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Abstract 

 
The use of Ground-penetrating Radar (GPR) for geological exploration, 

among others, is gaining widespread acceptance. The estimation of electrical 

parameters (permittivity) from data collected using a Ground Penetrating Radar 

(GPR), also called Electromagnetic Inversion (EM) Inversion, is of immense 

importance for applications such as sub-surface characterization. Typically, inversion 

techniques attempt to reconstruct the permittivity profile of the target by comparing 

the measured target signatures with a model that closely follows the underlying 

physical phenomenon. This involves a mapping from the 3-dimensional domain to a 

one-dimensional domain. 

       However, this is a complicated problem in that the relationship between the 

dependent parameters and the observed radar data is not a linear one. Also, GPR data 

are corrupted with noise, scattering components and losses due to the random nature 

of the underlying subsurface and due to the attenuation of high frequency components 

through subsurface layers. Therefore, conventional windowing and Fourier Transform 

techniques are not adequate for the purposes of enhancing the weaker signals 

embedded in the sidelobes of strong reflections from surface or subsurface layers; and 

characterizing the surface and sub-surface features, specifically, to estimate the 

underlying permittivity profile.  

Thus, it is necessary to develop a signal processing approach that should 

minimize the range sidelobes for enhancement of weaker sub-surface features and 

then estimate the unknown permittivity.  

  xi



The main focus of this thesis is to develop an inversion technique that can 

estimate the underlying permittivity, given the GPR data from a multi-layered 

structure. Conventional methods such as the Fourier transform and MMSE 

Minimization seem to offer a solution, but suffer from a few limitations. Spectral 

Estimation techniques were studied and successfully implemented. The performance 

of all these approaches in simulations and on actual data from field experiments are 

presented in this thesis. Finally, a GUI for the inversion algorithm is also developed.  
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Chapter 1  
 

Introduction 
 
 
1.1 Motivation 
 
 NASA has structured the Mars Exploration Program (MEP) [1] for a series of 

highly ambitious missions to Mars over the next decade. The MEP plans to send 

several landers/orbiters to Mars to achieve some of the following objectives: 

1. To increase the understanding of the availability and amount of water on 

Mars. 

2. To identify the composition of rocks and soils within the Martian surface. 

3. To determine the nature of geological processes from surface morphology. 

4. To improve understanding of the Mars climate by analysis of in-situ materials. 

   In order to achieve these objectives, we need intelligent remote sensing 

techniques. In this regard, NASA designed the Mars Instrument Development Project 

(MIDP) to develop instruments that can be deployed on the Martian surface to gather 

geological data.  

 

1.2 Radars in Remote Sensing 
 
  The use of radars in remote sensing of the environment is well known [2]. 

The primary purpose of radars was to detect the presence of targets. However, with 

advancement in technology, radars are now being used to characterize the targets 
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based on their constituents. This is popularly known as the EM (Electro-Magnetic) 

Inversion Problem in Radar - where the goal is to estimate the composition of 

materials using data collected by a radar. A Ground Penetrating Radar (GPR) uses 

high frequency electromagnetic waves (typically from 10 MHz to 1,000 MHz) to 

extract information about targets.  

  In the field of geology, we come across a fundamental term called 

stratigraphy, which is defined as the physical distribution of rocks and soils beneath 

the target surface under observation. From a radar point of view, stratigraphy refers to 

the distribution of the electrical properties (permittivity and permeability) of 

materials.   

 The EM wave radiated from a transmitter antenna travels through different 

media (at a velocity governed by the electrical properties of the material) and if it 

encounters a boundary with differing electrical properties, a part of the wave energy 

is reflected or scattered back to the surface, while part of the energy continues to 

travel downward. The amplitude of the reflected signal depends on the dielectric 

contrast between successive media. The radar receiver collects the composite return 

signal consisting of several returns from various layers of different dielectric 

constants. 

 NASA, in association with the Italian Space Agency has developed MARSIS 

(Mars Advanced Radar for Subsurface and Ionosphere Sounding) to be tested in the 

Martian surface [3]. This instrument will perform sub-surface sounding of the 

Martian crust. The collected data will then be processed to characterize subsurface 

  2



features. More specifically, scientists are interested to know if water exists on Mars. 

This forms a major motivating factor for this thesis. Here, we address the problem of 

estimating the permittivity (dielectric constant) profile of any multi-layered media 

using GPR recorded data. This necessitates the development of robust signal 

processing schemes that can estimate the unknown electrical parameters from a 

composite signal seen by the radar. From a mathematical point of view, this problem 

is called Parameter Estimation. Figure 1-1 illustrates the problem statement 

pictorially. 
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Figure 1-1 EM phenomenon for a Multilayered target case; A typical permittivity profile 

  

 There are many problems in estimating the underlying parameters from the 

radar data. If the radar measures only the reflections from layers with contrast in 

permittivity, then it is easy to estimate the unknown parameters. However there are 
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several other factors like scattering, attenuation and additive noise that corrupt the 

return and hence this is a non-linear problem and without any prior knowledge of the 

geo-physical parameters, it is hard to find a solution to this problem. 

           Conventionally, the Fourier (or Inverse Fourier) Transform algorithm is 

applied to the received signal (in frequency domain/time domain) signal and is 

converted into the range profile. This composite return may contain weaker signals 

from deeper layers. The major disadvantage of using Fourier transform techniques is 

the range side lobes, that can mask weaker reflections from deeper layers [4]. 

Normally, windowing functions can help reduce the side lobes of strong reflections. 

However the use of these windowing functions will attenuate the lower frequencies 

that contain most of the information about the deeper structure of the surface. Hence, 

it is necessary to develop a signal processing algorithm to minimize the range side 

lobes for enhancement of sub-surface features and then estimate the unknown 

parameters. 

 

1.3 The Model Based Approach 
 
 Typically Model based techniques attempt to estimate the unknown 

parameters by comparing the measured radar target signatures with a mathematical 

model such that it closely follows the underlying physical phenomenon. Figure 1-2 

below depicts the model based approach to data inversion.  
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Figure 1-2  The Model Based Approach for data inversion 

 Broadly, Model Based Techniques fall under two categories – MMSE 

Minimization and Spectral Estimation. In the MMSE minimization approach, the 

unknown permittivity is estimated based on the principle of minimizing the mean 

square error between the measured and the modeled data. The Gauss Newton Method 

and Kalman Filter algorithm [5] are two well known algorithms in this category. In 

the spectral estimation approach, permittivity is estimated by first estimating 

unknown frequency components in the return signal spectrum and then estimating 

reflection coefficient amplitudes with a likelihood estimator. Well known spectral 

estimation algorithms are the Multiple Signal Classification (MUSIC) algorithm, 

Minimum norm algorithm and the Eigen vector algorithm. In all of these algorithms, 

it is necessary to have a good GPR response model (forward model) that relates 

model parameters to the underlying geo-physical phenomenon. 
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 In order to model a GPR response, there are a variety of simulation methods. 

For a basic first order simulation, a simple convolution based modeling technique is 

used. For more accurate results, the effects of scattering due to random surfaces and 

the three dimensional antenna beam pattern can be obtained using complicated 

methods such as the Finite Difference Time Domain (FDTD) method, at the cost of 

complexity and computational time.  However, in this research, we have considered 

the first method- The Convolution based approach for simplicity.  

 

1.4 Organization 
 

This thesis is organized into 6 Chapters. The fundamental concepts and 

parameters necessary for the modeling of GPR data are discussed in Chapter 2. 

Chapter 3 gives an overview of the Inverse problem, the use of Model Based 

Techniques for Inversion, a few techniques available and a detailed analysis of a 

super-resolution method- The MUSIC Algorithm and its advantages over iterative 

MMSE minimization methods. Chapter 4 presents a few simulations for inversion on 

FMCW radar data and an analysis of the performance of MUSIC. Chapter 5 describes 

the testing of the Inversion algorithm on actual FMCW radar data collected during 

field experiments in Antarctica and Greenland. The algorithm was also tested in the 

sandbox facility of the Remote Sensing Lab (RSL) of the University Of Kansas. The 

results of this test are also presented. Chapter 6 describes the Graphical User Interface 

(GUI) developed for the Model Based Inversion. The concluding chapter summarizes 

our work and contains some recommendations for further research. 
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Chapter 2  
 

Forward Modeling of radar return 
 
 
 
 To study any physical (or geophysical) system, the scientific procedure to be 

followed as given in [6] is: 

1. System parameterization: This involves discovering the set of model parameters  

 whose values completely characterize the system. 

2. Forward Modeling: This involves discovering the underlying physical 

phenomenon  

 and deducing a mathematical relationship between the model parameters and 

actual observations. 

3.  Inverse Modeling: This involves the use of the actual results of some  

 measurements of the observable parameters to infer the actual values of the 

model  parameters. 

 We first examine the mathematics of a forward model and its need. As stated 

in chapter 1, we are interested in estimating unknown parameters, given an 

observed data set. We therefore need to identify the parameters that are required. 

Once these parameters are identified, we can establish a mathematical relationship 

between the given data and the parameters to be estimated. Then, depending on 

the type of relationship (i.e., linear or non-linear), the inverse solution can be 

constructed. In this chapter, we will look at the parameters necessary to 

  7



successfully model a GPR return and derive a mathematical relationship between 

the known data and the unknown parameters. We now look at a case where we 

wish to model the returns from a multilayered target.  

 

2.1  Plane wave propagation in Multi-layered Media 
 
 

In modeling horizontally layered media, it is a common approach to consider 

plane wave approximation for EM propagation [7]. This means that it is assumed that 

the multiple layers are perfectly planar and that the antenna beam is like a pencil 

beam as shown in Figure 2-1.  

 

Figure 2-1Multi-layered target with different dielectric boundaries 

 

2.1.1  Permittivity  

For any geo-physical phenomenon, there has to be an equivalent electrical 

parameter. In the case of reflected radar signals, there is an underlying fundamental 
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electrical parameter that is responsible for the reflection of EM waves. This parameter 

is called the permittivity or the dielectric constant of the material. In the field of 

electromagnetics, permittivity is a measure of how much a medium changes to absorb 

energy upon the influence of an electric field. For good dielectric materials, 

permittivity is a real quantity and is determined by the displacement current flowing 

through it. In the case of a lossy medium, conduction currents also flow through the 

material, and we define a complex value for permittivity [7] as  

''' jε−ε=ε                                                  (2.1) 

where  is the real part of permittivity and it represnts the capacity of the 

medium to store EM energy. The imaginary part of permittivity, represents the 

EM energy losses [7] (due to absorptive properties of the medium). In general, 

permittivity is a function of frequency, but for the purposes of simplicity, we will 

assume a frequency- independent situation for our problem. 

'ε

''ε

Every material on earth has a unique value of permittivity. If not for the 

concept of permittivity, we wouldn’t be able to distinguish between ice, water and 

snow, which are just different forms of the same material. Ice has a permittivity of 

around 3.14, it is around 80 for water, and for snow, it can vary depending on its 

density and moisture content. Hence, the underlying permittivity is responsible for 

each of these materials interacting in a different way with the same incident EM 

wave. As will be seen in the next chapter, radars exploit this phenomenon and are 

successfully being used in remote sensing to characterize materials. 
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2.2  Wave Propagation Phenomena 
 
  When EM wave propagating down strikes layers of differing dielectric 

constants, the following phenomena occur:  

2.2.1 Reflection & Transmission  

Whenever an EM wave encounters a dielectric interface, a part of the incident 

signal is reflected back to the source and a part of it propagates into the layer. The 

reflected signal amplitude is proportional to the reflection coefficient at the dielectric 

interface defined as the ratio of the positive directed field divided by the negative 

directed field or alternatively, the ratio of the reflected wave divided by the incident 

wave. In mathematical terms, the reflection coefficient denoted by  is defined [7] 

as:  

kΓ

   ( ) ( )1 1k k k k kε ε ε ε+ +Γ = − +                         (2.2) 

where  is the permittivity of layer kε k and 1k+ε represents the permittivity of the next 

layer. The portion of the EM wave transmitted can be derived recognizing the 

boundary condition at the interface , by which the sum of the power transmitted ( ) 

into the layer and that reflected (

TP

PΓ ) from the layer is equal to one, i.e., , 

where 

T
P PΓ+ =1

2

,k kPΓ = Γ                                                (2.3) 

If  we define the transmission coefficient at layer k as ,  kT
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2

T ,k kP T=                                                (2.4) 

the value of reflection coefficient will be 

2

kT 1 k= − Γ                                              (2.5) 

which then yields 

2

1 14 + +
⎡ ⎤= +⎣ ⎦k k k kT ε ε ε ε k                             (2.6) 

 

Hence, a positive value of reflection coefficient indicates an increasing dielectric 

profile and a negative value indicates a decreasing profile at the interface. 

 

2.2.2  Attenuation 

   As seen earlier, EM energy returns to the radar because of reflection. 

However, part of the EM energy that is not reflected propagates further into medium 

and can get attenuated. Given below are some of the phenomena that may attenuate 

an EM signal. 

 
2.2.2.1 Scattering 
 

Scattering is a phenomenon that occurs due to the interaction of EM waves 

with irregular (rough) surfaces. Hence we have the concept of Surface scattering. A 

signal ray incident normally on this rough surface does not undergo specular 

reflection. Instead, it is scattered in different directions and causes a reduction in 

  11



return signal. The signal loss is usually a function of the Root Mean Square (RMS) 

surface height. To account for the attenuation due to surface scattering, we are 

required to model this effect. Commonly used are the Kirchoff Approximation and 

Geometric optics models. But, for simplicity, a generally accepted technique is to 

account for roughness by approximating surface and sub-surface layers by a Gaussian 

random variable that incorporates the randomly varying height profile. The average 

impulse response of the surface in the form of a Gaussian specular point-density 

function [8] is given by equation 2.7 below. 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

−

⎟
⎠
⎞

⎜
⎝
⎛

= 2

2

2 2
2

exp
2

2

1)(

cc

h
ss

σ
τ

σ
π

τ                                        (2.7) 

where  is the rms variation of surface height, sσ τ  is the time delay variable 

corresponding to the two way distance traveled by the signal, c is the velocity of the 

EM wave. 

 The second type of scattering is called Volume Scattering. Volume scattering 

occurs because the multiple target layers are not homogenous. Rather, the layers are a 

mixture of particles suspended in a background medium. For example, snow can be 

considered as ice suspended in a background medium of air. Particles of ice scatter 

the incident signal in all directions. This phenomenon further causes loss of signal 

and needs to be accounted for. Generally, the loss due to volumetric scattering is 

modeled by a “Volumetric scattering coefficient” which is a function of the volume   
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of the suspended medium, volume of the background medium and the number of 

scattering particles per unit volume [9].   

2.2.2.2  Absorption 
 

Certain materials have the property of absorbing EM radiation when incident 

on them. Hence, the EM wave is attenuated. From an electrical point of view, we 

normally include an “Absorption coefficient” to model the attenuation due to 

absorption [10]. This coefficient depends on the particle size, wetness percentage, 

type of background material, etc. 

2.2.2.3  Spreading 
 

Due to the antenna beam pattern, the signal transmitted through the 

atmosphere experiences a loss in power at a rate inversely proportional to the distance 

travelled. If a signal with power is transmitted by an antenna having gain , the 

power at a distance R from the antenna is given by  

tP tG

r t t 2

1P PG
4 R

⎛ ⎞= ⎜ π⎝ ⎠
⎟                                                    (2.8) 

The term in brackets is called Free space spreading loss due to the shape of the 

antenna beam. Hence, for a two way distance of 2R, there is a loss of ( )2R4
2

π
 due 

to spreading.  

 
2.3 Modeling Target Response 
 

If all of the above factors can be accurately determined, we can essentially 

construct the radar return using simulations. This is called the Forward Modeling of 
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radar signal. So far, we looked at various factors that can influence radar return and 

their mathematical interpretation. Now, we will look at combining all these factors to 

model the overall composite signal that reaches the radar receiver. Figure 2-2 below 

gives a simplified notion of the discussion thus far.  

 

        

 

  

 

 

 

Transmitted EM Signal 
  X(t) 

Received 
Signal 
 y(t) 

Target Response 
   h(t) 

Figure 2-2 Block diagram of the forward modeling problem 

 
The response of a system to an impulse is called the Impulse Response of the 

system. The impulse response of a multi-layered target can be modeled from its 

contributing parameters discussed above. In order to model the physical phenomenon, 

a widely accepted method is the Convolution-Based scheme based on one 

dimensional modeling [4]. This means that, if we denote the transmitted signal as x(t) 

and the target response as h(t), then the received radar signal is simply the 

convolution of x(t) and h(t). This is based on the assumption that plane wave 

propagation or ray propagation model holds good to represent the phenomenon. 

Convolution in the time domain corresponds to multiplication in the frequency 

domain. Hence, we can also write: 
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Y(f) = H(f) . X(f)                                       (2.9) 

where each of these terms represents the transfer function of its corresponding 

impulse response. A graphical illustration of the overall forward modeling problem 

[11] is presented in figure 2-3.  

 

Figure 2-3 Simulation Flowchart 

 
The RSL radar simulation package [12] based on theoretical models in [9,10] 

gives a good overview of the forward modeling problem and discusses various 

models used to simulate radar return responses for different  types of propagating 

media.  
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2.4 Three Dimensional FDTD modeling 

In the discussion so far, we have assumed a plane wave propagation model or 

a two-dimensional approximation of the three-dimensional phenomenon of EM wave 

propagation. Though this approximation can serve as a good starting point for 

modeling studies and inversion techniques, it cannot accurately model an actual radar 

target response. A much sophisticated technique is called the FDTD or Finite 

Difference Time domain technique of simulating three-dimensional phenomenon by 

implicitly including  additional electromagnetic phenomena such as multiple 

reflections, interferences, geometrical spreading, ray focusing, phase shifts, etc., 

which are ignored by the convolution model seen earlier [13]. The numerical model is 

based on an FDTD set of Maxwell’s curl equations implemented on a staggered grid 

with absorbing boundary conditions. 

However the performance of FDTD forward modeling requires a huge number 

of model points and computing time, complicating simple implementation. Hence, in 

this thesis we will focus on the convolution model for simplicity.  

 

2.5 Summary 
 

In this chapter, the forward modeling problem was discussed, which involved 

converting geophysical parameters into electrical parameters (by applying appropriate 

models from the literature) and then forming a mathematical expression for the 

response of the target assuming a horizontally layered profile. In the next chapter, we 

will look at the inverse problem.  
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Chapter 3  
 

The Inverse Problem 
 
3.1  Parameter Estimation 

 

In the previous chapter, we discussed the forward  modeling problem where a 

mathematical model is used to represent a physical phenomenon using model 

parameters such as permittivity, target distance, transmit power, antenna gain, etc. We 

now proceed to discuss the Inverse Problem – which means to estimate the values of 

model parameters from the measured data.  

  Inverse permittivity profiling is one such problem where the unknown 

parameter (permittivity) needs to be estimated from the received radar data. More 

specifically, for our research, we are interested in estimating unknown permittivity 

values given the data measured by a GPR. This problem is called Electro-Magnetic 

Inversion or EM parameter Estimation. There are several parameter estimation 

methods; however each of these methods is applicable only to certain types of 

inversion problems. In this chapter, we will explore some of the existing methods and 

their relative merits and demerits. 

Several problems in data inversion deal with estimating parameters based on 

continuous-time signals. However, modern radar systems use digital computers to 

sample and store analog waveforms, and hence we have the equivalent problem of 

extracting parameter values from a discrete time waveform or a discrete data set [14]. 
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Mathematically, let us assume that the data set [ ] [ ] [ ]{ }1Ny....,,1y,0yY −=  represents 

the sampled version of the observed data, where N is the number of samples in the 

waveform. This data set depends on an unknown parameter m and we wish to 

determine the set of values m based on the data set or, equivalently, we wish to 

define an estimator [6,15] 

Y

[ ] [ ] [ ]( )1Ny....,1y,0yGm̂ −=                              (3.1) 

where  is some function. This is called the general Parameter Estimation 

problem from a mathematical perspective. For our remote sensing problem, the data 

set denoted by  is the data obtained from a GPR; translates into the set of 

permittivity values  (permittivity profile) that we wish to estimate. To determine 

a good estimator, the first step is to mathematically model the data. From chapter 2, 

we have a forward model, denoted by 

G

Y m̂

ε̂

( )mF  which relates the actual model 

parameters (m) to the composite target response. Mathematically, F may be a linear 

or a non-linear function in m . However, the signal that reaches the radar receiver is 

not just the planar target response, but also a sum of the target response, noise and 

other errors which can be systematic or random. Hence, we can write the total 

observed data set as [6,15] : 

( ) ( ) Snn,mFnY ++=                              (3.2) 

where  denotes additive white Gaussian Noise (AWGN) and S  denotes 

systematic or random errors which clutter the total signal returned to the radar 

n
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receiver. For the radar problem, n could represent thermal noise and quantization 

errors. S can be used to represent system non-linearities and returns due to clutter. 

Before proceeding to estimate given ,  needs to be eliminated from the 

observed data by suitable calibration techniques. We are now left with the problem 

of estimating m from data corrupted by white Gaussian Noise. We will now look at 

a few techniques that attempt to meet our objectives. 

m Y S

 
3.2  Inversion by Layer Stripping 
 

Layer stripping [16] is an elementary approach for data inversion. Continuing 

the discussion in the previous section, let us assume that we have eliminated clutter 

from the observed data. Hence, ideally, we are left with a delayed and attenuated 

version of the transmitted signal. As mentioned earlier, the Fast Fourier Transform 

(FFT) algorithm is applied on the received waveform to obtain the spectrum of the 

signal. A plot of this signal with respect to the distance axis will show the occurrence 

of sharp peaks at interface locations. Ideally, the amplitudes of these peaks will 

correspond to the reflection coefficients (and transmission coefficients) at their 

respective interface locations. That is, the amplitude of reflected signal at any layer k 

is given by equation 3.3 as 

kL

k k k j
k 1 j 1

A B T
= =

= Γ∑ ∏                                           (3.3)  

where  represents the attenuation coefficient, which accounts for losses due to 

absorption, scattering and spreading. However, modeling the attenuation coefficient 

kB
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requires some a priori information regarding the properties of the target. Hence, for 

our inversion problem, we will assume that the lossy part of the medium (which 

contributes to the attenuation coefficient) is known. We also assume that the 

transmission coefficient for the first layer (air) T1 = 1.  The “ideal” amplitude of the 

surface reflection will be 1 1TΓ , the subsequent layers will have amplitudes 

; and so on. The locations of their corresponding distances are 

directly related to their respective time delays. If represents the height of the 

surface from the antenna and  represents the depth of the k

2 1 2TTΓ 3 1 2 3TT TΓ

0Z

kz th layer in a multi-

layered media of L layers, the two-way time delay kτ experienced by the signal is 

given as 

  = kτ ( )1
1

2
−

=

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
∑

k

o i i
i

z z z
c iε                                  (3.4) 

 The idea in layer stripping is that we first identify the amplitudes ( ) and the 

locations of interfaces ( ’s) from the range profile of the received signal. Once 

these values are known, it is easy to determine unknown variables (permittivity 

values) recursively using equations (3.3) and (3.4). 

kA 's

kτ

The first task is the detection of echoes. This is done by setting a reasonable 

threshold amplitude value based on the Signal-to-Noise ratio (SNR) of the system. 

All amplitudes that cross this threshold are picked as valid returns. The positions 
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corresponding to these returns constitute the distances (delays). These values are used 

to recursively estimate the permittivities.   

However, since the detection of echoes is performed without any reference to 

a geophysical model, this approach suffers from the following limitations. 

1. Missed Peaks: Since the detection of echoes is done by setting a threshold by 

looking at the range profile, the value of the threshold is important. In certain profiles 

consisting of small dielectric variations, the reflection at that interface could be very 

small and could be embedded in noise. Hence, without any knowledge of the profile, 

an arbitrary threshold value might cause missing of that peak. Hence, this leads to an 

error in the estimated permittivity profile. 

2.  False Alarms: In many cases, we might not be able to distinguish between actual 

signal peaks and false alarms – which are unwanted reflections that arise due to the 

presence of random noise or reflections due to clutter/external factors. The selection 

of false alarms as signal peaks can also lead to erroneous permittivity profiles. 

3. Range Sidelobes: To obtain the range profile, the Fourier transform algorithm is 

usually applied on the IF beat signal measured by an FMCW radar. But, this method 

suffers from the problem of range sidelobes. That is, the weaker reflections (smaller 

reflection coefficients) are masked by the sidelobes of stronger reflections. Hence, 

this presents a serious impediment when identifying valid peaks from the range 

profile for data inversion. 

 Hence, we find the need for a more robust parameter estimation algorithm – 

preferably one which incorporates the underlying physical phenomenon. In chapter 4, 
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we will present simulations using the layer stripping technique and demonstrate cases 

where they can successfully invert the data and also cases where they suffer from the 

limitations as discussed earlier.  

 

3.3 Model Based Estimators 
 

Stergiopoulos [17] suggests that, if the physical phenomenon is incorporated 

into the algorithm, the inversion results are better. Such an estimator, which uses the 

geophysical model to estimate unknown parameters is called a Model Based 

Estimator.  

Let us revisit equation (3.2) which gives a mathematical relationship between 

the observed data and the model parameters by a forward model F . Typically, in 

radar problems, the function F  is non-linear. Therefore, our objective is to find a 

model-based non-linear estimator of m . This problem is also called fitting of a 

nonlinear regression model. Kay [14] suggested the use of Minimum variance 

unbiased  (MVU) estimators for such a problem. By unbiased estimators, we mean 

that on the average, the estimator will yield the true value of the unknown parameter 

or the MVU estimator is the one which provides an optimum estimate of the unknown 

variables, at the same time exhibiting the minimum variance. However, these 

estimators require probabilistic assumptions about the observed data, or in other 

words, the estimator produces an unbiased output only when the Probability Density 

Function (PDF) of the data can be sufficiently determined. This can be possible only 
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in the absence of error components in the data. Hence we conclude that, in radar 

problems, MVU estimators cannot yield good estimates.  

This led to the development of Model-based algorithms which use different 

criteria for parameter estimation. Extensive literature search showed that two classes 

of algorithms could be used for inversion on GPR data. These model based 

approaches explored in this research are:    

1. MMSE (Minimum Mean Squared Error) Minimization – which is based on the 

least squares approach of minimizing the mean squared error between the 

observed data and the model.  

 
2. Spectral Estimation – This is based on estimating model parameters by first 

estimating the frequency components in the signal spectrum and then using the 

model to invert the observed data. A detailed view of both these methods is 

presented next.  

 
3.3.1  MMSE Minimization Algorithms 
 

 The MMSE approach dates back to 1795 when the famous scientist Gauss 

used the method to study planetary motions [18]. In this method, we attempt to 

minimize the squared difference between the observed data (given by equation 

3.2) and the assumed signal model or noiseless data , which is a function of the 

unknown parameter . This concept is illustrated in Figure 3-1 [14]. 

Y

F

m

 A fundamental assumption in this approach is that the signal  is 

purely deterministic. As discussed earlier, due to random noise or model 

( )n,mF
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inaccuracies, we observe a perturbed version of ( )n,mF , which is denoted as Y . 

The MMSE estimator of chooses the value that makes m ( )n,mF  closest to the 

observed data . ( )nY

 

 

 

 

 

(a) Data Model 

 

 

 

 

 

 

(b) Least Squared error 

Figure 3-1 The Least Squares Approach 

 

Closeness is quantified by the least squared error criterion given by equations (3.5) 

and (3.6) below 

( ) ( )(∑
−

=
−=

1N

0n

2n,mFnYQ )                                    (3.5) 

Signal 
Model ∑

m

F (n) 

+

Y 

Error = Q  

F (n) 

Model 
Inaccuracies Noise

m

Signal 
Model 

Perturbation
Y 
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OR 

( ) ( ) 2n,mFnYQ −=                                        (3.6) 

where the observation interval is assumed to be n = 0, 1 ,…, N-1. The value of  

that minimizes Q  is the MMSE estimator of . The performance of this method 

depends upon the properties of the corrupting noise as well as other external and 

internal sources of error in the system and in the observation. We will now explore 

two of the popular MMSE type inversion methods – the Gauss Newton Method and 

the Kalman filter method. 

m

m

 

3.3.1.1  Gauss Newton Method 

 As mentioned earlier, there is a non-linear relationship between the signal 

model and the model parameters. It is well known that non-linear least squares 

problems are difficult to solve. They must first be converted into linear form. The 

iterative Gauss Newton method [16] gives a solution by linearizing the model 

( n,mF ) about some nominal m and then uses the linear least squares procedure as 

described in [14,16] .  

( ) ( ) ( )[ ]( )ccmc mmmFmFmF −∇+≅              (3.7) 

where  indicates the matrix of partial derivatives of ( cm mF∇ ) ( )mF  with respect to 

model parameters evaluated at cmm = .The variable - which denotes the set of cm
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current model parameters. Revisiting equation (3.4) , we can derive the solution of the 

non-linear problem as follows.   

                       (3.8)    ( ) ( )(∑
−

=
−=

1N

0n

2n,mFnYQ )

( ) ( ) [ ] [ ]
0 0

2
N 1

0
n 0

m m m m

F m, n F m, n
Y n F m, n m m

m m
−

=
= =

⎛ ⎞∂ ∂
≈ − + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∑ (3.9) 

To initiate the algorithm, we begin with a starting guess for the model parameters, 

denoted by . Proceeding further, equation (3.8) can be written as    0m

( ) ( ) ( ) T

0 0 0 0Q Y F m H m m H m m= − + −⎡ ⎤⎣ ⎦  *       

                                    ( ) ( ) ( )0 0 0 0Y F m H m m H m m− + −⎡ ⎤⎣ ⎦            (3.10)                               

where we define H as the matrix of partial derivatives of the modeled data with 

respect to the model parameters m. Now since we have a linear model, we can use the 

theory of least squares error minimization [15] where the model updating is obtained 

by back projecting the residual i.e., ( )mFY−  onto the model space to obtain the 

solution. Equation (3.9) can be solved to obtain the Least square error estimate as: 

( ) ( ) ( ) ( ) ( )1T T
0 0 0 0 0m̂ H m H m H m Y F m H m m

−
= −⎡ ⎤ ⎡⎣ ⎦ ⎣ 0+ ⎤⎦   (3.11) 

    ( ) ( ) ( ) ( )1T T
0 0 0 0m H m H m H m Y F m

−
= + −⎡ ⎤ ⎡⎣ ⎦ ⎣ 0 ⎤⎦          (3.12) 

This can be iterated so that 

     k 1 km m+ = + ( ) ( ) ( ) ( )1T T
k k k kH m H m H m Y F m

−
−⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦           (3.13) 
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The implementation details of this algorithm are presented in chapter 4. 
 
3.3.1.1.1 Limitations of the Gauss-Newton Technique: 
 
 Now, we will look at common problems encountered when fitting nonlinear 

regression models.  

Convergence Issues:  

Methods of parameter estimation like the Gauss-Newton MMSE algorithm 

and MVU estimate algorithm which are iterative procedures suffer from convergence 

problems. As discussed earlier, the algorithm produces an estimate m  that minimizes 

the mean squared difference between the observed and the model parameters. To 

find the optimum estimate, the algorithm is initiated with a starting guess  or, for 

convenience  and then sequentially find 

ˆ

Q

0m

( )1m ( ) ( ) ...,m,m 32  in such a way that the 

sequence finally converges to m - which yields the minimum mean squared error. 

This process is called convergence and the value of MMSE obtained is called the 

Global minimum.  

ˆ

In simple mathematical terms, a global minimum of a function is the lowest 

value that the function achieves. In our case, this function is the error function that we 

are trying to minimize. If we assume the function to be a surface, then a Global 

minimum is the lowest point on that surface. MMSE minimization algorithms are 

typically based upon a quadratic approximation to the error function . Seber 

[15] suggests that the Newton method will converge provided the starting guess 

(mQ )
( )1m  
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is close enough to the estimate . However, in a few cases, global minimum 

convergence is not achieved. The algorithm could result in a local minimum. The 

local minimum of a function is a point which has a value lesser than all points next to 

it. Using the example of a surface, a local minimum is the bottom of a valley or a 

bowl in the surface somewhere. Figure 3-2 below depicts this concept [19] .  

m̂

 

Figure 3-2 The concept of Local and Global minimum 

If this guess 
( )1m  is close to point B in the above figure, then the convergence is most 

likely local and when  is around point A, then the algorithm will yield a global 

minimum value.  

( )1m

 Apart from the problem of local minimum convergence, MMSE methods at 

times, do not converge at all. Again, as in the local minimum case, convergence is 

sensitive to the starting guess. A bad starting value ( ( )1m ) can either result in a local 

minimum or may never converge at all. However, MMSE minimization techniques 

are still widely used to solve non-linear problems because they can fit a broad range 

  28



of functions. Also, they produce good estimates of the unknown parameters in the 

model with relatively small data sets [14].  

 A simple, but time consuming approach to circumvent the problem of 

convergence is to run this algorithm with several starting guess values and select the 

case with the least error. Also, the model parameter values at every iteration need to 

be constrained and should not be permitted unlimited freedom of movement. A few 

methods of constrained optimization for non-linear regression are available in 

[15,20].  

Discretization of depth:  

 The first step in implementing the Gauss Newton method is the 

parameterization of permittivity with depth. This means that we first reduce the 

estimation problem to the necessary number of unknown parameters and decide the 

depth sampling constant based on the overall depth of the profile and on the range 

resolution of the radar so that the locations of dielectric interfaces can be identified. 

Minimization algorithms frequently run into the problem of producing unuseful 

solutions [16] when the true depths are not an integer multiple with depth sampling. 

For approximate depth sampling values, the algorithm gives a perturbed set of 

parameter values. More specific details on the implementation of the Gauss Newton 

method and its limitations will be presented through simulations in the next chapter.  

3.3.1.2  Kalman Filter Method 

 Diverging a little bit from the classical approach to statistical parameter 

estimation, where the parameter of interest m is assumed to be a deterministic 
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quantity embedded in random noise, the Bayesian approach assumes that the 

unknown parameter m is a random variable whose particular realization we are 

required to estimate. Bayesian estimators fall under two categories: MMSE based 

estimators and maximum a posteriori estimators [21]. The extended Kalman Filter is 

a type of non-linear Bayesian estimator. Before we go into the details of the Kalman 

filter, let us look at dynamic signal models for Bayesian estimators. A dynamic signal 

can be modeled as: 

( ) [ ]( ) ( )nwnmFnY +=                               (3.14) 

where  refers to the observed data samples; ( )nY [ ]( )nmF  represents the 

transformation from the state variables (or the vector model parameter variable m) to 

the ideal observations (without noise). ( )nw  represents zero mean additive white 

Gaussian noise with independent samples. The state equation for the extended 

Kalman filter is: 

( ) ( ) [ ]nu1nmnm +−=                              (3.15) 

where  accounts for modeling errors and unforeseen inputs. The non-linear 

model  has to be linearized using the Gauss Newton approach discussed 

earlier. More specific details on the implementation of the Extended Kalman Filter 

are given in [14]. The performance of the Kalman filter is very sensitive to the 

accuracy of the linearization operation and hence, this approach too suffers from the 

problems discussed in the earlier section.  

[ ]nu

( n,mF )
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3.3.2  Spectral Estimation Techniques 
 
 Spectral estimation deals with estimating the frequency components (or 

spectral components) of a signal given a noisy measurement. So, the question that 

comes up is - How is this method related to parameter estimation? In many problems 

that deal with parameter estimation, the spectral components that make up the 

frequency response of the cumulative radar return are related to the time delays 

experienced by EM waves as they strike dielectric interfaces. Once we estimate the 

individual delays, the reflection coefficients can be estimated using a maximum 

likelihood estimator and eventually, the permittivity profile can be reconstructed.  

To estimate the power spectrum of a process, typically, the power spectral 

densities need to be known. However, as in our problem of noisy radar data, this 

information is not available. The power spectrum needs to be estimated from the 

observation of the process itself.  

 The simplest example of spectral estimation of a random process is the fast 

Fourier transform or the FFT. But as seen earlier, the range side lobes associated with 

the FFT pose a serious challenge in resolving reflections from weak reflecting 

boundaries. To be more precise, the deeper reflections from dielectric interfaces are 

weak and they get buried under the side lobes of stronger reflections and hence, the 

Fourier transform method does not provide a high-resolution estimate of the 

underlying spectrum. However, if this random process can be modeled, then the 
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spectrum may be estimated with the use of high resolution spectral estimation 

techniques.  

Broadly, there are two approaches for spectral estimation : Non- Parametric 

and Parametric approach. In the classical Non-parametric approach, the power 

spectrum is estimated by taking the Fourier transform of the autocorrelation sequence 

of the given measurement. However, the limitation with the non-parametric approach 

is that they are not designed to incorporate apriori information about the process into 

the estimation procedure. Hayes [21] suggested that incorporating a model for the 

process into the spectral estimation algorithm yields a more accurate and higher 

resolution estimate of the spectral components. This leads us to the parametric 

approach. 

 In the parametric approach to spectral estimation, the first step is to select an 

appropriate model for the process. This could be based on apriori knowledge about 

how the process is generated or on experimental results, which fit a model to the 

observation. Commonly used models include the Autoregressive model (AR), 

Moving average model (MA), autoregressive moving average (ARMA) and harmonic 

models. Once the model has been decided, the next step is to estimate the model 

parameters from the given data. The last step is to estimate the power spectrum by 

incorporating the estimated parameters into the parametric form of the spectrum. 

 The nature of our problem suggests the use of harmonic model. This means 

that we can consider the problem of radar signal detection as an equivalent  problem 
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of estimating unknown frequencies (that correspond to specific layers) from a 

composite radar return signal corrupted by noise.     

 Let us consider ( )nx  to be the return signal, which is the sum of 

complex exponentials in noise. Equation 3.16 below defines this idea 

mathematically 

( ) ( )i

p
jn

i
i 1

x n A e w nω

=

= +∑                        (3.16) 

where 
ij

ii eAA φ=  represents the complex amplitude of the ith sinusoid in 

the composite signal; represents an uncorrelated random variable uniformly 

distributed over the interval 

iφ

[ ]ππ− ,  . From the standpoint of our problem, the 

known quantity is the received signal and the unknown terms are the frequencies 

 and magnitudes of the complex exponentials in iω iA ( )nx . Thus, the power 

spectrum of  consists of a set of p sinusoids at frequencies  in addition to 

the power spectrum of additive noise 

( )nx iω

( )nw . Typically, the complex exponentials 

are the information bearing part of the signal and we are interested in estimating the 

frequencies and amplitudes rather than the power spectral density. Estimation of 

unknown parameters using spectral estimation techniques involves : 

1. Finding the auto-correlation matrix of ( )nx  denoted by  xR

2. Eigen decomposition of into two sub-spaces : the signal subspace and the 

noise subspace. 

xR
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3. Estimation of unknown frequencies by evaluating a frequency estimation 

function 

Some of the popularly available estimation methods that can be used for parameter 

estimation are discussed in the following sub-sections. 

 

3.3.2.1  The MUSIC Algorithm 

 Schmidt [22] came up with a super-resolution frequency technique called 

MUSIC, which stands for MUltiple SIgnal Classification. This method is an 

extension of the Pisarenko Harmonic Decomposition method [21] which works on 

the principle that it is possible to estimate unknown sinusoidal components in noise 

from the eigenvector corresponding to the minimum eigenvalue of the 

autocorrelation matrix by exploiting the orthogonality of signal and noise.  

 To better understand how the algorithm works, let us first assume a random 

process that consists of a single complex exponential in white noise. As per the 

signal model defined earlier,  

( )nx  = ( )1
1

jnA e wω + n                                   (3.17) 

where A1 is the amplitude of the complex exponential and the other terms carry the 

same meaning as defined earlier. The autocorrelation sequence of  is ( )nx

( ) ( )1 2
1

jw
xr k P e kσ δ= + w                                (3.18) 
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 where P1 is the power in the complex exponential. The autocorrelation matrix for 

 is just a sum of the autocorrelation matrix due to the signal,( )nx sR , and the 

autocorrelation matrix due to the noise nR . Therefore, we have 

x s nR R R= +                                        (3.19) 

The signal autocorrelation matrix can be represented as: 

1 1 1
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1 1 1

1 1 1
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⎢ ⎥
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3)

M ω−

−

                     (3.20) 

and the noise autocorrelation matrix nR  is a diagonal matrix of full rank. 

                                                (3.21) 
2

n wR σ= I

Clearly, sR  is a matrix of rank one and has only one non-zero eigen value. It 

follows that the signal eigen vector is 

1 1 12 ( 1)
1 [1, , ,.... ]j j j Me e e eω ω ω−=                         (3.22) 

The signal autocorrelation matrix can be represented as: 

1 1 1
H

sR P e e=                                                   (3.23) 
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This yields the non zero eigen value of the signal to be 1M P . Also, it can be seen 

that the matrix sR  is Hermitian. Hence, we can say that the remaining eigen vectors 

2 3, ,... Mv v v will be orthogonal to .  1e

1 0; 2,3,...H
ie v i M= =                                    (3.24) 

This is called the Orthogonality condition. The same concept can be extended to 

two complex exponentials in noise and so on. For the case of two complex 

exponentials, sR  has two non-zero eigen values and hence, the first two eigen 

values of XR  are greater than 2
wσ , the variance of noise. Thus, for any number of 

complex exponentials, the eigen values and eigen vectors can be divided into two 

groups – the first group consisting of those eigenvectors whose eigen values are 

greater than 2
wσ  - called the Signal Subspace and the second group, consisting of 

eigenvectors whose eigen values are equal to 2
wσ  - referred to as the Noise 

Subspace. The eigen vectors form an orthonormal set since the autocorrelation 

matrix is Hermitian. Therefore, the signal and noise subspaces are orthogonal.  

 For MUSIC to work properly, we need many instances (return signals) of a 

radar measurement and the individual returns need to be uncorrelated. However, in 

many cases, the data obtained using a radar is coherent- this means that the signal 

components do not change between samples and hence the received signals need to 

be decorrelated. Yamada [23] suggested the use of Spatial smoothing pre-

processing (SSP) to decorrelate the individual returns. 
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The SSP method uses an alternative data correlation matrix  instead of the 

autocorrelation matrix 

SSPR

XR  of the composite return ( signal & noise).  Let us assume 

that we have L samples of measured data. These L samples are divided into M 

overlapping subarrays and denotes the data vector corresponding to the kkr th

subarray (where k= 1,2,3…. M). We define a correlation matrix as: kR

( ) ( )
P

p p H
k k

p 1

1R r r
P =

= ∑ k                                   (3.25) 

where p = 1,2,… P and P is the number of snapshots of the measurement. The data 

correlation matrix  can then be written as SSPR

 

M

SSP k
k 1

1R .
M =

= R∑                                        (3.26) 

 Now, the eigen value decomposition of this matrix can be performed to yield 

the eigen vectors denoted by  and their corresponding eigen values denoted by 

. Following the earlier discussion, the eigen values can then be divided into two 

groups : 

ie

iv

M  Signal eigen vectors and M p−  Noise eigen vectors, where  is of 

size M x M. If we compute the Fourier transform of the coefficients in , 

SSPR

iv

( )
1

0
( ) ; 1, 2 ,....,

M
j jk

i i
k

v e v k e i p p Mω ω
−

−

=

= = + +∑             (3.27)   
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which will have 1M −  roots or zeros. The orthogonality condition established earlier 

implies that ( j
iv e )ω  will be equal to zero at the complex frequencies present in the 

signal.  

We then form a frequency estimation function as in equation (2). 

( ) 2

1

1j
music M

H
i

i p

P e
e V

ω

= +

=

∑
                                  (3.28) 

The unknown frequency components are chosen as the locations of the  

largest peaks in the frequency estimation function of equation 3.28. To demonstrate 

the resolution capability of MUSIC, a 5 layer profile (with permittivities of 1, 3.4, 

3.7, 2.9, 2.7 varying with depth) is considered for example and the radar return signal 

is modeled using the Plane wave approximation as explained in chapter 2. The SNR 

of the signal is set to be 0 dB. Figure 3-3 shows the range profiles obtained using the 

FFT and MUSIC methods.   

p

 

 

 

 

 

 

 

 

Figure 3-3 FFT Vs Spectral Estimation Algorithm for enhancement of Profile 
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It can be seen that FFT is unable to resolve the reflections due to a very small 

permittivity contrasts (3.4 to 3.7 & 2.9 to 2.7). The side-lobes of the stronger 

reflections are clearly masking the weaker returns. The same figure shows the range 

profile obtained using an algorithm based on spectral estimation, where we find that 

this technique can effectively be used to enhance weak radar returns.  

Amplitude Estimation: 

Once the frequency components are chosen, the amplitudes at the location of the 

peaks can be estimated using the following equation 

 ( ) ( )
P1

pH H
k

p 1

1ˆ ˆ ˆŝ A A A r
P

−

=

= ∑                            (3.29) 

where  is the delay parameter matrix which models the sinusoidal base function of 

a given radar system and k = 1,2,…., M .  is a maximum likelihood estimator (for 

AWGN type noise) and it gives the estimated amplitudes at their corresponding 

frequencies. Using equations (3.3) and (3.4) recursively, we can estimate the 

permittivities of each of the layers.   

Â

ŝ

 
Limitations of Spectral Estimation Based Techniques: 
 
           Spectral estimation techniques for data inversion are very much sensitive to the 

accuracy of the process model. Any inconsistency in the model can lead to inaccurate 

estimates of the spectrum and hence, of the model parameters. Also, they do not work 

well in cases where the Signal to Noise Ratio is too low (say less than 5 dB). As 

discussed in an earlier section, the fundamental idea in this method is to separate the 
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signal subspace and the noise subspace. A bad SNR of the signal can distort the 

decomposed autocorrelation matrix and hence, this method too, is limited in its 

applications.  

       There are other eigen vector based methods such as the Minimum Norm 

Algorithm and the Eigen Vector Method which have subtle differences when 

compared to the MUSIC algorithm and their performance is close to that of MUSIC.  

 

3.4  Summary 
 
 In this chapter, the theory behind two well known methods based on MMSE 

minimization and spectral estimation were discussed. It was seen that both of these 

methods can potentially be used for the model parameter estimation problem under a 

few constraints. In the next chapter, we will look at a few simulations based on these 

methods and analyze their relative merits and demerits and decide on the approach to 

be followed when estimating parameters from actual radar data. 
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Chapter 4  
 
Simulations 
 
 

In the previous chapter, various methods for inversion of GPR data were 

discussed. In this chapter, we present simulations in MATLAB to better understand 

the working of these methods and to test their performance under various cases. All 

simulations are done for an Frequency Modulated Continuous Wave (FMCW) radar. 

The first step is to model the return signal from an FMCW radar. 

 
4.1 FMCW Radar Modeling 

The FMCW radar transmits a frequency sweep, also called a chirp signal [24]   

 (Figure 4-1). The reflected signal is basically an attenuated and frequency shifted 

version of the transmit signal.  

 

Figure 4-1  FMCW - Chirp Waveform 
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The composite reflected signal is mixed with a copy of the transmitted signal 

to determine the range of the target. The difference between the transmitted and the 

received signal is called the IF Signal or Beat Signal and the shift in received 

frequency is called the Beat Frequency, which is directly proportional to the range to 

the target. The instantaneous frequency of the transmit chirp is given by: 

( ) 0f t f t= +α                                            (4.1) 

     where is the starting frequency of the chirp, 0f α  is called the chirp rate defined as 

the ratio of bandwidth (B) to the sweep duration (T). From the geometry of figure  

4-1, we can derive:   

( )
bf

T B
2

τ
=                                                    (4.2) 

where  is the two-way time delay experienced by the signal as it strikes the target 

and returns to the receiver. It can be expressed as: 

τ

2R
c

τ=                                                       (4.3) 

where is the range to the target and c  is the velocity of the EM Wave in free space 

equal to . 

R

83 10 m / s×

Proceeding further, equation 4.3 can be expanded to yield: 

m
b

2RBf2RBf
Tc c

= =                                       (4.4) 
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To obtain a mathematical expression for the received signal, let us look at a 

simple model of the FMCW radar depicted in figure 4-2. 

 

 

 

 

 

 

 

 

 

 

( )beatV t

( )rV t

( )tV t

Low Pass 
Filter 

X

 
 

Target 

Transmitter 

Figure 4-2 Simplified Model of  an FMCW Radar 

                    

First the transmitted voltage is written as: 

( ) ( )2
t t 0V t A Cos 2 f t t= π +α +⎡ ⎤⎣ ⎦ 0θ               (4.5) 

where  denotes the amplitude of the cosine signal and tA 0θ is the starting phase 

of the transmitted signal. As discussed earlier, this signal is delayed in time and is 

also attenuated, by the time it reaches the receiver. Hence, the received signal can be 

written as: 

( ) ( ) ( )( )2

r t 0V t A Cos 2 f t t⎡ ⎤= Γ π − τ +α − τ +φ⎣ ⎦    (4.6) 
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where Γ  is the magnitude of the reflection coefficient of a single target and  is the 

phase of  Γ .  

φ

This signal reaches the mixer and is mixed with a copy of the transmitted 

signal . The output of the mixer consists of two components – the sum and the 

difference of the two signals. The sum signal, which consists of higher frequency 

components is filtered using a low pass filter. The output of the low pass filter can be 

simplified to yield:  

( )tV t

( ) ( ){ }( )beat 0 beatV Cos 2 f 2tτ = Γ π τ+ατ − τ +φ       (4.7) 

So far, we have only considered a single target case. Equation 4.7 can be 

extended to the case where we have multiple target layers. Hence, we need to include 

the reflection coefficient and delay corresponding to every layer. Also, as seen in 

chapter 2, the reflection coefficients of subsequent layers depend on the amount of the 

energy that is transmitted into the previous layers. Hence, the transmission coefficient 

needs to be included when considering multiple layers. Now, equation 4.7 can be 

modified to yield: 

( ) ( ){ }
k 1L 1

beat k k j 0 k k k
k 0 j 1

V A T cos(2 f 2t
−−

= =

τ = Γ π τ + ατ − τ +∑ ∏ n  (4.8) 

All terms carry the same meaning as detailed in chapter 3. As in any radar 

measurement, we account for noise by  modeling it by a Gaussian random variable. 

Here, we denote this variable as .  n
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 The Fast Fourier Transform (FFT) algorithm is applied on the beat signal 

( )beatV τ  to obtain the frequency response of the target, which is also called the 

Range profile or a plot showing the variation of received amplitude as a function of 

target distance. The algorithms discussed in the previous chapter will be tested 

through simulations on an FMCW radar model. All of these simulations were 

performed using MATLAB. 

 

Figure 4-3  A Multilayered Profile 

        

  To demonstrate the modeling of an FMCW radar, let us assume a multilayered 

dielectric profile as depicted in figure 4-3 shown above. The test profile consists of 

three layers with varying permittivity values and corresponding depths. Table 4-1 

below shows the parameters considered for simulation along with the geophysical 

profile vectors  and Z .  rε
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Table 4-1 Radar parameters and geophysical parameters for FMCW radar modeling 

 
Bandwidth 6 GHz 

Start Frequency 2 GHz 

Sweep time 10 ms 

Chirp rate  300 GHz/s 

Permittivity vector rε  [1      3    6] 

Depth vector Z (cm) [5     10]  

Beat frequency vector 

b

2RBf
Tc

= (Hz) 

[ 400  1785.6] 

 

 

 

 

 

 

 

 

 

The beat frequencies corresponding to their respective distances are also 

indicated in the table above. Figure 4-4 below shows the range profile obtained by 

modeling the above profile of table 4-1 as per equation 4.4.   

 

Figure 4-4  Range Profile obtained by taking IFFT  
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We can see peaks corresponding to beat frequencies 400 Hz and 1785.6 Hz 

which confirms to the mathematically calculated beat frequencies. Now that we have 

seen the basic principles behind the FMCW radar, we will now look at simulations of 

three techniques for inversion – The Layer stripping method, Gauss Newton Method 

and MUSIC Algorithm. At the end of the discussion, we will compare the 

performance of these methods and decide on the method that can be used for 

inversion on actual radar data. 

 

4.2  Inversion by Layer – Stripping 
 

To illustrate the performance of the layer stripping approach, simulations on 

an FMCW radar are presented here. Consider a geoprofile along with radar 

parameters as tabulated in table 4-2. 

 
Table 4-2  Radar and geophysical parameters to illustrate layer stripping  

 
Bandwidth 6 GHz 

Start Frequency 2 GHz 

Sweep time 10 ms 

Chirp rate  300 GHz/s 

SNR 10 dB 

Permittivity vector rε  [1   1.5  1.9 1.5] 

Depth vector Z (cm) [8     4    8]  
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The range profile for this multilayered structure was modeled using MATLAB and is 

shown in figure 4-5 below.  

 
Figure 4-5  Range Profile obtained using FFT 

 

From the permittivity vector of table 4-2, there are four dielectric interfaces 

and hence we see 4 sharp peaks in the figure 4-5. As discussed in Chapter 2, the 

amplitudes of these peaks correspond to the reflection coefficient of the interface. 

To estimate the permittivities, we need to set a reasonable threshold. In this case, 

intuitively, it can be seen that a safe value of 0.07 can be chosen based on the 

relative amplitudes of signal and noise. (This is indicated by the dashed line in red). 

Here, it is interesting to note that the interface locations are slightly different from 

the actual locations. This is because the velocity of the EM wave in every layer is 

different and it depends on the permittivity of that particular layer. The interface 
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locations are estimated from the change in slope from negative to positive. From the 

reflection coefficient values, the permittivities can be calculated by recursively 

using the formulae (3.3) and (3.4) as discussed in chapter 3. The final reconstructed 

profile is shown in figure 4-6 below. 

 

Figure 4-6  Actual Vs Reconstructed Permittivity Profile 

The importance of setting a reasonable threshold is obvious. To illustrate this, we 

now consider a profile shown in table 4-3 below to explain the problem of false 

alarms and missed peaks.  

Table 4-3  Profile chosen to illustrate the problem of  false alarms and missed peaks 

 
Permittivity vector rε  [1      3      3.5     2    2.8] 

Depth vector Z (cm) [50   30    40    40]  

SNR 5 dB 
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 Figure 4-7 depicts the range profile modeled as in the previous example. As 

we can see, this data is noisy. The peaks which are checked are valid peaks. To 

illustrate the problem of missed peaks and false alarms, three thresholds marked as 

1,2 and 3 are set as shown in the figure. 

 

 

 

1 

2 

3 

Figure 4-7  Range Profile of table 4.3 with thresholds marked 

 

If a threshold corresponding to 1 is set, only the first 3 peaks will be above the 

threshold and hence we miss the last peak corresponding to the return from the last 

interface. This is the problem of Missed peaks in threshold detection Hence, the 

reconstructed profile will not show the last layer.  
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 However, if the threshold is set a value given by 2, all four valid peaks will 

be detected and we can invert the profile very well. But, if the threshold is set at the 

value indicated by 3, then several peaks will be detected, apart from the valid peaks. 

These unwanted peaks are called False Alarms and these will result in incorrect 

permittivity profiles. 

 

4.2.1 The Problem of sidelobes: 

 In chapter 3, we discussed the problem with FFT’s being their inability to 

resolve closely spaced reflections because of the masking of weak reflections by the 

sidelobes of the smaller reflections. Since the layer stripping method is based on the 

range profile obtained using the FFT, the problem discussed above imposes a 

limitation on the robustness of the method. The following example illustrates this 

point. Let us consider a profile as tabulated in table 4-4 below and the range profile 

shown in figure 4-8. 

Table 4-4 Profile chosen to illustrate the problem of sidelobes 

 

Permittivity vector rε  [1      3.4   3.7   2.9  3.7] 

Depth vector Z (cm) [50    8   20    30]  

SNR 15 dB 
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Figure 4-8 Range profile of table 4-4 

 

Here we find that, though the SNR of the signal is good, the reflection off the 

second interface is pretty weak and is hidden under the sidelobes of the reflection 

from the first layer. Hence, layer stripping fails to detect this buried reflection, and 

as a result the estimated permittivity profile will look distorted.  

Hence, we see that the layer stripping method is useful only when the SNR of 

the signal is good enough and when the peaks can be sufficiently resolved. Also, it 

requires the setting of a reasonable threshold value to distinguish between false 

alarms and valid peaks. This method is also vulnerable to errors because of the 

problem of sidelobes masking the weak returns. Nevertheless, the layer stripping 

technique can be used as a first step to get an approximate inverse solution. To 

overcome the limitations of the layer stripping approach, a few model based 

techniques were discussed in chapter 3. Let us now look at the performance of the 

Gauss- Newton method through simulations. 
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4.3  Inversion using Gauss-Newton Method 

 As discussed in Chapter 3, Gauss Newton method estimates the unknown 

permittivity profile )(zε  by minimizing the difference between the measured and the 

modeled data. In this section, we will look at a few simulations to perform inversion 

on modeled FMCW radar data using the Gauss Newton method.  

 Before we begin to implement the Gauss Newton algorithm, the permittivity 

model needs to be parameterized. That is, we have to choose basis functions to model 

the vector of permittivity values. This can be done either by the use of delta functions 

or B-splines or wavelets as basis functions. B-splines and wavelets provide a smooth 

variation of permittivity in the model space. However, for the purpose of simple 

implementation, we decided to use delta functions as basis functions. So, the 

permittivity model )(zε  is parameterized as a vector of delta basis functions i.e.  

( ) ( ) ∑
=

−==
N

i

m
ii zzmmzz

1

)( )(, δεε                      (4.9) 

where  represent the amplitudes of the unknown model 

parameters (permittivities); Z represents the depth domain. The delta functions are 

centered at the knots ( ) which represents the locations where permittivity 

changes or locations with dielectric discontinuities. The density of the knot points is 

dependent on the smoothness of 

[ Nmmmm ......, 21= ]

( )m
iz

)(zε . This means that, in places where permittivities 

change rapidly, we might want to space the knots closer than at other places.  
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4.3.1 Example of Parameterization: 

      Let us consider the profile of table 4.2. Let the radar parameters be so chosen that 

the resolution of the radar system is 3cm. We need to carefully choose a depth 

sampling (DS) value such that it fits the discontinuities. The resolution suggests that 

the radar can resolve targets that are spaced no closer than 3 cm distance. It is 

generally preferable to choose a DS value that is equal to or less than the range 

resolution. In this example we find that a DS of 2 cm can successfully locate the 

dielectric interfaces. Figure 4-9 below illustrates this concept. 

 

 

Constant depth 
sampling of 2 cm 

Z1 = 8 cm  

Z2 = 4 cm  

Z3 = 8 cm  

1ε
1ε

1ε

2ε

2ε

3ε

3ε

3ε

3ε

4ε

⇒

1ε

4 1.5ε =  

3 2.9ε =  

1 1ε =  

2 1.5ε =  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-9  Illustration of  parameterization and discretization of depth 

 
In an ideal case, the finally converged vector of model parameters should read 

 
ε̂= [ 1    1    1    1     1.5    1.5    2.9     2.9     2.9     2.9    1.5 ]  . Since the DS value 

has already been set, the above vector can be considered as a set of delta functions 

with knots equally spaced by DS. Let us now look at the implementation of this 
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algorithm using MATLAB. Here we present a flowchart (Figure 4-10) that depicts the 

actual implementation of the Gauss Newton Algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10 Flow chart of the Gauss Newton MMSE estimation algorithm 
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4.3.2  Implementation of the Gauss – Newton Algorithm 

 
To implement this algorithm, we first decide on the number of model 

parameters to estimate. This is based on apriori information on the approximate depth 

of the total profile and on the DS value. Once this is set, the algorithm is initiated by a 

vector of model parameters which are chosen at random, but constrained to lie in an 

acceptable range of permittivity values. Now, with this set of model parameters, the 

return signal is modeled using F(m) and the MMSE criterion of equation 3.5 is 

evaluated. The next step is to check for convergence, i.e., whether mc=mc-1 If this 

condition is satisfied, convergence is reached and the algorithm can be terminated. If 

not, the model parameter values are updated as per equation 3.12. During the 

inversion process using Gauss Newton method, we may have: 

1. Local minimum convergence 

2. Global minimum convergence 

3. No convergence 

4. Termination of the algorithm because of ill-conditioned matrix operation 

We encountered all of these cases when testing the algorithm for different cases of 

inversion. The procedure followed in our simulations is to run the algorithm several 

times (runs) and then pick out the run with the least mean square error.  

As depicted in the flowchart, the algorithm is initiated with a starting guess of 

permittivity values. The number of updating stages for every run (number of 

iterations) is fixed at some reasonable value (typically 250-1000). The current run is 

terminated when either of the following conditions are met: 
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A) Values have converged -  This is checked by comparing the current value of 

the parameters to its previous value, i.e., when   

1−
=

n nm m                           (4.10) 

This can mean either a global minimum or a local minimum convergence.  

 

B) Number of iterations exceeds the maximum number of iterations which was 

set – This means that there is no convergence.  

 

C) Parameter updation enters into a repetitive loop – At this point, the algorithm 

can be terminated, since it can no longer converge to a global minimum value.  

 

This signals the end of one run. The next run is started with a different starting 

guess and the same procedure is followed. When all the runs have been completed, 

the runs that yielded convergence are chosen and their mean square error values are 

compared to a reference error value, which indicates whether it is a local minimum or 

a global minimum. The local minimum cases are discarded and the parameter values 

that yield global minimum are chosen and averaged to yield the final estimate. 

Figures 4-11 and 4-12 show the MMSE performance for each of the convergence 

cases discussed so far. 

 Figure 4-11 below depicts a case of global minimum convergence where the 

MMSE gradually decreases with every iteration and convergence is reached at the 

end of 19 runs.  

  57



 
 

Figure 4-11 MMSE Vs No. of iterations for Global Minimum convergence 

 

Figure 4-12 below depicts a case of local minimum. Here, we can see that 

convergence has been reached after 34 iterations.  

 
 

Figure 4-12 MMSE Vs No. of iterations for Local Minimum convergence 

 

  58



However, the MMSE values do not seem to approach smaller values. At the 

iteration of convergence, the MMSE value is around 25, which is much greater than 

the limit set for global minimum. Hence, this is a typical case of local minimum 

convergence and can be discarded. 

Figure 4-13 below shows the error performance of a non-converging case due 

to the updation falling into a repetitive loop. The MMSE values seem to drop off with 

every iteration, but soon enter into a never-ending loop. At this point, the current run 

is terminated and the algorithm proceeds with the next run, starting with a new guess. 

 
Figure 4-13  MMSE Vs No. of iterations for No convergence 

 

In many cases of low SNR, the matrix inversion can become ill-conditioned. Hence, 

the algorithm will not be able to give any solution.  

Let us now consider the geo-profile of table 4.2 (with an SNR of 20 dB) to 

test the Gauss Newton algorithm. For this case, the algorithm was run 20 times with 

different starting guesses. Here, it was observed that the algorithm converged a total 
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of 10 times, out of which we could get a global minimum value two times and local 

minima eight times. The rest were cases of no convergence. The run which gave the 

least MMSE value has been plotted in the figure below.  

 
 

Figure 4-14   Reconstructed Vs Actual Profile of table 4-2 using Gauss Newton Algorithm 

Figure 4-15 below shows a case of local minimum convergence.  

 

 
Figure 4-15 Reconstructed Vs actual profile showing local minimum convergence for profile of 

table 4-2 
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Let us now look at the effect of SNR on the performance of the algorithm. 

Considering the same profile as in the previous case, but with an SNR of 10 dB, we 

found that the algorithm yielded a global minimum 4 times out of 50 runs, with the 

other convergence cases being local minima and many other non-converging cases. 

Figure 4-16 shows the global minimum convergence result plotted against the actual 

profile. Here we can observe that the estimated profile is not as close as that for the 

case of 20 dB SNR.  

 
Figure 4-16 Reconstructed Vs actual profile for table 4-6 with SNR of 10 dB 

 
So far, we have only looked at cases where the depths are an integer multiple of DS. 

In simulations, it might be possible to choose DS values as per the individual depths.  

However, in practical cases, where we have apriori information about the distribution 

of the profile, we would want to choose a very small value of DS, say 0.1 cm. We 

will now pick a case where the depths are not a multiple with DS and analyze the 

performance of the algorithm. Table 4-5 below shows the profile considered. 
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Table 4-5 Geo-profile to illustrate the discretization problem 

 
Permittivity vector rε  [1   1.5   2.9   1.5] 

Depth vector Z (cm) [2     3.31     1.57 ]  

SNR 20 dB 

 

 

 

Intuitively, we would want to choose a DS of 0.1 cm. That would be make all 

depths a multiple of the DS value. However, with such a small value of DS, the 

number of model parameters becomes 70. We performed extensive simulations to test 

the algorithm for estimating a large number of parameters to estimate - typically 

greater than 15. We found that the algorithm fails to give any useful solution for any 

number of runs and iterations. Most of the solutions are local minima and there is a 

large discrepancy between the estimated and the true profiles.  

Hence, we decided to choose DS values which are not integer factors of true 

depths. For this example, choosing a DS of 1 cm does not fit into discontinuities, but 

we would expect it to yield an approximate profile. However, we found that the 

solution was spread by a large extent got any number of runs. Hence, this cannot be a 

reliable solution to our inverse problem. In the next section, we will look at the 

performance of the MUSIC algorithm, a spectral estimation technique. 

    
4.4 Inversion using MUSIC 

Following the theory discussed in chapter 3, we now present a few 

simulations using the MUSIC algorithm. The input parameters for this algorithm are 

the radar parameters (such as start frequency, bandwidth, chirp rate, time of sweep, 
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number of samples), number of snapshots of data, the number of subarrays and 

number of time delay components (expected).  

We will now look at some of the results obtained through simulations. Let us 

again consider the profile of table 4.2, but with an SNR of 10 dB. As discussed 

earlier, the first step is the enhancement of the range profile. Figure 4-17 compares 

the FFT range profile with that obtained using MUSIC after SSP.  

 
Figure 4-17 Range profiles obtained using FFT and MUSIC for profile of table 4-2 

 
It is clearly seen that the resolution is much better using MUSIC where the 3 signal 

peaks are well defined. From this profile, the corresponding beat frequencies were 

identified and fed into the amplitude estimation module. The estimated set of 

parameters match really well with the true parameters and reconstructed profile is 

plotted in figure 4-18. 
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Figure 4-18  Reconstructed Vs assumed profile of table 4-2 using MUSIC algorithm 

 
Let us now move on to consider a case where the distances taken at random 

and are not constrained (Table 4-6) . Also, the SNR in this case is 5 dB. 

Table 4-6 Geo-profile to test MUSIC with random depth profiles 

 
Permittivity vector rε  [1   1.5   2.9   1.5] 

Depth vector Z (cm) [7.3     13.4     87]  

SNR 5 dB 

 
 
 
 
 

 
 

Figure 4-19 below compares the range profiles using FFT and MUSIC. After 

identifying the beat frequencies corresponding to valid peaks, the permittivity profile 

is reconstructed and is shown in figure 4-20.  
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Figure 4-19  Range Profiles obtained using FFT and MUSIC for profile of table 4-9 

 
 

 
Figure 4-20 Reconstructed Vs actual permittivity profile of table 4-9 
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Hence, we find that MUSIC works well irrespective of the distribution of the 

depth profile. Next, let us consider a more challenging scenario. Table 4-7 shows an 

assumed profile. 

Table 4-7 Geo-profile to test MUSIC with the problem of sidelobes 

 
Permittivity vector rε  [1     1.5    1.7    1.9    5    3.5   7  

Depth vector Z (cm) [13     5      7.5    4      5    4.7 ]  

SNR 10 dB 

 
 
 
 
 
 
 
 
The range profiles using FFT and MUSIC are compared in figure 4-21 below. 
 

 
Figure 4-21 Range Profiles using FFT and MUSIC of  table 4-10  

 

In the FFT profile, we find only four distinctly identifiable peaks due to the 

sidelobe-masking phenomenon discussed in chapter 3. However, using MUSIC, we 
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are able to resolve all the valid signal peaks. Figure 4-22 below shows the 

reconstructed permittivity profile after feeding in the beat frequency values into the 

estimator. 

 
Figure 4-22  Reconstructed Vs assumed profile of table 4-10  

 

So far the algorithm has been successful in estimating permittivities in cases of 

poor SNR and for any distribution of profile – when the right beat frequencies are 

chosen. To test the robustness of this algorithm, let us now explore what the 

implications are when: 

1. Noise peaks are chosen  and 

2. Signal peaks are missed 

The following test demonstrates this idea. Let us consider the MUSIC-enhanced 

profile of the earlier example shown in figure 4-23.  
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Remove 

Figure 4-23 Range profile (using MUSIC) depicting en

 
We shall now make two changes to the be

estimator. First, the beat frequency corresponding 

(missed peak) and the beat frequency corresponding

alarm case). Now, with the new set of beat frequenc

and the reconstructed profile obtained is shown in the

 

Figure 4-24  Reconstructed profile obtained after includin
vector 
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hancement of weaker reflections  

at frequency values fed into the 

to 1147.5 Hz will be removed 

 to 2654 Hz will be added (False 

y values, we tested the algorithm 

 figure 4-24 below. 

 
g false alarms in the beat frequency 



The reconstructed profile shows that the profile looks slightly distorted, however this  

error can be tolerated. The selection of false alarms and missed peaks does not 

drastically alter the reconstructed profile.  

 
 
4.5 Summary 

In this chapter, we analyzed the performance of the layer stripping approach, Gauss 

Newton method and the MUSIC algorithm for permittivity profile reconstruction. 

Various cases were considered to test the algorithm for robustness and it was seen 

that layer stripping works well only under certain conditions; Gauss Newton method 

is not suitable because it has a few fundamental limitations; whereas MUSIC 

algorithm performs best even under extreme conditions. In the next chapter, we will 

apply the MUSIC algorithm to invert actual radar data obtained from field 

experiments. 
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Chapter 5  
 

Inversion on Actual Data 
 
 
 In chapter 4, a few methods for inversion were analyzed through simulations and it 

was seen that the performance of the MUSIC methods is better than the other 

methods. In this chapter, we will perform inversion on actual radar data collected 

from: 

1. Field experiments conducted by the Radar Systems and Remote Sensing lab 

(RSL) in Antarctica during the 2003 field season. 

2. Sandbox experiments at the RSL lab. 

3. Field experiments conducted by RSL in Greenland during the 2004 field 

season. 

 
5.1 Experiments in Antarctica 
 
           The RSL at the University of Kansas used an Ultra Wide-Band (UWB) 

Frequency Modulated Continuous Wave (FMCW) radar to determine snow thickness 

over sea-ice. We will use data collected during the 2003 field season in Antarctica to 

validate the working of the inversion algorithm. The estimated permittivity profiles 

will be compared with profiles obtained from in-situ snow-pit measurements. A 

model of the snow radar system and the dielectric structure of the test site as given in 
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[25] is depicted in figure 5-1. The parameters of the UWB radar are tabulated in table 

5-1.  

 

Figure 5-1  Model of the Snow radar used in Antarctica. 

 

Table 5-1 Parameters of UWB FMCW radar used in Antarctica 

Characteristic Value Unit 

Radar Type FM-CW  

Sweep Frequency 2-8 GHz 

Range Resolution ≅4 cm 

Sweep Time 10 msec 

Transmit Power 13 dBm 

PRF 25 Hz 

Sampling Rate 5 MHz 

Antenna TEM Horn Antenna  
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It can be seen that the dielectric structure consists of a layer of air, followed by 

several layers of snow and a homogeneous layer of sea ice extending all the way upto 

the bedrock. Air is modeled with a permittivity of one. Sea ice can be modeled using 

the Tinga mixing model given in [9]. However, for simplicity, the permittivity of sea 

ice can be taken to be approximately 3.14 in the microwave frequency region. 

Modeling the permittivity of snow requires parameters such as density, wetness and 

other factors which can be obtained from snow-pit measurements. From these 

parameters, the complex permittivities can be calculated using appropriate mixing 

models from literature [9] .Table 5-2 shows the in-situ measurements taken at one of 

the test sites in Antarctica where the FMCW radar was tested. The models used to 

calculate the permittivites are presented in the next section.  

Table 5-2 Snow pit measurements 

Layer 
Thickness 

(m) 

Density 
(g/cm3) 

Salinity 
[o/00] 

Wetness 
[Vol %] 

1.83 1.40  0 0 

0.03 0.191 0.145 -0.46  

0.03 0.254 - 0.73 
0.03 0.328 0.07 0.09 
0.03 0.364 0.31 0.00 
0.03 0.355 0.11 0.00 
0.03 0.334 0.21 0.00 
0.03 0.285 0.20 0.39 
0.03 0.293 0.12 0.49 
0.03 0.244 0.31 1.41 
0.03 0.254 0.34 1.67 
0.03 0.245 0.30 1.76 
0.03 0.226 0.27 1.96 
0.03 0.309 0.05 0.31 
0.03 - 2.17 3.00 

0.015 - 29.4 3.28 
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5.1.1 Modeling the complex dielectric constant of snow cover on sea-ice 

Snow can typically occur in two phases – dry and wet. Dry snow is a mixture 

of ice and air and does not contain water, whereas wet snow includes water. Table 5-2 

shows that the Antarctic snow is a mixture of wet snow and brine.  

To model the dielectric constant of this mixture, we first model the 

permittivity of wet snow using the empirical Debye-like model [9], where the real part 

of permittivity is mathematically modeled as: 
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where , the effective relaxation frequency of wet snow, denotes the  

Moisture content in volume percentage, c  represents the free space velocity, is the 

frequency variable and the constants A, B and x are derived from experimental data 

as given in [9]. Once the wet snow permittivity has been modeled, we then model the 

permittivity of brine using the formulation developed by Stogryn [26]. The real and 

imaginary parts of the complex dielectric constant of brine are given as: 
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where is a dimensionless quantity equal to the high frequency limit of the 

dielectric constant of pure water, 

w∞ε

b0ε is the static dielectric constant of brine, bσ , 

bτ are the conductivity and relaxation time respectively of brine and are empirically 

related [9] to the normality and temperature of brine in the mixture. 

Finally, we model the permittivity of the mixture by treating brine as an 

inclusion within a wet snow mixture and using the mixing formula as given in [27].    
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1 1 A

χ ε − ε
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⎡ ⎤⎛ ⎞ε
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                                        (5.5) 

 
From equation 5.5, the effective permittivity of the mixture is calculated as 
 
 

eff ws mixε =ε +∆ε                                         (5.6) 
 

where 
' '

ws ws ws
'jε = ε + ε , the complex permittivity of wet snow, χ  

denotes the coupling factor considering brine inclusions to be isotropically oriented 

oblate spheroids,  is the depolarization factor and 0A bV is the brine volume fraction 

which is a function of the salinity and temperature of  brine [9]. 

  74



Evaluating the above expressions, the effective permittivities and their corresponding 

distances are tabulated in table 5-3 below.  

Table 5-3 Modeled Permittivity Profile 

Layer Thickness 
(m) 

effectiveε  
(Modeled - complex) 

effectiveε  
(Modeled - Absolute) 

1.83 1.00 1.00 
0.03 1.45+j0.0193 1.44 
0.03 1.60 + j 0.0175 1.60 
0.03 1.70 + j 0.0021 1.70 
0.03 1.77 + j 0.0044 1.77 
0.03 1.74 + j 0.0016 1.74 
0.03 1.71 + j 0.0029 1.71 
0.03 1.64 + j 0.0104 1.65 
0.03 1.66 + j 0.0121 1.66 
0.03 1.66 + j 0.0462 1.67 
0.03 1.71 + j 0.0576 1.71 
0.03 1.70 + j 0.061 1.71 
0.03 1.69 + j 0.0692 1.69 
0.03 1.67 + j 0.0066 1.68 
0.03 2.19 + j 0.1739 2.20 
0.015 6.13 + j 1.2496 6.35 

Ice bottom 3.14 3.14 
 
The permittivity profile of table 5-3 is plotted in figure 5-2.  

                 
Figure 5-2  Permittivity profile of table 5-3 
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We now apply the inversion algorithm on actual radar measured at the same 

site. Figure 5-3 below shows the echogram of the test site. The core data that was 

modeled earlier corresponds to A scopes 1-40.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3  A-scope of radar measurements 

 
Any of the A scopes between 1 and 40 can be chosen for inversion. Let us choose A- 

scope 20. Figure 5-4 below shows the range profile of A-scope 20 plotted using FFT.  

Antenna feed through 

Figure 5

 

Surface return
 

Sea-ice return  
Snow/sea-ice interface 

-4  Range Profile plot of A-scope 20 
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From figure 5-4, we can see three well defined peaks corresponding to  

1. Antenna feed through return 

2. Return from surface layer (Air/Snow interface) and 

3. Return from snow/sea-ice interface 

Apart from these peaks, there are other smaller peaks which correspond to 

internal snow layers. Before applying the inversion algorithm, the first step is to 

remove the radar system effects and the antenna feed-through using calibration data. 

A flat metal screen is used as the target and the return signal is collected and the main 

peak (corresponding to the plate) is filtered out. The filtered signal now represents the 

impulse response of the system and is commonly used to account for system effects 

(which also includes the antenna response).  

The Fourier transform of this signal gives the transfer function of the radar 

system X(f) and can be eliminated from the observed return Y(f) using equation 5.7 

to yield the response of the target ( )fΓ . 

( ) ( )
( )

Y f
f

X f
Γ =                                                    (5.7) 

The next step is to remove the antenna feed though by using a band-pass filter. The 

range profile after calibration and filtering is shown in figure 5-5 below. Now, the 

data can be fed into the inversion algorithm. Clearly, the reflections from internal 

snow layers need to be resolved. 
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Figure 5-5  Range Profile after calibration and filtering  

 
As seen in chapter 4, we first apply MUSIC on this data and enhance the spectrum. 

Figure 5-6 below compares the range profiles obtained using FFT and MUSIC.  

 

Figure 5-6  Range Profiles obtained using FFT and MUSIC 

The beat frequencies detected from the enhanced range profile are tabulated in table 

5-4 below. 
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Table 5-4 Comparison of estimated beat frequencies of core with those of FFT and MUSIC    

 

 

 

 
 
 
 
 
 
 
 
 

These beat frequency values were fed into the estimator and the reflection 

coefficients were estimated. These values were then used to estimate the 

corresponding layer permittivities by using equations 2.1 and 2.2 recursively. The 

estimated permittivity profile is plotted against the actual profile (modeled) in figure 

5-7 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-7  Reconstructed Vs modeled profile for Pit 1 
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It can be seen from the above profile that the MUSIC-estimated profile 

matches reasonably well upto a certain depth, but gradually deviates from the 

measured values, as we move into deeper layers. This deviation is expected, because, 

at depths closer to the snow pit, the signal is greatly attenuated because of significant 

salinity as shown in column 3 of Table 5-2, which was not factored in the 

reconstruction of the permittivity profile.  

Other variations in the estimated profile could be attributed to: (1) a 

discrepancy in the model representing the radar return, (2) an error in calibration data, 

(3) very subtle changes in the permittivity that MUSIC is not able to distinguish, and 

(4) measurement errors in the field that cannot be compensated for at this stage, since 

we are using an existing data. 

 The algorithm was also tested at two other locations where measurements 

were made using the same FMCW radar. Figure 5-8 shows the range profiles using 

FFT and MUSIC on data measured at one of the pits (Pit 2) on September 28, 2003.  

 

 

 

 

 
 
 
 
 
 
 

Figure 5-8  Range Profiles obtained using FFT and MUSIC for Pit 2 
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Following the same procedure, the reflection coefficients were estimated and the 

reconstructed permittivity profile is plotted in figure 5-9 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-9  Reconstructed Vs modeled profile for Pit 2 

Similarly, the algorithm was also tested on another location on October 14 (Pit 3). 

The range profiles and the reconstructed permittivity profiles are depicted in figures 

5-10 and 5-11 respectively.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5-10  Range Profiles obtained using FFT and MUSIC for Pit 3 
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Figure 5-11 Reconstructed Vs modeled profile for Pit 3 

 
 
 
5.2  Tests at the Sandbox lab at RSL  
 
  The inversion algorithm was also tested in the sandbox facility of the RSL lab 

at the University of Kansas. This facility consists of a rectangular box filled with 

quartz sand and is built with a system such that an antenna can be mounted to be 

looking downwards (towards the sand). A network analyzer is used in place of a radar 

and is connected to the antennas using RF cables. The network analyzer is connected 

to a computer using a General Purpose Interface Bus (GPIB) card and can be 

controlled using MATLAB. A detailed description of the sandbox set-up and the RF 

circuitry is given in [28].  

The operating parameters such as start frequency, bandwidth, number of 

samples and sweep time are set in the network analyzer and calibration is performed 

at the input to the antennas. To remove system effects, a flat aluminium plate is laid 
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over the sand surface and  measurements are taken. Then the targets are buried 

under sand and the  is measured over the frequencies of interest. Typically, the 

mismatch between the cable and the antenna is very large and its sidelobes can mask 

small reflections buried under sand. This mismatch is removed by performing a sky 

test where the antenna is pointed upward in such a way that there is no reflecting 

surface atleast within the maximum unambiguous range of the system. The sky test 

measurements are then subtracted from the actual measurements and the Fourier 

transform of this signal yields the range profile. 

11S

11S

 The inversion algorithm was tested by using a HP 8753D network analyzer. 

The network analyzer parameters are tabulated in table 5-5 below. A TEM horn 

antenna (operating in the 2-18 GHz frequency range) was used to take measurements. 

A bandwidth of 5 GHz was chosen so that we could have a resolution of 3 cm. Such a 

fine resolution is desired so that we could stack up layers (wood, Styrofoam) of small 

thickness in such a way that the measurements could be taken would altering the 

antenna arrangements in the sandbox.   

Table 5-5  Network Analyzer Parameters for Sandbox experiment  

Start Frequency 2 GHz 
Stop Frequency 7 GHz 
Number of frequency 
samples 

1601 

Sweep time 800 ms 
Transmit Power 0 dBm 
Calibration type 1 port 
IF Bandwidth 3000 Hz 
Antenna type TEM Horn
Antenna Gain 10 dB 
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The network analyzer was set in the stepped frequency mode so that it is 

equivalent to a stepped-frequency radar. As described earlier, the network analyzer 

was interfaced with a computer and single port calibration was performed. Then, the 

sky shot measurements were taken. Figure 5-12 shows the target structure that was 

set- up to test the inversion algorithm. 

 
Figure 5-12  Multilayered Target stack to test inversion algorithm 

 

It can be seen that there are four layers which form a dielectric stack giving rise to 

three interfaces. Figure 5-13 below shows the average of 50 sky shot measurements 

taken to remove the antenna-cable mismatch. 
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.  

Figure 5-13  Average of 50 sky shot measurements 

 

Next, measurements were taken after placing a flat Aluminium plate over the surface 

of sand. The measured return is plotted in figure 5-14 and is subtracted from the 

skyshot signal (figure 5-15). 

 
Figure 5-14  Measured return from Aluminium plate 
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Figure 5-15  Plate return after sky shot removal  

Next, the four-layer dielectric stack of figure 5-12 was set and measurements were 

taken. Figures 5-16 and 5-17 show the measured return before and after subtracting 

from the skyshot signal. 

 
Figure 5-16  Measured return from multilayered stack 
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Figure 5-17  Stack return after sky shot removal  

 
 
The residual mismatch between the antenna and the cable is removed by filtering and 

the filtered signal (in the linear scale) is shown in figure 5-18 below.   

Wood/Styrofoam

Figure 5-18  Stack ret

 

Air/Wood

d

urn after cali
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bration and filtering 



Now, the MUSIC algorithm is applied on this signal to enhance the profile 

and estimate the time delays corresponding to signals. Figure 5-19 compares the 

range profiles obtained using FFT and MUSIC. 

 
Figure 5-19  Range Profiles obtained using FFT and MUSIC for multilayered stack 

   

Clearly, MUSIC is able to resolve the three major reflections as seen from 

figure 5-19. However, the Maximum Likelihood MUSIC estimator could not 

correctly estimate the reflection coefficients. This could be due to the non-Gaussian 

nature of noise. For estimating the amplitudes, the layer stripping approach was used. 

The time delays corresponding to valid reflections were obtained using MUSIC and 

the amplitudes were estimated using the recursive equations of chapter 2. Figure 5-20 

shows the reconstructed profile. 
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Figure 5-20  Reconstructed Vs actual Permittivity profile of multilayered stack 

 
The reconstructed profile reasonably matches with the true profile. For the 

second layer, the algorithm has predicted a value of 2.5. However, the true value of 

permittivity of sand was not measured and since a value between 2.5 and 3.5 has been 

documented [29], a value of 3 was chosen for modeling. Hence, the algorithm has 

yielded a reasonable estimate. We also observe a deviation in the position of the third 

interface (between styrofoam and sand). This deviation can be attributed to the fact 

that a permittivity of 2 was chosen for velocity correction in order to identify the 

reflecting boundaries. 

 
5.3  Experiments in Greenland  
 
 The Greenland sea-ice research team of the RSL used a prototype of a Plane 

Wave radar in Greenland during the summer 2004 season, with the objective of 

  89



estimating the thickness of snow over sea-ice. We used this data as yet another test 

case for the inversion algorithm. Table 5-6 shows the specifications of the radar 

prototype. 

Table 5-6 Network Analyzer Parameters for Plane Wave measurements in Greenland 

 
Type of radar Step Frequency 

Start Frequency  12 GHz 

Bandwidth 6 GHz 

Sweep Time 4.72 sec 

No. of frequency points 801 

 

Radar measurements were taken over a horizontal traverse of 80 m, with ten 

measurements every 1 meter. Core data was also collected at three different pits at the 

test site. Stratigraphy maps were observed at a couple of points along the grid. Figure 

5-21 shows the relative positions of the core sampling areas with respect to the area 

where radar measurements were taken. It is clearly seen that Pit 2 is the only core 

reasonably close to any of the radar measurements and may provide a reasonable 

reference for radar measurement at the record marked 0. Hence, our objective was to 

invert the data at record 0 and compare the estimated permittivity profile with the 

core data and the stratigraphy map at record 0. Figure 5-22 shows the set-up of the 

plane wave experiment.  
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Figure 5-21   Relative locations of measurement grid and cores 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Network Analyzer 

Unit 

Horn Antenna 

Cable (6.6 m) 

Parabolic reflector 

Figure 5-22  Experimental set up of the plane wave test 
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The network analyzer is connected to a horn antenna which then radiates the 

transmitted signal to the parabolic reflector. The EM wave radiated from the reflector 

is approximately a plane wave. The network analyzer is calibrated at its terminals and 

hence the observed distances are with respect to this terminal. The cable connecting 

the horn antenna to the analyzer measured around 6.6 meters and “loop” distance 

between the horn and the snow surface is around 3.1 meters.  

Figure 5-23 shows the echogram of the measurements along the grid. It can be 

seen that the surface layer (marked as 1) occurs around a distance of 9.7 meters (6.6 

meters of the cable plus a loop of 3.1 meters) followed by two discontinuous layers 

(marked as 2) at around 10.5 meters, 10.7 meters. The echogram also shows indicates 

the presence of  a discontinuous layer at around 11.6 meters (marked as 3) . Layers 2 

and 3 could be annual snow layers which get compressed leading to higher densities. 

 

2 

Figure 5-23  Echogram of radar measurements along the KU radar g
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Figure 5-24 shows the radar measurements at record 0. The reflection 

occurring at 0 meters is due to the impedance mismatch between the network 

analyzer terminal and the cable. This is removed by taking measurements by tilting 

the horn antenna skyward (figure 5-25) and subtracting it from the actual signal (from 

snow) as shown in figure 5-26. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5-24  Radar measurement at record 0 (including the impedance mismatch at the origin) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-25  Sky shot measurements  
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The peak at around 6.5 meters is due to the mismatch between the cable and 

the horn antenna. The surface return is observed at around 9.7 meters. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Internal layers
Surface 
return 

Figure 5-26  Radar measurement at record 0 (after subtracting the sky shot return) 

 

Here, an interesting observation in the above figure is that several reflections 

corresponding to internal layers are higher than the surface return. Intuitively, it can 

be understood that inverting this profile directly would lead to abnormal values of 

permittivity(because of abnormal reflection amplitudes) and hence the observed data 

needs to be analyzed and any irregularities need to be removed. 

These strong peaks could be due to several reasons- abrupt density changes, 

multiple reflections from internal snow layers, clutter due to scattering effects, system 

noise or due to reflections from static objects like the antenna pole. Since the 

inversion algorithm works best on data free from system effects and clutter, it is 

necessary to eliminate these effects before applying the inversion algorithm on this 

data.  
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A good way to check for reflections from stationary targets is to compare 

adjacent records and look for similarity in the occurrences of peaks at the locations of 

interest. Applying the same test to our problem, we found no consistency in the 

appearance of the stronger reflections. Hence, we can conclude that these reflections 

are not from stationary targets. 

From the density data of the nearest core (Pit 2), the permittivity profile at the 

site was modeled using the dry snow permittivity model [9]. Figure 5-27 shows the 

modeled permittivity profile from the snow surface upto a depth of 11.92 meters 

which is equivalently 200 centimeters into the snow subsurface.  

 

 

 

 

 

 

Figure 5-27 Permittivity profile of Pit 2 modeled using the dry snow model 

 

The maximum value of permittivity is found to be 1.7. It can be inferred that 

there is no drastic change in permittivity that could cause spikes to appear in the 

range profile. Using this profile, the range profile was modeled using ADS so that the 

effect of multiple reflections can be analyzed. Figure 5-28 shows a plot of the 
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modeled range profile. This figure is compared with a profile of the observed return 

at record 0 (Figure 5-29). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-28  Simulated radar return of  Pit 2 using ADS 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-29  Actual radar return at record 0 

 
We find that there are several inconsistencies in the above comparison. 

Clearly, the ADS simulation shows that the surface return is dominant whereas the 

actual data shows the presence of several strong returns either comparable to or 

greater than the surface return. Also, the positions of many of the peaks do not match 

well. Hence, we have insufficient information for this problem. However, the 
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inversion algorithm was applied on this data (after calibration) and as expected, the 

algorithm yielded unusual values of permittivity for the internal snow layers, which is 

contradictory to the permittivity values indicated by the core measurements. 

 Therefore, it was decided to test the inversion algorithm on data 

simulated using ADS. Figure 5-30 compares the range profiles obtained using FFT 

and MUSIC. Clearly, MUSIC is able to resolve internal reflections which appear 

embedded with the sidelobes of stronger returns. From this enhanced profile, delays 

corresponding to signal peaks were chosen and fed into the estimator and the 

estimated permittivity profile is plotted in figure 5-31. 

 
Figure 5-30  Range Profiles of simulated data obtained using FFT and MUSIC 
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Figure 5-31  Reconstructed permittivity profile Vs actual (modeled) profile  

 
Summary 
 

In this chapter, the inversion algorithm was tested on data collected using a 

radar system. It was found that the MUSIC algorithm performed really well on the 

FMCW radar data from Antarctica, but was only partly successful when tested on the 

sandbox experiment. However, in conjunction with the layer stripping method, we 

were able to successfully invert the data. The test on Plane wave data is still under 

research and with sufficient information about the internal layers of snow, the data 

can be inverted. In conclusion, we find that the performance of the inversion 

algorithms depends on several factors such as the quality of the measurement, the 

accuracy of the model used for inversion and the contribution of external factors 

(which cannot be modeled or accounted for).  
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Chapter 6  
 

GUI for the Inversion Algorithm 
 

 

In order to make the inversion algorithm user-friendly and easy to use, a 

Graphical User Interface (GUI) in MATLAB was developed. Figure 6-1 shows a 

snapshot of the GUI.  

 There are essentially four important modules in this GUI : 

1. Parameter declaration and File Selection: 

 Here, the user enters basic radar parameters such as type of radar, start 

frequency, bandwidth, sweep time and also selects the recorded radar data file. Two 

of the commonly used radars in geological exploration are the Frequency Modulated 

Continuous Wave (FMCW) radar and the Stepped-Frequency radar. Though the 

procedure for inversion is same for both these radars, they follow different 

mathematical models. In this GUI, the model will be chosen based on the user’s 

choice. The data file needs to be stored in the local computer and should be chosen by 

the user. A couple of recorded radar data files taken by the RSL (which were 

successfully inverted using this GUI) can also be chosen by the user to get a better 

understanding of the working of the algorithm. The user can view an A-scope of the 

chosen data file. Also, the echogram of the total measurement can be plotted. 
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Figure 6-1  Snapshot of the GUI for Data Inversion 
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2.  System effect removal: 

  In order to obtain the target impulse response (or transfer function), the effects 

of the system need to be removed. As discussed in chapter 5, this is usually done by 

deconvolution of the total radar response with the system transfer function. The 

transfer function of the whole radar system can be measured by taking measurements 

on a flat metal plate (also called calibration). Hence, to begin processing the data, the 

user has to load the calibration data file. If the user has selected an RSL data file, then 

the corresponding calibration should be chosen. The next step in the inversion process 

is to remove the antenna feed through (if the radar system is operating in bistatic 

mode) by filtering. The filter module is invoked when the user selects the appropriate 

button in the GUI.  

 

3. Enhancement of features: 

 To apply MUSIC algorithm on the data, the user needs to feed in parameters 

such as the number of frequency samples and a guess on the number of reflections 

(sinusoids) that will be expected in the estimation process. For example, if the data 

has been taken from an environment where the density distribution is expected to be 

fairly inconsistent, it is advisable to choose the number of reflections to be 

somewhere between 20-30. However, in a scenario where homogeneous dielectric 

layers are expected to dominate (water, sand), we may choose values than 10. Hence, 

some apriori information will help to yield a smoother permittivity profile. Once 
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these parameters are fed in, the GUI invokes the MUSIC algorithm and plots the 

high-resolution frequency spectrum of the data. 

 

4. Permittivity Estimation: 

 From the frequency spectrum, the user sets a threshold looking at the 

amplitude of the peaks of the enhanced profile. MUSIC then estimates the reflection 

coefficients corresponding to the beat frequencies and converts them into time delays 

and then estimates the unknown permittivities. Finally, it plots the estimated 

permittivity values with depth. 
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Chapter 7  
 

Summary and Future Work 
 
 
 
7.1 Summary 
 

Ground penetrating radars are being used to characterize features of the surface 

and the sub-surface. However, the GPR data are corrupted with noise, scattering, and 

losses due to the random nature of the underlying subsurface. To this end, a model 

based algorithm was implemented and tested for the purpose of estimating the 

permittivity profile.   

 Algorithms based on MMSE minimization (Gauss-Newton) and spectral 

estimation (MUSIC) were developed (chapter 3) and first tested on synthetic data 

cases in chapter 4. It was found that the MUSIC algorithm – a spectral estimation 

technique was more robust and is suitable for tests on actual radar data.  

In chapter 5, the MUSIC algorithm was applied on radar data collected during 

field experiments in Antarctica using an FMCW radar and on tests conducted at the 

sandbox facility at the RSL lab using a network analyzer. It was found that the 

MUSIC algorithm performed reasonably well in inverting data collected using the 

FMCW radar. There were a few errors in the estimation and the possible causes for 

the deviation were also discussed. In the sandbox test, MUSIC was only partly 

successful; however, in conjunction with the layer stripping method, we were able to 
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successfully invert the data. Finally, a Graphical user interface for the model based 

inversion algorithm was also developed in MATLAB.  

7.2  Future Work 
 
 
The accuracy of model based techniques for data inversion depends on several 

factors,  here are a few: 

1. Accuracy of the mathematical model that represents the radar response 

2. Accuracy of the measurement and calibration system 

3. Signal to noise ratio of the system 

4. Effects of clutter and scattering due to rough surface 

Hence it is important that the mathematical model be thoroughly tested using several 

cases of synthetic data. Calibration errors can drastically change the amplitude and 

phase of the actual signal and hence, the calibration system should be robust.  

In this work, we have only considered the case of specular reflection and the 

effects of clutter, surface scattering and attenuation have been neglected from the 

model. Incorporating these effects into the model can enhance the performance of the 

inversion algorithm.  

Inversion methods based on three dimensional modeling such as the Method 

of Moments (MOM) and Finite Difference Time Domain (FDTD) take into account 

the effects of scattering due to random surfaces and the three dimensional antenna 

beam pattern and hence they can be implemented for the forward model to yield 

better inversion results. 
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