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Caches’ unique features have enabled researchers to build secure computing environments, e� ectively 
preventing various physical and software memory attacks. Existing solutions provide confi dentiality and 
integrity in certain applications and services. Identifying various solutions’ advantages and limitations 
can guide future research in hardware-aided security. 

I n cryptography, Kerckho� s’s principle states that a 
cryptosystem’s security must reside entirely with the 

secrecy of the key. In other words, protecting crypto-
graphic keys is essential in any cryptosystem or crypto-
graphic application. In cryptographic computing, keys 
are loaded as plaintext into the main memory and are 
therefore subject to various memory disclosure a� acks. 
New physical a� acks, such as cold-boot1 and direct 
memory access (DMA) a� acks,2,3 have recently been 
discovered. � ey exploit hardware properties or func-
tions to bypass all possible protections at the OS level 
and directly gain unauthorized access to memory. To 
defend against these physical a� acks (as well as tradi-
tional so� ware a� acks), innovative mechanisms utilize 
hardware features, such as registers, caches, and hard-
ware transactional memory (HTM), to protect sensi-
tive data.

In a modern commodity computer, the comput-
ing core and memory are the necessary components: 
the computing core picks binary codes from memory 
and accesses data in memory. Memory is typically 
implemented as DRAM chips physically, accessible 
by CPU or GPU cores and peripheral devices. All 
 data and binary codes are stored in DRAM chips, 

unless the cores directly access data from peripheral 
devices, occasionally.

To accelerate memory access, high-speed but small-
sized memory components, called caches, are designed 
on the processor to store data and binaries temporarily. 
On-processor caches are located between the cores and 
the D� M chips, and the most recently used data and 
instructions are kept in caches for faster future access. 
In this way, memory access is performed e�  ciently in 
the processor, not in D� M chips. Synchronization 
between caches and D� M chips takes place only 
when cache replacement happens according to cache 
policies and con� gurations or when the core explicitly 
executes speci� c cache control instructions.

Because the access in caches exhibits very di� erent 
characteristics from that in � M, a� acks such as cache-
based side channels and cache poisoning seek to exploit 
these characteristics. Exploiting the fact that accessing 
cached data is approximately two orders of magnitude 
faster than data in D� M chips, various side channels 
on cryptographic engines are proposed to detect cache 
hits and misses during the execution and then deduce 
the cryptographic keys. Because cache access occurs in 
the processor, the cache-poisoning a� ack con� gures the 
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system management RAM (SMRAM) address space as 
cacheable; therefore, it can bypass the chipset’s protec-
tion on DRAM chips and overwrite SMRAM in caches 
from outside the system management mode (SMM) 
mode. Defensive protection mechanisms also utilize the 
characteristics of on-chip caches. In particular, due to 
the very different physical properties and their location 
in the hardware architecture, on-chip caches naturally 
resist several RAM vulnerabilities. However, using such 
properties for secure computing is challenging because 
caches aren’t designed for these security purposes, and 
hardware manufacturers provide only very limited con-
trols over caches.

In this article, we survey recently proposed cache-
based secure computing solutions, including CARMA, 
Copker, Mimosa, PixelVault, PRIME, Sentry, and 
TRESOR, and compare their security, flexibility, per-
formance, and limitations.

Security Solutions on Top of Caches
Both caches and DRAM chips are volatile RAM units, 
but caches are very distinct in the following aspects:

■■ On chip. Caches are implemented as static RAM 
(SRAM) cells on the processor chip with the com-
puting cores, while DRAM chips are separated out of 
the processor physically. This feature implies different 
security guarantees against physical attacks or mali-
cious hardware manufacturers.

■■ Data inconsistent. For the cacheable memory area, the 
data contents in caches won’t always be consistent 
with those in DRAM chips after modification. There-
fore, the caches compose an alternative storage for 
the memory data to be protected, especially against 
attacks on DRAM chips.

■■ Controlled by cores. Although data can be transmitted 
from caches to DRAM chips or from DRAM chips to 
caches, transmission is controlled only by the CPU 
or GPU cores located on the processor chip. On the 
other hand, the data control interface of DRAM chips 
is exported. This enables cache-based solutions to 
prevent attacks from outside the processor.

■■ Dedicated to each core. The DRAM chips and periph-
eral devices are usually accessible to all cores, but each 
core has its own L1 cache, in addition to shared L2 
and L3 caches. This separated and dedicated L1 cache 
offers an option for isolated computing environments 
while malicious tasks are running concurrently on 
other cores.

Building the Minimal Trusted Computing 
Base Hardware
The size of caches allows cores to perform certain 
functions without any RAM or peripheral devices. 

For example, ARM’s Cortex-A9 has caches of up to 8 
Mbytes, and Intel Core i7-2720QM has 6 Mbytes. 
LinuxBIOS uses caches as RAM to support stack and 
eliminate out-of-register errors before DRAM chips are 
initialized. It then implements portable initialization 
codes in C.

Using caches as RAM, CARMA establishes a 
trusted computing base (TCB) with the minimum-
required hardware components.4 CARMA releases the 
trust assumption on DRAM chips and other peripheral 
devices, and the only trusted hardware of the comput-
ing system is the necessary processor chip with cores 
and caches. To establish the TCB in CARMA, a secure 
execution environment loader (SEEL) is first loaded 
into the processor along with the secure executable 
code (SEC). Then, the SEEL initializes a computing 
environment for the SEC in the processor, employ-
ing the cache-as-RAM mechanism. However, because 
the SEEL and the SEC are loaded across untrusted 
devices such as buses and DRAM chips, they need to 
be attested to an external trusted device (TD). The 
attestation is performed by the software-only root-of-
trust mechanism,5 so there’s no need for additional 
trusted hardware. The attestation results in a shared 
secret between the SEEL and the TD, and all follow-
ing I/O data transmitted across untrusted hardware is 
protected by this secret.

Computing without DRAM Chips
Sensitive data in DRAM chips faces the practical threat 
of cold-boot attacks.1 Such attacks result from the semi-
conductor devices’ remanence effect; that is, DRAM chip 
contents survive to some extent without power, even at 
room temperature, and retention time is increased by 
cooling. Although the remanence effect was found in 
the 1970s, practical cold-boot attacks were first dem-
onstrated in 2008.1 Cold-boot attackers retrieve the 
DRAM contents of a running computer by rebooting the 
machine from malicious removable media or placing the 
DRAM chips into another machine that they control.

Cold-boot attacks don’t disclose the data in caches. 
Caches are usually implemented with high-speed 
SRAM cells, and SRAM cells show even stronger rema-
nence effects than DRAM chips. However, as on-chip 
memory units, caches don’t export data interfaces for 
direct access from outside; that is, cache data is con-
trolled and accessed only by the cores. Intel processors 
automatically invalidate internal caches after power-up 
or reset. Even if attackers reboot the machine and load 
malicious code into the core (when the caches aren’t 
cleared), read operations would fetch data from DRAM 
chips and thereby overwrite the cache data.

The features we described can potentially defeat 
cold-boot attacks. To protect against cold-boot 
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a� acks on the Advanced Encryption Standard (AES) 
key of full disk encryption, FrozenCache stores the 
AES key (as well as its round keys) in caches when 
users explicitly activate the special frozen state.6 At 
the same time, the keys in D� M are cleared. � is 
“freezes” the AES keys in caches by le� ing all cores 
enter the no-� ll cache mode to prevent sensitive data 
from being � ushed into D� M chips. However, it 
takes a while for the system to recover from the fro-
zen state.6

Unlike FrozenCache, which uses caches only for 
storing sensitive data, 
Copker implements 
public- key crypto-
graphic computa-
tions entirely in 
caches (as well as reg-
isters).7 In the typi-
cal write-back cache 
mode, the cached 
data contents usually 
di� er from those of the same address in D� M chips, 
as caches’ original design goal was to perform as many 
operations in high-speed caches as possible. 

Copker employs the write-back mode to enable 
memory-intensive public-key cryptographic compu-
tations in caches by solving the following challenges: 
� rst, locating enough cache lines to hold the whole 
computation, and second, ensuring that the cache data 
isn’t being � ushed into D� M chips during the com-
putation. By replacing heap variables with static arrays 
and by switching the stack pointers, Copker stores all 
used data in a space of continuous physical addresses, so 
this data doesn’t con� ict on the same cache set in Intel 
8-way set associative caches. At the same time, other 
cores sharing caches with Copker tasks are forced into 
the no-� ll cache mode to avoid interference from con-
current tasks (for example, intensive memory access 
resulting in cache replacement).

Copker employs register-based AES cryptographic 
engines that are also immune to cold-boot a� acks.8,9

Copker adopts the common key-encryption-key struc-
ture, and the RSA private keys are encrypted in mem-
ory by an AES master key when it’s in idle. To protect 
the AES master key, both TRESOR and Copker con-
strain the key only in privileged registers, because the 
AES memory requirement is much less than public-key 
crypto graphic algorithms. Similar to the LinuxBIOS 
cache-as-� M mechanism, Copker breaks the limited 
register capacity to implement complicated public-key 
cryptographic functions without D� M chips. How-
ever, Copker has to handle cache access by the tasks 
concurrent with the protected computations, which 
don’t exist in LinuxBIOS.

Locking All Data of Sensitive Applications
Many smartphone applications (for example, Twi� er 
and Google Maps) contain sensitive data and could leak 
users’ private information under various memory dis-
closure a� acks. While a cryptographic service needs to 
protect only the key and ensure that its inputs and out-
puts don’t leak any information about the key, an appli-
cation usually directly processes users’ privacy data. 
When the application is running, all its data appears 
in memory as plaintext. � erefore, this sensitive infor-
mation might su� er direct memory access (DMA)2 as 

well as cold-boot a� acks. 
DMA a� acks are 
launched from mali-
cious DMA-capable 
peripheral devices, 
which issue DMA 
requests to directly 
read memory data. 
� e DMA feature 
allows a peripheral 

device to access memory without any cooperation 
from the processor or the OS. � ese a� acks have been 
observed via Firewire, PCMCIA, PCI Express, � un-
derbolt, and other physical interfaces.

� e great size of caches allows Sentry to protect all 
data of a speci� c application against cold-boot a� acks.10

In Sentry, all pages of the data segments are � rst encrypted 
in D� M chips by an on-chip AES engine that’s also 
implemented entirely in caches. Once the application 
a� empts to access its page, Sentry traps the page fault to 
decrypt it in caches and then modify the page table entry 
to point to the plaintext copy. � en, Sentry supports run-
ning unmodi� ed applications, but with encrypted data in 
D� M chips, e� ectively preventing cold-boot a� acks.

Sentry con� gures caches to prevent DMA access 
by (malicious) external peripheral devices. ARM plat-
forms support cache locking to improve computation 
performance, and Sentry employs this feature to lock 
the plaintext data of sensitive applications in caches 
on smartphones and tablets, which are typically ARM 
devices. � is strong cache-locking mechanism is ARM 
speci� c. On Intel platforms, similar functions are � n-
ished by combining the write-back and no-� ll cache 
modes,6,7 but DMA a� acks would still succeed in 
obtaining the targeted data. Upon DMA requests from 
outside the ARM processor, this locked content isn’t 
evicted from caches to D� M chips. � en, on a Sentry-
protected mobile device, both DMA a� acks and cold-
boot a� acks return only the encrypted versions of data.

Protecting the Integrity of Executable Binaries
So� ware binaries in memory can su� er various code 
injection or modi� cation a� acks, such as bu� er over� ow 

We provide a qualitative comparison of 
non-RAM security solutions. In particular, 

we discuss the secure computing 
environments created in these solutions.
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and return-to-libc. In addition to reading unauthorized 
memory data, physical attacks (especially advanced 
DMA attacks3) could also inject executable codes into 
the memory space of the OS kernel.

The on-chip instruction caches are controlled only 
by the internal computing cores located on the same 
chip, so the binaries running in instruction caches can 
be protected against external code injection attacks 
(assuming that the internal cores are trusted). Pixel-
Vault11 loads all the binaries into a commodity GPU’s 
instruction caches (at least 32 Kbytes in size) by exercis-
ing all execution paths during the initialization. These 
GPU binaries run indefinitely in nonpreemptive execu-
tion mode and never fetch any new instructions from 
off-chip memory. Afterward, code injection or modifi-
cation attacks don’t affect the autonomous GPU execu-
tion, even when the OS that’s running on CPUs has been 
completely compromised. The attackers from CPUs can 
terminate the GPU execution but can’t modify it.

PixelVault cryptographic services are implemented 
in the protected GPU binaries, and the secret keys are 
always in GPU registers, which are also inaccessible from 
outside. First, the trusted and unmodified GPU binaries 
never actively disclose any information on the crypto-
graphic keys. Second, any information about the keys is 
carefully erased after they’re loaded into GPU registers 
during the initialization. Finally, even if attackers launch 
their own malicious GPU binaries immediately after ter-
minating the PixelVault services, the registers are reset to 
zero automatically by GPU hardware.

Isolating Sensitive Data from Co-resident Tasks
Memory disclosure attacks can be launched from out-
side the processor chip (for example, cold-boot attacks 
and DMA attacks), as mentioned earlier, or from vulner-
able or malicious software tasks co-resident on the chip 
(that is, concurrently running on different cores from 
the protected target). For example, malicious unprivi-
leged processes can exploit vulnerabilities to access 
kernel memory space, and the OpenSSL HeartBleed 
attack copies unauthorized memory data to remote 
users without any privileges. One way to mitigate this 
unauthorized disclosure of sensitive data is to limit the 
copy number and the lifetime of such plaintext data in 
memory. For example, solutions of different levels are 
enforced to ensure that only one copy of private keys 
appears in memory and to reduce the sensitive data in 
unallocated memory. However, these approaches don’t 
eliminate the ultimate attack opportunity, where the 
concurrently running malicious tasks access the only 
copy of sensitive data when it’s being processed.

The L1 cache dedicated to a core is an option to 
locate sensitive runtime data against the malicious 
tasks co-resident on the processor. During runtime, the 

sensitive data must be plaintext in memory for mean-
ingful processing. Another choice is fully homomor-
phic encryption (FHE), in which data is processed in 
ciphertext; however, FHE is still impractical due to its 
low efficiency. Here, the memory disclosure attacks dur-
ing runtime mean unauthorized access while the target 
process is actively running. Otherwise, if the sensitive 
application has been launched but is suspended, the 
data can be encrypted and protected as described above.

The L1 cache, which is physically independent and 
separated, allows for an isolated computing environ-
ment in a symmetric multiprocessing (SMP) system. 
Mimosa protects cryptographic keys against these 
runtime attacks by using HTM to keep the keys on L1 
caches.12 Transactional memory is a memory access 
mechanism of CPUs, originally designed to accomplish 
fine-grained locking with coarse-grained programming 
locks. This mechanism is usually implemented on top of 
caches, for example, on Intel TSX, IBM System Z, and 
Blue Gene/Q. In a transactional execution, the Mimosa 
private key is decrypted (or written) into the L1 data 
cache and then used for cryptographic computations. 
Similar to Copker and PRIME, which use CPU registers 
to store active cryptographic keys,13 when the Mimosa 
service is idle, the private key is kept encrypted by an 
AES master key in registers. During the transactional 
execution of cryptographic computations, any attack 
attempt to access the plaintext private key or inter-
mediate states (that is, the updated but uncommitted 
data) results in an unmaskable abort to ensure strong 
atomicity—that is, the hardware immediately clears all 
modified data, including the plaintext private key.

In Mimosa, the L1 data cache provides storage for 
sensitive data, and HTM prevents access attempts from 
outside the core. DMA attacks that access this sensi-
tive memory data also result in transaction aborts and 
return cleared data. Moreover, the Mimosa crypto-
graphic computation is performed entirely in L1 caches, 
so it’s immune to cold-boot attacks.

Secure Computing Environments in 
Caches
Here, we provide a qualitative comparison of non-RAM 
security solutions. In particular, we discuss the secure 
computing environments created in these solutions. 
Although emphasizing cache-based methods, we also 
briefly discuss register-based solutions.

Cache Features and Security Goals
As we described earlier, these solutions are designed for 
different goals, most of which relate to cryptographic 
computing. With the exceptions of PRIME and Copker, 
all these systems offer performance comparable to com-
modity cryptographic computing approaches.
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TRESOR and PRIME employ registers to provide 
key confidentiality, whereas cache-based solutions use 
caches’ distinct features to provide security guaran-
tees. As shown in Table 1, all cache-based approaches 
need on-chip caches to minimize the required hard-
ware components or to circumvent physical attacks on 
RAM. Data inconsistency allows the plaintext data to 
be stored in caches, while the encrypted versions are 
stored in DRAM chips, or distinguishes the running 
binaries on instruction caches from the unprotected 
programs in RAM. To withstand DMA attacks, Sentry, 
PixelVault, and Mimosa store the cached data and bina-
ries such that they’re controlled only by the cores and 
not impacted by external DMA requests. Finally, the L1 
data cache dedicated to each core provides Mimosa an 
isolated place against concurrent (malicious) processes 
from other cores.

Security Borders and Attacks
Each solution summarized in this article establishes a 
secure computing environment against attacks from 
outside its security border; components in the security 
border are assumed to be trustworthy. The security bor-
ders of register-based solutions, such as TRESOR and 
PRIME, contain the registers only. Figure 1 compares 
the different security borders of these solutions on top 
of caches.

First, the Mimosa computing environment is com-
posed of a core and its L1 cache, and only this core can 
access the private keys protected in the L1 data cache. 
Second, CARMA, Sentry, and PixelVault security bor-
ders are the same as the processor’s border. CARMA 
substitutes on-chip caches for DRAM chips, whereas 

Sentry encrypts applications in DRAM chips and 
decrypts them in caches. Hence, in CARMA and Sen-
try, both data and instructions are kept in the caches. 

On the other hand, PixelVault uses the instruction 
caches of GPUs to protect the integrity of cryptographic 
services, and all cryptographic keys and sensitive inter-
mediate states are stored in GPU registers. Note that 

Table 1. Comparison of secure computing solutions that don’t use RAM.

Solution Hardware feature Security goal
Cryptography 
capability Performance

TRESOR*8 Register Key confidentiality Advanced Encryption 
Standard (AES)

Comparable to native AES

PRIME13 Register Key confidentiality RSA-2048 10 times degradation

CARMA4 Cache (on chip) Execution isolation N/A N/A

Copker7 Cache (on chip, data 
inconsistent)

Key confidentiality RSA-4096 Comparable to native RSA, on only one 
core

Sentry10 Cache (on chip, data 
inconsistent, controlled by cores)

Data confidentiality N/A Comparable to unprotected 
applications

PixelVault11 Cache (on chip, data 
inconsistent, controlled by cores)

Key confidentiality, 
binary integrity

RSA-1024, AES Comparable to native versions

Mimosa12 Cache (on chip, data 
inconsistent, controlled by cores, 
dedicated to each core)

Key confidentiality RSA-4096 Comparable to native RSA

* The analysis of TRESOR is also applicable to Amnesia, another register-based AES engine.9

Figure 1. The security borders of solutions on top of caches. Mimosa requires 
the smallest secure computing environment, which includes only its computing 
core and corresponding L1 cache, which is used to implement transactional 
memory. CARMA, Sentry, and PixelVault need the CPU to be trustworthy, while 
Copker also requires peripheral devices to be trustworthy.
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the GPU data caches are accessible from the untrusted 
CPU in PixelVault; otherwise, data caches could be 
used to improve performance. Finally, because Copker 
can’t defeat malicious DMA requests, its security border 
includes both the processor and peripheral devices. In 
Copker, cryptographic computations are securely per-
formed in caches, but keys and other sensitive data might 
be evicted by DMA attacks from peripheral devices.

All the non-RAM secure computing solutions 
make assumptions about an ultimately trusted anchor. 
As shown in Table 2, CARMA trusts only CPU hard-
ware, whereas other solutions require a trustworthy 
OS kernel all the time; the exception is that Pixel-
Vault trusts the OS kernel only during bootstrapping. 
Table 2 also summarizes the attacks prevented by 
each of these solutions as well as the remaining attack 
surface against each solution. Note that because all 
these mechanisms assume correctly implemented 
CPU hardware (that is, CPU is always assumed to be 
trusted), sophisticated physical attacks through side 
channels and IEEE 1149.1 ( JTAG) test access ports 
(TAP) might be effective but aren’t discussed. Last 
but not least, the cache-based timing side channels are 
mostly mitigated, since the cryptographic computa-
tions exclusively occupy caches.7,11,12

Limitations
As typical hardware-aided solutions, cache-based 
security systems are usually platform specific. Hence, 
approaches on one platform can’t be directly applied 
to other platforms. The prototype systems are imple-
mented on different platforms, including Intel 
CPU,6,7,12 AMD CPU,4 NVIDIA CUDA GPU,11 and 

ARM CPU.10 Developing a general solution can be 
very challenging because these platforms have different 
cache mechanisms and hierarchies.

Table 3 summarizes the different cache characteris-
tics available in major hardware platforms. We briefly 
explain how these mechanisms influence the design 
of the aforementioned cache-based security solutions. 
First, caches are automatically invalidated and left in a 
disabled state after the CPU is powered on or during a 
hard reset in Intel x86 and PowerPC platforms; there-
fore, cold-boot attacks aren’t likely to be effective on 
caches of these platforms. However, this isn’t true for 
ARM chips, where data in caches can leak if caches are 
enabled without being explicitly invalidated first. Next, 
although all the major chips support a modified Har-
vard cache architecture, where data and instructions are 
separately addressed in L1 caches and backed by a uni-
fied L2/L3 cache, Intel x86 hides the visibility of this 
feature by automatically synchronizing data and instruc-
tion caches. Therefore, the method in PixelVault fails to 
protect binaries in Intel x86 chips.11 Third, the cache-
locking feature that Sentry depends on is only available 
in ARM and PowerPC platforms, so it will be difficult to 
migrate it to other platforms.10 Finally, Mimosa can’t be 
applied to GPUs and ARM chips because transactional 
memory hasn’t been integrated in these platforms yet.12

Because caches are volatile memory units, the 
computing environment in caches requires a secure 
initialization phase or a root of trust for dynamic estab-
lishment of the environment. Copker, Sentry, Pixel-
Vault, and Mimosa need a secure initialization phase to 
establish necessary data and parameters for the secure 
computing environment. During this short period, the 

Table 2. Attack analysis of secure computing solutions that don’t use RAM.

Solution Assumptions Prevented attacks Remaining attacks

TRESOR8 Trusted OS kernel Cold-boot attack, bus monitoring, direct memory 
access (DMA)-I attack,* software attack

Nonmaskable interrupt (NMI), 
DMA-II†  

PRIME13 Trusted OS kernel Cold-boot attack, bus monitoring, DMA-I attack,* 
software attack

NMI, DMA-II†  

CARMA4 CPU Malware, bus monitoring N/A

Copker7 Trusted OS kernel Cold-boot attack, bus monitoring Software attack, DMA attack

Mimosa12 Trusted OS kernel Cold-boot attack, bus monitoring, software attack, 
DMA attack

Denial of service (DoS)

PixelVault11 Trusted bootstrap Cold-boot attack, bus monitoring, software attack, 
DMA attack

DoS

Sentry10 Trusted OS kernel, no sensitive 
data on pages shared with 
untrusted applications

Cold-boot attack, bus monitoring, DMA attack Software attack

* DMA-I attacks read memory data by issuing DMA requests.2

† DMA-II attacks inject malicious binaries into memory that access data.3
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whole computer system is assumed to be trustworthy. 
Moreover, solutions that dynamically build the secure 
computing environments in caches (Copker, Sentry, 
and Mimosa) need an AES master key as the root of 
trust. This trusted master key always exists as plaintext 
in the system. Hence, Sentry locks the key in caches 
to defend against physical memory attacks,10 whereas 
Copker and Mimosa store it in privileged registers 
and patch the OS to defeat both physical and software 
attacks on the master key.7–9,12 As a result, these solu-
tions assume an unmodified kernel to prevent the AES 
master key from being stolen. Finally, the root of trust in 
CARMA is an external device, to which the computing 
base attests itself after it’s established.

Availability (or performance) is another issue in these 
cache-based security solutions. Although the cache space 
is sufficient to support very strong cryptographic algo-
rithms7–9,12 or store user data10 (as shown in Table 1), the 
supported security functionality is ultimately restricted 
by its physical capacity. Moreover, because caches weren’t 
originally designed for exclusive use or security, reserving 
caches for a secure computing environment introduces 
new issues. In particular, it affects concurrent tasks’ per-
formance7 or might monopolize computing resources.11 
In multiprocessor systems, when certain caches are 
intended to be shared by multiple cores, secure comput-
ing solutions need to invoke cache control instructions 
to prevent other cores from accessing the caches to avoid 
unexpected cache replacement or flush triggered by the 
cache-sharing cores. As a result, concurrent computing 
tasks on other CPU cores suffer reduced performance 
due to the (partial) unavailability of CPU caches. To 
mitigate the impact on concurrent tasks, some solutions 
exclusively occupy parts of caches when the secure ser-
vice is active and release the cache resources when the 
services are idle.7,10,12 Meanwhile, Mimosa has almost 
no performance impact on concurrent tasks;12 however, 
its protected service suffers the risk of denial-of-service 
(DoS) attacks when frequent memory access by concur-
rent tasks happens. On the other hand, the performance 

of register-based cryptographic solutions is influenced 
by the limited storage capacity,13 but such solutions 
don’t affect the performance of the concurrent tasks on 
other CPU cores. Finally, the switch between the cache-
protected state and the normal running state is some-
what time consuming.6,10

Cache-based side-channel attacks on the implemen-
tations of cryptographic algorithms have been stud-
ied.14,15 In particular, Taesoo Kim and his colleagues give 
a comprehensive overview of cache-based side-channel 
attacks.15 In theory, these attacks can be launched 
against the non-RAM secure computing mechanism 
that utilizes CPU cache as alternative storage. However, 
mechanisms such as Copker and PixelVault are immune 
to cache-based side-channel attacks because they exclu-
sively occupy caches, so no other process could share the 
cache and spy on the secure computing mechanisms.

Finally, although multiple non-RAM secure com-
puting solutions have been proposed, the use of cache-
based security solutions is still in its infant stage. Most 
of the prototypes haven’t been adopted in the commer-
cial or open source software industry. To the best of our 
knowledge, the most influential commercially available 
solution is Coreboot, an open source BIOS program 
that takes advantage of the cache-as-RAM feature to ini-
tialize the chip before the RAM is ready to use. Core-
boot is replacing the compatibility support module as 
the fallback mode in the unified extensible firmware 
interface (UEFI) boards.

T hrough this article, we hope to attract more atten-
tion to hardware-aided security and further stimu-

late new ideas and research discoveries in this direction. 
In particular, we would expect more research activities 
on hardware vulnerabilities caused by physical proper-
ties; hardware attacks exploiting such vulnerabilities; 
defense mechanisms, hardware, or software against 
hardware attacks; and the use of hardware features to 
support trustworthy computing. 

Table 3. Characteristics of caches in major hardware platforms.

Platform Cache status on reset

Visibility of 
separated data and 
instruction caches Locking

Hardware 
transactional 
memory Typical cache hierarchy

Intel x86 Invalidated No No Yes 32 Kbytes L1, several Mbytes of unified L2/L3

ARM Unpredicted Yes Yes No 32 Kbytes L1, several hundred Kbytes of 
unified L2

PowerPC Invalidated Undefined Yes Yes 32 Kbytes L1, several hundred Kbytes of 
unified L2

Nvidia GPU N/A Yes No No 64 Kbytes L1, several hundred Kbytes of 
unified L2
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