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ABSTRACT
Android’s fragmented ecosystem makes the delivery of security
updates and OS upgrades cumbersome and complex. While Google
initiated various projects such as Android One, Project Treble, and
Project Mainline to address this problem, and other involved entities
(e.g., chipset vendors, manufacturers, carriers) continuously strive
to improve their processes, it is still unclear how effective these
efforts are on the delivery of updates to supported end-user devices.
In this paper, we perform an extensive quantitative study (Aug.
2015 to Dec. 2019) to measure the Android security updates and OS
upgrades rollout process. Our study leverages multiple data sources:
the Android Open Source Project (AOSP), device manufacturers,
and the top four U.S. carriers (AT&T, Verizon, T-Mobile, and Sprint).
Furthermore, we analyze an end-user dataset captured in 2019
(152M anonymized HTTP requests associated with 9.1M unique
user identifiers) from a U.S.-based social network. Our findings
include unique measurements that, due to the fragmented and
inconsistent ecosystem, were previously challenging to perform.
For example, manufacturers and carriers introduce amedian latency
of 24 days before rolling out security updates, with an additional
median delay of 11 days before end devices update. We show that
these values alter per carrier-manufacturer relationship, yet do not
alter greatly based on a model’s age. Our results also delve into
the effectiveness of current Android projects. For instance, security
updates for Treble devices are available on average 7 days faster
than for non-Treble devices. While this constitutes an improvement,
the security update delay for Treble devices still averages 19 days.
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• Security and privacy→Mobile platform security.
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1 INTRODUCTION
Android’s highly fragmented and inconsistent ecosystem makes
the updating and operating system (OS) upgrading processes cum-
bersome and complex [16, 17, 21, 47]. With a Linux kernel, multiple
parties partake within this scheme: operating system developers
(e.g., Linux, Android Open Source Project), system-on-a-chip man-
ufacturers (e.g., Qualcomm, NVIDIA), device model manufacturers
(e.g., Samsung, LG), mobile carriers (e.g., AT&T, Verizon), carrier
partners, third-party testing labs, and end users [5, 8, 12, 36, 46].

Over the years, Google initiated multiple projects that seek to
increase the number of Android devices receiving security updates.
For instance, in their Security & Privacy report released in 2019 [16],
Android reported an 84% increase of devices receiving a security
update in contrast to the last quarter in the previous year. However,
this does not imply that these devices are receiving updates covering
the latest Android Security Bulletins – they could actually be behind
by months [5, 37]. As Android focuses on improving the availability
of security patches, it is also important to assess the impact of other
involved entities in their delivery and rollout to supported devices.

Providing a comprehensive study on Android security updates
is a challenging task due to the fragmentation and inconsistencies
across the involved parties [21, 47]. Various past efforts focused on
different aspects of the Android update process. For instance, some
works examined the patch latency in the Android Open Source
Project (AOSP) and how it is affected by the vulnerabilities’ content
classifications [10, 24, 46]. Other efforts analyzed themanufacturers’
involvement in this process [5, 11, 36, 46] or multifarious elements
on the end-user side [2, 7, 16, 46]. In general, these efforts focused
on important but limited facets of security updates. Recently, the
U.S. Federal Trade Commission (FTC) released a report on the issues
in mobile security updates [5]. While their goal was to provide a
comprehensive perspective, this report covered a limited dataset
(i.e., only eight manufacturers). Despite the important insights from
these previous efforts, we did not encounter a study of the Android
security update rollout process that takes into account all of the
players including AOSP, manufacturers, carriers, and end users.
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In this work, our goal is just that. Specifically, once a security
update is available from AOSP, we examine its journey from the
manufacturers and carriers to the end user devices. At each step,
we measure how the frequency and latency of security updates
(arguably, among the most important metrics of the update pro-
cess) are affected by these players and other factors influencing
this process. Moreover, we also track a recent OS upgrade. Sim-
ilar to security updates, an OS upgrade also increases a device’s
security posture [39]. The findings from our study may benefit
security-conscious consumers in making informed decisions re-
garding their mobile devices, and also provide policy makers and
software vendors with a deeper understanding of the current An-
droid security landscape. More generally, our study sheds light on
the actual rollout process of Android security updates.

Our study is made possible by leveraging multiple data sources.
We gathered information from the monthly Android Security Bul-
letins [38], as well as 1,953 public security update announcements
available from the top four U.S. carriers (AT&T, Verizon, T-Mobile,
and Sprint1) covering 274 unique device models across 25 man-
ufacturers for the same time period. Both of these datasets span
from August 2015 (when the Android Security Bulletins started) to
December 2019, allowing us to analyze longitudinal update behav-
ior over a period of four years. We complemented these datasets
with 684 security update announcements specific to locked and un-
lockedmodels from Samsung. Additionally, we analyzed 152,156,934
HTTP requests associated with 9,163,277 unique user identifiers
and 4,800,228 unique user-agent strings from a U.S.-based social
network, which allows us to empirically observe update behavior
by end users and correlate with the carrier/manufacturer announce-
ments. The collection, storage, and processing of all datasets follow
strict ethical and privacy considerations as detailed in Section 4.5.

To the best of our knowledge, given the fragmented nature of the
Android landscape, this is the first study to adopt a comprehensive
approach that results in unique quantitative insights into the An-
droid security update ecosystem. Our findings confirm assessments,
such that manufacturers and carriers tend to update older phones
with lesser frequency, and complement these assessments with
novel insights. For example, the latency of security update rollouts
introduced by the device manufacturers and mobile carriers stays
relatively unchanged over the past four years – at an additional 24
days (longer than the two weeks it takes to publish the majority of
exploits [19]). These latency results vary significantly per manu-
facturer and carrier; as their relationship is vital. Moreover, when
analyzing the carrier’s role within this relationship (e.g., locked vs.
unlocked devices), we notice that locked models may receive secu-
rity updates faster and more frequently than their unlocked (and
sometimes even “unbranded” – never used a carrier) counterparts;
thus, emphasizing again, the important role carriers play in the
rollout of security updates. Contrary to our expectations, the CVE
severity, type of vulnerabilities, or the number of CVEs included in
a security update do not generally impact the rollout latency.

By analyzing the end-user dataset, we empirically evaluate the
delay for when end devices applied the update. Our results show
that it takes a median value of 11 days from the carrier’s security
update announcement to when the update was observed on the

1The data was gathered when T-Mobile and Sprint were still separate entities/carriers

device. If we consider that users in the end-user dataset login (on
average) every 6.12 days and the effect of updates being rolled out
in batches or stages, the user-incurred delay can be much lower.
Examining the effects of Android’s initiatives to improve the up-
dating ecosystem, we find that carriers and manufacturers roll out
security updates an average of 7 days faster for Treble [48] models
compared to non-Treble models. We also observe Android One [1]
and Treble devices receiving a higher number of security updates
as well as being more up-to-date. However, these initiatives do not
necessarily demonstrate faster OS upgrades or solve the delayed
security updates as the manufacturers and carriers still influence
the release process. Project Mainline [4], announced in May 2019, is
in its early stages of adoption. Since it does not support OS versions
prior to Android 10, its adoption rate is also directly impacted by
manufacturers and carriers OS upgrade decisions.

Our main contributions can be summarized as follows:

• We perform an extensive quantitative study, at scale, on the
impact manufacturers, carriers, and end-users have on the rollout
of Android security updates and OS upgrades.

• We aggregate and correlate data from different data sources
resulting in novel measurements on carrier and manufacturer-
related factors and on user-incurred delays.

• We evaluate the current effectiveness of Android initiatives such
as Android One and Project Treble, and provide a very early
assessment on the more recent Project Mainline.

The rest of the paper is organized as follows. We first provide
background on Android security updates and OS upgrades, and the
datasets analyzed for this study. We then describe the findings from
our analysis and discuss implications for the Android ecosystem.

2 BACKGROUND
Android security updates and OS upgrades are impacted by various
entities [5]. This section overviews this fragmented structure and
the interactions between the involved entities. These continuous in-
teractions lead to complex dependency relationships and workflows
with manufacturers and carriers serving as prime examples.
Security Updates and OS Upgrades Flow: In this paper, an up-
date refers to a security update (applying an Android Security
Bulletin) while an upgrade indicates an OS upgrade (increasing the
OS version). As pictured in Figure 1, updating and upgrading an An-
droid device follows a chain of command involving multiple entities.
Security updates start with Android patching vulnerabilities within
the AOSP followed by chipset vendors as needed. Next, manufactur-
ers, based on whether a model has a customized OS version or not,
integrate and test the changes as well as the alterations requested
by mobile carriers. Finally, manufacturers, with (usually) approval
from the carrier, release the update to the end-users [5, 36].

OS upgrades follow a similar process. First, Google releases the
Platform Developer’s Kit (PDK) to manufacturers and chipset ven-
dors. The PDK contains both the AOSP and close-sourced compo-
nents [3]. Next, device manufacturers continue development by
ensuring compatibility with the chipset, meeting WiFi and Blue-
tooth standards, adding basic device components (phone calling,
messaging, etc.), designing their own manufacturer customization
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Figure 1: Android security update and OS upgrade chains –
Updates follow a chain of command with multiple involved
entities. The amount of work on the manufacturers’ side de-
pends onwhether amodel runs a customized (manufacturer-
specific) or a non-customized (“stock”) OS version, and on
the interactions with the carrier (red arrows).

or branding (user-interface, graphics, and other features), and test-
ing all features. During this process manufacturers work with the
mobile operators/carriers and third-party testing labs to test or add
additional features per request [8, 12, 44].

In this process, the manufacturers and carriers play a vital role.
They are not only responsible for integrating and testing security
updates and upgrades (often for tens of different models at a time)
but also for their delivery to the end devices. In this paper, we ex-
plicitly attempt to measure the overhead incurred by these entities
during the security update and OS upgrade rollout processes.
Challenges with Fragmentation: The interdependence between
manufacturers and carriers (with the involvement of chipset ven-
dors and testing labs) manifests itself in a plethora of back-and-forth
interactions. For instance, one manufacturer supporting multiple
device models may need to perform individual customizations with
various mobile carriers. This can result in as many as 1,500 varia-
tions of the same update or upgrade for the manufacturer 2.

The update process is further complicated by the presence of
locked and unlocked devices. Locked models are tied to a specific
carrier (i.e., carrier-supported) whereas unlocked models are not.
Thus, a locked device cannot use other carrier networks, unless the
“owning” carrier unlocks that device. By using Samsung (which has
the highest market share among Android device manufacturers 3)
as the base case, we observe all models (both locked and unlocked)
receive updates from the manufacturer. However, if these devices
are connected (e.g., via SIM cards) to a carrier network, then the
carrier determines when updates are released [9, 15].

Unlike the structured format present in Android Security Bul-
letins, each manufacturer and carrier posts announcements for soft-
ware updates rolled out to supportedmodels in varying formats, if at
all. Generally, these update announcements are inconsistent from a
content perspective and provided (at times) in changing formats [5].
The large number of carriers and Android device manufacturers,
accompanied by a lack of standard reporting mechanisms, make it
challenging to perform independent, systematic measurements on
the delivery process of security updates.

2Variations of the same software: https://www.wired.com/2017/03/good-news-
androids-huge-security-problem-getting-less-huge/
3Market share as of May 1, 2020: https://www.appbrain.com/stats/top-manufacturers

3 RELATEDWORK
Before updates are released to manufacturers, Google must patch
AOSP. Farhang et al. [10] measured patch latency from Qualcomm
and Linux repositories to code alterations in AOSP and also studied
the lifetime of a vulnerability from discovery time to AOSP patch.
Linares-Vasquez et al. [24] performed an in-depth analysis of An-
droid vulnerabilities. They studied which system components are
commonly affected and also when the vulnerabilities were intro-
duced to when its code was fixed in AOSP. These research efforts
showed that severity does not affect the patch latency (e.g., the
lifetimes of critical CVEs are similar to that of moderate CVEs).

Another line of work studies Android devices’ patch behavior us-
ing detailed data collected directly on participating devices. Thomas
et al. [46] inspected the Android source code tree to identify when
fixes in upstream open-source projects are included in an Android
update, and correlate that with device information collected from
their Device Analyzer app (on approx. 24,000 user devices) to cal-
culate a metric for the security posture of phone models.

Researchers from SRLabs [22, 36] analyzed the presence of secu-
rity patches on end devices through a mobile app, SnoopSnitch 4.
Their approach searches for pre-compiled signatures of security
patches within binary firmware files, such that source code access
is not required. They showed that Android manufacturers differ
widely in patch completeness. Samsung and Huawei appear to
make patches available faster over time, but it is unclear how the
delay is calculated in this work. Duo Labs measured the percentage
of devices running the current Android Security Bulletin through
the DUO app [2]. They appear to study the adoption of only one
bulletin, while our analysis includes 53 bulletins.

More similar to this work are studies that consider the role
of manufacturers in the security update rollout process. The FTC
released a report in 2018 onmobile manufacturers’ Android security
update support [5]. They measured the lifetime support of models,
the frequency of updates, and the time from when vulnerabilities
were reported to when they were patched by the manufacturer.
This report only covered models released in 2013 to 2014. Farhang
et al. [11] compared the CVEs addressed in each Android Security
Bulletin with those included in vendor-specific security bulletins
released by manufacturers to calculate the CVE patch delay (i.e., the
number of security bulletins (months) until the CVE is included).

Other efforts, not specific to Android, study open-source and
third-party patching [6, 23, 29, 45] as well as user studies on users’
updating behavior [13, 20, 25–27, 30, 35].

Compared to previous studies, our work takes a more holistic
view on the Android security update rollout process. We consider
the role of AOSP (the Android Security Bulletins), manufacturers,
carriers, and end users/devices in this process. Analyzing four years
of security update announcements from top U.S. carriers, Android
manufacturers, and a corpus of HTTP requests from Android de-
vices observed by a social network, our study sheds light on how
the frequency and latency of updates are affected by these play-
ers and other influential factors. Our research effort extends and
complements existing works by confirming some of their findings,
contradicting others, and providing novel measurements.

4SnoopSnitch app for Android: https://play.google.com/store/apps/details?id=
de.srlabs.snoopsnitch&hl=enUS

https://www.wired.com/2017/03/good-news-androids-huge-security-problem-getting-less-huge/
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Carrier AT&T Sprint T-Mobile Verizon
Unique manufacturers 13 13 13 17
Unique models 74 93 111 149
Total number of security update announcements 394 364 658 537
Unique Android Security Bulletins addressed 49 49 53 45
Earliest security update announcement 2015-10-19 2015-10-31 2015-08-05 2015-10-08
Latest security update announcement 2019-12-17 2019-12-26 2019-12-15 2019-12-11

Table 1: Carrier dataset – Carrier security update announce-
ments made between August 2015 and December 2019.

4 DATA
We collected data from multiple data sources to study the Android
security updates and OS upgrades rollout process. In this section,
we describe the main datasets and review the ethical and privacy
considerations. To collect information listed on publicly available
websites, including Android Security Bulletins and the security
update announcements, we leverage tools such as PyQt5 5, Beau-
tifulSoup 6, and Selenium 7 for the retrieval and parsing of the
webpages. For the end-user data, the collection process was closed-
source and the sensitive data fields were anonymized.

4.1 Android Security Bulletins
Since August 2015, AOSP posts Android Security Bulletins [38]
on a monthly basis. Each bulletin contains information about the
security update released in that month, including the patched CVEs,
the type and severity of the CVEs, the affected Android OS versions
and components, and the patch level(s) which is in the form of a
date. A device with a specific patch level implies that it is up-to-date
with all security updates released up to that level.

In studying the security updates rollout process, we use the
patch level announcement date in the Android Security Bulletins
as the baseline for calculating the additional latency imposed by
the device manufacturers and mobile carriers. We also examine
other factors such as the type and severity of CVEs, affected AOSP
components, and number of skipped bulletins.

We collected information from 53 Android Security Bulletins
spanning August 2015 to December 2019. There can be a variable
number of patch levels in each monthly security bulletin (e.g., “2019-
10-01”, “2019-10-05”). For consistency purposes, we focus on the
first patch level in each bulletin, since that one is always available.

4.2 Carrier Dataset
Similar to the Android Security Bulletins, mobile carriers also an-
nounce security updates they release to supported mobile devices,
i.e., phones and tablets with cellular service. We collected security
update announcements made publicly available by the top four U.S.
carriers, i.e., AT&T, Verizon, T-Mobile, and Sprint, from August
2015 to December 2019. Due to inconsistent formatting of the an-
nouncements, we developed custom parsing logic for each carrier
website (further detailed in Appendix A.1), specifically:
• AT&T does not announce security updates on a centralized page,
but instead on separate pages for each supported device model 8.
We manually collected all URLs for each device model by travers-
ing from the support page to each indicated model.

5PyQt5: https://riverbankcomputing.com/software/pyqt/intro
6BeautifulSoup: https://www.crummy.com/software/BeautifulSoup/bs4/doc/
7Selenium: https://www.selenium.dev/
8AT&T devices: https://www.att.com/support/contact-us/wireless/

Locked Unlocked
Carrier Sprint T-Mobile Sprint T-Mobile Unbranded
Unique models 13 13 13 13 13
Total number of update announcements 136 127 150 120 151
Unique Android Security Bulletins 18 18 18 18 18
Earliest security update announcement 2018-08-06 2018-08-13 2018-07-25 2018-07-25 2018-07-25
Latest security update announcement 2020-01-02 2019-12-30 2020-01-14 2020-01-31 2020-01-14

Table 2: Manufacturer security updates from Samsung –
Overview of the collected update announcements rolled out
July 2017 to December 2019 for 15 Samsung Galaxy models.

• Similar to AT&T, T-Mobile also lists the security update an-
nouncements separately for each device model 9. We program-
matically collected each device model URL.

• Verizon’s website only displays the three most recent software
updates per model, preventing users from gathering longitudinal
data over time. We collected Verizon’s security update announce-
ments three times in 2019 (in May, October, and December). 10

• Sprint posts security update announcements in a blog format.
We searched Sprint’s entire Android Community Boards. 11

Each of the security update announcements made by the carriers
are specific to a device model. Thus, for each announcement, we
collected the device model, the corresponding Android Security
Bulletin (if available), and the date of the announcement (which
we use to infer the corresponding Android Security Bulletin in
cases where this information is not explicit). For example, if an
announcement with an unspecified Android Security Bulletin was
posted on January 15, 2019, wemake a conservative assumption that
the correspondingAndroid Security Bulletin is the one from January
2019. This may result in a lower bound on the security update
rollout latency, since the latency could be higher if the update was
actually for previous Android Security Bulletin(s). If no release date
is available in the announcement, we do not include it in our dataset.
Out of 3,493 total collected Android carrier updates, 1,540 were not
security updates or did not contain enough information (i.e., the
addressed Android bulletin, release date). We further detail our
data processing efforts in Appendix A.2. In the following sections,
we analyze 1,867 security update announcements for 274 unique
models across 25 device manufactures as detailed in Table 1.

4.3 End-User Dataset
End users also play a role in adopting security updates. Depending
on the system settings, the user may be prompted for approval
before the security update is applied on the device [13, 27, 35].

We obtained anonymized HTTP access logs from Android de-
vices from a U.S.-based social network with over 50 million down-
loads on the Google Play Store. Registered users can create and
share posts related to items of interest, chat in group forums, and
friend each other. Users access the social network either through
its website or through the mobile app. Since our study focuses on
mobile systems, we only used the data collected through the latter
and analyzed requests from registered users.

9T-Mobile devices:https://www.t-mobile.com/support/phones-tablets-devices
10Verizon software updates: https://www.verizonwireless.com/support/software-
updates/. Verizon only displays the latest three software updates per model, hence
(while our data collection took place in 2019) the earliest security update observed is
much older as shown in Table 1, e.g., models whose last update was in 2015.
11Sprint devices: https://community.sprint.com/t5/My-Phone/ct-p/android

https://riverbankcomputing.com/software/pyqt/intro
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.selenium.dev/
https://www.att.com/support/contact-us/wireless/
https://www.t-mobile.com/support/phones-tablets-devices
https://www.verizonwireless.com/support/software-updates/
https://www.verizonwireless.com/support/software-updates/


The data is anonymized and exposes four fields to the researchers:
the request date, a hashed value of the user account identifier, the
user-agent string, and the country code based on the IP address.
Only unique records are stored. The user-agent strings are gener-
ated by the social network’s mobile app, and include the app version
number, OS version, phone model, build number, and device carrier.

We only consider HTTP POST requests, as GET requests do not
contain the user account identifier and are mostly from unregistered
“guest” users for which we cannot observe their update behavior
over time. To identify Android traffic, we filtered the requests by
searching for keywords “Android” and “Build” in the user-agent
string. The build number allows us to analyze when devices receive
security updates and which updates are applied.

From January 1 to December 31, 2019 12, a total of 152,156,934
HTTP POST requests were collected from Android devices with
build number information as described above, corresponding to
9,163,277 unique user account identifiers and 4,800,228 unique user-
agent strings. We further identified 7,247 unique models across 454
device manufacturers by parsing the user-agent strings.

4.4 Manufacturer Dataset
We also collected security update announcements from Samsung,
a top Android manufacturer. We could not locate announcements
from other manufacturers due to lack of data (e.g., release date miss-
ing, updates not posted). Specifically, we wanted to investigate the
manufacturer’s effect on the rollout process. Intuitively, unlocked
models should not experience carrier-related delays, thus we ana-
lyze the update process between locked and unlocked models.

Since 2017, Samsung provides security update announcements
for individual models on their website 13. To access these updates,
we constructed the URLs (https://doc.samsungmobile.com/model
variant/carrier code/doc.html) for 15 models within the flagship
Galaxy series (S7 to S10, S8+ to S10+, S7 edge, Note 8 to Note 10,
A10e, A20, A50) associated with T-Mobile or Sprint. We do not
include other carriers as Samsung doesn’t post updates for the cor-
responding locked models. In certain instances, the model variant
(e.g., SM-G960U) can indicate an unlocked model as indicated on
Samsung’s website [34]. Table 2 lists the statistics of this dataset.
More details about the update process for locked, unlocked, and
unbranded devices can be found in Appendix A.5.

4.5 Ethical and Privacy Considerations
While collecting public data from the Android Security Bulletins,
the major U.S. carriers’ and manufacturers’ websites, we prioritized
protecting (not overloading) these public resources. Specifically, we
rate-limited the number of connections, controlled how quickly we
connected (every 2-8 seconds), and locally saved the HTML code to
minimize access upon testing and in case of page inconsistencies.

With T-Mobile, Sprint, and Verizon posting updates individually
or per devicemodel, we collected URLs covering all availablemodels
and updates specified in Section 4.2, then connected to those links
to download the necessary code. For AT&T, their website leans

12Due to a bug in the data collection process, we were not able to collect data from
June 11 to July 23, 2019.
13For example, the announcement page for Galaxy S9 (SM-G960U) on T-Mobile is
https://doc.samsungmobile.com/SM-G960U/TMB/doc.html

more on JavaScript, wait conditions, and auto-generated tag labels
which affects the traversal of HTML code. To limit our impact, we
manually recorded URLs for all the models reporting a security
level and saved the security update content locally for each model.
Lastly, we never obfuscated our user agents or IP addresses.

The HTTP access logs were collected according to end-user
agreements pertaining to the usage of the online social network. No
personally-identifiable information was collected. The researchers
were granted access to the anonymized data only on corporate-
approved devices and networks, leveraging only the four data fields
described in Section 4.3. Our IRB Office determined that the user data
is de-identified and therefore not a human subject.

5 MEASURING CARRIER AND
MANUFACTURER EFFECTS

Manufacturers and carriers play a key role in the distribution of
mobile OS and software updates as previously shown in Figure 1
and also detailed in several past research efforts [36, 46]. In this
section, we study the carriers’ and manufacturers’ role in the rollout
process of security updates to supported devices.

AOSP issues security patches on amonthly basis. This means that
a device model, if updated regularly by the carrier-manufacturer,
should receive (at least) one update every month. Using the carrier
dataset described in Section 4.2, we measure the number of security
updates rolled out to each model as well aswhen those rollouts were
announced by the carriers and manufacturers. We find that update
patterns are not consistent across device models, e.g., some receive
updates for every Android Security Bulletin, while others only re-
ceive one update per year. By leveraging Spearman correlation [28],
we investigate factors affecting those difference.

5.1 Rollout Frequency
Across the carrier dataset, which spans 53 months between 2015
to 2019, the average number of security update announcements
issued per device model is 4.54 (±4.67). This is a far cry from the
monthly updates issued in the Android Security Bulletins. However,
the carrier dataset includes models of varying “ages” with the oldest
released in January 2013 (Blackberry Z10) and the newest released
in October 2019 (Pixel 4, LG Stylo 5+, LG Prime 2). Naturally, the
age of the model affected how many updates it could receive.

For a more fair comparison across models, we define the nor-
malized update frequency as follows. Let a phone model’s release
date be Tr el . The number of security updates the model could po-
tentially receive during a period ending at Tend can be calculated
as the number of months between the two timestamps, denoted
Npot , while we can observe the actual number of updates the model
received during this time, Nact . The normalized update frequency
is then calculated as the ratio between these two values, Nact

Npot
.

In practice, we apply the later ofTr el and the start of our data col-
lection in 2015 to computeNpot , and use the time of the last security
update rolled out to the device as Tend . We rely on GSMArena 14

and PhoneArena 15 for each model’s release date 16.

14Release dates from GSMArena: https://www.gsmarena.com/
15Release dates from PhoneArena: https://www.phonearena.com/
16When only the month and year of a model’s release date is available, we use the first
day of the month and year.

https://doc.samsungmobile.com/SM-G960U/TMB/doc.html
https://www.gsmarena.com/
https://www.phonearena.com/


Figure 2: Cumulative distribution of the normalized update
frequency per model, for each carrier – The average update
frequency is 0.35 across all models, indicating that a carrier-
supported device receives slightly more than one-third of
updates issued in the monthly Android Security Bulletins.

Figure 2 shows the cumulative distribution of the normalized
update frequency per model for each carrier. The average update fre-
quency across all models is 0.35, indicating that a carrier-supported
device only receives slightly more than one-third of updates issued
in the monthly Android Security Bulletins. This observation is con-
sistent across the four major carriers, with T-Mobile having the
highest average update frequency at 0.40.

The FTC [5] reported that manufacturers and carriers allocate
support towards newer devices, such that newer devices receive se-
curity update faster and for a longer period of time. Correlating the
age of the model (i.e., as of December 1, 2019) with its normalized
update frequency, we observed that the two variables exhibit a mod-
erate negative correlation of −0.3265 with a p-value of 3.3541−8.
With high confidence, this result shows carriers do have a pref-
erence for newer models. This effect is even more obvious when
we examine each carrier separately. For example, T-Mobile shows
a strong negative correlation between model age and normalized
update frequency of −0.5054 with a p-value of 8.0681−7.

The age of a model appears to play a big part in its update support
duration, as well. For each security update announcement issued
by a carrier, we examine the age of the model at that time, shown
in Figure 3. While the number of updates rolled out to models
released within 24 months remain relatively consistent, this value
drops sharply at around 36 months. Considering that models older
than three years (i.e., released prior to 2017) make up 43.59% of
all models in the carrier dataset, the drop is disproportionately
large and confirms empirical observations that devices are typically
supported by the carriers for 2-3 years.

In addition to the age of themodels, we observe that relationships
between certain carriers and manufacturers also affect the update
process – sometimes in a positive way. In our data, LG models have
a median update frequency of 0.42 when associated with T-Mobile,
much higher than with other carriers (which range from 0.12 to
0.33). Interestingly, the update frequency for LG models seem to be
capped at 0.75, while this does not appear to be the case for other
brands (see Figures 19 and 20 in Appendix A.4). This suggests that

Figure 3: Age distribution of carrier-supportedmodels at the
release time of security updates– The age of themodel plays
a big part in both its update frequency as well as update sup-
port duration. The number of security updates rolled out to
models older than 36 months drops sharply.

manufacturers are also responsible for introducing overhead in the
update rollout process.

Previous work also reported on interdependent relationships
between carrier and manufacturers [5, 36]. Specifically, that carrier
involvement in the security update rollout process can influence
manufacturers to speed up patching for popularmodels or maintain
a routine update schedule. The influence can come from other
sources as well, as shown in the initiatives pushed forward by
Google encouraging manufacturers to support security updates for
designated models and versions. We discuss Google-led initiatives
in the update rollout process in Section 7.

5.2 Rollout Latency
An equally important metric to the security update frequency is
when updates are rolled out. We define rollout (patching) latency as
the number of days after the publication of the Android Security
Bulletin (usually the 1st of the month) until the update is rolled out
by the carrier/manufacturer. This quantifies the additional delay
introduced by these actors before the updates could reach end
devices. The higher the rollout latency, the higher the risk as devices
are exposed to potential vulnerabilities during the unpatched time.

Figure 4 shows the update latency for each Android Security
Bulletin during our study period, August 2015 to December 2019.
The boxplots represent the distribution of the latency across secu-
rity update announcements issued by the carriers for that bulletin
(the carriers have separate update announcements for each model,
such that the latency can vary by model even for the same bulletin).
Across all Android Security Bulletins, a median delay of 24 days is
introduced before carrier rollout – longer than than the two weeks
it takes to generally publish the majority of exploits [19].

Looking at each carrier separately, we can see in Figure 5 that
all of them introduce delays on the order of weeks to months, with
large differences across carriers. AT&T appears to have the highest
median delay at 29.5 days, compared to 19 days for T-Mobile.

While the age of the model greatly affected its security update
frequency, as shown in Section 5.1, it does not appear to be a strong
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Figure 4: Update latency for each Android Security Bulletin
from August 2015 to December 2019 – Each data point rep-
resents a security update announcement from the carriers.
The rollout latency remains largely unchanged over four
years with a median of 24 days.
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Figure 5: Distribution of update latency per carrier – Each
data point corresponds to an Android Security Bulletin,
where we calculate the average latency across carrier secu-
rity update announcements for that bulletin.

factor for update latency. No significant correlation exists between
the update latency and the age of the model (a correlation of 0.0502
with p-value 0.0321). Thus even though carriers and manufacturers
update models with less frequency over time, they do not discrimi-
nate against older devices when an update is available for rollout.

Carrier and manufacturer relationship, on the other hand, re-
mains an important factor. We examine models supported by all
four carriers, and compare their update latency across carriers.
There are 21 models from Samsung, LG, Motorola, and HTC that
match this criteria. If the manufacturer is the main factor, we would
expect the latency to be consistent across carriers for the same
model. Figure 6 shows that this is not the case. The same model can
experience varying amounts of latency depending on the carrier.
In particular, the median latency for Motorola models range widely
from 10 days (if with T-Mobile) to 37 days (if with AT&T).

Perhaps a more obvious explanation for the update latency is re-
lated to the carriers themselves. When rolling out security updates,
manufacturers not only customize the updates for the models they
support but also commonly require carrier-specific modifications
and tests. Using the manufacturer dataset collected from Samsung,
as described in Section 4.4, we examine a total of 684 security update
announcements for 13 Samsung models across locked, unlocked,
and unbranded variants. Locked models receive updates faster than
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Figure 6: Update latency for models supported by all four
carriers – 21 models from 4 manufacturers (Samsung, LG,
Motorola, HTC). With different testing mechanisms be-
tween manufacturer and carrier [5], a model may experi-
ence inconsistent update latency depending on the carrier.
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Figure 7: Update latency of Samsung locked, unlocked, and
unbranded devices – Locked models, on average, receive up-
dates four days faster than their unlocked counterparts.

their unlocked counterparts, as shown in Figure 7. On average, a
locked model receives updates four days earlier.

Our findings on locked models is contradictory to the result
reported in FTC’s report [5], which found that unlocked devices
tend to be patched quicker than locked versions. However, the
report also noted that while they observed unlocked models with
shorter overall latency, particular locked models may still receive
faster updates. We conjecture that since our data from Samsung
focuses on their flagship Galaxy models (and hence are popular
models), they may be prioritized in the update rollout process.

Lastly, we also examine other information contained in the An-
droid Security Bulletins that could impact update latency. For each
security update announcement for a given model, we analyzed
the number of “skipped” Android Security Bulletins since its last
security update, as well as the number of days since its last security
update. Each Android security update patches all CVEs in prior
patch levels, hence we expect a larger value for either should cor-
respond to a longer rollout latency. An Android Security Bulletin
also includes a list of CVEs patched in that security update, i.e., the
CVE ID, severity, vulnerability type, and the Android components
affected (the category). We expect updates that address more severe
vulnerabilities or that affect core components to be prioritized.

Calculating the Spearman correlation coefficient between the
update latency and these variables show that, surprisingly, most of
them have no effect (no significant correlation). However, a weak



positive correlation is observed for the number of days since last
security update (i.e., the more time passed since the device received
its last update, the longer it took the carrier/manufacturer to roll
out its current security update), as well as the number of CVEs
addressed in the “System” category. The latter has a correlation
between 0.45 to 0.61 in three out of four carriers. Detailed statistics
for all tested variables can be found in Appendix A.6.

5.3 Summary of Carrier and Manufacturer
Measurements

We find that carriers and manufacturers roll out slightly over one-
third of all monthly Android Security Bulletins to supported devices,
and introduce a median delay of 24 days from the date of the An-
droid Security Bulletin to update rollout. This provides time for
adversaries to leverage these known CVEs and develop exploits,
e.g., the majority of exploits are published within two weeks from
vulnerabilities’ public release [19]. The median 24 day latency is for
the current Android Security Bulletin (released that month). When
some bulletins are skipped for a model, those patches are packaged
into subsequent updates [38], such that the delay before a patch
reaches the end device could be much longer in practice.

The age of a model is the most significant factor affecting its
update frequency. Most models are supported by the carrier for less
than 36 months, with the update frequency decreasing as the model
ages. By contrast, update latency does not appear to be biased to-
ward model age. This shows that carriers and manufacturers do not
discriminate against older devices once an update for a model has
been made available and tested (indicating that the development
of an update constitute the main overhead in the update rollout
process). Prioritizing newer phone models can impact a large popu-
lation of consumers. Studies have shown that a significant fraction
of users keep their mobile devices for three years or more 17.

Partnerships between carriers and manufacturers have a strong
impact on both the frequency and latency of updates. Carrier in-
volvement can influence manufacturers to speed up patching for
popular models or maintain a routine update schedule, as well as
pressure from software vendors such as Google. Partnerships and
business decisions can (in this case) trump technical challenges.

Contrary to our expectations, the time since last update, num-
ber of skipped Android Security Bulletins, and the addressed CVE
severity, type, and category do not exhibit a high correlation with
the update latency. Previous work has also reported the lack of
relationship between CVE severity and patch speed at the code
level [10, 22, 24, 36]. Our study independently validates results
from previous work, and also brings to light new findings that were
previously challenging to quantify due to fragmentation.

6 MEASURING END-USER UPDATE
BEHAVIOR

In this section, we analyze the security update behavior of end
devices using the dataset described in Section 4.3. Specifically, we
are interested in observing the update frequency and latency on
end-user devices, such that we can put them in perspective with

17According to a 2019 poll from PhoneArena, one-third of users switch phones ev-
ery three years or longer https://www.phonearena.com/news/How-often-do-you-
upgrade-to-a-new-phoneid119501.

Figure 8: End-user unique build number distribution – Per
device, the top 15 manufacturers with the most devices.

our measurements from Section 5 and provide a more complete
picture of the Android security update rollout process.

We start by analyzing the number of security updates received
by devices in the end-user dataset in 2019. Next, we join this dataset
with the carrier dataset to measure (for carrier-supported devices)
the update latency introduced by end users and/or the deployment
of updates in addition to the carrier-manufacturer delay previously
calculated. Lastly, we evaluate the rollout of Android 10.

Due to the nature of this data and analysis, we make two major
considerations. First, we consider an end “device” as a unique pair
of hashed user account identifier and the model variant 18. Second,
we can only observe the user-agent strings when the users access
the mobile app, hence we focus our analysis on “active” devices that
exhibit continued activities throughout the duration of the data. Our
results emerge from 1,273,571 active devices that accessed the app at
least once a month for more than 10 months in 2019. 19 Additional
statistics on the end-user dataset are available in Appendix A.3.

6.1 Security Updates Frequency and Latency on
End-User Devices

We parse the user-agent strings from the mobile app to obtain
the phone model variant, carrier, build number, and Android OS
version. The model variant is a code name that can be mapped
to a specific model, e.g., “starlte” for Samsung Galaxy S9 20. The
build number specifies the Android code branch from which the
build was derived from, the date when the release is branched
from or synchronized with the development branch, as well as the
version numbers and hotfixes 21. For example, the build number
“QQ1A.191205.011” corresponds to the 2019-12-05 security patch
level. Lacking visibility on the devices, we leverage changes to the
build numbers as a proxy for observing security updates.

Over the 12 months in 2019, we observe a device associated with
3.44 build numbers on average. Considering that there are (at least)
12 monthly security updates per year, this result is consistent with
our measurements from Section 5.1 which showed that the aver-
age model receives 35% of all potential Android Security Bulletins.
The distribution of build numbers is largely bi-modal, with 76.99%
of devices having two or less unique build numbers and 16.55%

18Assuming that a user is not using multiple devices of the same model.
19We picked 10 months as threshold due to a bug that resulted in a 1.5 month gap in
the data. We analyze the potential effects of the gap in Section 8.
20We use the models supported by Google Play for this mapping https://
support.google.com/googleplay/answer/1727131?hl=en.
21AOSP build numbers: https://source.android.com/setup/start/build-numbers

https://www.phonearena.com/news/How-often-do-you-upgrade-to-a-new-phone_id119501
https://www.phonearena.com/news/How-often-do-you-upgrade-to-a-new-phone_id119501
https://support.google.com/googleplay/answer/1727131?hl=en
https://support.google.com/googleplay/answer/1727131?hl=en
https://source.android.com/setup/start/build-numbers


Figure 9: Device update latency – Cumulative distribution of
the days between carrier posted date and the build change
observed on the device.

having more than nine unique build numbers. A closer look in Fig-
ure 8 shows that some manufacturers do not tend to change build
numbers, but instead have manufacturer-specific versions that only
change upon OS upgrades (e.g., “R16NW” for Samsung). On the
other hand, devices from Google, Motorola, Sony and Essential
switch build numbers when applying security updates.

For devices with multiple build numbers, we keep track of the
earliest date a build number was observed. On average, a device
changes build numbers every 47.72 days, with a median of 33 days.
This shows updates take place with a monthly cadence correspond-
ing to the monthly release of Android Security Bulletins.

To measure the latency between the carrier update announce-
ment and the update arriving on the device, we match the phone
model variant and carrier information in the user-agent strings
with the carrier dataset. This latency could be from the end user,
who postpones installing available updates, and from updates rolled
out in batches (such as an A/B-testing-based approach [40]) by the
carrier and manufacturer. The latter is an industry practice to detect
issues early in the software release process, where the update is
made available to increasingly more devices over time. A device
only receives updates when its “batch” is addressed, which may be
well after the carrier announcement date.

Out of the active devices, we matched 877,499 (68.90%) with the
carrier dataset22. This “joined” dataset largely includes Samsung
(75.90%), Google (15.94%), LG (5.39%), and Motorola (2.41%) devices.
Each time the build number changes on a device, we look up the
security update announcements from the corresponding carrier
and identify the announcement that most closely occurred prior to
the build change. The time distribution between those two dates is
shown in Figure 9 with an 11 day median and 15.12 day average.

Lacking information about the batch rollout process, such as the
number of batches or release schedule, it is challenging to attribute
this latency to the end user or batch rollout. Nonetheless, Figure 9
shows a noticeable trend: most devices are updated shortly after
carrier announcement. The curve rises sharply at days 3-5 and 10-
12 (likely due to the 6 days average access interval in this dataset),
and flattens out soon after. Around when the curve flattens, e.g.,
day 14, the vast majority (70%) of devices have already updated.

22The vast majority of active devices that we were not able to join with the carrier
dataset have no carrier information (the value for the carrier field in the user-agent
string is “None”) or are associated with carriers outside of this study.

Figure 10: Device access behavior versus latency – Cumula-
tive distribution of the days between carrier announcement
and device build change, for Pixel 2 XL devices associated
with Verizon updating to build “QP1A.191005.007.A1”.

To investigate the effect of batch rollout further, we examine
devices that share the exact same phone model, carrier, and receive
the same security update. Using the 30,545 Pixel 2 XL devices asso-
ciated with Verizon that updated to “QP1A.191005.007.A1” as an
example, their latency distribution is shown in Figure 10. We can
categorize the devices’ update behavior into the following cases:

(1) Update prior to carrier release (0.14% of the devices).
(2) Update after carrier release (99.86% of the devices).
(a) The first time the device accesses the app after the carrier

announcement is with the new build number (30.36%).
(b) After the carrier announcement, the device is observed with

an older build number, then subsequently with the new build
number (69.50%).

A special scenario in case 2-b (1.58% of devices under case 2-b)
is where the device is observed with an older build and the new
build number on the same day, i.e., we can determine the exact
day the update occurred on that device (illustrated as case 2-c in
Figure 10). Update behaviors correspond to different update latency.
For example, 90% of devices in case 2-a were updated by day 8. They
could be in earlier rollout batches compared to devices in case 2-b,
who do not have significant update adoption until day 9. Across
the cases, the curves flatten around day 14, similar to Figure 9.

This suggests that batch rollout likely takes place over a period
of around two weeks, agreeing with public reports [31]. While
measuring user delay (users intentionally delaying updating) is
challenging, the fact that the vast majority of devices are updated
within this period shows the user delay is significantly smaller than
either the delay introduced by the carrier/manufacturer or from the
batch rollout process. Whether it is due to carrier and manufacturer
delay, their batch rollout process, or even due to the user, a device
is susceptible to known vulnerabilities prior to receiving updates.

6.2 OS Upgrades on End-User Devices
The end-user dataset, spanning the duration of 2019, additionally
provides us a unique vantage point to observing the rollout of a
major Android operating system upgrade: Android 10. Similar to



Figure 11: Android 10 adoption per manufacturer – time
delta between Android 10 release (September 3, 2019) and
the date that Android 10 was first observed on a device.

security updates, Android’s OS upgrade also increases a device’s se-
curity posture [16]. We measure the latency in Android 10 upgrades
similar to our approach for measuring security update rollouts in
the previous section. Specifically, we quantify upgrade latency as
the time between the first observation of Android 10 on a device,
and either the official Android OS release date (September 3, 2019)
or the date of the corresponding carrier update announcement, for
those devices upgraded to Android 10 in 2019.

We first examine the time between the first observation on the
device and the official Android OS release date. Among devices that
were eventually upgraded to Android 10, 19.93% did so during the
first week since its release on September 3, 2019, and 25.09% did
so within two weeks. The median time to first observation on end-
user devices is 20 days. Compared to security updates, OS upgrades
appear to take longer to reach end devices.

OS upgrade behaviors appear to be different depending on the
devices’ manufacturer, as shown in Figure 11. The upgrades were ei-
ther rolled out very quickly after the official Android OS release (i.e.,
for Google and Essential devices), or months later (e.g., Samsung,
LG, OnePlus, and Huawei devices). The former is unique in that
both manufacturers release software updates directly, bypassing
the carrier. Pixel devices receive software updates directly from
Google 23, and Essential devices run stock Android with limited
modifications and are known for quickly releasing software im-
provements and updates 24. By contrast, other manufacturers work
closely together with carriers in rolling out updates. According to
the update announcements in the carrier dataset, none of the carri-
ers rolled out Android 10 upgrades until mid-December 2019 — over
100 days after the official Android 10 release date. Without carriers
and manufacturers batch rollout schedule, using the same rationale
from Section 6.1, we observe that after 20 days roughly 70% Essen-
tial and 55% Google devices performed OS upgrades (Figure 11)
compared to 85% of users adopting security updates (Figure 9).
This could mean that the batch rollout window is longer for OS
upgrades than for security updates and/or end users tend to delay
OS upgrades more than updates.

23Update schedule for Pixel phones: https://support.google.com/pixelphone/answer/
4457705?hl=en
24Essential devices: https://www.theverge.com/2020/2/12/21134995/essential-phone-
software-updates-security-android-startup

Android OS version <8 8 (Oreo) 8.1 9 (Pie) 10 (Q)
Treble devices 0% 7.84% 4.07% 35.65% 52.43%
Android One devices 0% 0% 0.29% 75.19% 24.52%
All active devices 11.56% 11.62% 3.46% 54.16% 19.20%

Table 3: OS distributions for Treble, Android One, and all ac-
tive devices – applies to active user devices that accessed the
mobile app at least once a month, for at least 10 months in
2019. There are a total of 1,273,571 active devices, including
427,291 Treble devices and 1,048 Android One devices.

In the carrier dataset, only T-Mobile and AT&T announced up-
grades for Android 10, both applied only to Samsung Galaxy S10,
s10+, and S10e models. Inspecting these three Samsung models
associated with either AT&T and T-Mobile in the end-user data, we
find the difference between the carrier release date and the date of
the first Android 10 observation on the device to be 7.67 days on
average. Again, considering that each device accesses the mobile
app once every 6.12 days on average, this shows most users do
upgrade soon after Android 10 was made available on their devices.

While the nature of our end-user data (i.e., driven by when
users choose to login to the app) prevents us from measuring user-
incurred update delays at a more granular level, the results show
that any uptake delay from the end users is negligible compared to
that posed by the manufacturers and carriers.

7 EFFECTIVENESS OF ANDROID INITIATIVES
To assist the fragmented ecosystem, Google and its collaborators
initiated various programs to increase the availability of security
updates to end devices. We discuss each of them and attempt to
empirically analyze their effectiveness using the end-user dataset.
Android One: Android One is a hardware and software standard
created to run a near-stock version of Android on participating
phone models. Participating models are promised at least two OS
upgrades and three years of monthly security updates 25. However,
phone models in this program are selected by Google on a case-
by-case basis. As of December 10, 2019, there are 23 participating
model listed on the Android One website [1].

We identified 1,048 user devices participating in Android One.
Of those devices, 75.19% are on Android 9 by the end of 2019, and
24.52% are on Android 10. No devices run versions older than 8.1.
Compared to all active devices in the end-user dataset, where 54.16%
are on Android 9 and 19.19% on Android 10, Android One models
are indeed much more up-to-date, see Table 3.

However, even though Android One devices receive OS upgrades,
they do not necessarily receive them faster than other devices. On
average, 105.48 days passed since the official Android 10 release
date until we observe it on an Android One device 26. Additionally,
despite that the program was initially launched in 2014 and evolved
to include mid-range and high-end smartphones in 2017 [1], its
footprint in our end-users dataset is less than 1%.

25Android One “standard”: https://www.xda-developers.com/best-android-one/
26A separate article, posted in February 2020, discusses how Android One devices
receive OS upgrades at variable times, and that ultimately the manufacturers still
control the release of OS upgrades, https://www.notebookcheck.net/The-Android-
One-program-is-a-shambles-and-here-s-why.454848.0.html.

https://support.google.com/pixelphone/answer/4457705?hl=en
https://support.google.com/pixelphone/answer/4457705?hl=en
https://www.theverge.com/2020/2/12/21134995/essential-phone-software-updates-security-android-startup
https://www.theverge.com/2020/2/12/21134995/essential-phone-software-updates-security-android-startup
https://www.xda-developers.com/best-android-one/
https://www.notebookcheck.net/The-Android-One-program-is-a-shambles-and-here-s-why.454848.0.html
https://www.notebookcheck.net/The-Android-One-program-is-a-shambles-and-here-s-why.454848.0.html


Figure 12: Treble vs. all Active Devices - Distribution of
unique build numbers per device in 2019, comparing Treble
devices with all active devices.

Project Treble: Project Treble fundamentally alters the software
stack by introducing a hardware abstraction layer (HAL), which
separates lower-level, device-specific vendor implementations from
the Android OS framework [48]. This helps reduce the overhead for
manufacturers and chipset vendors when updating and upgrading
devices. We identified 427,291 devices in the end-user data where
the phone model is part of Project Treble support 27. A first look at
the number of unique build numbers per device (Figure 12) shows
that Treble devices do appear to be receiving more frequent security
updates. While only 16.55% of all active devices have more than
nine unique build numbers over the course of 2019, 48.15% of Treble
devices have more than nine build numbers.

In addition to a higher frequency of security updates, Treble
devices also appear to be much more up-to-date in terms of OS
upgrades compared to the general device population. Among end-
user Treble devices, 35.65% are on Android 9 by the end of 2019, and
52.43% are on Android 10, as shown in Table 3. Considering that
Treble includes phones shipped with Android 8 or later, the 11.91%
of Treble devices that are still on Android 8 is an approximate of
the end users who do not upgrade. Figure 13 shows the distribution
of the latency between the Android 10 official release date and the
date when we first observed Android 10 on the device in the end-
user dataset, for each device manufacturer associated with Treble
devices. Devices from Samsung, LG, and Motorola (18,460, 27,917,
and 4,653 devices, respectively) appear to receive their OS upgrades
on the same day, in contrast to the general population of devices
where the rollout is staggered over time, as shown in Figure 11.

Compared to the general population, Treble devices do receive a
higher number of security updates (approximated by the number
of build changes) as well as access to new OS versions. It also
appears that they are getting those updates faster from carriers and
manufacturers. As shown in Figure 14, security updates for Treble
devices are rolled out 7 days quicker than non-Treble devices on
average, though there is still a median delay of 19 days.

This delay may be grounded into the current testing procedures.
AOSP, manufacturers, and carriers try to quicken testing for all
devices (regardless of Treble or not) by differentiating between se-
curity updates typically needing less than one week versus service

27Treble models: https://github.com/phhusson/trebleexperimentations/wiki

Figure 13: Android 10 release date on Treble end-user devices
– The time difference between Android 10 release (Septem-
ber 3, 2019) and the date that Android 10 was first observed
on a Treble device, per device manufacturer.
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Figure 14: Distribution of update rollout latency for Treble
and non-Treble devices – From the carrier dataset, Treble’s
average latency is 19 days versus 26 days for non-Treble.

updates lasting more than six weeks [5]. This may explain why
Treble models do not experience a significant decrease in the av-
erage security update latency. Overall, Treble is a step in the right
direction. However, the 19 day rollout delay is of concern.
Project Mainline: A more recent initiative, Project Mainline, fur-
ther modularizes Android OS components. Announced in May
2019 and supported on devices launched with Android 10, it allows
users to update certain system components directly through Google
Play [4]. Mainline delivers those components as APK or APEX files,
such that they can be updated like apps. This effectively removes
device manufacturers and carriers in the software rollout process.

Lacking visibility on the end devices, our dataset does not al-
low us to directly measure the effect of Project Mainline (build
numbers do not change). Nevertheless, we identified 140,720 ac-
tive Mainline-supported devices, i.e., whose model is listed in the
Mainline-supported devices [4]. This makes up 11.05% of the active
devices in the end-user dataset — though the majority, 86.58%, of
these Mainline-supported devices are Google Pixel phones. The
outcome promised by Mainline could reduce the 24 days update
latency incurred by manufacturers and carriers as described in
Section 5.1. However, Mainline’s low adoption among non-Google
devices corroborated with the lack of support for older OS versions
may prolong viewing its benefits by a considerable amount of time.

https://github.com/phhusson/treble_experimentations/wiki


8 STUDY LIMITATIONS
Even though we believe that our work is representative in the
current Android landscape, there are a few considerations and
limitations that require additional discussion.
Completeness of the study and data bias: Our study is geared
towards carrier-supported devices and covers only the top U.S. carri-
ers with their associated manufacturers, while the end-user dataset
also consists largely of U.S.-based users. Many smaller carriers exist
in the U.S., but the top four carriers we studied covered over 98%
of the subscribers in 2018 [18]. When attempting to include other
countries, we could only locate carriers posting limited information
about updates (e.g., Vodafone-AU, Telus-CA, Orange-EU 28).

Our work focuses on the update process after a patch is available
in the AOSP.We do not consider delays at the code-commit level nor
do we capture the delays caused by chipset vendors in developing
a patch. Due to the fragmentation of the Android ecosystem, such
a “boundary-setting” approach allows us to solely concentrate on
entities such as manufacturers, carriers, and end users.
Accuracy in the measurements: As described in Section 4.2, we
found many formatting inconsistencies across carriers’ websites.
Overall, our assumptions prioritize conservative calculations of the
carrier’s frequency. This means that a model could potentially re-
ceive more updates than our measurements report. Also, sometimes
the release date of a security update announcement is not explicitly
provided, thus we infer this information from other fields if possible.
More details on data processing are available in Appendix A.2.

Lacking visibility on the end-user devices, we infer the pres-
ence of security updates from user-agent strings. Our results are
based on devices where the build numbers either follow the An-
droid convention or within the carrier and manufacturer update
announcement (more details located in Appendix A.3).

The lack of transparency in the reporting mechanism and, as
a matter of fact, in the entire software supply chain as noted in
previous work [14, 32] makes it cumbersome and challenging to
track all software changes/updates on devices.
Model vs. device updates: Not all CVEs in a security bulletin ap-
ply to the same model across all carriers [11]. Furthermore, because
we do not know whether a bulletin is applicable to each model, we
assume a “skipped” bulletin is packaged into a later security update
as bulletins should not be skipped [38].
Batch updates: Batch rollout by manufacturers-carriers could
lengthen the amount of time before an update reaches the end
device. Lacking visibility on the updating schedule, we attempt to
quantify the batch rollout period using our data and discuss it with
respect to the carrier and manufacturer delay in Section 6.1.
The blackbox of carrier-manufacturer relationships: Usually
information about vendor relationships and their business decisions
are not made public by the involved entities. Thus, the findings in
our work are made based on empirical observations. Despite these
circumstances, lack of data transparency, and the heavy fragmen-
tation of the Android ecosystem, our work attempts to provide a
grounded and balanced assessment of Android’s security updates.

28 International carriers: https://www.vodafone.com.au/support/device/software-
updates, https://forum.telus.com/t5/Mobility/Software-Update-Schedule/ta-p/53566,
https://www.orange.ro/info/gadgets/article/2115813

9 ACTIONABLE ADVICE & FUTUREWORK
Our results suggest several actions can be taken to improve the
current Android security landscape:
Manufacturer/carrier consistency and transparency: While
multiple factors affect the delivery of security updates, the main
bottleneck remains the carrier-manufacturer delay, including de-
lay from batch rollout. Synchronizing all entities in the Android
landscape may not be feasible (e.g., business decisions, too many
entities, etc.), but what can help is consistency and transparency in
update announcements, specifically what and when vulnerabilities are
patched. For example, including the Android Security Bulletin, ad-
dressed CVEs, the initial release date and when devices have access
to the update would yield more precise measurements. This would
also enable independent auditing, potentially alleviating pressure
for carriers and manufacturers to perform in-house measurements.
Initiatives independent frommanufacturers/carriers: Android
initiatives such as Treble, Android One, or Mainline are steps in the
right direction. However, a reduced footprint, restrictive support,
and the influence of carriers and manufacturers limit their benefits.
In the end-user data, only 1.5% (excluding Google Pixel phones)
of devices are Mainline-compatible, and less than 1% are Android
One devices. Furthermore, as discussed in Section 7, updates for
Treble devices are directly impacted by manufacturers’ and carriers’
update release processes. Thus, Android-led initiatives should strive
for more independence from manufacturers/carriers.

Continuously tracking progress: Security update latency is rel-
atively stable over 4 years. As shown in Section 5.2, CVE severity,
type of vulnerabilities, or the number of CVEs included in a secu-
rity update do not generally impact the rollout latency. To ensure
change, it is important (especially for the research community) to
continuously track progress in this complex ecosystem.

10 CONCLUSIONS
This paper presents an extensive quantitative study on Android’s
security updates. We provide measurements on the impact of man-
ufacturers, carriers, end users and the effectiveness of Google-led
projects on security updates and OS upgrades. The paper empiri-
cally quantifies the scale of the problem (e.g., rollout latency, fre-
quency) and provides additional insights (e.g., locked vs. unlocked,
Treble vs. non-Treble devices) from new perspectives.
Availability: Our collection scripts and all data gathered from pub-
lic resources are available at https://github.com/undo-lab/Deploying-
Android-Security-Updates-Carrier-Dataset.
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A APPENDIX
The Appendix section provides more details and supporting infor-
mation for previously discussed matters.

A.1 Carrier Data: Collection Process
Each carrier’s announcement style for Android updates presented
its own unique challenges during the collection process. In this
appendix section, we detail our methodology for collecting data
from the top four U.S. carriers (AT&T, Sprint, T-Mobile, Sprint).
Accessing and savingupdate announcements: AT&T, T-Mobile,
and Verizon provided one page with separate links to each models
(similar to a table of index). These individual links contained addi-
tional links to the update announcements for each of those models.
For T-Mobile and Verizon, we programmatically traversed through
these URLs and locally downloaded the HTML code using PyQt5 29.
On the other hand, AT&T employed a different set of features (e.g.,
Javascript, wait conditions, cookies, pop-ups). Thus, for AT&T, we
manually recorded each device announcement page that indicated
updates for Android Security Bulletins and leveraged Selenium30

to download these announcements.
Sprint posts update announcements in a blog-like style, mean-

ing each individual blog post contained an announced update. We
programmatically identified update announcements by traversing
through each post preview (prevented us from accessing each in-
dividual post) and by checking if the post contained one of the
following: “Software Version:",“software update - version", or “Soft-
ware Update". Similar to T-Mobile and Verizon, we locally saved
each update post with PyQt5. At all times, we employed various
measures to minimize access upon collecting the data (as mentioned
in Section 4.5).
Extracting specific data fields: Each carrier required a slightly
different method to best capture each data field. Overall, we used
regular expressions (regex) to match the fields, relied on HTML
tags to traverse through each update, or combined the two. Aside
from the model’s name, which is always captured via traversal of
HTML tags, collecting other data features varied across carriers.
AT&T. Each model announcement page contains the current up-
date and a table of all the earlier/previous updates. To handle this
discrepancy, we leveraged both regex and HTML tags to collect
each update. The current update was located upon matching, “Here
is the current update". We then used additional regex strings to
match other fields such as OS version, software version, file size,
baseband version, build number, security level, and extra details. In
the previous/historical updates, these tend to vary and contain less
29PyQt5: https://pypi.org/project/PyQt5/
30Selenium: https://www.selenium.dev/

Normalization Criteria AT&T Sprint T-Mobile Verizon Running
Total

Raw Android Updates 1022 483 1021 967 3,493
Contains Release Date 1018 479 823 921 3,241
Contains Android Bulletin Indicator 533 380 815 893 2,621
Released within analysis window (8/15 - 12/19) 504 382 709 891 2,486
“Non-duplicate” Prepaid&Contract Models 504 382 709 860 2,455
Reducing Duplicates and Noise 440 369 664 612 2,085
Located Market Release Year for Models 408 368 678* 570 2,024
Level 1 Bulletins 394 364 658 537 1,953
Removal of outliers 381 363 654 469 1,867
Total number of “valid” security updates after normalization 1,867

Table 4: Processing security updates data from carriers –
Each (normalization) step removes non-conforming data
from each carrier. We process all Android updates from car-
riers and continue to remove updates at each step based on
the stated criteria. It’s important to note the need for trans-
parency and consistency across these update announce-
ments as quite a few updates are dropped in our analysis due
to incomplete information (e.g., from missing release dates
to what is addressed within an update).
*Increased due to Verizon posting one update but indicating
multiple models.

information, but we could still use the same regex strings as the
current update. These previous updates are captured by traversing
the HTML table row tags and then the fields are identified via regex.
Sprint. Each post typically provides the software version (an ex-
tended version of the build number), the release date, the release
method (typically Over-The-Air, OTA), and what was fixed in the
announcement. Each of these fields are captured with the respec-
tive string match where newlines are not matched: “Software Ver-
sion:(.*)", “Release Date:(.*)", “Method:(.*)", and “Fixes:(.*)". Occasion-
ally, for older posts, these strings slightly alter and tend to be more
verbose (e.g., “the update starts on ([0-9/]+)").
T-Mobile. The announcements, provided in a table format, typically
contain the version (build number), release date, enhancements and
status. Because the updates are displayed in a table, we collected
them by traversing each row indicated by the HTML code.
Verizon. With announced updates separated into sections, we relied
on regular expressions. We collected the release date, patch level
(if provided), software version, the date when the announcement
was last updated, and the details (if provided).
We also manually validated our programmatically collected data
fields for all update announcements. If a field was not captured
or not formatted correctly (e.g., release date, security level), we
manually collected the data for that field.

A.2 Carrier Data: Processing & Normalization
We collected a total of 3,493 raw Android updates (OS upgrades,
security updates, and miscellaneous updates) across the four mobile
carriers. In this appendix section, we describe and discuss how
our normalization and filtering methods directly impact the data
summarized in Table 4. Overall, we excluded 1,627 updates due to
various reasons such as non-security nature of updates, incomplete
data in update announcements, etc. This resulted in a total number
of 1,867 “valid” updates that we used in our analysis. Below we
discuss our data normalization process.

https://doi.org/10.1145/2808117.2808118
https://www.forbes.com/sites/daveywinder/2020/01/06/smartphone-security-surprise-as-samsung-shows-google-how-android-updates-can-be-done-note10-galaxys10-pixel/#6752ce7f1d6e
https://www.forbes.com/sites/daveywinder/2020/01/06/smartphone-security-surprise-as-samsung-shows-google-how-android-updates-can-be-done-note10-galaxys10-pixel/#6752ce7f1d6e
https://www.forbes.com/sites/daveywinder/2020/01/06/smartphone-security-surprise-as-samsung-shows-google-how-android-updates-can-be-done-note10-galaxys10-pixel/#6752ce7f1d6e
https://pypi.org/project/PyQt5/
https://www.selenium.dev/


Figure 15: The distribution of the number of active months
per device in the end-user dataset.

As shown in Table 4, our carrier data normalization can be sum-
marized as a series of subsequent steps (each “removal” step inherits
the remaining number of updates from the previous ones):
(1) Gather all Android raw updates from carriers’ public websites
(2) Remove updates without an identifiable release date
(3) Remove updates without Android Bulletin indicators (e.g., “An-

droid update")
(4) Remove updates released prior to August 2015 (before the start

of Android bulletins) and after December 2019.
(5) Remove duplicate prepaid and contract models.
(6) Remove duplicate and non-security updates.
(7) Remove updates from models without a market release year.
(8) Remove updates applied to higher Android bulletin levels if

level 1 of the same bulletin was addressed (as higher levels
include level 1).

(9) Remove outliers (updates with a delay less than -10 and greater
than 170 days as we cannot verify the accuracy of these updates,
e.g., possible typos.)
To calculate the carrier and manufacturer incurred delay, we

use the time from when Android posted their bulletin to when
the manufacturer and carrier released the corresponding update
for that bulletin. Thus, we can only leverage updates containing
both the release date and the Android bulletin (or an indication
if not explicitly stated). If an update contains “Android updates”
or “Google updates”, we consider the update applies to the closest,
prior bulletin based on the release date. For Verizon, in cases where
the release date of the software update is not explicitly provided,
we infer this information from the “Updated:” field, which is the
date the post was posted or revised. We also filter out updates with
a rollout latency higher than 150 days as this could be due to the
estimation error. Thus, this resulted in 2,621 updates (see Table 4).

We also removed updates released prior to August 2015 and
after December 2019. Google started releasing Android Security
Bulletins in August 2015 while our end-user data ends on December
31, 2019. Next we observed that carriers (specifically, Verizon) listed
updates for some prepaid models separate from contract models.
Thus, we removed 41 overlapping updates where prepaid models
had corresponding contract device models.

Due to our collection method, a few updates for the same model
and carrier indicated the same Android Security Bulletin. This

Figure 16: The distribution of the number of active weeks
per device in the end-user dataset.

means models received miscellaneous updates whilst on the same
bulletin. We removed the updates that were not specifically security
updates which is labelled as noise as labeled in Table 4. Furthermore,
because we collected data from Verizon three times, certain updates
overlapped. We also removed these duplicates.

To calculate the update frequency of each model, we use the
model’s marketplace release date. Since carriers do not always
release this information, we leveraged other data sources (such as
GSMArena 31 and PhoneArena 32) to manually collect 431 device
release dates. We could not locate the device release date for 32
models thus excluding 61 updates, as shown in Table 4.

Some models received multiple updates covering different levels
in the same Android bulletin. Because we focus on the first level
bulletins, we drop updates to higher levels if their corresponding
first level was also addressed. In the event only a “higher level” was
addressed, we keep the update as higher levels must also address
all lower levels. We dropped 87 updates based on this criteria.

Lastly, we remove any outliers within our corpus based on the
delay. When manually validating our programmatic collection and
normalization methods, we noticed a update’s release date almost a
year prior to the release of a bulletin. We cannot validate the accu-
racy of this, thus we removed an update if the delay was less than
-10 days33 or greater than 170 days. This resulted in the exclusion
of 86 updates.

It is important to note that there were instances where carriers
“packaged" update announcements such that one post contained
multiple model names, thus meaning multiple updates were re-
leased. In our normalization method, we did not break this update
apart until we located models’ marketplace release dates, thus the
total number of updates slightly increase during this step. In total,
12 announced updates applied to two different models. This in-
creases the total number of updates from 12 to 24. Notice in Table 4,
T-Mobile’s count increased due to this issue as 10 of the 12 updates
were from this carrier. The remaining 2 were from AT&T.

A.3 End-User Dataset Statistics
We provide additional statistics for the end-user dataset related to
our measurement study.

31GSMArena: https://www.gsmarena.com/
32PhoneArena: https://www.phonearena.com/
33The negative refers to days prior to the release of the Android bulletin

https://www.gsmarena.com/
https://www.phonearena.com/


Figure 17: The distribution of the time (in days) between con-
secutive accesses to the app from the same end-user device.

The end-user dataset only included Android traffic containing
build number information, as determined by the presence of “An-
droid” and “Build” in the user-agent strings. This excludes traffic
from Android devices without these keywords. Minus more intru-
sive data collection from the devices, our methodology is guided
by available information, i.e., build and OS version in user-agent
strings, that would allow us to observe security update behavior.

In Section 6, we focus our analysis on “active” devices that exhibit
continued activities throughout the duration of the data. Figure 15
and 16 show the distribution of the number of active months and
weeks per device, respectively. We define an “active” device as one
that is active for at least 10 months out of the year, which results in
1,273,571 devices considered for the analysis in Section 6. We select
10 months due to the presence of a 1.5 months gap in our HTTP
requests data collection, and also consider using month as a unit
(rather than week) since Android Security Bulletins are issued on
a monthly basis. As an additional data point, Figure 18 shows the
distribution of monthly accesses per device, calculated by taking
the number of total accesses over the year from that device divided
by the number of months in which the device is active.

In measuring update latency in the end-user dataset, our obser-
vations may be affected by when devices access the mobile app.
Figure 17 shows the number of days between consecutive accesses
from the same device. On average, each device accesses the app
once every 6.12 days, with a median value of six days. 21.4% of the
accesses occurred within one day after the immediately preceding
access, and overall 92.9% of the accesses occurred within two weeks
after the immediately preceding access.

We also acknowledge that the log timestamps in the end-user
dataset are entirely driven by the users of the mobile app. The
user-incurred latency measurements is hence affected by user be-
havior, and the activities we observe may not be consistent across
all devices.

Additionally, the end-user dataset has a gap from June 11 to
July 23, 2019. To assess the gap’s impact when measuring latency,
we repeated the measurements in Section 6.1 but removed device
build changes observed after the data gap that correspond to carrier
released updates before the gap (0.3% of devices are affected). This
analysis yielded a median delay of 11 days, consistent with our

Figure 18: The distribution of number of accesses permonth
for each device. For a device, this is the number of total ac-
cesses over the year divided by the number of months in
which the device is active.

earlier results. In addition, we split the dataset by examining only
the first 5 months (prior to the gap) and the last 5 month (after
the gap), remove the criteria to only consider “active” devices, and
repeat our measurements. Our findings are still consistent - the
median is 11 days, though the average value from the last 5 months
is 12.10 days, slightly shorter than the 15.12 observed across the
entire dataset.

A.4 Security Update Frequency
To better highlight how manufacturers and carriers’ relationships
impact frequency, we compare Samsung and LG. Figures 19 and 20
show the normalized update frequency across carriers for models
from Samsung and LG, respectively. Samsungmodels have amedian
update frequency of 0.54 when associated with AT&T, much higher
than the 0.28 to 0.32 range with other carriers. A similar trend
can be observed for LG models with T-Mobile (0.42) where other
carriers range 0.12 to 0.33. Interestingly, the update frequency for
LG models across all carriers seem to be capped at 0.75, while this
does not appear to be the case for Samsung.

A.5 Security Updates on Locked and Unlocked
Samsung Devices

When analyzing locked and unlocked Samsung models, we ob-
served slight variations occurring with models tied to carriers. Up-
dates still flow from Android Security Bulletins to manufacturers;
however, when the carrier intervenes in the process, three possibil-
ities can occur. First, locked models purchased from a carrier still
receive updates from Samsung; however, the carrier determines
when those updates are released. Furthermore, if these models are
unlocked by that carrier and remain on the same network, themodel
continues to receive updates from Samsung but can be delayed by re-
quest of the mobile carrier [15]. Second, models purchased directly
from Samsung without carrier branding are labelled as unbranded
if and only if these have yet to be connected to a mobile network.
These models receive updates from Samsung without the carrier’s
involvement [9]. Lastly, models purchased unlocked then placed



Figure 19: Cumulative distribution of the normalized secu-
rity update frequency for Samsung models, for each carrier
– Samsung models on AT&T appear to receive updates more
frequently than those on other carriers.

Figure 20: Cumulative distribution of the normalized se-
curity update frequency for LG models, for each carrier –
LG models on T-Mobile appear to generally receive updates
more frequently than those on other carriers.

onto the carrier’s network receive updates from the Samsung, yet
the carrier can still choose to delay updates 34.

It is worth pointing out that devices can transfer from one carrier
to another. However, many issues can arise which makes deter-
mining the update process dependent on the specific carrier and
manufacturer [33, 42, 43].

A.6 Correlating Variables Affecting Latency
Using Spearman’s correlation, we calculated the correlation be-
tween security update latency from the manufacturer and carrier
against multiple factors: the total CVE counts, CVE severity, CVE
type, CVE classification, prior missed Android Security Bulletins,
and the number of days since the prior update.

34Samsung community updates: https://us.community.samsung.com/t5/Galaxy-S9/
Once-a-phone-is-unlocked-who-does-the-software-updates/m-p/563811#M17572

Category Sub-category carrier r-value p-value n(points)
CVE Severity High AT&T -0.1188 0.4425 44
CVE Severity High Sprint -0.0279 0.8491 49
CVE Severity High T-Mobile 0.0173 0.9022 53
CVE Severity High Verizon 0.0462 0.7658 44
CVE Severity Critical AT&T -0.295 0.0519 44
CVE Severity Critical Sprint -0.1991 0.1703 49
CVE Severity Critical T-Mobile -0.3884 0.0041 53
CVE Severity Critical Verizon 0.0727 0.6393 44
CVE Severity Moderate AT&T 0.0413 0.7901 44
CVE Severity Moderate Sprint -0.3143 0.0279 49
CVE Severity Moderate T-Mobile -0.4025 0.0028 53
CVE Severity Moderate Verizon -0.5518 0.0001 44
CVE Severity Low AT&T -0.2432 0.1116 44
CVE Severity Low Sprint 0.1372 0.3473 49
CVE Severity Low T-Mobile -0.3091 0.0243 53
CVE Severity Low Verizon -0.3048 0.0443 44
CVE Type EoP AT&T 0.116 0.4535 44
CVE Type EoP Sprint 0.314 0.028 49
CVE Type EoP T-Mobile 0.4149 0.002 53
CVE Type EoP Verizon 0.6463 0 44
CVE Type RCE AT&T 0.2135 0.164 44
CVE Type RCE Sprint 0.1898 0.1915 49
CVE Type RCE T-Mobile 0.0562 0.6895 53
CVE Type RCE Verizon 0.5186 0.0003 44
CVE Type DoS AT&T -0.0639 0.6803 44
CVE Type DoS Sprint 0.3914 0.0054 49
CVE Type DoS T-Mobile 0.4595 0.0005 53
CVE Type DoS Verizon 0.3459 0.0214 44
CVE Type ID AT&T 0.0219 0.888 44
CVE Type ID Sprint 0.2405 0.096 49
CVE Type ID T-Mobile 0.2417 0.0812 53
CVE Type ID Verizon 0.5123 0.0004 44
CVE Classification Android runtime AT&T 0.4012 0.007 44
CVE Classification Android runtime Verizon 0.3487 0.0204 44
CVE Classification Media framework Sprint 0.311 0.0296 49
CVE Classification Media framework Verizon 0.5558 0.0001 44
CVE Classification System Sprint 0.4566 0.001 49
CVE Classification System T-Mobile 0.6164 0 53
CVE Classification System Verizon 0.467 0.0014 44
CVE Classification Framework T-Mobile 0.4098 0.0023 53
CVE Classification Framework Verizon 0.3819 0.0105 44
CVE Classification Elevation of Privilege Vulnerability in Qualcomm Wi-Fi Driver AT&T -0.339 0.0244 44
CVE Classification Remote Code Execution Vulnerabilities in Mediaserver Verizon -0.3081 0.0419 44
CVE Classification Remote Code Execution Vulnerability in Mediaserver AT&T -0.4972 0.0006 44
CVE Classification Remote Code Execution Vulnerability in Mediaserver T-Mobile -0.3126 0.0227 53
CVE Classification Elevation of Privilege Vulnerability in Mediaserver AT&T -0.339 0.0244 44
CVE Classification Information Disclosure Vulnerability in Mediaserver AT&T -0.3396 0.0241 44
CVE Classification Elevation of Privilege Vulnerability in Wi-Fi AT&T -0.327 0.0303 44
CVE Classification Elevation of Privilege Vulnerability in Wi-Fi Sprint -0.3219 0.0241 49
CVE Classification Denial of service vulnerability in Mediaserver AT&T 0.329 0.0292 44
CVE Classification Denial of service vulnerability in Mediaserver Verizon -0.3318 0.0278 44
CVE Classification Information disclosure vulnerability in Mediaserver Verizon -0.3113 0.0397 44
CVE Classification Elevation of privilege vulnerability in Framework APIs AT&T 0.3783 0.0113 44
CVE Classification Elevation of privilege vulnerability in Audioserver AT&T 0.3086 0.0415 44
Total CVE Count N/A Bulletin Average -0.2812 0.0414 53
Prior Missed Android Security Bulletins N/A All -0.0355 0.1859 1387
Days Since Last Update N/A All 0.1809 0 1387

Table 5: Correlation between latency and other factors – The
results of Spearman’s correlation (r-value) between security
update rollout latency and various variables. Under CVE
Classification, Systemwas conclusivewith amoderate corre-
lation across three carriers. For CVE Classification, we only
include the category with a p-value of 0.05 or less.

As shown in Table 5, we consider any correlation (r-value) with
a p-value greater than 0.05 to be inconclusive [41]. Upon interpreta-
tion, a positive correlation means a higher category quantity leads
to a higher security update latency. A negative correlation repre-
sents the opposite behavior (a higher category quantity leads to a
lower security update latency). We leveraged 64 CVE classifications,
but we only include the correlation coefficients with a p-value less
than or equal to 0.05.

https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-unlocked-who-does-the-software-updates/m-p/563811#M17572
https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-unlocked-who-does-the-software-updates/m-p/563811#M17572
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