
1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 1

Mimosa: Protecting Private Keys against
Memory Disclosure Attacks using Hardware

Transactional Memory
Congwu Li, Le Guan, Jingqiang Lin, Senior Member, IEEE, Bo Luo, Member, IEEE,

Quanwei Cai, Jiwu Jing, Member, IEEE, and Jing Wang

Abstract—Cryptography is essential for computer and network security. When cryptosystems are deployed in computing or
communication systems, it is extremely critical to protect the cryptographic keys. In practice, keys are loaded into the memory as
plaintext during cryptographic computations. Therefore, the keys are subject to memory disclosure attacks that read unauthorized data
from RAM. Such attacks could be performed through software exploitations, such as OpenSSL Heartbleed, even when the integrity of
the victim system’s binaries is maintained. They could also be done through physical methods, such as cold-boot attacks, even if the
system is free of software vulnerabilities. This paper presents Mimosa, to protect RSA private keys against both software-based and
physical memory disclosure attacks. Mimosa uses hardware transactional memory (HTM) to ensure that (a) whenever a malicious
thread other than Mimosa attempts to read the plaintext private key, the transaction aborts and all sensitive data are automatically
cleared with hardware, due to the strong atomicity guarantee of HTM; and (b) all sensitive data, including private keys and intermediate
states, appear as plaintext only within CPU-bound caches, and are never loaded to RAM chips. To the best of our knowledge, Mimosa
is the first solution to use transactional memory to protect sensitive data against memory attacks. However, the fragility of TSX
transactions introduces extra cache-clogging denial-of-service (DoS) threats, and attackers could sharply degrade the performance by
concurrent memory-intensive tasks. To mitigate the DoS threats, we further partition an RSA private-key computation into multiple
transactional parts by analyzing the distribution of aborts, while (sensitive) intermediate results are still protected across transactional
parts. Through extensive experiments, we show that Mimosa effectively protects cryptographic keys against attacks that attempt to
read sensitive data in memory, and introduces only a small performance overhead, even with concurrent cache-clogging workloads.

Index Terms—Cold-Boot Attack; CPU-Bound Encryption; DMA Attack; Memory Disclosure Attack; Transactional Memory.

F

1 INTRODUCTION

Cryptosystems play an important role in computer and
communication security, and the cryptographic keys shall be
protected with the highest level of security. In the signing or
decryption operations, the private keys are usually loaded
into memory as plaintext, and become vulnerable to memory
disclosure attacks that read unauthorized data in memory.
Such attacks are launched through software exploitations.
For instance, the OpenSSL Heartbleed vulnerability allows
remote attackers to steal sensitive memory data [78]. Un-
privileged processes exploit vulnerabilities [40, 63, 77, 79]
to obtain unauthorized data in memory. The statistics on
Linux show that, 16.2% of the vulnerabilities [24] can be
exploited to read unauthorized data from the memory space
of operating system (OS) kernels or user processes. Such
attacks can be launched successfully, even if the integrity
of the victim system’s binaries is maintained at all times.

• C. Li, L. Guan (co-first author), J. Lin (corresponding author), Q. Cai, J.
Jing and J. Wang, are with Data Assurance and Communications Security
Center, and also State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sciences, China; Email:
{cwli13, lguan, linjq, qwcai, jing, jwang}@is.ac.cn; and B. Luo is with
Department of Electrical Engineering and Computer Science, University
of Kansas, USA; Email: bluo@ku.edu.

The preliminary version appeared under the title “Protecting Private Keys
against Memory Disclosure Attacks using Hardware Transactional Memory”
[38] in Proc. 36th IEEE Symposium on Security and Privacy, 2015 .

So existing mechanisms such as buffer-overflow guards
[22, 23, 105] and kernel integrity protections [46, 58, 84, 89],
are ineffective against these “silent” attacks. Meanwhile,
attackers with physical accesses are capable of bypassing all
OS protections to directly read data from RAM chips, even
if the system is free of the vulnerabilities mentioned above.
Cold-boot attacks [41] “freeze” the RAM chips of a running
computer, place them into another machine controlled by
the attacker, and read the RAM contents.

This paper presents Mimosa that uses hardware transac-
tional memory (HTM) to protect private keys against both
software and physical memory disclosure attacks described
above. We use Intel Transactional Synchronization eXten-
sions (TSX) [48], a commodity HTM solution in commercial-
off-the-shelf (COTS) platforms. Transactional memory was
originally proposed as a speculative memory access mech-
anism to boost the performance of multi-threaded applica-
tions [45]. An execution with transactional memory finishes
successfully, only in the case of no data conflict; otherwise,
all operations are discarded and the execution is rolled back.
A data conflict happens, if multiple threads concurrently
access the same memory location and at least one of them is
a write operation. The strong atomicity guarantee provided
by HTM is utilized to defeat illegal accesses to the memory
space that contains sensitive data. Moreover, Intel TSX and
most HTM are physically implemented in caches, so the
computing is constrained entirely within CPUs, effectively

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 2

preventing cold-boot attacks on RAM chips.
We adopt the key-encryption-key structure in Mimosa –

the RSA private keys in memory remain encrypted by an
AES master key, when there is no signing or decryption re-
quest. Mimosa integrates TRESOR [76], a register-based AES
cryptographic engine, to protect the AES key-encryption key
always in debug registers that are only accessible with ring 0
privileges. The AES master key is derived from a password,
input when the system boots. Meanwhile, if Mimosa is
triggered for a request, the RSA private key is decrypted
by the AES master key and then used as follows.

In Mimosa, each private-key computation is performed
as an atomic transaction. During the transaction, the en-
crypted private key is first decrypted into plaintext, and
used to decrypt or sign messages. If the transaction is in-
terrupted due to any reason (e.g., attack attempt, interrupt,
or fault), a hardware-enabled abort handler clears all updated
but uncommitted data in the transaction, which guarantees
that the private key (and intermediate states) cannot be
accessed by malicious processes. The abort processing is
non-maskable, and triggered by HTM automatically. Before
committing the computation result, all sensitive data are
carefully cleared. So a software memory disclosure attack
only obtains cleared data, even if it successfully reads
from the memory addresses of the keys or other sensitive
data.1 Meanwhile, with the Intel TSX implementation, the
transaction is performed entirely within CPU caches and
the updated but uncommitted contents (i.e., the plaintext
private keys) are never loaded to RAM chips (see [51],
Chapter 12.1.1). So Mimosa is immune to cold-boot attacks.

We implemented the Mimosa prototype with Intel TSX,
but the design is applicable to other HTM implementations
using on-chip caches [2, 54, 104] or store buffers [26, 42].
When the private-key computation is executed as an HTM
transaction and the private key is decrypted (i.e., the data
are updated) in the transactional execution, any attack at-
tempt to access the private key results in data conflicts that
abort the transaction. These HTM solutions are CPU-bound,
so they are also effective against cold-boot attacks.

Performing the computationally expensive private-key
operation as a transaction with Intel TSX is much more
challenging than it seems to be. Because transactional mem-
ory is originally proposed for speculatively running critical
sections, a TSX transaction is typically lightweight, such as
setting or unsetting a shared flag variable. To support RSA
private-key operations, the Mimosa computing task needs
to address many problems, including unfriendly instruc-
tions, data sharing intrinsics in OS functions, interrupts,
preemption, and other unexpected aborts; otherwise, the
transactional execution never commits. Moreover, when the
Mimosa service is running concurrently with other memory-
intensive processes, it has to deal with aborts due to the
competition of cache resources, which hence introduces
cache-clogging denial-of-service (DoS) threats. Compared
with the preliminary design of Mimosa [38], we further par-
tition a private-key computation into multiple transactional
parts, to mask the fragility of TSX transactions and mitigate

1. Our solution reactively clears the memory to protect sensitive data
whenever an attack attempt is conducted. Hence, we name it Mimosa, as
it is similar to the plant Mimosa pudica, which protects itself by folding
its leaves when touched or shaken.

the impact from concurrent memory-intensive tasks, while
(sensitive) intermediate results are encrypted across the
transactional parts by the AES master key.

Mimosa is implemented as a Linux kernel module and
exported as an OpenSSL-compatible cryptographic engine.
We have evaluated the prototype on an Intel Core i7 4770S
Haswell CPU. Through extensive validations, we confirm
that no private key is disclosed under various memory
disclosure attacks. Experiments show that Mimosa only
introduces a small overhead to provide the security guaran-
tees. Its performance is comparable to popular RSA imple-
mentations without additional protections, either in clean
environments or with concurrent cache-clogging workloads.
Our contributions are three-fold. (1) We are the first to
utilize transactional memory to ensure the confidentiality
of private keys, against software and physical memory
disclosure attacks. (2) We have implemented the Mimosa
prototype system on a commodity implementation of HTM
(i.e., Intel TSX), and the experimental evaluation shows
that it is immune to the memory disclosure attacks with a
small overhead. And (3) we develop an empirical guideline
to perform heavy computations as TSX transactions, even
concurrently with memory-intensive tasks, which suggests
the possibility to extend the applications of HTM.

The rest of the paper is organized as follows. Section 2
introduces the background and preliminaries. We present
the Mimosa design and implementation details in Sections
3 and 4, respectively. The cache-clogging DoS threat is miti-
gated in Section 5. Experimental results are shown in Section
6, and the security analysis is in Section 7. We summarize
related works in Section 8 and finally conclude the paper.

2 BACKGROUND AND PRELIMINARIES

2.1 Memory Disclosure Attacks on Sensitive Data

These attacks are roughly classified into two categories:
software-based and hardware (or physical) attacks.
Software Memory Disclosure Attack. Software vulnera-
bilities allows adversaries to read unauthorized data from
the memory space of OS kernels or user processes, without
modifying binaries. These vulnerabilities result from unver-
ified inputs, isolation defects, memory dump, memory reuse
or cross-use. OpenSSL Heartbleed attackers receive sensitive
data by manipulating malformed TLS heartbeat requests
[78]; or attackers exploit the kernel vulnerability [40] to read
memory data. The un-initialization error and the ALSA bug
[77, 79] lead to sensitive information leakage from kernel
space. As a result of unintended software designs, such as
core dump, hibernation and crash reports, the memory con-
tent could be swapped to disks [18], which may be accessible
to attackers. Cryptographic keys are recovered from Linux
memory dump files [86]. Some FTP and Email servers dump
data to a directory accessible to adversaries [61, 95, 101],
leaking passwords that are originally kept in memory. Fi-
nally, uncleared data buffers are subject to reuse or cross-
use [72, 73], and the RSA private keys are disclosed from
uncleared buffers through the Linux ext2 vulnerability [44].
Cold-Boot Attack. These attacks result from the remanence
effect of semiconductor devices; that is, the contents of
dynamic RAM (DRAM) chips gradually fade away. At low

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 3

temperatures the fading speed slows down significantly. So
adversaries retrieve the remained data by cold-booting the
running target computer and loading a malicious OS from
an external storage [41]. Cold-boot attacks can be launched
alternatively by placing the DRAM chips into another ma-
chine controlled by attackers. Such attacks require no ac-
count or credential on the target machine, and are launched
even if the victim system is free of software vulnerabilities.
DMA Attack. Direct Memory Access (DMA) is designed to
allow peripheral devices to bypass the OS and directly ac-
cess memory for better performance. However, this feature
is exploited in another type of physical memory attacks [97].
Read-only DMA attacks read out sensitive memory by DMA
requests from Firewire or PCI interfaces [6, 11, 47], and the
malicious behaviors do not need any “cooperation” of OSes.
Advanced DMA attacks inject malicious binaries into the
memory of victim computers by DMA requests, and then
the injected codes access data in memory or registers [10].

2.2 CPU-Bound Solutions against Cold-Boot Attacks
While there are various solutions against software memory
disclosure attacks [14, 28, 44, 83], the defense against cold-
boot attacks is to bound the operations in CPUs. CPU-bound
solutions avoid loading sensitive data into RAM chips, so
cold-boot attacks fail. Register-based cryptographic engines
[76, 93] implemented the AES algorithm entirely within
CPUs. TRESOR stores an AES key in debug registers and
Amnesia uses model-specific registers. Atomicity must be
ensured during the encryption/decryption to avoid swap-
ping the register states to memory.

PRIME [29], RegRSA [112] and Copker [37] extend the
CPU-bound approach to RSA. The AES key protected by
TRESOR is used as a key-encryption key to encrypt RSA
private keys. In PRIME, the private key is decrypted into
AVX registers and the RSA computations are performed in
these registers. The performance is decreased to about 10%
of traditional implementations, due to the limited size of
registers. RegRSA improved PRIME by using more registers
and encrypting sensitive intermediate states in memory, so
the efficiency is enhanced. Copker employs CPU caches to
perform the RSA computations against cold-boot attacks. It
assumes the integrity of OS kernels without any memory
disclosure vulnerabilities [40, 63, 77, 79], so Copker is not
immune to software memory disclosure attacks.

2.3 Transactional Memory and Intel TSX
Transactional memory is a memory access mechanism, orig-
inally designed to improve the performance of concurrent
threads and reduce programming efforts [45]. The idea is
to run critical sections speculatively and serialize them only
in the case of data conflicts, which happen when several
threads concurrently access the same memory location and
at least one of them attempts to update the content. If
the entire transaction is executed without any conflict, all
modified data are committed atomically and made visible to
other threads; otherwise, all updates are discarded and the
thread is rolled back to the automatically-saved checkpoint.

Intel TSX provides hardware-enabled transactional mem-
ory [48]. Programmers specify critical sections for transac-
tional executions, and the processor transparently performs

data tracking, conflict detection, commit and roll-back. Data
conflicts are detected on top of the cache-coherence protocol,
at the granularity of cache lines. TSX keeps all updated but
uncommitted data in L1D caches, and tracks a read-set (ad-
dresses that have been read from) and a write-set (addresses
that have been written to) during the transaction. A conflict
is detected if another core (a) reads from a memory location
in the write-set, or (b) writes to a location in the write-set
or read-set. In addition to data conflicts, other events abort
a TSX transaction, including unfriendly instructions such
as cache controls, operations on MMX states, and system
activities such as interrupt and exception. There are also
micro-architectural implementation dependent reasons.

TSX provides two programming interfaces with different
abort handling mechanisms. First, Hardware Lock Elision
(HLE) is compatible with legacy instructions, and works
with two new instruction prefixes. The prefixes give hints
to processors that the execution is about to enter or exit the
critical section. On aborts, after rolling back to the original
state, the processor automatically restarts the execution in a
legacy manner; that is, locks are acquired before entering
the critical section. The second called Restricted Transac-
tional Memory (RTM), provides three new instructions (i.e.,
XBEGIN, XEND and XABORT) to start, commit, and abort
a transactional execution. Programmers specify a fallback
function as the operand of XBEGIN. The aborted execution
jumps to the specified fallback function, so the programmers
can implement customized codes to handle the exception.

3 SYSTEM DESIGN

This section presents the assumptions and security goals
of Mimosa. We then introduce the system architecture, and
some important design details.

3.1 Assumptions and Security Goals

Assumptions. We assume the correct hardware implemen-
tation of HTM (i.e., Intel TSX in the prototype system or
others in the future). We also assume a secure initialization
phase during the OS boot process; that is, the system is clean
and not attacked during this small time window.

Attackers are assumed to be able to launch memory
disclosure attacks. They can stealthily read memory data in
OS kernels by exploiting memory disclosure vulnerabilities
[40, 63, 77, 79], or launch cold-boot attacks [41]. They can
eavesdrop the communication on the bus between the CPU
and RAM chips. Mimosa attempts to defend against these
“silent” memory attacks that read memory data without
breaking the integrity of privileged binaries. We do not
consider the multi-step attacks – the attackers first write
malicious binaries into the victim system’s kernel, and then
access data via the injected codes. That is, we assume that
the integrity of OS kernels is not compromised always,
while memory disclosure vulnerabilities exist in the kernel.
Kernel integrity can be guaranteed by existing mechanisms,
such as TPM [100] during the initialization, and SecVisor
[89], OSck [46], SBCFI [85], Lares [84] or kGuard [58] at
runtime. Besides, the adversaries may perform any opera-
tions with non-root privileges, e.g., run concurrent memory-
intensive tasks to compete for resources with Mimosa.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 4

……

RAM

Key Id 0

Private Key 0

Private Key 1

L1D Cache

Output

Input

Thread Stack

AES Context

RSA Context

 Intermediate
Variable

……

ALLOCATION
CONTEXT 0

Init.1

Processor

Init.2

Private Key 0
PrCmpt.3

In
iti

al
iz

at
io

n
P

ha
se

P
ro

te
ct

ed
 C

om
pu

tin
g

P
ha

se

Disk

PrCmpt.1

Init.1

Init.2

Prepare

PrCmpt.1

PrCmpt.2

PrCmpt.3

PrCmpt.4

PrCmpt.5

Commit

ALLOCATION
CONTEXT 1

ALLOCATION
CONTEXT 2

ALLOCATION
CONTEXT 3

db0~3

Core 0

L1D
Cache eax,ebx

etc.

db0~3

Core 1

L1D
Cache eax,ebx

etc.

db0~3

Core 2

L1D
Cache eax,ebx

etc.

db0~3

Core 3

L1D
Cache eax,ebx

etc.

PrCmpt.2

PrCmpt.4
……

Key Id 1

Fig. 1: Mimosa Overview

We employ TRESOR to protect the master key in privi-
leged debug registers [76], so Mimosa inherits its assump-
tions. TRESOR and similar solutions assume no interface
or vulnerability that allows attackers to access the debug
registers. The access to these privileged registers is blocked
by patching the ptrace system call (the only interface from
user space), disabling loadable kernel modules and kmem,
and removing JTAG ports (done in COTS products) [76, 93].
We do not impose additional assumptions on other registers,
either privileged or not; that is, other registers are regularly
accessed by a task within its context, subject to the control
of CPU privilege rings.

Different from the existing mechanisms which attempt
to detect or prevent software attacks (e.g., buffer-overflow
guards [22, 23, 105]), Mimosa follows a different philosophy
– it tries to “dance” with attacks. We do not prevent mali-
cious read operations on protected sensitive data; however,
even if an attacker exploits vulnerabilities to successfully
circumvent the protections and read data from memory, Mi-
mosa ensures that the attacker still cannot obtain the private
keys that were stored at the accessed memory locations.

Security Goal. We design Mimosa with the following goals.
(1) During each private-key operation, no thread other than
the Mimosa task can access the sensitive data in memory,
including the AES master key, the plaintext RSA private key
and intermediate states. (2) Either successfully completed
or accidentally interrupted, each Mimosa computing task is
ensured to immediately clear all sensitive data, so it cannot
be suspended to dump these sensitive data. And (3) The
sensitive data never appear on the RAM chips.

The first goal thwarts direct software-based memory dis-
closure attacks and read-only DMA attacks, and the second
prevents the sensitive data from being propagated to other
vulnerable places. The third goal makes a cold-boot attack
obtain only encrypted copies of private keys.

Mimosa does not specifically consider side-channel at-
tacks on cryptographic engines. Such attacks will be coun-
tered by algorithm designs such as RSA blinding [15]. More
discussions on side channels are included in Section 7.2.

3.2 The Mimosa Architecture

Mimosa adopts the common key-encryption-key structure.
The AES master key is derived during the OS boot process
and is stored in debug registers since then. The RSA con-
text is dynamically constructed, used and finally destroyed
within a transactional execution, when Mimosa serves the
signing/decryption requests. When the Mimosa service is
in idle, private keys remain encrypted by the master key.

The operations of Mimosa consist of two phases in Fig-
ure 1: an initialization phase and a protected computing phase.
The initialization is executed only once when the system
boots. It initializes the AES master key in debug registers.
The protected computing phase is executed on each RSA
private-key computation request, to perform the requested
computations. All memory accesses during the protected
computing phase are tracked to achieve our security goals.

Initialization Phase. It contains two steps. Init.1 resembles
TRESOR and executes completely in kernel space when the
system boots. A command line prompt is set up for the user
to enter a password. The AES master key is derived from
the password, and copied to the debug registers of every
CPU core. Then, all intermediate states of this derivation are
carefully erased. The user is required to type in 4096 more
characters to overwrite input buffers. We assume that there
is no attack during this step, and the password is strong
enough to resist brute-force attacks.

In Init.2, a file containing an array of ciphertext RSA
private keys is loaded from hard disks or other non-volatile
storages into memory. These private keys are securely gen-
erated and encrypted by the AES master key into the file in
a secure environment, e.g., a dedicated off-line machine.

Protected Computing Phase. When Mimosa receives a re-
quest from users, it uses the corresponding key to perform
the private-key computation, and returns the result. Mimosa
prepares the transactional execution, performs the compu-
tation, erases all sensitive data, and finally terminates the
transaction to commit the result. It includes these steps:

• Prepare: HTM starts to track memory accesses in the
read-set and the write-set in the L1D cache.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 5

• PrCmpt.1: The ciphertext private key is loaded from
the RAM to the cache.

• PrCmpt.2: The master key is loaded from the debug
registers to the cache.

• PrCmpt.3: With the master key and the ciphertext
private key, the private key context is constructed.

• PrCmpt.4: With the plaintext private key, the request-
ed decryption/signing operation is performed.

• PrCmpt.5: All the variables in caches and registers
are erased, except the result.

• Commit: Finish the transaction and make the result
available.

All memory accesses during this phase are strictly mon-
itored by hardware. In particular, we declare a transactional
region for this phase. During the transactional execution,
all memory operations that might break Mimosa’s security
principles are detected by hardware: (a) any attempt to
access the modified memory locations, i.e., the plaintext
private key and intermediate states generated during the
execution; and (b) cache eviction or replacement that syn-
chronizes data in caches to RAM chips. Software memory
disclosure attacks or DMA attacks on the plaintext private
key and intermediate states, will cause such memory excep-
tions. In the case of no memory exception, the transaction
commits and the result is returned to users; otherwise, the
hardware-enabled abort handler is triggered automatically
to clear all modified data. Then, it jumps to the program-
specified fallback function (not shown in Figure 1); in the
fallback function, we choose to retry immediately or take
supplementary actions before retrying (see Section 4.3).

To take full advantage of multi-core processors, Mimosa
is designed to support multiple computation tasks in par-
allel. A block of memory space is reserved for each core
in the transactional region (i.e, the protected computing
phase). The space is used mainly for the dynamic memory
allocation in the RSA computations, and separated properly
for each core to avoid unexpected data conflicts that lead to
aborts (see Section 4.3 for details).

The Mimosa architecture is based on the general prop-
erties of HTM. Mimosa does not rely on any specific HTM
implementation. It is expected that this architecture is ap-
plicable to any COTS HTM solution. In the remainder, we
describe the implementation and evaluation of Mimosa with
a commodity HTM product, i.e., Intel TSX.

4 IMPLEMENTATION

We first introduce the RTM interface and a naı̈ve imple-
mentation of Mimosa as a Linux kernel module. We then
examine the causes of the aborts that significantly reduces
performance, and optimize the implementation to obtain the
performance comparable to conventional RSA engines.

4.1 RTM Programming Interface
Mimosa utilizes Intel TSX as the underlying transactional
memory primitives. We choose RTM as the HTM program-
ming interface. With this flexible interface, we have controls
over the fallback path.

RTM provides instructions (XBEGIN, XEND and XABORT)
to start, commit and abort a TSX transaction. XBEGIN con-
sists of a two-byte opcode 0xC7 0xF8 and an operand. The

operand is a relative offset to the EIP register, to calcu-
late the address of the program-specified fallback function.
On aborts, the CPU immediately breaks the transaction
and restores micro-architectural states. Then, the execution
resumes at the fallback function. At the same time, the
abort reason is marked in the corresponding bit(s) of the
EAX register. The reason code in EAX is used for quick
decisions at runtime; for example, the third bit indicates
data conflicts, and the fourth indicates that the cache is
full. However, this returned code does not precisely reflect
every event [48]. For instance, the aborts due to unfriendly
instructions or interrupts do not set any bit. In fact, Intel
suggests performance monitoring for deep analyses when
programming with TSX, before releasing the software.

We encapsulate the RTM instructions into C functions in
Linux kernel. At the time of our implementation, we did not
find any support for RTM in the main Linux kernel branch.
Although Intel Compiler, Microsoft Visual Studio, and GCC
have supports for RTM in user-space programming, they
are not ready for kernel programming. We refer to the Intel
manual [51] to implement the RTM intrinsics using inline
assembler equivalents. The _xbegin() function to start a
transaction is as follows:

static __attribute__((__always_inline__)) inline
int _xbegin(void){

int ret = _XBEGIN_STARTED;
asm volatile(".byte 0xC7,0xF8; .long 0" :

"+a" (ret) :: "memory");
return ret; }

The default return value is set to _XBEGIN_STARTED,
which denotes that the transactional execution starts suc-
cessfully. Next, the transaction starts when XBEGIN is ex-
ecuted (“.byte 0xC7,0xF8”). The operand “.long 0”
sets the relative offset of the fallback function address to
0, i.e., the next instruction “return ret”. If the transac-
tion starts successfully, the return value is unchanged and
returned to callers. Then, the program continues until suc-
cessfully commits. If the transaction is aborted, the program
goes to the fallback address (i.e., “return ret”), with the
micro-architectural state restored, except that the execution
is no longer in the transaction and the return value is set
properly (i.e. the abort status in EAX).

4.2 The Naı̈ve Implementation
The AES master key is always protected in debug regis-
ters, and in the protected computing we adopted PolarSSL
v1.2.10 as the base of our AES and RSA modules. PolarSSL is
an efficient library with a small memory footprint. A smaller
work-set means adequate cache resources to complete the
transaction. In the long-integer module of PolarSSL, a piece
of assembly codes uses the MMX registers. It is marked
as unfriendly instructions of Intel TSX [48]. We replaced
MMX with XMM. It needs only a little modification because
both operands are supported in the SSE2 extension. The
AES module of PolarSSL is an S-box-based implementation,
but we improved it with AES-NI [49] to encrypt/decrypt
data by the AES master key in debug registers.2 It has
three benefits. The memory footprint is reduced without

2. Newer versions of PolarSSL support AES-NI. We develop it inde-
pendently to avoid shared memory.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 6

S-box, performance is boosted with hardware acceleration,
and timing-based side channels of AES implementations
[1, 7, 12] are eliminated by running in constant time.

We implement steps PrCmpt.1 to PrCmpt.5 as a
function in C language: mimosa_compute(int keyid,
unsigned char *in, unsigned char *out). As
mentioned above, PrCmpt.5 erases all sensitive data before
committing the transaction. The sensitive data appears in:

• Allocation buffer: The long-integer module requires
dynamically allocated memory.

• Stack of mimosa_compute(): The AES round keys
and decrypted private-key blocks are stored in the
stack of mimosa_compute().

• Register: General purpose registers are involved in
all computations, and XMM registers are used in AES
and the long-integer module.

It seems straightforward to integrate the codes in the
transactional region using the RTM interface: put it after
_xbegin(), and commit the transaction using _xend()
that simply invokes XEND. As aborts may occur, we invoke
_xbegin() in an infinite loop, and the execution makes
progress if and only if the transaction commits successfully.

while (1){
if (_XBEGIN_STARTED == _xbegin())

break;
}
mimosa_compute(keyid, in, out);
_xend();

When we test this naı̈ve implementation, the execution
never commits successfully. It is somewhat expected: there
are so many restrictions on the execution environment for
Intel TSX. In the following, we demonstrate various causes
that lead to aborts and our optimizations. We used the
perf profiling tool [103] and Intel Software Development
Emulator (SDE) v6.12 [99] for the purpose of abort rea-
son discovering and performance tuning. The perf tool
works with the Intel performance monitoring facility. It
supports precise-event-based sampling (PEBS) that records
the processor state once a particular event happens. We
use the RTM_RETIRED.ABORTED event to capture aborts.
This event occurs every time an RTM execution is aborted.
Based on the dumped processor state, we are able to locate
the abort reason and the eventing instruction pointer (IP)
that causes the abort. SDE is the Intel official emulator for
instruction set extensions. It detects the instructions that
are requested to be emulated, and then skips over those
instructions and branches to the emulation routines.

4.3 Performance Tuning
Avoiding Data Conflicts. We found that the modular expo-
nentiation used the OS-provided memory allocation library
which maintains shared meta data (e.g., the free list) for all
threads. As a result, data conflicts happen when threads in
different cores request for new memory simultaneously.

We let each Mimosa thread monopolize its own alloca-
tion context in the transactional region. We reserve a global
array of allocation contexts, and each context is defined for
one core. The first member in ALLOCATION_CONTEXT is
aligned on a 64-byte boundary (i.e., a cache line), which

is the granularity to track the read/write-sets. This pre-
vents false data sharing between continuous contexts, which
happens when two threads access their distinct memory
locations in the same cache line.

When a Mimosa thread enters the transactional region
and the memory allocation function is called, the thread first
gets its core ID and uses it to locate its designated allocation
context. It performs memory allocation in this context.

typedef struct{
unsigned char buffer[MAX_ALLOCATION_SIZE]

__attribute__((aligned(64)));
size_t len;
size_t current_alloc_size;
... // other meta data

} ALLOCATION_CONTEXT;

void *mimosa_malloc(size_t len){
ALLOCATION_CONTEXT *context;
context = allocation_context + smp_processor_id();
... // Actual allocation in the context

}

With this tuning, Mimosa works very well on SDE.3 We
configured the CPU parameters in SDE so that the cache
size is identical to Intel Core i7 4770S (our target CPU), and
8 Mimosa threads run without any abort during extensive
experiments on SDE. This proves that our implementation
is fully compatible with the Intel TSX specification and no
data conflict is caused by Mimosa itself.

Disabling Interrupts and Preemption. SDE does not sim-
ulate interrupts. The private-key computation is time-
consuming, so it is very likely that the transactional exe-
cution is interrupted by task scheduling on real hardware,
which definitely causes aborts. Other interrupts also cause
aborts. To give Mimosa enough time to complete computa-
tions, interrupts and preemption are temporarily disabled
when it is in the transactional region. Existing CPU-bound
cryptographic engines [29, 37, 76, 93, 112] disable interrupts
to ensure atomicity, while Mimosa requires it for efficiency
because Intel TSX ensures atomicity already.

Delay after Continuous Aborts. At this point, the abort cycle
ratio, the number of CPU cycles in the aborted transactions
divided by the total number of cycles in all transactions, is
relatively high. The perf profiling tool is unable to provide
obvious information on abort reasons. The eventing IPs
recorded by PEBS spread across the transactional region.
Most of reported reason codes are ABORTED_MISC5, which
has a very ambiguous description by Intel.

• ABORTED_MISC1: Memory events, e.g., read/write
capacity and conflicts.

• ABORTED_MISC2: Uncommon conditions.
• ABORTED_MISC3: Unfriendly instructions.
• ABORTED_MISC4: Incompatible memory type.
• ABORTED_MISC5: Others, none of the previous four

categories, e.g., interrupts.

We suspect that the aborts were caused by non-maskable
interrupts (NMIs), but it is ruled out after examining the
NMI counter through the /proc/interrupts interface.
As stated before, Intel provides no guarantee as to whether

3. Mimosa is modified slightly, conforming to SDE in user space.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 7

a TSX transaction will successfully commit and there are lots
of implementation-specific reasons that cause aborts [48].4

We notice that Intel recommends a delay before retrying
if the abort is caused by data conflicts [51]. Although we
encounter a different cause, we still modify Mimosa to force
a short delay after several failed transactions. As a result,
the success rate is significantly improved. The number of
tries before a delay is 5, which is an empirical value [109]
and also verified in our experiments. After extensive experi-
ments balancing the throughput under single-threaded and
multi-threaded scenarios, we identify 10 clock ticks as an
optimized value for this delay.5 We would like to emphasize
that the performance improvement is the result of all the
tuning approaches. It might appear that the abort issue is
solved by the last attempt (i.e., adding delays); however, it
does not succeed if we skip any of the previous steps.

After these tunings, most of the remaining aborts occur
at the very beginning of the transactions. Although we
are unable to identify the exact reason(s) of the remaining
aborts or to avoid all aborts, they only waste a very small
number of CPU cycles. The abort cycle ratio is very low,
as more than 95% of the cycles are used in each 2048-
bit RSA decryption/signing. The simulation showed that
our implementation is correct, but it may be impossible
to completely avoid all aborts: (a) the Intel official tools
are unable to identify or provide the details of aborts; and
(b) Intel TSX and the speculation of transactional memory
do not guarantee all correctly implemented transactions to
commit, e.g., cache coherence traffic may at times appear as
conflicting requests and cause aborts.

4.4 Utility Issues

We need a trusted machine (e.g., a dedicated off-line PC) to
generate private keys, and a to-be-protected system running
the Mimosa service. The preparation utility in the off-line
machine generates RSA key pairs and encrypts them by an
AES key derived from the same password. The encrypted
key file is then copied to the to-be-protected machine.

Mimosa is implemented as a module patched to Linux
kernel v3.13.1. It supports 1024/2048/3072/4096-bit RSA,
and provides services to user space through the ioctl
system call. Based on the request code and key ID, Mimosa
outputs the public key, or performs a private-key operation
and outputs the result. The ioctl interface is further encap-
sulated into an OpenSSL engine, facilitating the integration
of Mimosa into applications in an OpenSSL-compatible way.
We use this API to integrate it into Apache HTTPS servers.

5 CACHE-CLOGGING DOS ATTACKS AND PARTI-
TIONED PROTECTED COMPUTING

We investigate the aborts in the presence of cache-clogging
DoS attacks (or concurrent memory-intensive tasks), and
partition the RSA private-key operation into multiple trans-
actional parts to mitigate the impact of such threats.

4. We have contacted Intel by Email. Until the submission of this
manuscript, we did not receive any reply.

5. For the HTM feature in zEC12 systems, IBM also suggests a ran-
dom delay before retrying a transaction on aborts [54]; and the optimal
delay depends on abort reasons, CPU designs and configurations.

5.1 Aborts with Concurrent Memory-Intensive Tasks

The Mimosa implementation in Section 4 provides efficiency
comparable to conventional RSA engines, but the fragility
of TSX transactions introduces extra cache-clogging DoS
threats. When it is running concurrently with memory-
intensive tasks, the abort cycle ratio increases and the per-
formance is sharply degraded, because the read/write-set
is tracked within CPU caches which are limited in size and
shared among all cores. When we launched the STREAM
memory suite of Geekbench 3 concurrently with the 2048-
bit RSA decryption service (4 threads) of Mimosa, more
than 50% of CPU cycles are wasted in aborted transactional
executions, while it is less than 5% in clean environments.
Intel CPUs implement 8-way set associative L1D caches, so
9 memory addresses in the write-set mapping to the same
cache set will abort the transaction. Moreover, Intel does
not guarantee all cache lines of a cache set are attributed
to transactional executions. So a process with intensive
memory accesses may halt the Mimosa service, because
there is a great chance that this process evicts the cache lines
that Mimosa is occupying due to the shared caches.

To improve the performance concurrently with memory-
intensive tasks and mitigate the cache-clogging DoS threat,
we firstly reduce the memory footprint of RSA private-
key operations: (a) an element of an RSA private key is
decrypted only it is to be used, and (b) several variables are
stored at the same memory location after some of them are
no longer used. But the performance improvement is rather
negligible: the abort cycle ratio of 2048-bit RSA decryptions
(4 threads) is reduced from 57.34% to 56.52% with STREAM
workloads, and from 4.56% to 3.12% in clean environments.

We further partition a heavy RSA private-key compu-
tation into multiple transactional parts: since aborts are
inevitable in transactional executions, especially in the pres-
ence of concurrent memory-intensive tasks, we preserve the
expensive intermediate results across transactional parts.
This partition is designed with the following intentions: (a)
even if the whole RSA private-key computation does not
finish, some expensive intermediate results are preserved
for future retrying; and (b) less memory and fewer CPU
cycles are needed in each transactional part, so that it is
more possible to commit the transactions.

We try to find the optimal position(s) to partition the
protected computation, by analyzing the distribution of
aborts. Figure 2 shows the average numbers of aborts at
different positions i, and the position is measured from the
beginning of a private-key computation, in 105 CPU cycles.
We recorded aborts for 800,000 successful transactional exe-
cutions of 2048-bit RSA decryptions in clean environments
and with STREAM workloads, respectively, and Ai denotes
the average number of aborts at i for one successful execu-
tion. There are several peak values of Ai in Figure 2, because
the memory amount of the read/write-set increases non-
linearly as a CRT-enabled RSA private-key operation [59]
sequentially conducts two modular exponentiations and
one modular multiplications. When it is starting a modular
exponentiation (or multiplication), the memory requirement
increases sharply; but the occupied memory keeps almost
unchanged within one exponentiation/multiplication.

On average it takes Ci =
i+i

∑
j≥i Aj+

∑
j<i jAj

1+
∑

j≥i Aj
CPU

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 8

0 5000000 10000000 15000000 20000000 25000000

10000

20000

30000

40000

50000

60000

1120000

1130000

1140000

Ab
or

t n
um

be
rs

CPU cycles

 with STREAM workloads
 in Clean Environments

(a) Abort distribution of one successful transaction

0 5000000 10000000 15000000 20000000 25000000

100000

200000

300000

400000

500000

600000

700000

800000

Pi
Ci

CPU cycles

 with STREAM workloads
 in Clean Environments

(b) Wasted CPU cycle at different positions

Fig. 2: Abort Distribution and PiCi of the Unpartitioned Mimosa

cycles to successfully execute to i, because the 1 +
∑

j≥i Aj

executions across i result from (a) one successful transac-
tion, which takes i cycles to execute across i, (b)

∑
j≥i Aj

unsuccessful ones that have executed across i but abort at j
(j ≥ i), each of which also takes i cycles, and (c)

∑
j<i Aj

unsuccessful ones that abort at j (j < i). The probability that
an execution aborts at i, is Pi = Ai

1+
∑

j≥i Aj
, for it executes

across i for 1 +
∑

j≥i Aj times and aborts at i for Ai times.
The variation of PiCi is also shown in Figure 2, and it de-

scribes the CPU cycles wasted on average due to the aborts
at i. We shall partition the transaction exactly before any
peak value of PiCi, to preserve these expensive intermediate
results that would otherwise be discarded. Two significant
peak values of PiCi appear exactly after the two modular
exponentiations of CRT-enabled RSA private-key operations
(see Algorithm 1), or when it is starting the second modular
exponentiation and the final modular multiplications. The
two peak values appear at the same positions in these two
extreme scenarios, either in clean environments or with
STREAM workloads. We also launched the mbw memory
benchmark and the memory test (4 threads, total 8G bytes
with 256-byte blocks, random read/write) of SysBench con-
currently with Mimosa, respectively, and find the same posi-
tions of the significant peak values of PiCi. Moreover, these
two significant peaks after the modular exponentiations are
confirmed in our experiments of 3072/4096-bit RSA.

Thus, we analyze two partitioned Mimosa implementa-
tions: one partitions the RSA private-key operation into only
two transactional parts after the first modular exponentia-
tion, and the other includes three parts partitioned after each
of the two modular exponentiations. Figure 3 shows PiCi of
two partitioned implementations, where the dotted lines are
the positions to partition an RSA private-key computation.
The peak values of PiCi are significantly reduced after the
partition, either in clean environments or with STREAM
workloads: they are about one or two orders of magnitude
less than those of the unpartitioned version in Figure 2.
When it runs concurrently with memory-intensive tasks, the
abort cycle ratio of the partitioned version is only 14% for
two transactional parts and 11% for three parts, respectively,
compared with 57% for the unpartitioned version.

We do not partition the RSA private-key operation into
more transactional parts, because the peak values in PiCi

are not so significant after the partition with three parts; for
instance, the peak values in Figure 3(d) are only about two
times of the average value. Meanwhile, each partition brings
a small overhead (summarized in Section 5.2), which may
sometimes counteract the benefits of the partition design.
The comprehensive performance evaluation in Section 6
shows that the partitioned implementation with three trans-
actional parts outperforms the two-part version in some
scenarios, but performs even a little worse in others.

ALGORITHM 1: RSA Decryption Partitioned into Three Parts
Input: ciphertext, encpdp
Output: t1cipher
(p, dp) = AESDecrypt(encpdp)
t1 = ciphertextdp mod p
t1cipher = AESEncrypt(t1)

Input: ciphertext, encqdq
Output: t2cipher
(q, dq) = AESDecrypt(encqdq)
t2 = ciphertextdq mod q
t2cipher = AESEncrypt(t2)

Input: ciphertext, t1cipher, t2cipher, encpqq
Output: plaintext
(p, q, qinv) = AESDecrypt(encpqq)
(t1, t2) = AESDecrypt(t1cipher, t2cipher)
plaintext = (t1− t2) ∗ qinv mod p
plaintext = t2 + plaintext ∗ q

5.2 Partitioned Transactional Execution with Protected
Intermediate Results

To protect (sensitive) intermediate results across transaction-
al parts, which might be exploited to disclose the private
key, the intermediate results are encrypted by the AES
master key before it commits in each part except the last
one, then decrypted and used in the next. In each transac-
tional part, all updated data except the (intermediate) results
are erased carefully before committing the transaction (see
Section 4.2 for details). Algorithm 1 describes the steps of
partitioned CRT-enabled RSA private-key operations, with
three transitional parts. The CRT-enabled RSA private-key
octuple [59] is denoted as (n, e, d, p, q, dp, dq, qinv), while

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 9

0 5000000 10000000 15000000 20000000 25000000
0

1000

2000

3000

4000

5000

Pi
Ci

CPU cycles

(a) In clean environments, two transactional parts

0 5000000 10000000 15000000 20000000 25000000
0

10000

20000

30000

40000

50000

60000

70000

Pi
Ci

CPU cycles

(b) With STREAM workloads, two transactional parts

0 5000000 10000000 15000000 20000000 25000000
0

200

400

600

800

1000

1200

1400

Pi
Ci

CPU cycles

(c) In clean environments, three transactional parts

0 5000000 10000000 15000000 20000000 25000000
0

5000

10000

15000

20000

25000

30000

Pi
Ci

CPU cycles

(d) With STREAM workloads, three transactional parts

Fig. 3: PiCi of Partitioned Mimosa Implementations

encpdp, encqdp and encpqq are the encrypted copies of pri-
vate elements (p, dp), (q, dq) and (p, q, qinv), respectively.
The first and second transactional parts perform two modu-
lar exponentiations, and other computations are finished in
the third. The partition with two parts has a similar structure
and is not presented due to the page limit.

Each CPU core is configured with its own memory allo-
cation context (see Section 3.2). The encrypted intermediate
results are stored in this designated space, so all transaction-
al parts of one private-key computation are restricted on the
same core by setting the Mimosa thread’s CPU affinity.

Figure 4 shows the final code snippet of Mimosa parti-
tioned with three transactional parts. The additional over-
heads of the partition include: (a) AES encryption/decryp-
tion of the intermediate results across transactional parts,
(b) AES decryption of some private-key elements for more
than one times, and (c) start and commit more transactional
executions, which involve expensive instructions. The next
section shows that, the partitioned versions of Mimosa
produces almost the same performance as the unpartitioned
implementation. More importantly, the partition approach
works much better on the competition of cache resources,
effectively mitigating the cache-clogging DoS threat due to
the fragility of TSX transactions. The partition also improves
the performance when it is integrated in user-space applica-
tions. When integrated in applications, the Mimosa service
runs with concurrent tasks and then the partition design
works better; moreover, the partitioned RSA private-key
operation is interruptable among transactional parts, so that
the application functions are served more timely.

6 PERFORMANCE EVALUATION

This section presents the experiment results on the perfor-
mance of Mimosa. Experiments are performed on a machine

with an Intel Core i7 4770S CPU (4 cores, 3.4 GHz), running
a patched Linux kernel v3.13.1. Both the unpartitioned and
partitioned implementations are evaluated: Mimosa exe-
cutes each RSA private-key operation in one transaction,
Mimosa Partitioned 2 adopts the partition design with two
transactional parts and Mimosa Partitioned 3 with three
parts. We compared them with: (a) PolarSSL version 1.2.10
with default configurations, (b) Mimosa No TSX, the same
as Mimosa but not in transactional executions, by turning
off the TSX_ENABLE switch in Figure 4 (i.e., PolarSSL in
the kernel, disabling interrupts and preemption), and (c)
Copker [37]. We used 2048-bit RSA keys in the these ex-
periments, except the scalability evaluation in Section 6.4.

6.1 Local Performance

Mimosa (and other approaches) ran as local RSA decryption
services, called by an evaluator in user space. We measured
the number of decryption operations per second, at different
concurrency levels. In Figure 5, all approaches exhibit sim-
ilar performance except Copker, which uses only one core
due to the L3 cache shared by all cores of Intel Core i7 4770S
CPUs: the Copker core works in the write-back cache-
filling mode, and forces 3 other cores into the no-fill
mode [37]. Only one Copker task works and other tasks
have to wait, so the performance is about 1/4 of PolarSSL.6

Mimosa, Mimosa Partitioned and Mimosa No TSX per-
forms even better than PolarSSL, for PolarSSL is subject to
more task scheduling while preemption is disabled in all
versions of Mimosa. Mimosa, Mimosa Partitioned 2 and
Mimosa Partitioned 3 offer almost the same performance

6. On the Intel Core2 Q8200 CPU, 4 cores share two separate L1/L2
cache-sharing sets and no L3 cache, and the performance of Copker is
about 1/2 of PolarSSL [37].

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 10

mimosa_RSA(keyid){
#ifdef PARTITION // Switch of Mimosa_Partitioned

set_task_cpu_core(smp_processor_id());
// Set the thread’s CPU affinity
transaction_execute(RSA_decrypt_part1, keyid);
transaction_execute(RSA_decrypt_part2, keyid);
transaction_execute(RSA_decrypt_part3, keyid);
clear_task_cpu_core();

#else
transaction_execute(RSA_decrypt, keyid);

#endif
}

transaction_execute(mimosa_compute, keyid){
success = 0;
while(!success){

times = 0;
get_cpu(); // Disable interrupts and preemption
local_irq_save(flags);

#ifdef TSX_ENABLE // Switch of Mimosa_NO_TSX
while(1){

if(++times >= MAX_TRIES)
goto delay;

if(_XBEGIN_STARTED == _xbegin())
break;

}
#endif

mimosa_compute(keyid, in, out);
success = 1;

#ifdef TSX_ENABLE
_xend();

#endif
delay: // Delay after several aborts

local_irq_restore(flags);
put_cpu(); // Enable interrupts and preemption
if(!success){

set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(10);

}
}

}

Fig. 4: The Partitioned Implementation of Mimosa

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

8 (w i t h S T R E A M)4 (w i t h S T R E A M)2 5 68421

RS
A

de
cry

pti
on

sp
er

se
co

nd

N u m b e r o f c o n c u r r e n t r e q u e s t s

P o l a r S S L
M i m o s a _ N o _ T S X
M i m o s a
M i m o s a _ P a r t i t i o n e d _ 2
M i m o s a _ P a r t i t i o n e d _ 3
C o p k e r

Fig. 5: Local Performance of RSA Decryption

in the clean environment. The additional overheads by
the partition are negligible, compared with the expensive
RSA computations. Mimosa Partitioned 2 performs a little
better than Mimosa Partitioned 3, because more operations
due to the partition are needed for three parts, but the
benefits are not so imperative in this scenario.

We then evaluated how seriously a memory-intensive
program would impact (different versions of) Mimosa, by
launching the STREAM memory test concurrently with Mi-

mosa. In this experiment, 4 kinds of STREAM workloads
were performed on all CPU cores, resulting in about 10 GB
memory data transferred per second. The clean machine
supports a maximum transfer rate of 13.7 GB/s. All ap-
proaches suffer a significant performance decrease except
Copker, where about three fourth of the computation re-
sources are reserved. The average performance of Mimosa
falls to 137 decryptions per second in Figure 5. That is a
degradation of 77.0%, compared with the original result of
596 per second. The number of Mimosa Partitioned 2 de-
creases from 613 to 253, and the degradation is only 58.8%,
while the number of Mimosa Partitioned 3 decreases by
58.2%, from 605 to 253. Meanwhile, the performance of
Mimosa No TSX decreases by 42.0%; and the degradation
of PolarSSL is 44.8%. So about 45% of the degradation is
caused by the resource occupation of STREAM, and only
about 30% is caused by the transaction aborts in Mimosa
due to intensive memory access, while this impact is miti-
gated to less than 15% by the partition design. We have tried
other different memory-intensive programs, and all of them
have performance impact less than STREAM.

We measured the abort cycle ratios of the approaches
with TSX. When running in the clean environment, under all
concurrency levels, the abort cycle ratio of Mimosa is always
under 5%, and the number of any partitioned version is
less than 3%. The abort cycle ratio of Mimosa (4 threads)
raises to 57% in the case of concurrent memory-intensive
tasks, compared with only 14% for Mimosa Partitioned 2
and only 11% for Mimosa Partitioned 3. The partition of
TSX transactions offers effective resilience against the DoS
threat exploiting the limited cache resources, while the per-
formance keeps almost the same in cases of no such threat.

6.2 HTTPS Throughput and Latency
In this experiment, each evaluated approach served as the
RSA decryption module in the Apache HTTPS server, and
then we measured the throughput and latency. The web
page in this experiment was 4K bytes in size. The server
and the client were located in an isolated Gigabit Ethernet.

The client ran ApacheBench sending requests at dif-
ferent concurrence levels, and the numbers of HTTPS re-
quests handled per second are shown in Figure 6(a). The
maximum throughput of Mimosa loses 17.6% of its local
capacity, while it is 17.2% for Mimosa Partitioned 2 and
Mimosa Partitioned 3 loses 16.5%. The numbers of Mi-
mosa No TSX and PolarSSL are 13.5% and 6.5%, respec-
tively. From the results, we estimate that the first 6.5% loss
for all approaches should be attributed to the unavoidable
overhead of HTTP, TLS and network packet transmission.
Disabling preemption has a negative impact on concur-
rent tasks, so all versions of Mimosa, either partitioned
or not, become worse than user-space PolarSSL; but Mi-
mosa No TSX performs still a little better than PolarSSL
after the number of concurrent requests reaches 80. The
additional 11% loss of capacity in Mimosa shall be caused
by aborted CPU cycles and it is improved a little in the
partitioned versions, because when integrated in HTTPS
servers, the Mimosa service is actually running concurrently
with more tasks, so the partitioned versions outperform
the unpartitioned one. On the other hand, when the con-
currency level is low, the CPU cores are not utilized fully,

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 11

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Re
qu

es
ts

 p
er

 s
ec

on
d

Number of concurrent HTTPS requests

 PolarSSL Mimosa_No_TSX
 Mimosa_Partitioned_2 Mimosa_Partitioned_3
 Mimosa

(a) In clean environments

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

Re
qu

es
ts

 p
er

 s
ec

on
d

Number of concurrent HTTPS requests

 PolarSSL Mimosa_No_TSX Mimosa
 Mimosa_Partitioned_2 Mimosa_Partitioned_3

(b) With STREAM workloads

Fig. 6: HTTPS Throughput

because multiple transactional parts of one RSA private-
key computation must be switched on the same core, but
the threads of Apache HTTPS servers are not uniformly
allocated on all cores. So the advantage appears only after
the number of concurrent requests reaches 100 and there are
always available tasks on each core. Note that, if we could
allocate the HTTPS workloads uniformly as we did in the lo-
cal performance evaluation in Section 6.1, the improvement
of the partition design shall appear when the concurrency
level is low. Figure 6(b) shows the HTTPS throughput with
STREAM workloads. We compare the average results of two
scenarios, which are calculated when the throughput is sta-
ble (i.e., the number of concurrent requests varies from 100
to 200). The results of PolarSSL, Mimosa No TSX, Mimosa,
Mimosa Partitioned 2, and Mimosa Partitioned 3 decrease
by 48.8%, 76.2%, 47.1%, 44.6%, and 46.6%, respectively.
About 45% of the decrease for all approaches is caused by
the STREAM workloads, and the additional 30% for Mimosa
results from the fragility of TSX transactions.

We used curl (one client, the keep-alive option dis-
abled) to measure HTTPS latency. The average TLS hand-
shake times were 9.98ms, 9.04ms, 10.94ms, 10.48ms and
10.43ms, when PolarSSL, Mimosa No TSX, Mimosa, Mi-
mosa Partitioned 2 and Mimosa Partitioned 3 served in
the HTTPS server, respectively. Different versions of Mi-
mosa perform a little worse than PolarSSL, and the partition
improves the results. We use ApacheBench to stress the
HTTPS server to measure its 95th percentile latency. As
shown in Figure 7(a), the negative impact of disabling pre-
emption and aborted cycles in different versions of Mimosa
is acceptable. The 95th percentile latency of Mimosa is about
1.6 times of PolarSSL, and it is improved to 1.4 times by
the partition design after the number of concurrent requests
reaches 100. The performance improvements by the parti-
tion, can be explained as above in the HTTPS throughput
experiment. The results of HTTPS latency with STREAM
workloads are shown in Figure 7(b). The 95th percentile
latency of Mimosa increases sharply: it becomes averagely
3.2 times of PolarSSL, while the results of Mimosa No TSX,
Mimosa Partitioned 2, and Mimosa Partitioned 3 are on-
ly 1.2, 1.8, and 1.6 times, respectively, when the number
of concurrent requests varies from 100 to 200. Compared
with the results in Figure 7(a), the 95th percentile latency
of Mimosa with STREAM workloads becomes 4.6 times
averagely, while others are 2.1 - 2.8 times only.

0

2000

4000

6000

8000

10000

12000

14000

Sc
or

e

Multi-coreSingle-core

OverallMemoryFloating
point

IntegerOverallMemoryFloating
point

Integer

 Baseline
 PolarSSL
 Mimosa_No_TSX
 Mimosa
 Mimosa_Partitioned_2
 Mimosa_Partitioned_3
 Copker

Fig. 8: Geekbench 3 Scores under RSA Computations

6.3 Impact on Concurrent Processes
The Geekbench 3 benchmark is used to evaluate how (differ-
ent versions of) Mimosa influenced concurrent applications.
Running concurrently with the RSA private-key computa-
tions of each evaluated solution, Geekbench 3 measures the
machine’s integer, floating point and memory performance,
i.e., the capacity remained for concurrent processes. The
Geekbench 3 scores for both the single-core mode and the
multi-core mode are shown in Figure 8. The baseline score
was measured without any process except Geekbench 3,
indicating the machine’s full capacity. Each approach was
measured when the benchmark was running concurrently
with Apache at the workload of 80 HTTPS requests per
second. All evaluated approaches should work at the same
computation workload. Since the maximum throughput of
Copker is around 100 HTTPS requests per second, we pick
80 requests per second in this experiment.

The scores in Figure 8, represent the performance of
integer instruction, floating-point instruction and memory
bandwidth. Overall, the scores of PolarSSL, Mimosa, Mi-
mosa Partitioned 2/3, and Mimosa No TSX are very close,
either in the single-core mode or the multi-core mode, ex-
cept Copker. The scores of partitioned Mimosa are always a
little better than those of unpartitioned version. When Geek-
bench 3 occupies more cores, the overhead for handling the
HTTPS requests becomes nontrivial – there is a clear gap
between the baseline scores and others, which does not exist
in the single-core mode. User-space PolarSSL introduces
a little less impact on concurrent processes than kernel-
space approaches (i.e., Mimosa, Mimosa Partitioned 2/3,
and Mimosa No TSX) where preemption is disabled. In
Figure 5, we find that preemption-disabled approaches are
a little more efficient because more resources are occupied

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 12

0 20 40 60 80 100 120 140 160 180 200
0

100
200
300
400
500
600
700
800
900

1000 PolarSSL Mimosa_No_TSX Mimosa
 Mimosa_Partitioned_2 Mimosa_Partitioned_3

95
th

 P
er

ce
nt

ile
 (m

s)

Number of concurrent HTTPS requests

(a) In clean environments

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000 PolarSSL Mimosa_No_TSX Mimosa
 Mimosa_Partitioned_2 Mimosa_Partitioned_3

95
th

 P
er

ce
nt

ile
 (m

s)

Number of concurrent HTTPS requests

(b) With STREAM workloads

Fig. 7: HTTPS Latency

TABLE 1: Local Performance (decryptions/sec) for
Different RSA Key Lengths

Key Length (bits) 1024 2048 3072 4096
Mimosa No TSX 3798 640 212 95
Mimosa 3726 594 153 30
Mimosa Partitioned 2 3742 613 199 75
Mimosa Partitioned 3 3732 605 195 68

by them. However, it also means that concurrent processes
cannot be served in time, as shown in Figure 8. Last, we
find a significant drop in Copker for both the single-core
mode and the multi-core mode, because other CPU cores are
forced to enter the no-fill mode when Copker is running.
That is, Geekbench 3 runs without caches at times.

6.4 Scalability
We evaluated the performance of Mimosa with growing
RSA key lengths, to analyze its potential capacity to other
algorithms with more memory and heavier computation.

In this experiment, Mimosa ran locally to accomplish
the maximum speed, called by the 256-threaded evaluator
in user space. In Table 1, the improvement by the parti-
tion (or the gap between the unpartitioned implementa-
tion and the partition versions) become more and more
remarkably, as the key length grows. When more memory
is accessed, the TSX transactions become more fragile and
the partition design is more useful. The performance of
Mimosa Partitioned 2 (the best version of Mimosa in this
scenario) decreases at a similar pace with Mimosa No TSX,
as the key length grows from 1024 bits to 2048, 3072 and 4096
bits – the performance ratios of Mimosa Partitioned 2 to
Mimosa No TSX are 99%, 96%, 94% and 80%, respectively.
Thus, the fragility of TSX transactions has not become
the bottleneck to support stronger keys for up to 4096-bit
RSA, especially with the partition design. Anyway, as more
memory is required, more CPU cycles are wasted in aborted
transactional executions.

We measured the size of dynamically allocated memory
in a transaction which approximates the whole work set for
4096-bit RSA computations. The allocated memory size was
about 9.3K bytes, far less than the supported write-set size of
Intel TSX evaluated in [69], 26K bytes. So there is still a great
potential for supporting other memory-hungry algorithms.

7 SECURITY ANALYSIS AND DISCUSSION

This section validates that Mimosa achieves the security
goals in Section 3.1. Then, the remaining attack surfaces are
discussed, and we compare Mimosa with existing defenses
against cold-boot attacks (and also other attacks) on RSA
private keys. We also discuss the applicability of Mimosa.

7.1 Validation and Analysis
To validate that software memory disclosure attacks cannot
obtain the sensitive data of Mimosa, we implemented a
privileged “attack” program (the validator), which actively
reads the memory addresses used in Mimosa through the
/dev/mem interface. The memory locations are fixed once
Mimosa has been loaded. /dev/mem is a virtual device that
provides an interface to access the system’s memory. Specif-
ically, every second, the validator read the global array that
stores the plaintext private keys in Mimosa. We kept the val-
idator running for more than 5 hours (approximately 20,000
reads), while there were 256 user-space threads repeatedly
calling the Mimosa services at the full speed. Throughout
the experiment, the validator returned cleared data only.
Note that this “attack” program is more powerful than real-
world memory disclosure attacks, because it runs with root
privileges and knows the exact address of sensitive data. As
a comparison, when we disabled the TSX protection, almost
every access obtained the plaintext RSA private keys.

We used Kdump to dump the kernel memory to find
any suspicious occurrence of sensitive data. Kdump allows a
dump-capture kernel to take a dump of the kernel memory
and the register states of other cores when the system crash-
es. It sends non-maskable interprocessor interrupts (IPIs) to
other cores to halt the system.7 We crashed the system
by writing ‘c’ to /proc/sysrq-trigger, while Mimosa
was running intensively. We searched for the RSA private
key and the AES master key in the dump file. The AES
key has two forms: the original 128-bit key and 10-round
key schedule. First, for the AES key schedule, we used
AESKeyFinder [41] to analyze the captured image, and no
matching key schedule was found. For the original AES key
and the RSA private key, the image had no matching of any

7. NMIs destroy atomicity for only local interrupt is disabled. This is
the reason that CPU-bound solutions suggest modifying NMI handlers
to immediately clear all sensitive keys [37, 93]. However, in Mimosa,
the private key and intermediate states are automatically cleared once
NMIs happen, eliminating the need to modify NMI handlers.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 13

keys (including p, q, d and other private CRT elements). We
never found a bit sequence that overlaps for more than 3
bytes with any key. On the contrary, when this experiment
was conducted on Mimosa No TSX, we got many copies
of the AES key and the RSA private key. They came from
three sources. First, Kdump dumped the register states when
the system crashed. Second, interrupted threads left the de-
crypted keys uncleared. Third, the control blocks of threads
contained the register states as a result of context switching.

Read-only DMA attacks [97] might attempt to access the
modified memory data (i.e., private keys) in Mimosa. DMA
requests on such memory addresses synchronize data from
caches to RAM chips, and this synchronization aborts the
transactional execution and clear the private keys [48].

We did not launch a cold-boot attack or probe the bus to
validate that these are no data leaked to RAM chips. Recent
studies show that, the memory contents are scrambled on
DDR3 RAM chips, so cold-boot attacks cannot directly read
the plaintext data [35] but at most 128 bytes of known
plaintext are required in a descrambling attack to recover
the memory content [4]. The Mimosa prototype works with
two 4G-byte DDR3 RAM chips, and we did not re-build
the special descrambling tool to recover the private keys
in RAM chips. Meanwhile, according to the Intel manual
(see [51], Chapter 12.1.1), when cache eviction in the write-
set happens, a transaction aborts immediately, and modified
data are discarded inside L1D caches. The plaintext private
keys and intermediate states are in the write-set, for they are
generated after the transaction starts. So these data appear
nowhere other than L1D caches. Note that, it is a necessary
requirement to correctly implement HTM. If a modified
cache line is evicted outside the boundary of Intel TSX, its
value will be available to other components – an obvious
contradiction to the nature of transactional memory.

During the transactional execution of Mimosa, the plain-
text private key is kept in caches but not RAM chips [36, 48].
Attackers might reboot or power off the computer, attempt-
ing to dump the cache content in a way similar to the cold-
boot attacks on RAM chips. Such attacks do not work, since
internal caches are invalid after power-up or reset and there
is no interface to access data in caches from outside [52].

7.2 Remaining Attack Surface

Attackers might exploit side channels to compromise the
keys. Cache-based side channels [7, 12] do not exist in
Mimosa, because AES-NI is free of such attacks [49] and
the RSA computations are performed entirely in caches.
Other side channels of timing [3, 15], electromagnetic fields
[30], ground electric potential [31], power [81] or acoustic
emanations [32], can be prevented by RSA blinding [15].
The random bits in RSA blinding will be also protected by
the AES master key [39], against memory disclosure attacks.

Mimosa assumes the integrity of OS kernels, so integrity
protections (e.g., SecVisor [89], SBCFI [85], OSck [46], Lares
[84], and kGuard [58]) shall work complementarily. While
the kernel integrity solutions protect the Mimosa binaries
from being modified, Mimosa defeats memory disclosure
attacks not violating the integrity of binaries. [10] exhibits
an advanced DMA attack that injects malicious codes into
an OS kernel (i.e., breaks the integrity) and then accesses the

AES key in debug registers. Fortunately, the DMA attacks
are countered by various solutions [66, 96, 97, 110].

The vulnerabilities of Meltdown [67] and Spectre [60]
enable illegal or speculative read operations and leak the
results through cache side channels [68, 108]. The read op-
erations of Meltdown run with the privileges of the attacker
process, while the operations of Spectre do with the victim’s
privileges. In the future, we will investigate whether such
read operations abort the TSX transaction after or before the
cache state is changed (i.e., the read result is leaked or not).

7.3 Comparison with Software Cryptographic Engines
against Cold-Boot Attacks
There are RSA implementations on common OSes against
cold-boot attacks, namely, PRIME [29], RegRSA [112], Cop-
ker [37] and the proposed work. These solutions adopt the
same key-encryption-key structure – an AES master key is
kept in privileged registers throughout the operation of the
system, and the RSA private key is decrypted on demand
to perform requested operations. Table 2 summaries four
approaches in terms of OS assumption, efficiency and RSA
implementation. Hardware assumptions are not shown in
the table, such as Intel TSX, cache-filling modes, CPU priv-
ilege rings, etc. With the hardware support from Intel TSX,
Mimosa significantly outperforms other solutions. More-
over, because the private-key computation is implemented
in C language, it is much easier for Mimosa and Copker to
support other algorithms such as DSA and ECDSA.

TRESOR is used in all solutions to protect the AES
master key, the security of which depends on the integrity
of the kernel executable without any interfaces to privileged
debug registers. TRESOR is resilient to memory disclosure
vulnerabilities in OS kernels. However, the security of RSA
private-key operations is very different:
PRIME and RegRSA uses unprivileged registers to store
RSA private keys, and requires the atomicity guarantee of
private-key computations; otherwise, the registers may be
accessed by attackers that interrupt the computations. Due
to the limited size of registers, it is extremely difficult or
even impossible to support longer RSA private keys.
Copker is vulnerable to software-based memory disclosure
attacks. It depends on the kernel isolation (i.e., the assump-
tion of no memory disclosure vulnerabilities in the kernel),
because illegal memory read operations by other cores to
access the memory address of private keys will synchronize
the plaintext private key in caches to RAM chips, when the
Copker core is decrypting or signing messages. Then, in
such cases the sensitive data are subject to cold-boot attacks.
Mimosa assumes kernel integrity, and its atomicity is guar-
anteed by hardware. It is resilient to memory disclosure
vulnerabilities in OS kernels, even if the memory space is
used in the private-key computations. Mimosa also requires
the atomicity guarantee by OS for efficiency.

7.4 Comparison with SGX
Intel Software Guard eXtensions (SGX) builds hardware-
enabled user-space containers, isolated from other processes
and OS kernels [53]. Confidentiality and integrity of the SGX
enclaves are maintained against privileged malware, so it is

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 14

TABLE 2: Comparison of the RSA Implementations against Cold-boot Attacks

Solution OS Assumption Performance RSA Algorithm
Master Key Private Key Compared with PolarSSL Implementation

Mimosa X+D X� Comparable C Language
PRIME X+D X+A Approximately 1/9† Assembly Code

RegRSA X+D X+A Approximately 3/4‡ Assembly Code
Copker X+D X+A+R Approximately 1/4∗ C Language

X: Integrity of executable binaries in OS kernels. D: No illegal access to debug registers.
A: Atomicity guarantee of private-key computations. R: No illegal memory read operation.
�: Mimosa requires the atomicity guarantee by OSes for efficiency, not for security.
† ‡: The numbers are drawn directly from [29] and [112], respectively.
∗: The number of separate cache sets divided by that of cores [37]. An Intel Core i7 CPU has 4 cores
with shared L3 caches.

also utilized for cryptographic engines [56, 65, 87]. While
Mimosa ensures only the confidentiality of private keys
against memory disclosure attacks, both confidentiality and
integrity of data and binaries in SGX enclaves are provided.
The performance penalty in log systems by SGX is about
5% [56], and our experiment that implements 2018-bit RSA
computations in SGX enclaves as a local service, shows that
the overhead by SGX is less than 1%.

SGX cannot work in kernel space, and it protects a user-
space process mainly against the underlying (malicious or
curious) OSes and hypervisors. So SGX is more suitable
for the applications on public clouds. On the contrary, Mi-
mosa implements computations in kernel space and provides
services to user-space processes, so it is more applicable
to scenarios where the user-space processes and the OS
belong to the same owner, or to implement services in
trusted OS kernels. Besides, although both TSX and SGX are
hardware features of Intel CPUs, SGX additional requires
the special BIOS support to configure processor reserved
memory (PRM) for SGX enclaves. Currently, the number of
SGX-compatible mainboards is still limited.

7.5 Applicability

Although the Mimosa prototype is implemented with Intel
TSX using the RTM interface,8 our design is applicable to
other platforms. In particular, if the protected computing is
executed as a transaction using the HLE interface of Intel
TSX, XTEST will be used to determine whether it is in a
transactional execution or not. If it is in a normal execution
(i.e., the transaction aborts), the protected computing will
not continue and the transactional execution will be retried.

Most HTM solutions share a similar programming in-
terface. In other HTM implementations, the counterparts of
XBEGIN and XEND are easily identified, and the abort pro-
cessing conforms to the Mimosa design. In the HTM facility
of IBM zEC12 [54], transactions are defined by TBEGIN and
TEND. On aborts, the PC register is restored to the instruction
immediately after TBEGIN, and a condition code is set
to a non-zero value. A program tests the condition code
after TBEGIN to start the transactional execution if CC=0 or
branch to the fallback function if not. AMD proposed its

8. In August 2014, Intel announced a bug in the TSX implementation,
and suggested disabling TSX on the affected CPUs via a microcode
update [50]. In our experiments, the Mimosa prototype works well.
TSX is still supported in newer Intel CPUs, e.g., Core M-5Y71 in Q4
2014, Core M7-6Y75 in Q3 2015, and Core i7-6785R in Q2 2016.

HTM extension, called Advanced Synchronization Facility
(ASF), but currently products are not ready. ASF provides
similar instructions to start and commit a transactional ex-
ecution (i.e., SPECULATE and COMMIT) and tracks memory
accesses in caches [2]. ASF has a slightly different feature
that all to-be-tracked memory must be explicitly specified.

Finally, most HTM implementations use on-chip compo-
nents for the transaction execution [2, 26, 42, 54, 104], so they
can also work with Mimosa to prevent cold-boot attacks.

8 RELATED WORK

8.1 Attack and Defense on Sensitive Memory Data
More copies of cryptographic keys in memory result in
higher leakage risk [44]. To reduce the risk, secure deallo-
cation [19] erases data either on deallocation or within a
predictable period, to reduce the number of copies of sensi-
tive data in unallocated memory. Harrison et al. keep only
one copy of cryptographic keys in allocated memory [44].
A 1024-bit RSA private key is scrambled and dispersed in
memory, but re-assembled in x86 SSE XMM registers when
computations are needed, to achieve no copy of private
keys in memory [83]. Scrash [14] removes sensitive data
from crash reports in the case of program failures. Mimosa
follows the same spirit to control sensitive data in memory,
and we employ HTM to enforce this principle.

TRESOR [76] and Amnesia [93] store AES keys only in
registers, against the cold-boot attacks on full-disk encryp-
tion. FrozenCache [82] stores AES keys in caches and config-
ures the cache-filling modes to prevent the keys from being
flushed to RAM chips. The CPU-bound approach is extend-
ed to the RSA algorithm. Using the AES key protected by
TRESOR as a key-encryption key, PRIME [29] implemented
the RSA computation in AVX registers while Copker [37] did
it in caches. RegRSA [112] improved PRIME by using more
registers and encrypting intermediate results in memory, so
the efficiency is improved. Mimosa implements RSA against
cold-boot attacks, but provides much better performance.
The register-based engines also prevent read-only DMA
attacks [6, 11, 97] that passively read data from memory.
Advanced attacks [10] actively inject malicious codes into
OS kernels by DMA requests, and then access registers.
These DMA attacks are detected or restricted by monitor-
ing bus activities [96], leveraging SMM [110], configuring
IOMMU [97], or the timed challenge-response protocol [66].

PixelVault uses GPUs as the container for cryptographic
computing [102] – during the initialization all sensitive data

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 15

and executable binaries are loaded into the caches and
registers of GPUs, so (malicious) binaries on CPUs cannot
access these data and binaries on GPUs. GPUs are dedicated
for cryptographic computing in PixelVault, while Mimosa
dynamically builds secure containers within CPUs. Sentry
[21] employs the cache-locking feature of ARM CPUs to
defeat cold-boot and DMA attacks: sensitive data are locked
in caches while the encrypted copies are on RAM chips.
PhiRSA [113] exploits the vector instructions of Intel Xeon
Phi to implement high-performance RSA computations.

There are SGX-based security solutions [5, 88, 94], and
[56, 65, 87] implements cryptographic engines in SGX en-
claves. There are vulnerabilities found in SGX enclaves
[13, 64, 92, 106, 107], leaking sensitive data. Flicker [71]
built dynamical isolated execution environments, utilizing
the hardware feature of late launch and attestation in In-
tel Trusted eXecution Technology (TXT) and AMD Secure
Virtual Machine (SVM). The overhead to initialize and exit
an SGX enclave or a Flicker piece is heavier than a TSX
transaction [48, 53, 71], so Mimosa is more suitable for
frequently-called kernel modules. ARM TrustZone provides
hardware isolation between execution domains. TrustOTP
builds a TrustZone-based computing environment against
malicious OSes [98]. CaSE [111] extends TrustOTP by con-
straining computations in caches, against both cold-boot
attacks and software memory attacks. Memory resources
occupied by the TrustZone secure domain cannot be used by
other domain, while the execution environment of Mimosa
is dynamically built on-demand and released in idle. These
solutions show the same tendency of building security sys-
tems on top of hardware features. Last, RamCrypt [34] and
HyperCrypt [33] are software-based memory encryption for
Linux processes against software and physical memory dis-
closure attacks; but the performance penalty is significant.

8.2 Transactional Memory Application and Exploitation

Transactional memory boosts thread-level parallelism, and
is applied in database systems [57] and game servers [70,
114]. Transactional memory improves the multi-threaded
support in dynamic binary translation to ensure the correct
executions of concurrent threads [20].

By maintaining shared resources in the read/write-set,
TMI enforces authorization policies once such a resource is
accessed [8, 9]. TMI and Mimosa depend on transactional
memory to inspect the access to sensitive resources. TMI
enforces authorization policies on every access, while Mi-
mosa ensures confidentiality by clearing sensitive keys once
any illegal read operation occurs. TSX-CFI [75] maps control
flow transitions into TSX transactions, and violations of the
intended control flow graph will trigger aborts. TxIntro [69]
leverages the strong atomicity of HTM to synchronize vir-
tual machine introspection (VMI) and guest OS execution,
so that VMI is performed more timely and consistently. It
monitors the read-set to detect concurrent update operations
that cause inconsistence, while Mimosa monitors the write-
set to detect illegal read operations.

Utilizing the property that the Intel TSX abort handling
is triggered by hardware and bypasses the underlying OS, T-
SGX [91] isolates an SGX enclave against the page-fault side
channel attacks by malicious OSes, and Deja Vu [17] builds a

trustworthy timer to detect such attacks. Cloak [36] presents
a framework against various cache-based side channels, by
utilizing TSX to perform cryptographic computations in
caches. On the contrary, exploiting the timing differences
in TSX abort handlers for different memory faults, a side
channel is constructed to break kernel address space layout
randomization [55]. TSX tracks the read-set in L3 caches
which are shared among all cores, so an abort due to cache
eviction on the read-set provides information about other
task’s cache accesses to construct side channels [27].

8.3 Transactional Memory Implementation
Transactional memory designs are proposed, from hardware
solutions [26, 42, 48, 54, 104] to software-based solutions
[16, 43, 80, 90] and hybrid schemes [25, 62, 74]. HTM usually
updates data temporarily in CPU-bound caches or store
buffers before the transaction commits, and discards the
updated data on aborts. LogTM updates memory directly
and saves unmodified values in a per-thread log [74]; on
aborts, the state is restored by inspecting through the logs.

9 CONCLUSION

We present Mimosa, an implementation of the RSA cryp-
tosystem with substantially improved security guarantees
on the private keys. With the help of HTM, Mimosa ensures
that only Mimosa itself is able to access plaintext private
keys in a private-key computation. Any unauthorized ac-
cess would automatically trigger a transaction abort, which
immediately clears all sensitive data and terminates the
cryptographic computations. This thwarts software memory
disclosure attacks that exploit vulnerabilities to stealthily
read sensitive data from memory without breaking the in-
tegrity of executable binaries. Meanwhile, the whole protect-
ed computing environment is constrained in CPU caches, so
Mimosa is immune to cold-boot attacks on RAM chips.

We implemented the Mimosa prototype with Intel TSX,
a commodity HTM solution. To mitigate the cache-clogging
DoS threats due to the fragility of TSX transactions, we fur-
ther partition an RSA private-key computation into multiple
transactional parts by analyzing the distribution of aborts,
while (sensitive) intermediate results are protected across
these parts. We have simulated the powerful software mem-
ory disclosure “attacks” and validated that unauthorized
access to sensitive data could only obtain erased or encrypt-
ed copies of private keys. Kernel dump when Mimosa is
running fails to capture any sensitive content, either. The
performance evaluation shows that Mimosa exhibits com-
parable efficiency with conventional RSA implementations.

ACKNOWLEDGMENTS

This work was partially supported by National Natural Sci-
ence Foundation of China (Award 61772518), and National
973 program of China (Award 2013CB338001).

*Bibliography
[1] O. Aciicmez, W. Schindler, and C. Koc, “Cache based

remote timing attack on the AES,” in CT-RSA, 2007.
[2] AMD, “Advanced synchronization facility, proposed

architectural specification (revision 2.1),” 2009.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 16

[3] C. Arnaud and P.-A. Fouque, “Timing attack against
protected RSA-CRT implementation used in
PolarSSL,” in CT-RSA, 2013.

[4] J. Bauer, M. Gruhn, and F. Freiling, “Lest we forget:
Cold-boot attacks on scrambled DDR3 memory,”
Digital Investigation, vol. 16, pp. S65–S74, 2016.

[5] A. Baumann, M. Peinado, and G. Hunt, “Shielding
applications from an untrusted cloud with Haven,”
in USENIX OSDI, 2014.

[6] M. Becher, M. Dornseif, and C. Klein, “Firewire: All
your memory are belong to us,” in CanSecWest, 2005.

[7] D. Bernstein, “Cache-timing attacks on AES,” 2004.
[8] A. Birgisson and U. Erlingsson, “An implementation

and semantics for transactional memory
introspection in Haskell,” in ACM PLAS, 2009.

[9] A. Birgisson, M. Dhawan, U. Erlingsson,
V. Ganapathy, and L. Iftode, “Enforcing authorization
policies using transactional memory introspection,”
in ACM CCS, 2008.

[10] E.-O. Blass and W. Robertson, “TRESOR-HUNT:
Attacking CPU-bound encryption,” in ACSAC, 2012.

[11] B. Bock, “Firewire-based physical security attacks on
Windows 7, EFS and BitLocker,” 2009.

[12] J. Bonneau and I. Mironov, “Cache-collision timing
attacks against AES,” in CHES, 2006.

[13] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A.-R. Sadeghi, “Software grand
exposure: SGX cache attacks are practical,” in
USENIX WOOT, 2017.

[14] P. Broadwell, M. Harren, and N. Sastry, “Scrash: A
system for generating secure crash information,” in
USENIX Security, 2003.

[15] D. Brumley and D. Boneh, “Remote timing attacks
are practical,” Computer Networks, vol. 48, no. 5, pp.
701–716, 2005.

[16] B. Carlstrom, A. McDonald et al., “The Atomos
transactional programming language,” in ACM PLDI,
2006.

[17] S. Chen, X. Zhang, M. Reiter, and Y. Zhang,
“Detecting privileged side-channel attacks in
shielded execution with Deja Vu,” in ACM AsiaCCS,
2017.

[18] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum, “Understanding data lifetime via
whole system simulation,” in USENIX Security, 2004.

[19] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum,
“Shredding your garbage: Reducing data lifetime
through secure deallocation,” in USENIX Security,
2005.

[20] J.-W. Chung, M. Dalton, H. Kannan, and
C. Kozyrakis, “Thread-safe dynamic binary
translation using transactional memory,” in IEEE
HPCA, 2008.

[21] P. Colp, J. Zhang et al., “Protecting data on
smartphones and tablets from memory attacks,” in
ASPLOS, 2015.

[22] C. Cowan, S. Beattie, J. Johansen, and P. Wagle,
“PointGuardTM: Protecting pointers from buffer
overflow vulnerabilities,” in USENIX Security, 2003.

[23] C. Cowan, C. Pu et al., “StackGuard: Automatic
adaptive detection and prevention of buffer-overflow

attacks,” in USENIX Security Symposium, 1998.
[24] CVE Details, “Linux kernel vulnerability statistics,”

2014, http://www.cvedetails.com/product/47/
Linux-Linux-Kernel.html.

[25] P. Damron, A. Fedorova, Y. Lev, V. Luchangco,
M. Moir, and D. Nussbaum, “Hybrid transactional
memory,” in ASPLOS, 2006.

[26] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and
M. Olszewski, “Early experience with a commercial
hardware transactional memory implementation,” in
ASPLOS, 2009.

[27] C. Disselkoen, D. Kohlbrenner, L. Porter, and
D. Tullsen, “Prime+Abort: A timer-free
high-precision L3 cache attack using Intel TSX,” in
USENIX Security, 2017.

[28] A. Dunn, M. Lee et al., “Eternal sunshine of the
spotless machine: Protecting privacy with ephemeral
channels,” in USENIX OSDI, 2012.

[29] B. Garmany and T. Müller, “PRIME: Private RSA
infrastructure for memory-less encryption,” in
ACSAC, 2013.

[30] D. Genkin, L. Pachmanov, and I. Pipman, “Stealing
keys from PCs by radio: Cheap electromagnetic
attacks on windowed exponentiation,” in CHES,
2015.

[31] D. Genkin, I. Pipman, and E. Tromer, “Get your
hands off my laptop: Physical side-channel
key-extraction attacks on PCs,” in CHES, 2014.

[32] D. Genkin, A. Shamir, and E. Tromer, “RSA key
extraction via low-bandwidth acoustic
cryptanalysis,” in Crypto, 2014.

[33] J. Götzfried, N. Dörr, R. Palutke, and T. Müller,
“HyperCrypt: Hypervisor-based encryption of kernel
and user space,” in ARES, 2016.

[34] J. Götzfried, T. Müller, G. Drescher, S. Nürnberger,
and M. Backes, “RamCrypt: Kernel-based address
space encryption for user-mode processes,” in ACM
AsiaCCS, 2016.

[35] M. Gruhn and T. Müller, “On the practicability of
cold boot attacks,” in ARES, 2013.

[36] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko,
I. Haller, and M. Costa, “Strong and efficient cache
side-channel protection using hardware transactional
memory,” in USENIX Security, 2017.

[37] L. Guan, J. Lin, B. Luo, and J. Jing, “Copker:
Computing with private keys without RAM,” in
NDSS, 2014.

[38] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang,
“Protecting private keys against memory disclosure
attacks using hardware transactional memory,” in
IEEE S&P, 2015.

[39] L. Guan, J. Lin, Z. Ma, B. Luo, L. Xia, and J. Jing,
“Copker: A cryptographic engine against cold-boot
attacks,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 742–754, 2016.

[40] G. Guninski, “Linux kernel 2.6 fun, Windoze is a
joke,” 2005, http://www.guninski.com/where do
you want billg to go today 3.html.

[41] J. Halderman, S. Schoen et al., “Lest we remember:
Cold boot attacks on encryption keys,” in USENIX
Security, 2008.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 17

[42] L. Hammond, V. Wong et al., “Transactional memory
coherence and consistency,” in ISCA, 2004.

[43] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy,
“Composable memory transactions,” in ACM PPoPP,
2005.

[44] K. Harrison and S. Xu, “Protecting cryptographic
keys from memory disclosure attacks,” in IEEE/IFIP
DSN, 2007.

[45] M. Herlihy and J. Moss, “Transactional memory:
Architectural support for lock-free data structures,”
in ISCA, 1993.

[46] O. Hofmann, A. Dunn, S. Kim, I. Roy, and E. Witchel,
“Ensuring operating system kernel integrity with
OSck,” in ASPLOS, 2011.

[47] D. Hulton, “Cardbus bus-mastering: 0wning the
laptop,” in Annual ShmooCon Convention, 2006.

[48] Intel, “Chapter 8: Intel transactional memory
synchronization extensions,” in Intel architecture
instruction set extensions programming reference, 2012.

[49] ——, “Intel advanced encryption standard (AES)
new instructions set,” 2012.

[50] ——, “Desktop 4th generation Intel Core processor
family,” 2014.

[51] ——, “Intel 64 and IA-32 architectures optimization
reference manual,” 2014.

[52] ——, “Intel 64 and IA-32 architectures software
developer’s manual,” 2014.

[53] ——, “Intel software guard extensions programming
reference,” 2014.

[54] C. Jacobi, T. Slegel, and D. Greiner, “Transactional
memory architecture and implementation for IBM
System Z,” in IEEE/ACM MICRO, 2012.

[55] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address
space layout randomization with Intel TSX,” in ACM
CCS, 2016.

[56] V. Karande, E. Bauman, Z. Lin, and L. Khan,
“SGX-Log: Securing system logs with SGX,” in ACM
AsiaCCS, 2017.

[57] T. Karnagel, R. Dementiev et al., “Improving
in-memory database index performance with Intel
transactional synchronization extensions,” in IEEE
HPCA, 2014.

[58] V. Kemerlis, G. Portokalidis, and A. Keromyti,
“kGuard: Lightweight kernel protection against
return-to-user attacks,” in USENIX Security, 2012.

[59] C. Koc, “High-speed RSA implementation,” RSA
Laboratories, Tech. Rep., 1994.

[60] P. Kocher, D. Genkin et al., “Spectre attacks:
Exploiting speculative execution,” ArXiv e-prints,
2018.

[61] V. Kolontsov, “WU-FTPD core dump vulnerability
(the old patch doesn’t work),” 1997,
http://insecure.org/sploits/ftp.coredump2.html.

[62] S. Kumar, M. Chu, C. Hughes, P. Kundu, and
A. Nguyen, “Hybrid transactional memory,” in ACM
PPoPP, 2006.

[63] M. Lafon and R. Francoise, “CAN-2005-0400:
Information leak in the Linux kernel ext2
implementation,” 2005, http://www.securiteam.com.

[64] J. Lee, J. Jang et al., “Hacking in darkness:
Return-oriented programming against secure

enclaves,” in USENIX Security, 2017.
[65] H. Li, J. Lin, B. Li, and W. Cheng, “PoS: Constructing

practical and efficient public key cryptosystems
based on symmetric cryptography with SGX,” in
ICICS, 2018.

[66] Y. Li, J. McCune, and A. Perrig, “VIPER: Verifying the
integrity of peripherals’ firmware,” in ACM CCS,
2011.

[67] M. Lipp, M. Schwarz et al., “Meltdown,” ArXiv
e-prints, 2018.

[68] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee,
“Last-level cache side-channel attacks are practical,”
in IEEE S&P, 2015.

[69] Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen,
“Concurrent and consistent virtual machine
introspection with hardware transactional memory,”
in IEEE HPCA, 2014.

[70] D. Lupei, B. Simion et al., “Transactional memory
support for scalable and transparent parallelization
of multiplayer games,” in EuroSys, 2010.

[71] J. McCune, B. Parno, A. Perrig, M. Reiter, and
H. Isozaki, “Flicker: An execution infrastructure for
TCB minimization,” in ACM SIGOPS Operating
Systems Review, vol. 42, no. 4, 2008, pp. 315–328.

[72] MITRE, “CWE-212: Improper cross-boundary
removal of sensitive data,” 2013,
https://cwe.mitre.org/data/definitions/212.html.

[73] ——, “CWE-226: Sensitive information uncleared
before release,” 2013,
https://cwe.mitre.org/data/definitions/226.html.

[74] K. Moore, J. Bobba, M. Moravan, M. Hill, and
D. Wood, “LogTM: Log-based transactional
memory,” in IEEE HPCA, 2006.

[75] M. Muench, F. Pagani, Y. Shoshitaishvili, C. Kruegel,
G. Vigna, and D. Balzarotti, “Taming transactions:
Towards hardware-assisted control flow integrity
using transactional memory,” in RAID, 2016.

[76] T. Müller, F. Freiling, and A. Dewald, “TRESOR runs
encryption securely outside RAM,” in USENIX
Security, 2011.

[77] National Vulnerability Database, “CVE-2014-0069,”
2014, http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2014-0069.

[78] ——, “CVE-2014-0160,” 2014, http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2014-0160.

[79] ——, “CVE-2014-4653,” 2014, http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2014-4653.

[80] Y. Ni, A. Welc et al., “Design and implementation of
transactional constructs for C/C++,” in ACM
OOPSLA, 2008.

[81] Y. Oren and A. Shamir, “How not to protect PCs from
power analysis,” in Crypto - Rump Session, 2006.

[82] J. Pabel, “Frozencache: Mitigating cold-boot attacks
for full-disk-encryption software,” in Chaos
Communication Congress, 2010.

[83] T. Parker and S. Xu, “A method for safekeeping
cryptographic keys from memory disclosure attacks,”
in INTRUST, 2010.

[84] B. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares:
An architecture for secure active monitoring using
virtualization,” in IEEE S&P, 2008.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2897666, IEEE
Transactions on Dependable and Secure Computing

CONGWU LI, LE GUAN, JINGQIANG LIN et al. 18

[85] N. Petroni and M. Hicks, “Automated detection of
persistent kernel control-flow attacks,” in ACM CCS,
2007.

[86] T. Pettersson, “Cryptographic key recovery from
Linux memory dumps,” in Chaos Communication
Camp, 2007.

[87] L. Richter, J. Götzfried, and T. Müller, “Isolating
operating system components with Intel SGX,” in
SysTEX, 2016.

[88] F. Schuster, M. Costa et al., “VC3: Trustworthy data
analytics in the cloud using SGX,” in IEEE S&P, 2015.

[89] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor:
A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes,” in ACM SOSP, 2007.

[90] N. Shavit and D. Touitou, “Software transactional
memory,” Distributed Computing, vol. 10, no. 2, pp.
99–116, 1997.

[91] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:
Eradicating controlled-channel attacks against
enclave programs,” in NDSS, 2017.

[92] S. Shinde, Z.-L. Chua, V. Narayanan, and P. Saxena,
“Preventing your faults from telling your secrets,” in
ACM AsiaCCS, 2016.

[93] P. Simmons, “Security through Amnesia: A
software-based solution to the cold boot attack on
disk encryption,” in ACSAC, 2011.

[94] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani,
“Moat: Verifying confidentiality of enclave
programs,” in ACM CCS, 2015.

[95] sp00n, “Security dynamics FTP server core problem,”
1997, http://insecure.org/sploits/solaris.
secdynamics.core.html.

[96] P. Stewin, “A primitive for revealing stealthy
peripheral-based attacks on the computing platform’s
main memory,” in RAID, 2013.

[97] P. Stewin and I. Bystrov, “Understanding DMA
malware,” in DIMVA, 2013.

[98] H. Sun, K. Sun, Y. Wang, and J. Jing, “TrustOTP:
Transforming smartphones into secure one-time
password tokens,” in ACM CCS, 2015.

[99] A. Tal, “Intel software development emulator,” 2012,
http://software.intel.com/en-us/articles/
intel-software-development-emulator.

[100] Trusted Computing Group, “Trusted platform
module 2.0: A brief introduction,” 2016.

[101] P. van Dijk, “Coredump hole in imapd and ipop3d in
Slackware 3.4,” 1998, http://www.insecure.org/
sploits/slackware.ipop.imap.core.html.

[102] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis,
and S. Ioannidis, “PixelVault: Using GPUs for
securing cryptographic operations,” in ACM CCS,
2014.

[103] R. Vitillo, “Linux profiling with performance
counters,” 2014, https://perf.wiki.kernel.org/.

[104] A. Wang, M. Gaudet et al., “Evaluation of Blue
Gene/Q hardware support for transactional
memories,” in PACT, 2012.

[105] R. Wartell, V. Mohan, K. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of
legacy x86 binary code,” in ACM CCS, 2012.

[106] N. Weichbrodt, A. Kurmus, P. Pietzuch, and

R. Kapitza, “AsyncShock: Exploiting synchronisation
bugs in Intel SGX enclaves,” in ESORICS, 2016.

[107] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems,” in IEEE S&P, 2015.

[108] Y. Yarom and K. Falkner, “Flush+reload: A high
resolution, low noise, L3 cache side-channel attack,”
in USENIX Security, 2014.

[109] R. Yoo, C. Hughes, K. Lai, and R. Rajwar,
“Performance evaluation of Intel transactional
synchronization extensions for high-performance
computing,” in SC, 2013.

[110] F. Zhang, “IOCheck: A framework to enhance the
security of I/O devices at runtime,” in International
Workshop, in conjunction with IEEE/IFIP DSN, 2013.

[111] N. Zhang, K. Sun, W. Lou, and Y. Hou, “CaSE:
Cache-assisted secure execution on ARM
processors,” in IEEE S&P, 2016.

[112] Y. Zhao, J. Lin, W. Pan, C. Xue, F. Zheng, and Z. Ma,
“RegRSA: Using registers as buffers to resist memory
disclosure attacks,” in IFIP SEC, 2016.

[113] Y. Zhao, W. Pan, J. Lin, P. Liu, C. Xue, and F. Zheng,
“PhiRSA: Exploiting the computing power of vector
instructions on Intel Xeon Phi for RSA,” in SAC, 2016.

[114] F. Zyulkyarov, V. Gajinov et al., “Atomic Quake:
Using transactional memory in an interactive
multiplayer game server,” in ACM PPoPP, 2009.

Congwu Li is a PhD student at Institute of Information Engineering,
Chinese Academy of Sciences. He is interested in software security.

Le Guan is an assistant professor at Department of Computer Science,
the University of Georgia. He received her PhD degree from Institute of
Information Engineering, Chinese Academy of Sciences in 2015.

Jingqiang Lin received his MS and PhD degrees from Graduate
University of Chinese Academy of Sciences in 2004 and 2009,
respectively. He is a full professor at Institute of Information
Engineering, Chinese Academy of Sciences. His research interest
includes system security and applied cryptography.

Bo Luo is an associate professor at Department of Electrical
Engineering and Computer Science, the University of Kansas. He
received his PhD degree from Pennsylvania State University in 2008.
His research interest includes security and data science.

Quanwei Cai is an assistant professor at Institute of Information
Engineering, Chinese Academy of Sciences. He received his PhD
degree from Institute of Information Engineering in 2015. His research
interest is network security.

Jiwu Jing received his MS and PhD degrees from Graduate University
of Chinese Academy of Sciences in 1990 and 2003, respectively. He is
a full professor at Institute of Information Engineering, Chinese
Academy of Sciences. He is interested in network and system security.

Jing Wang received her PhD degree from Institute of Information
Engineering, Chinese Academy of Sciences in 2015.

