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Abstract. Service meshes have emerged as an attractive DevOps so-
lution for collecting, managing, and coordinating microservice deploy-
ments. However, current service meshes leave fundamental security mech-
anisms missing or incomplete. The security burden means service meshes
may actually cause additional workload and overhead for administra-
tors over traditional monolithic systems. By assessing the effectiveness
and practicality of service mesh tools, this work provides necessary in-
sights into the available security of service meshes. We evaluate service
meshes under skilled administrators (who deploy optimal configurations
of available security mechanisms) and default configurations. We con-
sider a comprehensive set of adversarial scenarios, uncover design flaws
contradicting system goals, and present limitations and challenges en-
countered in employing service mesh tools for operational environments.
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1 Introduction

The widespread enthusiasm of large enterprises for microservice system archi-
tectures [2], where many lightweight containers are managed and deployed via
automation tools [20], lacks a matching evaluation of their security. A number
of academic works have examined the security of individual containers [6,30,34].
However, the service meshes of interdependent microservices, are largely un-
studied. Service meshes aid the microservice design philosophy of refactoring
monolithic applications into distinct components that collaborate at scale [24].

Service meshes ease the complexity of managing microservice architectures
by allowing the administrator to express the structure and relationships between
services using configuration files [16, 23]. State-of-art service mesh tools such as
Consul [13], Istio [22], and Linkerdv2 [19] launch collections of microservices au-
tomatically. Furthermore, these tools automate service discovery, the process of
locating and binding services together. Service discovery is a non-trivial process
under the DevOps [2,3] ideology to support a range of flexible deployments. As
such, service discovery is decentralized with dependencies satisfied dynamically.

In studying service mesh security, we discover that misconfiguration issues
and lack of security mechanisms enable numerous attacks. We view these as
consequences of design flaws in service mesh security. When facing these attacks,
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service meshes either offer no defense or require significant manual intervention
on the part of the system administrator. The latter effectively undermines a core
goal of service meshes: ease of automation.

Current practices such as infinite-lifetimes and shared encryption keys [14]
indicate that the design of service meshes has overlooked important security
concerns. Nonetheless, deployment of immature service meshes is growing in
production environments [5,9,10,25,39]. Moreover, the context-dependent scope
and implementations of service meshes are so diverse that establishing a mean-
ingful comparison between different tools is difficult.

Despite the building importance of defending service meshes, we are unaware
of any systematic assessment of their security. To the best of our knowledge, this
paper presents the first study to specifically focus on existing security mecha-
nisms in service meshes. Our assessment indicates service mesh security imple-
mentations and maintenance mechanisms are incomplete, or even non-existent.
Additionally, we discovered that even though service mesh tools advertise their
security contributions, they are either not enabled by default, or are left to
third-party tools to implement.

Our contributions can be summarized as follows:

– We present the first study to examine the security design and analyze the
available security mechanisms within current service meshes

– We propose a relevant threat model to the service mesh domain and assess
the effectiveness of existing tools to mitigate these threats

– We assess the impact and the effort of utilizing available security features in
current service mesh tools

2 Background

Microservice architectures consist of a complex web of narrowly-scoped, interact-
ing services in place of a monolithic architecture. This structure better enables
incremental changes, resilience to cascading failures, and quicker update/release
cycles [3,11,35] at the cost of complexity; it is a significant challenge to maintain
synergy between services. Systems such as Kubernetes [26] provide a framework
to deploy, scale, and manage microservices quickly, magnifying the need to coor-
dinate services. Service meshes seek to address this gap between fast deployments
and collaborating webs of microservices. In this section, we describe some of the
enabling tools and design concepts that underlie service meshes.

Service Mesh Tools: Service meshes enable a service to be registered to a
cluster, discovered dynamically by other dependent services, and to have con-
figuration state maintained. Consul, Istio, and Linkerdv2 are the current state-
of-art service mesh tools with full, production-ready releases. A major cause
of complexity in coordinating services is to determine cluster membership and
node operation status. Consul implements the Serf [17] membership and node
health protocol (an extension of SWIM [8]) and the RAFT consensus protocol.
The basic process is illustrated in Figure 1. Leveraging the cluster membership
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Fig. 1: Model Consul Service Mesh – Using Consul, the creation and operation of a
model service mesh are shown. (a). RAFT elections occur periodically among Consul
servers to determine cluster leadership. (b). Proxies present on each node route cluster-
and service-level communications to nodes. Proxies may be installed on a variety of
platforms including virtualized, containerized, and physical machines with little re-
striction on operating system [1]. (c). The Serf membership protocol occurs with high
frequency to send heartbeat messages among nodes to track health and membership.

logic, Consul creates a membership hierarchy to organize the permissions that
members of the cluster possess to take action within the cluster. The Consul quo-
rum is responsible for maintaining a consistent membership registry and holding
cluster elections for the cluster permission hierarchy.

Istio and Linkerdv2 both require an underlying Kubernetes platform to pro-
vide cluster membership logic. In contrast, installation of Consul is supported on
a range of operating systems and architectures as well as virtualized and physical
instances [1]. Without a previously created and configured Kubernetes cluster
of pods; collections of containers with shared resources [27, 28], Istio and Link-
erdv2 are unable to provide any of their promised features or security benefits.
By imposing the initial requirement of a properly installed, configured, and se-
cured Kubernetes infrastructure, in addition to the overhead of configuring and
maintaining the service mesh, Istio and Linkerdv2 demonstrate a higher burden
on system administrators than that of Consul. In contrast to Consul, Istio and
Linkerdv2 do not maintain a hierarchical structure for permissions and state
management, instead, they rely upon a star topology-like system where the Ku-
bernetes master controls the cluster’s pods either remotely, or locally, and sets
the configuration and permissions of specific members within the cluster.

Service Mesh Security: The paradigm shift from monolithic systems to mi-
croservice systems has caused a change from intra-service issues to inter -service
issues. This transitions the burden of security from within the operating system
of a machine to across network connections. Issues previously addressable by
trusted security measures within the operating system must now be addressed
with network-level security measures. These issues include the need to protect
cluster-level communications, service-level communications, and access permis-
sions, both at the cluster-level as well as the service-level.
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Datacenter Label UDP ACLs TLS All Mechanisms Combined
as a Secret Encryption (Access Control Lists) Encryption (Datacenter Label, UDP, ACLs, TLS)

Unprivileged Threat D M T — D — —
Client Compromise D M T D M T D M —
Server Compromise D M T D M T D M —
Leader Compromise D M T D M T D M T D M T D M T

Table 1: Adversarial Goals on a Consul Deployment – Presents experimental results
of achieved adversarial goals on a properly configured Consul service mesh deployment.
Disruption: Interruption to service availability. Manipulation: Infiltration or exfiltra-
tion of data to cluster. Takeover: Adversary assumes the leadership position in cluster.

3 Threat Model and Experimental Design

To evaluate the security of modern service mesh tools, we used Consul as a model
for service mesh design and implementation. We constructed a proof-of-concept
environment using Consul to conduct our experiments. We consider the available
security mechanisms for administrators and examine a deployment utilizing all
available mechanisms as well as one using default configurations. Under these
setups, we conduct a series of active attacks and report our results. We also
present a comparison of available and default security mechanisms within Istio
and Linkerdv2 and provide our findings. We utilize these findings to frame a dis-
cussion of the shortcomings and overhead system administrators should expect
when attempting to secure service mesh clusters within their infrastructure.

Consul provides a meaningful representation of service meshes and the ma-
turity of these tools. Of the current state-of-art service meshes, Consul is the
most feature-rich and flexible tool available in this domain. As mentioned previ-
ously, Consul can be used with any other tools or forms of virtualization such as
containers or virtual machines whereas Istio and Linkerdv2 are dependent upon
an underlying Kubernetes implementation to provide necessary features for the
mesh. Additionally, as of the writing of this work, Consul appears to be the
most actively developed tool, enjoying the largest number of GitHub contrib-
utors (594) of the tools we encountered, and a comparable number of GitHub
repository stars to the runner-up tool, Istio [15,21]).

Threat Model: The threat model we employ in this work considers common
attacker goals of disruption of services and exfiltration of sensitive data. However,
we also consider adversarial targets that are unique to the service mesh domain.
For example, an attacker may often desire to infiltrate the cluster and gain
privilege rather than destroying the functionality of a system. By infiltrating
the cluster, the attacker may inject malicious service configurations to possibly
redirect benign service requests to externally controlled endpoints. In Table 1,
we denote these high-level goals as Disruption, Manipulation, and Takeover
for disruption to services and cluster activities, tampering of sensitive data via
manipulation, and gaining privilege through service mesh takeover, respectively.

Experimental Setup: We deployed our model cluster upon a Dell R540 server
configured with 128 GB of RAM, Xeon Gold 5117 processor, and 10 TB of SSD
storage. We believe this hardware to be comparable to what would be utilized
in production environments, both in on-site and remote, cloud datacenters.
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The proof-of-concept Consul service mesh consists of an initial leader node or
“bootstrapper” responsible for initializing the cluster and connecting the initial
nodes. Alongside the leader node are two server nodes, forming the quorum, and
a singular client node. Using Figure 1 as our model, we manually deployed and
configured these four Consul nodes (one leader, two servers, and one client node).
We utilize only one client node due to the equivalent functionality of subsequent
clients. Due to the architecture of Consul service mesh clusters, it is recom-
mended to have 3 nodes acting as servers (one leader node and 2 server nodes)
to manage the quorum and maintain the cluster state and log files [14]. Nodes
are the main structural components of service mesh clusters, hosting ephemeral
or long-lived microservices on permanent, virtual, or physical instances.

4 Evaluation of Modern Service Meshes

We consider an administrator with deep knowledge of the employed tool and its
available security mechanisms. We present an experimental assessment of this
“idealized” scenario and compare the results against default offerings of the tool.

With deep knowledge of available security mechanisms and their correct con-
figuration, an administrator can leverage these protections to their greatest po-
tential. To study how varying degrees of attacker strength can affect the level of
compromise under these security mechanisms, we position the adversary at differ-
ent levels of initial compromise. The lowest initial power we consider an attacker
to have is that of an “Unprivileged Adversary” who has not yet compromised
any node within the cluster. The highest initial level of power we consider is that
of “Leader Compromise” where an adversary has the preliminary position of a
node considered to be the leader of the Consul quorum. Under the assumption of
a knowledgeable administrator and the preconditions placed upon the adversary,
we evaluate the experimental results and provide our assessment.

Consul – Datacenter Label as a Secret: The first means of potential defense
we consider within our proof-of-concept Consul service mesh is the datacenter
label. We consider this a potential security mechanism due to the fact that if a
prospective cluster node is configured with a datacenter label that differs from
the target cluster, the prospective node will be denied membership to the cluster.

As shown in Table 1, under all adversarial scenarios, using strictly “Data-
center Label as a Secret” is insufficient in thwarting attacks against the cluster.
Specifically, when using datacenter label alone, communication messages are ex-
changed in plaintext between nodes of the cluster. Due to the realistic possibility
of an adversary to capture a single packet exchanged between the nodes of the
cluster, they may extract the datacenter label from the packet. The malicious
join operation is, subsequently, made possible and once a member of the cluster,
all high-level attacker goals can be achieved.

Consul – UDP Message Encryption: Next, we consider the Consul service
mesh deployed using UDP message encryption as the sole mechanism of defense.
As shown in Table 1, enabling UDP message encryption thwarts an unprivileged
adversary from achieving any of their goals, but fails to provide protection under
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Fig. 2: TLS Message Encryption – Encrypting service traffic with TLS prevents an
unprivileged attacker influencing the cluster. However, a leader node compromise allows
an adversary to generate malicious TLS key pairs and exfiltrate them to other adversary
nodes. Once additional adversaries join they may join the quorum and cast votes due
to their server-permissioned certificates.

compromise of any cluster members. By enabling UDP encryption, the adver-
sarial joins previously possible are prevented because an attacker is unable to
decrypt packets from the legitimate nodes.

All nodes within a Consul service mesh share the same encryption key. To
exacerbate this concern, Consul, as of the writing of this work, fails to provide
any means of key revocation or rotation. In order to provide key rotation within
the cluster, even through a separate “recovery” mechanism such as an SSH [36]
session, all nodes must be stopped, configurations adjusted, and the cluster recre-
ated. While the managed services of the cluster may be transient and possibly
short-lived, the underlying service mesh infrastructure is intended to be long-
living. Therefore, support for key rotation capabilities is vital for managing and
maintaining a secure service mesh architecture.

Consul – ACLs: As shown in Table 1, Access Control Lists (ACLs) are highly
effective at thwarting the adversarial goals of manipulation and takeover within
the cluster. However, ACLs prove futile against disruption of cluster activities
and service availability. In order for a system administrator to enable ACLs
as a defense mechanism, extensive permission policies must be created and ac-
cess tokens exchanged using a third-party, secure channel such as SSH. With
a lack of support for distributing security objects safely within Consul itself,
the implementation of ACLs, and subsequently the policies and tokens gener-
ated, demonstrates that security mechanisms within service meshes have been
“bolted-on” to existing software, rather than incorporated into system design.

In order to secure the simple, four node service mesh used for our evalua-
tion, as advised by the Consul tutorials [14], an administrator would need to
generate unique access policies, generate tokens, and distribute and assign the
generated tokens to proper recipients. All of these actions must be conducted
from the single leader node due to the advised “operator-only” policy. Under
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the “operator-only” policy, permissions to edit the ACLs are restricted to the
leader, meaning a singular node is responsible for all creation and distribution
of policy materials. In direct contrast to the decentralized, distributed nature
of the service mesh, the security structure implemented has been consolidated
to a single point of control, the Consul leader. Augmenting the burden placed
upon system administrators, the current implementation of Consul ACLs have
no token rotation policy in place. Therefore, either the created access tokens
within the cluster will exist for the lifetime of the cluster, or are revoked after a
period of time, but with no means of redistributing fresh tokens to nodes.

When ACLs are the sole mechanism of defense for a Consul service mesh
cluster, they prove ineffective at mitigating adversarial disruption efforts. Due
to implementation of processing access control policies within the service mesh,
unauthorized messages must be confirmed as illegitimate by the cluster. Us-
ing around 25 adversarial nodes, we were able to disrupt operations within the
service mesh by overwhelming the consensus protocol.

Consul – TLS Message Encryption: In order to protect service-level com-
munication within the Consul cluster, a system administrator may enable TLS
message encryption. To provide nodes the capability to sign messages, they must
first have signed certificates from the certificate authority. When constructing
the service mesh, the administrator would create a certificate authority from one
of the server nodes of the cluster. Afterwards, the certificate authority is respon-
sible for generating all server and client certificates. Distribution of certificates
must be completed through a separate channel before cluster creation.

By enabling TLS encryption, the unprivileged adversary is unable to mali-
ciously join the cluster, preventing any goals from being achieved in this case.
Despite this, there are no protections for the key/value storage system. Access-
ing the key/value storage allows an adversary to manipulate configurations or
secrets stored within the cluster. Figure 2 shows how, should the leader node
ever be compromised in the lifetime of the cluster, an adversary may leverage the
signing privileges of the certificate authority to generate illegitimate certificates
and keys for malicious nodes.

The implementation of the certificate hierarchy within Consul once again
shows a disconnect between the desired decentralized and distributed nature
of service meshes with a centralized, consolidated security structure. Within
Consul, the only node able to sign certificates of any privilege is the certificate
authority (commonly created on the quorum leader node). Additionally, should
the leader node fail, barring replication of the certificate authority key, the cluster
loses the ability to sign new certificates, once again conflicting with the flexibility
goal of the DevOps ideology. Lastly, a lack of revocation and rotation mechanisms
within Consul itself necessitates a third-party tool such as HashiCorp’s Vault [18]
or SSH be used to distribute fresh certificates to nodes, which triggers the need
for widespread edits to configurations in order to return to a secure state.

Consul – All Mechanisms Combined: By enabling and combining all avail-
able security mechanisms, Table 1 shows a clear improvement in mitigating ad-
versarial goals. However, employing all mechanisms presents administrators with
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Tool Security Mechanism
Available Enabled Default

Revocation Redistribution
in Tool? by Default? Lifetime

C
o
n
su

l Cluster Message Encryption Yes No ∞ No No

Service Message Encryption Yes No 1 year Yes No

Cluster Access Control Yes No ∞ Yes No

Service Access Control Yes No ∞ Yes No

L
in
k
e
rd

v
2 Cluster Message Encryption No No N/A N/A N/A

Service Message Encryption Yes Yes 24 hours Yes Yes

Cluster Access Control No No N/A N/A N/A

Service Access Control Yes No ∞** No** No**

Is
ti
o

Cluster Message Encryption No No N/A N/A N/A

Service Message Encryption Yes No Ext Tool [23] Ext Tool [23] Ext Tool [23]

Cluster Access Control No No N/A N/A N/A

Service Access Control Yes No ∞** No** No**

K
u
b
e
rn

e
te
s Cluster Message Encryption No* No N/A N/A N/A

Service Message Encryption Yes No 1 year Beta Beta

Cluster Access Control Yes No ∞ No No

Service Access Control Yes No ∞ No No

Table 2: Security Mechanisms in Service Mesh Tools – A summarized view of the
security mechanisms available in each service mesh tool analyzed, which mechanisms
are enabled by default, and additional details about the actual implementations.
∗Pod-to-pod encryption left to third-party implementation [27].
∗∗Inherited from Kubernetes’ Role-Based Access Control system [19,23].

a daunting amount of manual configuration. Considering the cost required to es-
tablish a secure model example with trivial functionality, the requirements to
successfully deploy and secure enterprise-level systems is unreasonable. Also, due
to the implementation of the available security mechanisms, should the leader of
the cluster ever be compromised across the lifetime of a cluster, all configuration
effort must be repeated to redeploy securely. By lacking necessary revocation
and rotation mechanisms, Consul has limited the ability to construct dynamic
service mesh clusters that are resilient to compromise events. Service mesh tools,
while aiming to fill the niche of microservice architecture discovery, connection,
and management, may, in fact, lead to substantial overhead for administrators
who wish to deploy these tools in a secure fashion.

Nacos: While not directly considered a service mesh, Nacos provides many of
the same features as the service meshes considered and has the ability to be
configured in a way to accomplish many of the same high-level goals as service
mesh tools. However, it is important to note that Nacos is technically a service
discovery and management tool. As of the writing of this work, Nacos is in
version 1.1.4, and is available for public use. However, Nacos has very little, if
any security mechanisms available to its users. In its current state, Nacos depends
primarily upon external security mechanisms such as firewalls, subnetting, and
other perimeter defenses for protection.
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Default Security Mechanisms: Table 2 outlines the available security mech-
anisms of service meshes and Kubernetes and the default state of these mecha-
nisms. While Consul offers all of the necessary security capabilities to adminis-
trators, it fails to enable any of them by default and lacks rotation support for all
mechanisms. With an extensive list of configurations to create and assign, such
as node permissions, key creation and distribution, and certificate hierarchy, the
overhead for system administrators is significant.

Additionally, Istio and Linkerdv2 fail to provide means of securing the cluster-
level functionality and service-level access control by default. However, Linkerdv2
does enable service-to-service message encryption via mutual TLS by default,
representing a valuable design decision that benefits security. In Istio, to provide
the same service-level security, an administrator would be required to modify
configurations of the cluster and provide additional authentication rules for in-
dividual pods and services in order to provide proper, secure functionality.

5 Related Work

To our knowledge, this work is the first systematic study of service mesh security.
Many of our attacks are inspired by existing work, and many of the implications
of our work build upon previous studies of microservice security and networked
systems. We discuss some works most closely related to our own below.

Microservice Security: Automation and the decentralized nature of microser-
vice security has been observed or utilized by a number of previous works. Ras-
togi, et al. [31] evaluate an automation system for dismantling a monolithic
software deployment into a collection of collaborating microservices in order to
better adhere to the principle of least privilege [33]. Yarygina, et al. [40] note
the comparative lack of security protections for Docker containers, and propose
a container security monitor. In Sun, et al. [38], the authors study how the trust
relationship between deployed microservices may result in the compromise of an
entire system and they propose a system for deploying network security monitors
in microservice environments to detect and block threats to clusters.

A number of previously published works focus on the security of individual
Docker containers, which are frequently used for microservices. A representa-
tive example is Enck, et al. [34], which studies the risk of deploying containers
automatically from 3rd-party container repositories. In Lin, et al. [29] and Mar-
tin, et al. [30], the authors examine attacks and countermeasures to the security
of containers, as well as the ecosystems of repositories and orchestration tools.
Our work assumes that individual containers and repositories are secure, instead
focusing on external threats to the mechanisms by which microservices interact.

Analysis of Consensus Protocols: Some of the attacks that we propose target
the RAFT protocol used to form a service mesh. Some previous work, most
notably by Sakic, et al. [32], examines the availability and response time of nodes
participating in RAFT. However, previous work does not consider the influence
of an adversary, and is instead concerned with the performance of RAFT in a
purely-benign setting.
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The considerable interest around blockchain technologies has driven the de-
velopment of security studying microservice clusters specifically for running con-
sensus protocols, such as Hyperledger Fabric [12, 37]. These studies observe the
threat of sybil attacks on collaborative network services, as does our work. How-
ever, blockchain technology can defeat traditional sybil attacks via proof-of-work
or related protocol-level mechanisms, whereas our attacks require low-latency
communication and collaboration between microservices.

Microservice Attacks: The attack vectors that we present are (to our knowl-
edge) unreported. The actual attacks themselves, and the goals of the adver-
saries that we articulate in our threat model are inspired by previous work on
attacks against more traditional systems. One of the most relevant studies is
that of Cherny, et al. [4], which also proposes the use of microservice containers
as a vector of attacks, thus providing a motivation for services as a target. In
Csikor, et al. [7], the authors study how specially tailored access control policies
crafted by an attacker may result in an exhaustion of cloud resources resulting
in a denial-of-service to a cluster.

6 Conclusions

Due to the increase of deployed microservices, service mesh tools appear to
be an enticing solution to manage and maintain these deployments. However,
it is necessary to assess the available security mechanisms and their strength
in deterring adversarial efforts. As the initial study of service mesh tools used
for microservice deployments, we examine the three most popular, state-of-art
offerings in the service mesh domain and articulate a threat model tailored to
concerns within the service mesh domain.

Through experimentation, we find that under configuration by a skilled ad-
ministrator, in 10 of the 20 studied scenarios, complete cluster compromise is
possible for an attacker. Further, in 5 additional scenarios, at least one adver-
sarial goal is achievable. Under default configuration, all studied tools, except
Linkerdv2, fail to enable any of their security mechanisms. These results and our
observations in usability of these mechanisms indicate important design flaws in
the security of service mesh tools requiring further research and development.
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