Game, 118

LOG
agent.cpp, 175
blackboard.cpp, 179
board.cpp, 180
dummygenerator.cpp, 183
exodus.h, 185
extenderagent.cpp, 187
followeragent.cpp, 188
ga.cpp, 189
game.cpp, 192
genalgogenerator.cpp, 196
ginterface.cpp, 197
groupstatsagent.cpp, 198
iinterface.cpp, 199
interface.cpp, 200
main.cpp, 202
moderator.t, 209
move.cpp, 210
openeragent.cpp, 211
probboard.cpp, 213
randomagent.cpp, 215
stone.cpp, 216
subthread.cpp, 219
tigersmouthagent.cpp, 222
tinterface.cpp, 223
traingainterface.cpp, 238

log_cout

254

exodus.h, 185
main.cpp, 203
log_mutex
exodus.h, 185
main.cpp, 203
loopy
tools.cpp, 225
tools.h, 232
LROW _BIT
Stone, 162

m?2s
GUIInterface, 138
made_a_move
Interface, 143
main
bdemo.cpp, 178
main.cpp, 202
main.cpp, 201
assign_global, 203
global data, 203
initialize, 202
LOG, 202
log_cout, 203
log_mutex, 203
main, 202
parse_cmd_line_options, 202
parse_rc_file, 205
print_help, 202
print_welcome, 208
resid, 208
start_play, 202
start_training, 202
thread_count, 203
mainloop
Moderator, 144
max
Population, 151
MAX_AGENT_THREADS
config.h, 182
MAX_AGENTS
agent.h, 177
MAX_THREADS

255

config.h, 183
MAXGEN

Ga, 94
MAXGROUPS

agent.h, 177
MAXIT

tools.h, 231
maxloc

ProbBoard, 155
MAXPOP

ga.h, 191
MAXSTONE

agent.h, 177
message_queue_mutex

Subthread, 165
min

Population, 151
minimax, 21
Moderator, 144

~Moderator, 144

get_game, 144

get_10, 144

get_I1, 144

10, 144

I1, 144

mainloop, 144

Moderator, 145

swap_interfaces, 144

theGame, 145

whose_turn, 144
moderator.t, 208

LOG, 209

rcsidm, 209
move.cpp, 209

LOG, 210

resid, 210
move.h, 210
move_t, 146

bsize, 147

color, 146

loc, 146

newboard, 146

operator=, 146

operator==, 146

pass, 146

regression, 146

setup_phase, 146
movenum

Game, 118
movesGuessed

GaTrainerInterface, 122
movestream

GaTrainerInterface, 122
movestream_iter

GaTrainerInterface, 122
msg

TextInterface, 169
msg-id_t

subthread.h, 220
msg_t, 147

data, 147

id, 147

operator=, 147
multiagent systems, 17
mutation

Ga, 96
mutex

Game, 113
my_addr

IGS_Interface, 140
my _color

global data_t, 133

Interface, 143
my_turn

Interface, 143

NCross
Ga, 97
NDEBUG
config.h, 183
neural networks, 16, 26
NeuralNetGenerator
NeuralNetGenerator, 148
NeuralNetGenerator, 148
newboard

256

move_t, 146
newpop
Ga, 96
nmutation
Ga, 97
NNGS_Interface, 148
NNGS_Interface, 149
NOMSG
subthread.h, 220
normalize
ProbBoard, 155
notblack
Stone, 159
notbottom
Stone, 159
notempty
Stone, 159
NOTIFY
subthread.h, 221
notify
Agent, 72
ExtenderAgent, 87
FollowerAgent, 91
GroupStatsAgent, 135
OpenerAgent, 150
RandomAgent, 157
TigersMouthAgent, 172
notleft
Stone, 159
notright
Stone, 159
nottop
Stone, 159
notwhite
Stone, 159
num-_agents
GenAlgoGenerator, 126
num_second_level _nodes
GenAlgoGenerator, 127
NUM_THREADS
exodus.h, 185
num_threads

GenAlgoGenerator, 126
num_values

ExtenderAgent, 88
numgroups

GroupStatsAgent, 135

oavg
Ga, 97
objective function, 42
odd
tools.cpp, 225
tools.h, 232
ofitness
Individual, 141
oldpop
Ga, 96
omax
Ga, 97
omin
Ga, 97
onePointExtendLocations
ExtenderAgent, 88
onePointExtendValue
ExtenderAgent, 88
OpenerAgent
~QOpenerAgent, 149
dowork, 150
force, 150
notify, 150
OpenerAgent, 149
pb17, 150
pb19, 150
pb9, 150
query_bits_needed_from_GA, 150
update, 150
OpenerAgent, 149
send_bits, 150
openeragent.cpp, 211
LOG, 211
resid, 212
operator *
ProbBoard, 154
operator!=

257

Board, 77
Game, 119
Individual, 140
Population, 151
ProbBoard, 154
Stone, 162
operator+
ProbBoard, 154
operator+=
ProbBoard, 154
operator<<
Board, 79
board.cpp, 180
board.h, 182
ga.cpp, 189
Game, 121
game.cpp, 193
game.h, 195
gatypes.h, 195
Population, 152
ProbBoard, 155

probboard.cpp, 214

Stone, 162
stone.cpp, 216
stone.h, 218

testcodex.cpp, 222

operator=
Board, 78
Game, 112
Individual, 140
move_t, 146
msg_t, 147
Population, 151
ProbBoard, 154
Stone, 161

operator==
Board, 77
Game, 112
Individual, 141
move_t, 146
Population, 151
ProbBoard, 154

Stone, 162
operator>>
traingainterface.cpp, 238
operator]|]
Board, 78
ProbBoard, 154
ostdev
Ga, 97
osumfitness
Ga, 97
Othello, 23
outputgen.h, 212
BITSPERWEIGHT, 213
SECONDLEVELNODES, 213
ovar

Ga, 97

parentl

Individual, 141
parent?2

Individual, 141
parse_cmd_line_options

main.cpp, 202
parse_rc_file

main.cpp, 205

PASS

Board, 78
pass

move_t, 146
path

GUllInterface, 138
Patricia tree, 28
pb17

OpenerAgent, 150
pb19

OpenerAgent, 150
pb9

OpenerAgent, 150
pb_ptr

Agent, 73
PCROSS

Ga, 95
Pente, 23

258

PERLTK
config.h, 183
pid
GUlIInterface, 138
piece, see stone
pipe_getline
tools.cpp, 229
tools.h, 236
play_move
Board, 82
Game, 110, 111, 119
PMUTATION
Ga, 95
POPSIZE
Ga, 95
Population, 151
avg, 151
individuals, 151
max, 151
min, 151
operator<<, 152
operator=, 151
operator==, 151
stdev, 152
sumfitness, 151
var, 152
whichmax, 152
whichmin, 152
portl
IGS_Interface, 139
port2
IGS_Interface, 140
PreCodex
get_chrom size, 153
get_fitness, 153
Ichrom, 153
set_chrom _size, 152
summary, 153
PreCodex, 152
prescale
Ga, 103

print_demo

tools.cpp, 230
tools.h, 237
print_help
main.cpp, 202
print_welcome
main.cpp, 208
PRINTEXTRA
Board, 79
printScratch
GroupStatsAgent, 135
printweights
GenAlgoGenerator, 125
ProbBoard
~ProbBoard, 153
actualSize, 155
clear, 154
get_val, 154
internal_board, 155
operator x, 154
operator+, 154
operator+=, 154
operator<<, 155
operator=, 154
operator==, 154
operator|], 154
ProbBoard, 153
rndbuf, 155
set_val, 153
ProbBoard, 153
maxloc, 155
normalize, 155
spin, 156
probboard.cpp, 213
LOG, 213
operator<<, 214
resid, 214
probboard.h, 214
SPIN, 215
processing
AgentShell, 74
DummyGenerator, 86
GaTrainerInterface, 122

259

GenAlgoGenerator, 126

GUlIlInterface, 138

Subthread, 164

Subthread_test, 167

TextInterface, 169
prompt

TextInterface, 169
put_stone

Board, 83

query_bits_needed_from_GA
Agent, 73
ExtenderAgent, 90
FollowerAgent, 91
GroupStatsAgent, 135
OpenerAgent, 150
RandomAgent, 158
TigersMouthAgent, 172

QUIT
subthread.h, 221

RandomAgent
~RandomAgent, 157
dowork, 157
notify, 157
RandomAgent, 157
send_bits, 158
update, 157

RandomAgent, 157
force, 158

query_bits_needed_from_GA, 158

randomagent.cpp, 215
LOG, 215
rcsid, 216

ranking, 14

raw_output
Board, 83

resid
agent.cpp, 176
blackboard.cpp, 179
board.cpp, 181

dummygenerator.cpp, 184

extenderagent.cpp, 188

followeragent.cpp, 189
ga.cpp, 189
game.cpp, 193
genalgogenerator.cpp, 197
ginterface.cpp, 197
groupstatsagent.cpp, 199
iinterface.cpp, 199
main.cpp, 208
move.cpp, 210
openeragent.cpp, 212
probboard.cpp, 214
randomagent.cpp, 216
stone.cpp, 217
subthread.cpp, 219
testcodex.cpp, 222
tigersmouthagent.cpp, 223
tinterface.cpp, 224
tools.cpp, 225
traingainterface.cpp, 239
rcsidm
moderator.t, 209
READ
GUllInterface, 138
recurse
GroupStatsAgent, 135
reg_on
global data_t, 133
regression
move_t, 146
Subthread_test, 166
reset
Game, 119
RESIGN
subthread.h, 221
results
GenAlgoGenerator, 126
resume
global data_t, 133
retract
Game, 120
Reversi, 23
reversi, 25

260

rndbuf
DummyGenerator, 86
Ga, 97
GenAlgoGenerator, 126
ProbBoard, 155

ROW _BITS
Stone, 161

s2m
GUllInterface, 138
SANE, 31, 32
savebest
Ga, 104
savepop
Ga, 94
scalability, 40
scale
Ga, 105
scalepop
Ga, 96
scoring, 13
scratch
GroupStatsAgent, 135
search, see search techniques
search space, 25
search techniques, 15
SECONDLEVELNODES
outputgen.h, 213
secondLevel Weights
GenAlgoGenerator, 126
Seki, 12
select
Ga, 105
send_bits
Agent, 73
ExtenderAgent, 87
FollowerAgent, 91
GroupStatsAgent, 136
OpenerAgent, 150
RandomAgent, 158
TigersMouthAgent, 172
send_board
GUllInterface, 137

send_msg

Subthread, 164
SET_BB_PTR

subthread.h, 221
set_bb_ptr

Agent, 72
set_chrom_size

PreCodex, 152
set_codex

Ga, 106
SET_GAME_PTR

subthread.h, 220
set_game_ptr

Blackboard, 76
set_id

Agent, 73
set_my_color

Interface, 143
set_my_turn_on

Interface, 142
set_pb_ptr

Agent, 72
SET_PROB_PTR

subthread.h, 221
set_suicide

Game, 112
set_super_ko

Game, 112
set_turn

Game, 111
set_val

ProbBoard, 153
setcol

Stone, 160
setcolor

Stone, 160
setlastcol

Stone, 160
setlastrow

Stone, 160
setrow

Stone, 160

261

setup
Board, 84
Game, 113
IGS_Interface, 139
setup_phase
move_t, 146
sfd
IGS_Interface, 140
shoulderLocations
ExtenderAgent, 89
shoulderValue
ExtenderAgent, 89
SIGCUTOFF
tools.h, 233
sizes, board, 13
SPIN
probboard.h, 215
spin
ProbBoard, 156
SQR
tools.h, 231
Stalemate, see Seki
start
Ga, 107
Subthread, 163
start_play
main.cpp, 202
start_training
main.cpp, 202
STDC_HEADERS
config.h, 183
stdev
Population, 152
Stone, 158
black, 159
BLACK_BIT, 161
BW _BITS, 161
clear, 161
clearlastcol, 160
clearlastrow, 160
COL_BITS, 161
empty, 159

getcol, 160
getcolor, 160
getrow, 160
lastcol, 160
lastrow, 160
LCOL_BIT, 162
LROW_BIT, 162
notblack, 159
notbottom, 159
notempty, 159
notleft, 159
notright, 159
nottop, 159
notwhite, 159
operator!=, 162
operator<<, 162
operator=, 161
operator==, 162
ROW_BITS, 161
setcol, 160
setcolor, 160
setlastcol, 160
setlastrow, 160
setrow, 160
Stone, 159
stoneOut, 161
theStone, 161
white, 159
WHITE_BIT, 161
stone, 6
stone.cpp, 216
LOG, 216
operator<<, 216
resid, 217
stone.h, 217
INV, 218
operator<<, 218
stone_t, 218
stone_t
stone.h, 218
stoneOut
Stone, 161

262

stop
Ga, 97

strchrom
ga.cpp, 190

Subthread, 163
~Subthread, 165
block_cond, 165
CALL_processing, 165
childt, 164
fromthreadq, 165
get_msg nb, 164
inside_get_msg_b, 164
inside_get_msg_nb, 164
inside_send_msg, 164
join, 166
kill, 163

message_queue_mutex, 165

processing, 164

send_msg, 164

start, 163

Subthread, 163

tell_message, 164

tothreadq, 165
subthread.cpp, 218

CALL _processing, 219

LOG, 219

resid, 219
subthread.h, 219

ERROR, 221

FINISHED, 221

FORCE, 221

LOAD, 221

msg_id_t, 220

NOMSG, 220

NOTIFY, 221

QUIT, 221

RESIGN, 221

SET_BB_PTR, 221

SET_GAME_PTR, 220

SET_PROB_PTR, 221

TURN, 221

UPDATE, 221

Subthread_test, 166 AgentShell, 75

~Subthread _test, 166 theAgents
processing, 167 GenAlgoGenerator, 126
regression, 166 theGame
SUICIDE Agent, 73
Game, 112 Game, 113
suicide Moderator, 145
Game, 114 their_color
SUICIDE_CHECK Interface, 143
game.h, 194 theStone
sumfitness Stone, 161
Population, 151 theThreads
summary GenAlgoGenerator, 126
GenAlgoGenerator, 125 thread pools, 20
PreCodex, 153 thread_count
testCodex, 167 exodus.h, 185
SUPER_KO main.cpp, 203
Game, 112 threePointExtendLocations
super_ko ExtenderAgent, 88
Game, 114 threePointExtend Value
SUPERKO_CHECK ExtenderAgent, 88
game.h, 194 TigersMouthAgent
swap-interfaces ~TigersMouthAgent, 171
Moderator, 144 dowork, 172
force, 171
tell_message notify, 172
Subthread, 164 query_bits_needed _from_GA, 172
testCodex send_bits, 172
summary, 167 TigersMouthAgent, 171
testCodex, 167 update, 171
testCodex, 167 TigersMouthAgent, 171
get_fitness, 168 findtiger, 172
testcodex.cpp, 221 tigersmouthagent.cpp, 222
operator<<, 222 LOG, 222
I“CSid, 222 I‘CSid, 2923
TextInterface tinterface.cpp, 223
get_user_input, 169 LOG, 223
msg, 169 resid, 224
prompt, 169 token, see stone
TextInterface, 169 tools.cpp, 224
TextInterface, 168 betact, 226
processing, 169 betai, 227
theAgent

263

filter_whitespace, 227
gammln, 229
loopy, 225
odd, 225
pipe_getline, 229
print_demo, 230
resid, 225

tools.h, 231
betacf, 233
betai, 234
EPS, 231
filter_whitespace, 234
FPMIN, 231
gammln, 236
loopy, 232
MAXIT, 231
odd, 232
pipe_getline, 236
print_demo, 237
SIGCUTOFF, 233
SQR, 231

total _bits

GenAlgoGenerator, 127

totalmoves

GaTrainerInterface, 122

tothreadq
Subthread, 165
train
global data_t, 133
TRAIN_FILE
Ga, 95
traingainterface.cpp, 238
LOG, 238
operator>>, 238
resid, 239
ttest
Ga, 109
TURN
subthread.h, 221
tutest
Ga, 109
twoPoint ExtendLocations

264

ExtenderAgent, 88
twoPoint Extend Value
ExtenderAgent, 88

uniform-cost search, see search tech-

niques
unlock
Game, 112
UPDATE
subthread.h, 221
update
Agent, 72
Blackboard, 76
ExtenderAgent, 87
FollowerAgent, 91
GroupStatsAgent, 135
OpenerAgent, 150
RandomAgent, 157
TigersMouthAgent, 171
usi_p
game.h, 194
usi_t
exodus.h, 187

valid_location

Board, 85
var

Population, 152
verbosity

global data_t, 133
VERSION

exodus.h, 185
version

global data_t, 133

wei-chi, 6
wei-qi, 6
weights
GenAlgoGenerator, 126
weights_loaded
GenAlgoGenerator, 126
welcome
global data_t, 132

whichmax

Population, 152
whichmin

Population, 152
white

Stone, 159
WHITE_BIT

Stone, 161
whose_turn

Game, 113

Moderator, 144
WRITE

GUlIInterface, 138
wturn

Game, 111

xsite
Individual, 141

265

