
1540-7993/16/$33.00 © 2016 IEEE Copublished by the IEEE Computer and Reliability Societies November/December 2016 63

HARDWARE-AIDED SECURITY

 Secure Computing Using Registers
and Caches:
� e Problem, Challenges, and Solutions
Jingqiang Lin | Chinese Academy of Sciences
Bo Luo | University of Kansas
Le Guan | Pennsylvania State University
Jiwu Jing | Chinese Academy of Sciences

Caches’ unique features have enabled researchers to build secure computing environments, e� ectively
preventing various physical and software memory attacks. Existing solutions provide confi dentiality and
integrity in certain applications and services. Identifying various solutions’ advantages and limitations
can guide future research in hardware-aided security.

I n cryptography, Kerckho� s’s principle states that a
cryptosystem’s security must reside entirely with the

secrecy of the key. In other words, protecting crypto-
graphic keys is essential in any cryptosystem or crypto-
graphic application. In cryptographic computing, keys
are loaded as plaintext into the main memory and are
therefore subject to various memory disclosure a� acks.
New physical a� acks, such as cold-boot1 and direct
memory access (DMA) a� acks,2,3 have recently been
discovered. � ey exploit hardware properties or func-
tions to bypass all possible protections at the OS level
and directly gain unauthorized access to memory. To
defend against these physical a� acks (as well as tradi-
tional so� ware a� acks), innovative mechanisms utilize
hardware features, such as registers, caches, and hard-
ware transactional memory (HTM), to protect sensi-
tive data.

In a modern commodity computer, the comput-
ing core and memory are the necessary components:
the computing core picks binary codes from memory
and accesses data in memory. Memory is typically
implemented as DRAM chips physically, accessible
by CPU or GPU cores and peripheral devices. All
 data and binary codes are stored in DRAM chips,

unless the cores directly access data from peripheral
devices, occasionally.

To accelerate memory access, high-speed but small-
sized memory components, called caches, are designed
on the processor to store data and binaries temporarily.
On-processor caches are located between the cores and
the D� M chips, and the most recently used data and
instructions are kept in caches for faster future access.
In this way, memory access is performed e� ciently in
the processor, not in D� M chips. Synchronization
between caches and D� M chips takes place only
when cache replacement happens according to cache
policies and con� gurations or when the core explicitly
executes speci� c cache control instructions.

Because the access in caches exhibits very di� erent
characteristics from that in � M, a� acks such as cache-
based side channels and cache poisoning seek to exploit
these characteristics. Exploiting the fact that accessing
cached data is approximately two orders of magnitude
faster than data in D� M chips, various side channels
on cryptographic engines are proposed to detect cache
hits and misses during the execution and then deduce
the cryptographic keys. Because cache access occurs in
the processor, the cache-poisoning a� ack con� gures the

64	 IEEE Security & Privacy� November/December 2016

HARDWARE-AIDED SECURITY

system management RAM (SMRAM) address space as
cacheable; therefore, it can bypass the chipset’s protec-
tion on DRAM chips and overwrite SMRAM in caches
from outside the system management mode (SMM)
mode. Defensive protection mechanisms also utilize the
characteristics of on-chip caches. In particular, due to
the very different physical properties and their location
in the hardware architecture, on-chip caches naturally
resist several RAM vulnerabilities. However, using such
properties for secure computing is challenging because
caches aren’t designed for these security purposes, and
hardware manufacturers provide only very limited con-
trols over caches.

In this article, we survey recently proposed cache-
based secure computing solutions, including CARMA,
Copker, Mimosa, PixelVault, PRIME, Sentry, and
TRESOR, and compare their security, flexibility, per-
formance, and limitations.

Security Solutions on Top of Caches
Both caches and DRAM chips are volatile RAM units,
but caches are very distinct in the following aspects:

■■ On chip. Caches are implemented as static RAM
(SRAM) cells on the processor chip with the com-
puting cores, while DRAM chips are separated out of
the processor physically. This feature implies different
security guarantees against physical attacks or mali-
cious hardware manufacturers.

■■ Data inconsistent. For the cacheable memory area, the
data contents in caches won’t always be consistent
with those in DRAM chips after modification. There-
fore, the caches compose an alternative storage for
the memory data to be protected, especially against
attacks on DRAM chips.

■■ Controlled by cores. Although data can be transmitted
from caches to DRAM chips or from DRAM chips to
caches, transmission is controlled only by the CPU
or GPU cores located on the processor chip. On the
other hand, the data control interface of DRAM chips
is exported. This enables cache-based solutions to
prevent attacks from outside the processor.

■■ Dedicated to each core. The DRAM chips and periph-
eral devices are usually accessible to all cores, but each
core has its own L1 cache, in addition to shared L2
and L3 caches. This separated and dedicated L1 cache
offers an option for isolated computing environments
while malicious tasks are running concurrently on
other cores.

Building the Minimal Trusted Computing
Base Hardware
The size of caches allows cores to perform certain
functions without any RAM or peripheral devices.

For example, ARM’s Cortex-A9 has caches of up to 8
Mbytes, and Intel Core i7-2720QM has 6 Mbytes.
LinuxBIOS uses caches as RAM to support stack and
eliminate out-of-register errors before DRAM chips are
initialized. It then implements portable initialization
codes in C.

Using caches as RAM, CARMA establishes a
trusted computing base (TCB) with the minimum-
required hardware components.4 CARMA releases the
trust assumption on DRAM chips and other peripheral
devices, and the only trusted hardware of the comput-
ing system is the necessary processor chip with cores
and caches. To establish the TCB in CARMA, a secure
execution environment loader (SEEL) is first loaded
into the processor along with the secure executable
code (SEC). Then, the SEEL initializes a computing
environment for the SEC in the processor, employ-
ing the cache-as-RAM mechanism. However, because
the SEEL and the SEC are loaded across untrusted
devices such as buses and DRAM chips, they need to
be attested to an external trusted device (TD). The
attestation is performed by the software-only root-of-
trust mechanism,5 so there’s no need for additional
trusted hardware. The attestation results in a shared
secret between the SEEL and the TD, and all follow-
ing I/O data transmitted across untrusted hardware is
protected by this secret.

Computing without DRAM Chips
Sensitive data in DRAM chips faces the practical threat
of cold-boot attacks.1 Such attacks result from the semi-
conductor devices’ remanence effect; that is, DRAM chip
contents survive to some extent without power, even at
room temperature, and retention time is increased by
cooling. Although the remanence effect was found in
the 1970s, practical cold-boot attacks were first dem-
onstrated in 2008.1 Cold-boot attackers retrieve the
DRAM contents of a running computer by rebooting the
machine from malicious removable media or placing the
DRAM chips into another machine that they control.

Cold-boot attacks don’t disclose the data in caches.
Caches are usually implemented with high-speed
SRAM cells, and SRAM cells show even stronger rema-
nence effects than DRAM chips. However, as on-chip
memory units, caches don’t export data interfaces for
direct access from outside; that is, cache data is con-
trolled and accessed only by the cores. Intel processors
automatically invalidate internal caches after power-up
or reset. Even if attackers reboot the machine and load
malicious code into the core (when the caches aren’t
cleared), read operations would fetch data from DRAM
chips and thereby overwrite the cache data.

The features we described can potentially defeat
cold-boot attacks. To protect against cold-boot

www.computer.org/security 65

a� acks on the Advanced Encryption Standard (AES)
key of full disk encryption, FrozenCache stores the
AES key (as well as its round keys) in caches when
users explicitly activate the special frozen state.6 At
the same time, the keys in D� M are cleared. � is
“freezes” the AES keys in caches by le� ing all cores
enter the no-� ll cache mode to prevent sensitive data
from being � ushed into D� M chips. However, it
takes a while for the system to recover from the fro-
zen state.6

Unlike FrozenCache, which uses caches only for
storing sensitive data,
Copker implements
public- key crypto-
graphic computa-
tions entirely in
caches (as well as reg-
isters).7 In the typi-
cal write-back cache
mode, the cached
data contents usually
di� er from those of the same address in D� M chips,
as caches’ original design goal was to perform as many
operations in high-speed caches as possible.

Copker employs the write-back mode to enable
memory-intensive public-key cryptographic compu-
tations in caches by solving the following challenges:
� rst, locating enough cache lines to hold the whole
computation, and second, ensuring that the cache data
isn’t being � ushed into D� M chips during the com-
putation. By replacing heap variables with static arrays
and by switching the stack pointers, Copker stores all
used data in a space of continuous physical addresses, so
this data doesn’t con� ict on the same cache set in Intel
8-way set associative caches. At the same time, other
cores sharing caches with Copker tasks are forced into
the no-� ll cache mode to avoid interference from con-
current tasks (for example, intensive memory access
resulting in cache replacement).

Copker employs register-based AES cryptographic
engines that are also immune to cold-boot a� acks.8,9

Copker adopts the common key-encryption-key struc-
ture, and the RSA private keys are encrypted in mem-
ory by an AES master key when it’s in idle. To protect
the AES master key, both TRESOR and Copker con-
strain the key only in privileged registers, because the
AES memory requirement is much less than public-key
crypto graphic algorithms. Similar to the LinuxBIOS
cache-as-� M mechanism, Copker breaks the limited
register capacity to implement complicated public-key
cryptographic functions without D� M chips. How-
ever, Copker has to handle cache access by the tasks
concurrent with the protected computations, which
don’t exist in LinuxBIOS.

Locking All Data of Sensitive Applications
Many smartphone applications (for example, Twi� er
and Google Maps) contain sensitive data and could leak
users’ private information under various memory dis-
closure a� acks. While a cryptographic service needs to
protect only the key and ensure that its inputs and out-
puts don’t leak any information about the key, an appli-
cation usually directly processes users’ privacy data.
When the application is running, all its data appears
in memory as plaintext. � erefore, this sensitive infor-
mation might su� er direct memory access (DMA)2 as

well as cold-boot a� acks.
DMA a� acks are
launched from mali-
cious DMA-capable
peripheral devices,
which issue DMA
requests to directly
read memory data.
� e DMA feature
allows a peripheral

device to access memory without any cooperation
from the processor or the OS. � ese a� acks have been
observed via Firewire, PCMCIA, PCI Express, � un-
derbolt, and other physical interfaces.

� e great size of caches allows Sentry to protect all
data of a speci� c application against cold-boot a� acks.10

In Sentry, all pages of the data segments are � rst encrypted
in D� M chips by an on-chip AES engine that’s also
implemented entirely in caches. Once the application
a� empts to access its page, Sentry traps the page fault to
decrypt it in caches and then modify the page table entry
to point to the plaintext copy. � en, Sentry supports run-
ning unmodi� ed applications, but with encrypted data in
D� M chips, e� ectively preventing cold-boot a� acks.

Sentry con� gures caches to prevent DMA access
by (malicious) external peripheral devices. ARM plat-
forms support cache locking to improve computation
performance, and Sentry employs this feature to lock
the plaintext data of sensitive applications in caches
on smartphones and tablets, which are typically ARM
devices. � is strong cache-locking mechanism is ARM
speci� c. On Intel platforms, similar functions are � n-
ished by combining the write-back and no-� ll cache
modes,6,7 but DMA a� acks would still succeed in
obtaining the targeted data. Upon DMA requests from
outside the ARM processor, this locked content isn’t
evicted from caches to D� M chips. � en, on a Sentry-
protected mobile device, both DMA a� acks and cold-
boot a� acks return only the encrypted versions of data.

Protecting the Integrity of Executable Binaries
So� ware binaries in memory can su� er various code
injection or modi� cation a� acks, such as bu� er over� ow

We provide a qualitative comparison of
non-RAM security solutions. In particular,

we discuss the secure computing
environments created in these solutions.

66	 IEEE Security & Privacy� November/December 2016

HARDWARE-AIDED SECURITY

and return-to-libc. In addition to reading unauthorized
memory data, physical attacks (especially advanced
DMA attacks3) could also inject executable codes into
the memory space of the OS kernel.

The on-chip instruction caches are controlled only
by the internal computing cores located on the same
chip, so the binaries running in instruction caches can
be protected against external code injection attacks
(assuming that the internal cores are trusted). Pixel-
Vault11 loads all the binaries into a commodity GPU’s
instruction caches (at least 32 Kbytes in size) by exercis-
ing all execution paths during the initialization. These
GPU binaries run indefinitely in nonpreemptive execu-
tion mode and never fetch any new instructions from
off-chip memory. Afterward, code injection or modifi-
cation attacks don’t affect the autonomous GPU execu-
tion, even when the OS that’s running on CPUs has been
completely compromised. The attackers from CPUs can
terminate the GPU execution but can’t modify it.

PixelVault cryptographic services are implemented
in the protected GPU binaries, and the secret keys are
always in GPU registers, which are also inaccessible from
outside. First, the trusted and unmodified GPU binaries
never actively disclose any information on the crypto-
graphic keys. Second, any information about the keys is
carefully erased after they’re loaded into GPU registers
during the initialization. Finally, even if attackers launch
their own malicious GPU binaries immediately after ter-
minating the PixelVault services, the registers are reset to
zero automatically by GPU hardware.

Isolating Sensitive Data from Co-resident Tasks
Memory disclosure attacks can be launched from out-
side the processor chip (for example, cold-boot attacks
and DMA attacks), as mentioned earlier, or from vulner-
able or malicious software tasks co-resident on the chip
(that is, concurrently running on different cores from
the protected target). For example, malicious unprivi-
leged processes can exploit vulnerabilities to access
kernel memory space, and the OpenSSL HeartBleed
attack copies unauthorized memory data to remote
users without any privileges. One way to mitigate this
unauthorized disclosure of sensitive data is to limit the
copy number and the lifetime of such plaintext data in
memory. For example, solutions of different levels are
enforced to ensure that only one copy of private keys
appears in memory and to reduce the sensitive data in
unallocated memory. However, these approaches don’t
eliminate the ultimate attack opportunity, where the
concurrently running malicious tasks access the only
copy of sensitive data when it’s being processed.

The L1 cache dedicated to a core is an option to
locate sensitive runtime data against the malicious
tasks co-resident on the processor. During runtime, the

sensitive data must be plaintext in memory for mean-
ingful processing. Another choice is fully homomor-
phic encryption (FHE), in which data is processed in
ciphertext; however, FHE is still impractical due to its
low efficiency. Here, the memory disclosure attacks dur-
ing runtime mean unauthorized access while the target
process is actively running. Otherwise, if the sensitive
application has been launched but is suspended, the
data can be encrypted and protected as described above.

The L1 cache, which is physically independent and
separated, allows for an isolated computing environ-
ment in a symmetric multiprocessing (SMP) system.
Mimosa protects cryptographic keys against these
runtime attacks by using HTM to keep the keys on L1
caches.12 Transactional memory is a memory access
mechanism of CPUs, originally designed to accomplish
fine-grained locking with coarse-grained programming
locks. This mechanism is usually implemented on top of
caches, for example, on Intel TSX, IBM System Z, and
Blue Gene/Q. In a transactional execution, the Mimosa
private key is decrypted (or written) into the L1 data
cache and then used for cryptographic computations.
Similar to Copker and PRIME, which use CPU registers
to store active cryptographic keys,13 when the Mimosa
service is idle, the private key is kept encrypted by an
AES master key in registers. During the transactional
execution of cryptographic computations, any attack
attempt to access the plaintext private key or inter-
mediate states (that is, the updated but uncommitted
data) results in an unmaskable abort to ensure strong
atomicity—that is, the hardware immediately clears all
modified data, including the plaintext private key.

In Mimosa, the L1 data cache provides storage for
sensitive data, and HTM prevents access attempts from
outside the core. DMA attacks that access this sensi-
tive memory data also result in transaction aborts and
return cleared data. Moreover, the Mimosa crypto-
graphic computation is performed entirely in L1 caches,
so it’s immune to cold-boot attacks.

Secure Computing Environments in
Caches
Here, we provide a qualitative comparison of non-RAM
security solutions. In particular, we discuss the secure
computing environments created in these solutions.
Although emphasizing cache-based methods, we also
briefly discuss register-based solutions.

Cache Features and Security Goals
As we described earlier, these solutions are designed for
different goals, most of which relate to cryptographic
computing. With the exceptions of PRIME and Copker,
all these systems offer performance comparable to com-
modity cryptographic computing approaches.

www.computer.org/security� 67

TRESOR and PRIME employ registers to provide
key confidentiality, whereas cache-based solutions use
caches’ distinct features to provide security guaran-
tees. As shown in Table 1, all cache-based approaches
need on-chip caches to minimize the required hard-
ware components or to circumvent physical attacks on
RAM. Data inconsistency allows the plaintext data to
be stored in caches, while the encrypted versions are
stored in DRAM chips, or distinguishes the running
binaries on instruction caches from the unprotected
programs in RAM. To withstand DMA attacks, Sentry,
PixelVault, and Mimosa store the cached data and bina-
ries such that they’re controlled only by the cores and
not impacted by external DMA requests. Finally, the L1
data cache dedicated to each core provides Mimosa an
isolated place against concurrent (malicious) processes
from other cores.

Security Borders and Attacks
Each solution summarized in this article establishes a
secure computing environment against attacks from
outside its security border; components in the security
border are assumed to be trustworthy. The security bor-
ders of register-based solutions, such as TRESOR and
PRIME, contain the registers only. Figure 1 compares
the different security borders of these solutions on top
of caches.

First, the Mimosa computing environment is com-
posed of a core and its L1 cache, and only this core can
access the private keys protected in the L1 data cache.
Second, CARMA, Sentry, and PixelVault security bor-
ders are the same as the processor’s border. CARMA
substitutes on-chip caches for DRAM chips, whereas

Sentry encrypts applications in DRAM chips and
decrypts them in caches. Hence, in CARMA and Sen-
try, both data and instructions are kept in the caches.

On the other hand, PixelVault uses the instruction
caches of GPUs to protect the integrity of cryptographic
services, and all cryptographic keys and sensitive inter-
mediate states are stored in GPU registers. Note that

Table 1. Comparison of secure computing solutions that don’t use RAM.

Solution Hardware feature Security goal
Cryptography
capability Performance

TRESOR*8 Register Key confidentiality Advanced Encryption
Standard (AES)

Comparable to native AES

PRIME13 Register Key confidentiality RSA-2048 10 times degradation

CARMA4 Cache (on chip) Execution isolation N/A N/A

Copker7 Cache (on chip, data
inconsistent)

Key confidentiality RSA-4096 Comparable to native RSA, on only one
core

Sentry10 Cache (on chip, data
inconsistent, controlled by cores)

Data confidentiality N/A Comparable to unprotected
applications

PixelVault11 Cache (on chip, data
inconsistent, controlled by cores)

Key confidentiality,
binary integrity

RSA-1024, AES Comparable to native versions

Mimosa12 Cache (on chip, data
inconsistent, controlled by cores,
dedicated to each core)

Key confidentiality RSA-4096 Comparable to native RSA

* The analysis of TRESOR is also applicable to Amnesia, another register-based AES engine.9

Figure 1. The security borders of solutions on top of caches. Mimosa requires
the smallest secure computing environment, which includes only its computing
core and corresponding L1 cache, which is used to implement transactional
memory. CARMA, Sentry, and PixelVault need the CPU to be trustworthy, while
Copker also requires peripheral devices to be trustworthy.

Processor

L1 Cache

Core 0 Core 1

L1 Cache

L2/L3 Cache

DRAM

Bus

Peripheral
devices

CARMA, Sentry, and PixelVault
Copker
Mimosa

68	 IEEE Security & Privacy� November/December 2016

HARDWARE-AIDED SECURITY

the GPU data caches are accessible from the untrusted
CPU in PixelVault; otherwise, data caches could be
used to improve performance. Finally, because Copker
can’t defeat malicious DMA requests, its security border
includes both the processor and peripheral devices. In
Copker, cryptographic computations are securely per-
formed in caches, but keys and other sensitive data might
be evicted by DMA attacks from peripheral devices.

All the non-RAM secure computing solutions
make assumptions about an ultimately trusted anchor.
As shown in Table 2, CARMA trusts only CPU hard-
ware, whereas other solutions require a trustworthy
OS kernel all the time; the exception is that Pixel-
Vault trusts the OS kernel only during bootstrapping.
Table 2 also summarizes the attacks prevented by
each of these solutions as well as the remaining attack
surface against each solution. Note that because all
these mechanisms assume correctly implemented
CPU hardware (that is, CPU is always assumed to be
trusted), sophisticated physical attacks through side
channels and IEEE 1149.1 (JTAG) test access ports
(TAP) might be effective but aren’t discussed. Last
but not least, the cache-based timing side channels are
mostly mitigated, since the cryptographic computa-
tions exclusively occupy caches.7,11,12

Limitations
As typical hardware-aided solutions, cache-based
security systems are usually platform specific. Hence,
approaches on one platform can’t be directly applied
to other platforms. The prototype systems are imple-
mented on different platforms, including Intel
CPU,6,7,12 AMD CPU,4 NVIDIA CUDA GPU,11 and

ARM CPU.10 Developing a general solution can be
very challenging because these platforms have different
cache mechanisms and hierarchies.

Table 3 summarizes the different cache characteris-
tics available in major hardware platforms. We briefly
explain how these mechanisms influence the design
of the aforementioned cache-based security solutions.
First, caches are automatically invalidated and left in a
disabled state after the CPU is powered on or during a
hard reset in Intel x86 and PowerPC platforms; there-
fore, cold-boot attacks aren’t likely to be effective on
caches of these platforms. However, this isn’t true for
ARM chips, where data in caches can leak if caches are
enabled without being explicitly invalidated first. Next,
although all the major chips support a modified Har-
vard cache architecture, where data and instructions are
separately addressed in L1 caches and backed by a uni-
fied L2/L3 cache, Intel x86 hides the visibility of this
feature by automatically synchronizing data and instruc-
tion caches. Therefore, the method in PixelVault fails to
protect binaries in Intel x86 chips.11 Third, the cache-
locking feature that Sentry depends on is only available
in ARM and PowerPC platforms, so it will be difficult to
migrate it to other platforms.10 Finally, Mimosa can’t be
applied to GPUs and ARM chips because transactional
memory hasn’t been integrated in these platforms yet.12

Because caches are volatile memory units, the
computing environment in caches requires a secure
initialization phase or a root of trust for dynamic estab-
lishment of the environment. Copker, Sentry, Pixel-
Vault, and Mimosa need a secure initialization phase to
establish necessary data and parameters for the secure
computing environment. During this short period, the

Table 2. Attack analysis of secure computing solutions that don’t use RAM.

Solution Assumptions Prevented attacks Remaining attacks

TRESOR8 Trusted OS kernel Cold-boot attack, bus monitoring, direct memory
access (DMA)-I attack,* software attack

Nonmaskable interrupt (NMI),
DMA-II†

PRIME13 Trusted OS kernel Cold-boot attack, bus monitoring, DMA-I attack,*
software attack

NMI, DMA-II†

CARMA4 CPU Malware, bus monitoring N/A

Copker7 Trusted OS kernel Cold-boot attack, bus monitoring Software attack, DMA attack

Mimosa12 Trusted OS kernel Cold-boot attack, bus monitoring, software attack,
DMA attack

Denial of service (DoS)

PixelVault11 Trusted bootstrap Cold-boot attack, bus monitoring, software attack,
DMA attack

DoS

Sentry10 Trusted OS kernel, no sensitive
data on pages shared with
untrusted applications

Cold-boot attack, bus monitoring, DMA attack Software attack

* DMA-I attacks read memory data by issuing DMA requests.2

† DMA-II attacks inject malicious binaries into memory that access data.3

www.computer.org/security� 69

whole computer system is assumed to be trustworthy.
Moreover, solutions that dynamically build the secure
computing environments in caches (Copker, Sentry,
and Mimosa) need an AES master key as the root of
trust. This trusted master key always exists as plaintext
in the system. Hence, Sentry locks the key in caches
to defend against physical memory attacks,10 whereas
Copker and Mimosa store it in privileged registers
and patch the OS to defeat both physical and software
attacks on the master key.7–9,12 As a result, these solu-
tions assume an unmodified kernel to prevent the AES
master key from being stolen. Finally, the root of trust in
CARMA is an external device, to which the computing
base attests itself after it’s established.

Availability (or performance) is another issue in these
cache-based security solutions. Although the cache space
is sufficient to support very strong cryptographic algo-
rithms7–9,12 or store user data10 (as shown in Table 1), the
supported security functionality is ultimately restricted
by its physical capacity. Moreover, because caches weren’t
originally designed for exclusive use or security, reserving
caches for a secure computing environment introduces
new issues. In particular, it affects concurrent tasks’ per-
formance7 or might monopolize computing resources.11
In multiprocessor systems, when certain caches are
intended to be shared by multiple cores, secure comput-
ing solutions need to invoke cache control instructions
to prevent other cores from accessing the caches to avoid
unexpected cache replacement or flush triggered by the
cache-sharing cores. As a result, concurrent computing
tasks on other CPU cores suffer reduced performance
due to the (partial) unavailability of CPU caches. To
mitigate the impact on concurrent tasks, some solutions
exclusively occupy parts of caches when the secure ser-
vice is active and release the cache resources when the
services are idle.7,10,12 Meanwhile, Mimosa has almost
no performance impact on concurrent tasks;12 however,
its protected service suffers the risk of denial-of-service
(DoS) attacks when frequent memory access by concur-
rent tasks happens. On the other hand, the performance

of register-based cryptographic solutions is influenced
by the limited storage capacity,13 but such solutions
don’t affect the performance of the concurrent tasks on
other CPU cores. Finally, the switch between the cache-
protected state and the normal running state is some-
what time consuming.6,10

Cache-based side-channel attacks on the implemen-
tations of cryptographic algorithms have been stud-
ied.14,15 In particular, Taesoo Kim and his colleagues give
a comprehensive overview of cache-based side-channel
attacks.15 In theory, these attacks can be launched
against the non-RAM secure computing mechanism
that utilizes CPU cache as alternative storage. However,
mechanisms such as Copker and PixelVault are immune
to cache-based side-channel attacks because they exclu-
sively occupy caches, so no other process could share the
cache and spy on the secure computing mechanisms.

Finally, although multiple non-RAM secure com-
puting solutions have been proposed, the use of cache-
based security solutions is still in its infant stage. Most
of the prototypes haven’t been adopted in the commer-
cial or open source software industry. To the best of our
knowledge, the most influential commercially available
solution is Coreboot, an open source BIOS program
that takes advantage of the cache-as-RAM feature to ini-
tialize the chip before the RAM is ready to use. Core-
boot is replacing the compatibility support module as
the fallback mode in the unified extensible firmware
interface (UEFI) boards.

T hrough this article, we hope to attract more atten-
tion to hardware-aided security and further stimu-

late new ideas and research discoveries in this direction.
In particular, we would expect more research activities
on hardware vulnerabilities caused by physical proper-
ties; hardware attacks exploiting such vulnerabilities;
defense mechanisms, hardware, or software against
hardware attacks; and the use of hardware features to
support trustworthy computing.

Table 3. Characteristics of caches in major hardware platforms.

Platform Cache status on reset

Visibility of
separated data and
instruction caches Locking

Hardware
transactional
memory Typical cache hierarchy

Intel x86 Invalidated No No Yes 32 Kbytes L1, several Mbytes of unified L2/L3

ARM Unpredicted Yes Yes No 32 Kbytes L1, several hundred Kbytes of
unified L2

PowerPC Invalidated Undefined Yes Yes 32 Kbytes L1, several hundred Kbytes of
unified L2

Nvidia GPU N/A Yes No No 64 Kbytes L1, several hundred Kbytes of
unified L2

70	 IEEE Security & Privacy� November/December 2016

HARDWARE-AIDED SECURITY

Acknowledgments
Jingqiang Lin and Jiwu Jing were partially supported by
National 973 Program of China awards 2013CB338001 and
2014CB340603 and the Strategy Pilot Project of the Chi-
nese Academy of Sciences award XDA06010702. Bo Luo was
partially supported by National Science Foundation (NSF)
CNS-1422206, NSF IIS-1513324, NSF DGE-1565570, and
a subgrant of NSF OIA-1308762. Le Guan was partially sup-
ported by ARO W911NF-13-1-0421 (Multidisciplinary Uni-
versity Research Initiatives).

References
1.	 J. Halderman et al., “Lest We Remember: Cold Boot

Attacks on Encryption Keys,” Proc. 17th USENIX Security
Symp. (USENIX Security 08), 2008, pp. 45–60.

2.	 P. Stewin and I. Bystrov, “Understanding DMA Malware,”
Proc. 9th Conf. Detection of Intrusions and Malware and Vul-
nerability Assessment (DIMVA 13), 2013, pp. 21–41.

3.	 E.-O. Blass and W. Robertson, “TRESOR-HUNT: Attack-
ing CPU-Bound Encryption,” Proc. 28th Ann. Computer
Security Applications Conf. (ACSAC 12), 2012, pp. 71–78.

4.	 A. Vasudevan et al., “CARMA: A Hardware Tamper-
Resistant Isolated Execution Environment on Commod-
ity x86 Platforms,” Proc. 7th ACM Symp. Information,
Computer and Communications Security (AsiaCCS 12),
2012, pp. 48–52.

5.	 A. Seshadri et al., “Pioneer: Verifying Integrity and Guar-
anteeing Execution of Code on Legacy Platforms,” Proc.
20th ACM Symp. Operating Systems Principles (SOSP 05),
2005, pp. 1–16.

6.	 J. Pabel, “FrozenCache: Mitigating Cold-Boot Attacks for
Full-Disk-Encryption Software,” Proc. 27th Chaos Com-
munication Congress (27C3 10), 2010; https://events.ccc
.de/congress/2010/Fahrplan/events/4018.en.html.

7.	 L. Guan et al., “Copker: Computing with Private Keys
without RAM,” Proc. 21st ISOC Network and Distrib-
uted System Security Symp. (NDSS 14), 2014; www
.internetsociety.org/sites/default/files/07_1_1.pdf.

8.	 T. Müller, F. Freiling, and A. Dewald, “TRESOR Runs
Encryption Securely outside RAM,” Proc. 20th USENIX
Security Symp. (USENIX Security 11), 2011, pp. 17–32.

9.	 P. Simmons, “Security through Amnesia: A Software-
Based Solution to the Cold Boot Attack on Disk Encryp-
tion,” Proc. 27th Ann. Computer Security Applications Conf.
(ACSAC 11), 2011, pp. 73–82.

10.	 P. Colp et al., “Protecting Data on Smartphones and Tab-
lets from Memory Attacks,” Proc. 20th Int’l Conf. Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS 15), 2015, pp. 177–189.

11.	 G. Vasiliadis et al., “PixelVault: Using GPUs for Secur-
ing Cryptographic Operations,” Proc. 21st ACM Conf.
Computer and Communications Security (CCS 14), 2014,
pp. 1131–1142.

12.	 L. Guan et al., “Protecting Private Keys against Memory

Disclosure Attacks Using Hardware Transactional Mem-
ory,” Proc. 36th IEEE Symp. Security and Privacy (S&P 15),
2015, pp. 3–19.

13.	 B. Garmany and T. Müller, “PRIME: Private RSA Infra-
structure for Memory-Less Encryption,” Proc. 29th Ann.
Computer Security Applications Conf. (ACSAC 13), 2013,
pp. 149–158.

14.	 D. Page, “Defending against Cache-Based Side-Channel
Attacks,” Information Security Technical Report, vol. 8, no.
1, 2003, pp. 30–44.

15.	 T. Kim, M. Peinado, and G. Mainar-Ruiz, “StealthMem:
System-Level Protection against Cache-Based Side Chan-
nel Attacks in the Cloud,” Proc. 21st USENIX Security
Symp. (USENIX 14), 2014, pp. 189–204.

Jingqiang Lin is a professor at the Data Assurance and
Communication Security Research Center and State
Key Laboratory of Information Security in the Insti-
tute of Information Engineering at the Chinese Acad-
emy of Sciences. His research interests include system
security and applied cryptography. Lin received a PhD
in information security from the Graduate Univer-
sity of Chinese Academy of Sciences. Contact him at
linjingqiang@iie.ac.cn.

Bo Luo is an associate professor in the Department of
Electrical Engineering and Computer Science at the
University of Kansas. His research interests include
data science, privacy, and security. Luo received a PhD
in information sciences and technology from the Penn-
sylvania State University. Contact him at bluo@ku.edu.

Le Guan is a postdoctoral researcher in information sci-
ences and technology at the Pennsylvania State Uni-
versity. His research interests include system security
and mobile security. Guan received a PhD in informa-
tion security from the Chinese Academy of Sciences.
Contact him at lug14@psu.edu.

Jiwu Jing is a professor at the Data Assurance and Com-
munication Security Research Center and State Key
Laboratory of Information Security in the Institute of
Information Engineering at the Chinese Academy of
Sciences. His research interests include system secu-
rity and applied cryptography. Jing received a PhD
in information security from the Graduate Univer-
sity of Chinese Academy of Sciences. Contact him at
jingjiwu@iie.ac.cn.

Read your subscriptions through
the myCS publications portal at

http://mycs.computer.org

