Rapidly Deployable Radio Networks

Dan Depardo, Kambhammettu Nalinimohan (Mohan), Craig Sparks, Scott Woodward

Ricardo Sanchez, Deb Chatterjee, Tim Gallagher, Saravanan Radhakrishnan, Fadi Wahhab, Shane Haas, John Paden

Information & Telecommunication Technology Center
University of Kansas
http://www.ittc.ukans.edu/RDRN

ITTC Technology Review Day
29 September 1997
RDRN Concepts

Phased array antenna with digital beamforming
Omni antenna

Out of band Orderwire Network
1.5 Mb/s Wireless ATM user link
45-155 Mb/s Wireless ATM Backbone Network

GPS based location used for antenna-beam steering

University of Kansas
Information & Telecommunication Technology Center
RDRN Concepts
RDRN Phase I Accomplishments

• Developed digital beamforming transmitter, omnidirectional receiver at 1.2 GHz
 – 10^{-6} BER at ~10 km with 4 elements @ 2 W each
• Developed interoperable software ATM switch with flexible control architecture
 – based on Linux/ATM stack and Q.port
 – OC-3c and wireless ports
• Developed location-based (GPS) network control algorithms
• Developed adaptive HDLC algorithms
RDRN Phase II Project Goals

- Develop a modular and configurable radio with moderate range
- Develop rapidly self organizing IP/ATM based wireless network
- Deploy research prototypes for experimentation
- Extend location-based network control algorithms for QoS sensitive traffic
- Develop dynamic channel, beamforming, and link adaptation algorithms
New Ideas

- Modular and scaleable architecture based on phased array antenna, digital beamforming software radio, and software ATM switch
- Extended architectures and protocols for a quickly deployable radio network with highly mobile user and switch nodes
- Protocols for highly mobile communications with quality of service constraints, based on location information
RDRN Phase II Focus Areas

• **Software radio with smart antennas**
 - DBF receiver architecture
 - fabrication of software radio testbed
 - digital beamforming dynamics
 - cylindrical and hemispherical antennas

• **System implementation & integration**
 - design modular TX and RX
 - scaleable computing resources
 - system integration, testing, evaluation
RDRN Phase II Focus Areas

• Adaptive networking
 - flowspec for mobile nodes
 - efficient MAC protocols
 - resource reservation styles

• Channel estimation & link adaptation
 - channel estimation algorithms
 - angle of arrival estimation & beamforming
 - link level adaptation
Fabricate software radio testbed

Flowspec for mobile nodes

Beamforming dynamics

Efficient MAC protocols

Resource reservation styles

Channel & link adaptation algorithms

System integration and testing

End of Phase II

Advanced antennas

IP/ATM performance evaluation

Scaleable computing resources

Design modular TX & RX

Design digital beamforming receiver architecture

Project start

Resource reservation styles

Scaleable computing resources

Efficient MAC protocols

IP/ATM performance evaluation

Advanced antennas

Project start

Resource reservation styles

Beamforming dynamics

Fabricate software radio testbed

System integration and testing

End of Phase II

Scaleable computing resources

Efficient MAC protocols

IP/ATM performance evaluation

Advanced antennas

Project start

Resource reservation styles

Beamforming dynamics

Fabricate software radio testbed

System integration and testing

End of Phase II

Scaleable computing resources

Efficient MAC protocols

IP/ATM performance evaluation

Advanced antennas

Project start

Resource reservation styles

Beamforming dynamics

Fabricate software radio testbed

System integration and testing

End of Phase II

Scaleable computing resources

Efficient MAC protocols

IP/ATM performance evaluation

Advanced antennas

Project start

Resource reservation styles

Beamforming dynamics

Fabricate software radio testbed

System integration and testing

End of Phase II