GuardSpark++: Fine-Grained Purpose-Aware Access Control for
Secure Data Sharing and Analysis in Spark

Tao Xue
Institute of Information Engineering,
Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences
Beijing, China
xuetao@iie.ac.cn

Boyang Zhang
Institute of Information Engineering,
Chinese Academy of Sciences
Beijing, China
zhangboyang@iie.ac.cn

Yingjiu Li
Department of Computer and
Information Science, University of
Oregon
Oregon, USA

Yu Wen*

Institute of Information Engineering,
Chinese Academy of Sciences
Beijing, China
wenyu@iie.ac.cn

Yang Zheng
Institute of Information Engineering,
Chinese Academy of Sciences
Beijing, China
zhengyang@iie.ac.cn

Gang Li
Centre for Cyber Security Research
and Innovation, Deakin University
Geelong, Australia
gang.li@deakin.edu.au

Bo Luo
The University of Kansas
Kansas, USA
bluo@ku.edu

Yanfei Hu
Institute of Information Engineering,
Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences
Beijing, China
huyanfei@iie.ac.cn

Dan Meng
Institute of Information Engineering,
Chinese Academy of Sciences
Beijing, China
mengdan@iie.ac.cn

yjli@smu.edu.sg
ABSTRACT

With the development of computing and communication technolo-
gies, extremely large amount of data has been collected, stored,
utilized, and shared, while new security and privacy challenges
arise. Existing platforms do not provide flexible and practical access
control mechanisms for big data analytics applications. In this paper,
we present GuardSpark++, a fine-grained access control mecha-
nism for secure data sharing and analysis in Spark. In particular, we
first propose a purpose-aware access control (PAAC) model, which
introduces new concepts of data processing/operation purposes
to conventional purpose-based access control. An automatic pur-
pose analysis algorithm is developed to identify purposes from data
analytics operations and queries, so that access control could be
enforced accordingly. Moreover, we develop an access control mech-
anism in Spark Catalyst, which provides unified PAAC enforcement

“Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7-11, 2020, Austin, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427640

for heterogeneous data sources and upper-layer applications. We
evaluate GuardSpark++ with five data sources and four structured
data analytics engines in Spark. The experimental results show that
GuardSpark++ provides effective access control functionalities with
a very small performance overhead (average 3.97%).

CCS CONCEPTS

« Security and privacy — Access control.

KEYWORDS

Spark, big data, access control, data sharing, data protection, pur-
pose

ACM Reference Format:

Tao Xue, Yu Wen, Bo Luo, Boyang Zhang, Yang Zheng, Yanfei Hu, Yingjiu Li,
Gang Li, and Dan Meng. 2020. GuardSpark++: Fine-Grained Purpose-Aware
Access Control for Secure Data Sharing and Analysis in Spark. In Annual
Computer Security Applications Conference (ACSAC 2020), December 7-11,
2020, Austin, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3427228.3427640

1 INTRODUCTION

In the big data era, tremendous amount of data is being collected,
stored, and utilized in various platforms and applications [29]. The
big data processing platforms have been developed to harness data,
to facilitate data analytics functions, and to discover intrinsic value

https://doi.org/10.1145/3427228.3427640
https://doi.org/10.1145/3427228.3427640
https://doi.org/10.1145/3427228.3427640

ACSAC 2020, December 7-11, 2020, Austin, USA

from data [2, 28, 33, 43, 74]. They were designed to access various
data sources, support hybrid data analytics engines (e.g., advanced
SQL, machine learning, and graph) and efficiently process a very
large volume of data. However, data security and privacy were not
sufficiently considered when these platforms were designed. As a
result, very limited data protection functions are provided, so that
data owners and administrators are unable to specify fine-grained or
complex access control intentions. For example, users often get full
access to sensitive raw data when they are supposed to only execute
aggregate or statistical queries. Moreover, data gets more vulnerable
in the context of large-scale cross-organizational data sharing [10,
20], where curious users may correlate data/attributes from multiple
sources or platforms to further extract sensitive information.

In data management and sharing applications, access control is
the essential protection mechanism to defend against unauthorized
access to sensitive data [40, 41, 44, 70]. A baseline solution for the
big data platforms is to directly employ access control functionali-
ties provided by the underneath data source or OS. However, this
simple solution is usually insufficient in supporting users’ access
control needs: 1) those mechanisms often fall short in providing
fine-grained (attribute-, record-, or cell-level) access control capa-
bilities, which is the de facto granularity standard for state-of-art
data management applications [68]. For instance, the Hadoop Dis-
tributed File System (HDFS) only provides access control capability
at the file level, which could be too coarse-grained for users’ ex-
pectations. And 2) the heterogeneity of the security models and
mechanisms from various data sources may cause incompatible
access control features and inconsistent capabilities. For instance,
if the user aggregates data from multiple sources that all contain
sensitive attributes, the security guarantee is only as good as the
weakest link among all data providers.

Security middlewares, such as Apache Sentry [5] and Apache
Ranger [4], have been developed to provide fine-grained role-based
access control solutions for heterogeneous data sources. However,
they do not support access policies that control data usage, such
as “user could run statistical functions on sensitive data but could
not see the raw data” Unfortunately, such operations are often the
purpose of many big data analysis applications, and the correspond-
ing policies are the primary access control intentions of the data
owners in big data sharing scenarios [51]. For example, when e-
commerce platforms collaborate with retailers and advertisers, they
would allow the collaborators to run data analytics algorithms or
issue aggregate queries on the transaction database, so that the col-
laborators may analyze the market, discover sales trends/patterns,
and optimize their business strategies. Meanwhile, the e-commerce
platforms also need to ensure that the collaborators’ queries could
never access the raw data, which is sensitive and private.

The purpose-based access control (PBAC) model [32, 37, 38] was
proposed for privacy-preserving access control. PBAC was initially
designed for conventional RDBMS, in which specific purposes of
data usage were defined and translated to a set of SQL queries
to be authorized. For example, the purpose of “shipping” allows
querying the shipping addresses of active orders [32]. However,
in big data analytics applications, it could be difficult to directly
associate the abstract-level data usage purposes to system-level data
processing logic and database operations. For instance, to achieve
the data usage purpose “analyzing sales trends”, many different

Tao Xue, et al.

algorithms could be employed, including regression analysis, time
series analysis, stochastic models, etc. It is almost impossible to
specify a static set of database operations to be allowed under this
purpose. Meanwhile, the same operation may be a building block in
satisfying different data usage purposes. It could be difficult for the
database engine to automatically identify the right purpose for an
operation, and to allow or deny the operation based on the purpose.

To tackle the challenges, we propose GuardSpark++, a fine-
grained access control mechanism for big data sharing and analy-
sis. We first design a purpose-aware access control (PAAC) model,
which introduces data processing purposes and data operation pur-
poses to conventional PBAC. With PAAC, GuardSpark++ could auto-
matically recognize the data processing purposes from data process-
ing logics, and then make access decisions accordingly. Moreover,
we enforce the PAAC model in the Catalyst optimizer of Spark [26].
We add an access control enforcement stage between the analysis
and optimization stages of Spark’s optimization pipeline. The ac-
cess control stage generates secure logical query plans according
to the specified PAAC policies, so that sensitive data objects are
only used in data operations that are consistent with the authorized
purposes. To demonstrate the effectiveness of GuardSpark++, we
evaluate it with five data sources: network streaming, LFS, HDFS,
MySQL and Kafka, and four structured data analytics engines: SQL,
ML Pipeline, GraphFrame, and Structured Streaming. Last, we eval-
uate the efficiency of GuardSpark++ using the TPC-DS benchmark
[11], and show that GuardSpark++ only introduces 3.97% average
overhead on top of the original Spark.

To our best knowledge, GuardSpark++ is the first effort towards a
practical purpose-aware access control solution for big data security
in Spark. In particular, our main contributions are:

o We have designed a fine-grained purpose-aware access control
(PAAC) model with the newly defined data processing purposes and
data operation purposes for big data analytics. We further develop
analysis algorithm to support automatic purpose recognition, which
is the core component for enforcing PAAC. (Section 4)

e We developed a PAAC enforcement mechanism, which provides
unified access control support for the heterogeneous data sources
(at lower layer) and the higher-layer data analytics engines in Spark.

o We further evaluated GuardSpark++’s effectiveness and efficiency
with five data sources (network streaming, LFS, HDFS, MySQL,
and Kafka) and four data analytics engines (SQL, ML Pipelines,
GraphFrame and Structured Streaming). Experiment results show
that GuardSpark++ provides expected security guarantees with a
very small computation overhead.

The rest of the paper is organized as follows: we introduce Apache
Spark and articulate our motivation in Section 2. We present the
threat model and an overview of GuardSpark++ in Section 3, fol-
lowed by the technical details of the PAAC model and the purpose
analysis algorithm in Section 4, and the PAAC enforcement mech-
anism in Section 5. We then present the experimental results and
security analysis in Sections 6 and 7. Finally, we briefly survey the
literature in Section 8 and conclude the paper in Section 9.

GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark

Example Tables:

/\ Id | Name e Roles Hospital || 1d Disease Expense | PatientName
I* T+ 1| Bob | 28 | dermatologist R 101 | gastric cancer [8000 Aaron
| Alice | 25 [neurologist | s |[102]| cerebroma 9300 Brown
: : 3 3 103| neuralgia 4000 Camille

Ci) o ’ ’ ’ 104 dermatitis | 2000 Hannah

An Example Application:
patient.selectExpr("PatientName", "Expense as exp1").filter("exp1 > 6000")
.groupBy("PatientName").sum("exp1").select("*").show()

(a) doctor table (b) patient table

Figure 1: A medical data sharing scenario: example tables
and an example application based on DataFrame APIs.

2 BACKGROUND AND MOTIVATION
2.1 Introduction to Apache Spark

Apache Spark is a unified computing engine in big data ecosystem,
and its layout contains three layers: application layer, optimization
layer and execution layer [35].

At application layer, Spark supports structured data analytics
engines/APIs based on data types DataFrame and Dataset[35]. An
instance of the Dataset is a distributed data collection. A DataFrame
is a special Dataset with column style, like a table in relational
databases. DataFrame/Dataset can be created on a variety of data
sources, such as structured data files in HDFS and RDBMS’s tables.
1) The SQL engine in Spark views a DataFrame as a table [26]. 2)
MLIib’s spark.ml realizes ML Pipelines with a uniform set of high-
level APIs built on DataFrame APIs [57]. 3) Based on DataFrame
APIs, GraphFrame enhances and extends graph algorithms from
GraphX [42, 48]. 4) Structured Streaming [25], an extension from
DStream [73], is built on DataFrame APIs.

Building data analysis application is a series of transformations
on DataFrame/Dataset — each transformation can be viewed as
one step of data operation. A SQL API swallows a data processing
fragment (possibly containing multiple steps of transformation)
and returns a new DataFrame; a DataFrame/Dataset API swallows
a single transformation step and returns a new DataFrame/Dataset.
The results in an ultimate DataFrame/Dataset can be obtained by
users through invoking an action (e,g., show to display data).

To improve efficiency, Spark uses Catalyst [26], a unified logical
plan optimizer for structured data analytics engines/APIs, to opti-
mize various data processing logics from applications. In Catalyst,
a logical plan includes various data processing logics of an applica-
tion. Through reforming logic in logical plan, Catalyst generates
optimized plan used to produce results [6, 26, 74] at execution layer.

2.2 Motivation

A medical data sharing scenario is shown in Figure 1. We will use
it as a running example in this paper.

Example 1. The medical database of Hospital R contains a doctor
table and a patient table, as shown in Figure 1. The database is
shared with other hospitals in the Regional Health Information
Organization (RHIO). Dr. Bob from Hospital R is authorized to
access the patient table without any restriction. Meanwhile, we
would like to specify that Dr. Alice from Hospital S is not authorized
to see Disease, Expense, and PatientMame columns, but she could
run statistical queries and data analytics on those columns.

Note that we currently do not have a widely adopted mecha-
nism to specify or enforce such access control intentions in the

ACSAC 2020, December 7-11, 2020, Austin, USA

conventional access control paradigm. Meanwhile, the big data
management and sharing platforms, such as Spark, do not support
fine-grained access control mechanisms. From the data owners’
perspective, the following access control functionality is expected.

Example 2. A sample data analytics query on the Patient ta-
ble is shown in Figure 1. It calculates the sum of “large spend-
ings” (> 6000) for each patient. According to the access control
intentions explained in Example 1, both Alice and Bob should be
able to execute this code. Bob’s answer shall include two columns
(PatientName and sum(exp1)), while Alice’s answer should not
contain the PatientName column. Meanwhile, the statistical results
in sum(exp1) should remain identical in Alice’s and Bob’s answers,
since we intend to allow Alice to run statistics on this table.

Intuitively, we would attempt to employ the conventional access
control paradigm in the scenario. The Role-Based Access Control
(RBAC) model [61] could explicitly prohibit Alice from accessing
the PatientName column, however, Alice’s query would be denied
as well, since she uses PatientName column in groupBy.

The Purpose-Based Access Control (PBAC) model [32] authorizes
queries based on pre-identified purposes. However, only abstract-
level data usage purposes, such as “analysis”, “research”, or “billing-
auditing”, are defined in PBAC. In big data applications, each data
usage purpose may cover a wide range of queries and data opera-
tions, and it is difficult to translate abstract purposes into specific
data operations or vice versa. In this example, we cannot specify
and enforce that “Alice may compute with PatientName in data
analytics queries but she cannot include data from this column in
the output”. Meanwhile, the conventional PBAC model does not
support fine-grained access control at column level, so that all the
columns are governed under the same data usage purpose. In partic-
ular, when different columns are involved differently in the query
(or data processing) logic, PBAC cannot treat them differently.

Example 3. The data processing logics for the two attributes in
the sample data analytics query discussed in Example 2 are:
Logicl (PatientName): “patient” — “selectExpr” — “[filter]” —
“groupBy” — “[sum]” — “project”

Logic2 (Expense): “patient” — “selectExpr” — “filter” — “[groupBy]”
— “sum” — “project”

Note that “[operation]” indicates that the attribute is carried in
an operation but is not involved in computing. Logic1 is used
to compute “groupBy”, while Logic2 is used to compute “filter”
and “sum”. Ideally, a fine-grained access control mechanism would
handle these logics differently, and also handle purposes of different
operations differently. So that Alice could execute Logicl except
the last “project” operation (Alice can compute with PatientName
but cannot see raw data). She can also compute the entire Logic2
(Alice can read and compute with Expense).

Conventional PBAC mechanisms cannot enforce different pur-
poses on different query logics, or specify fine-grained purposes
(e.g., read or compute) on different operations. Therefore, the objec-
tive of this project is to design and enforce a fine-grained purpose
aware access control model that: 1) supports attribute/column-level
authorization based on the fine-grained data processing logic for
each attribute/column; and 2) supports operation-level authoriza-
tion based on fine-grained data operation purposes.

ACSAC 2020, December 7-11, 2020, Austin, USA

|
shared data with data user B |

Tao Xue, et al.

GuardSpark++: 1) Purpose-Aware Access Control Model 2) Model Enforcement |

data users ‘ ‘

Application Layer

Catalog
I] Secure Logical o e
Transformation Analysis . Optimization Materialization
Plan Generation

Optimization Layer (Catalyst)

|
|
|
|
1
|
Model Enforcement I
|
|
|
|
|
[
|

Execution Layer

—— = == ===

Figure 2: Threat model and solution overview.

3 THREAT MODEL AND SOLUTION
OVERVIEW

3.1 Threat Model

The proposed solution contains two main components: the fine-
grained, purpose-aware access control model, and the access control
enforcement mechanism. The access control model is suitable in a
wide range of big data analytics applications (the generalization of
PAAC will be addressed later), while the enforcement mechanism
is specifically developed for Spark. The primary stakeholders in
the big data sharing and analytics scenario are the data owners, the
data management and sharing platform, and the data users.

o The data owners are fully trusted. They place the data on data
management platforms, which are owned by them or trusted third
parties. Nevertheless, the owners have all the privileges on the
data. Some data objects are sensitive that they are only shared
with specified users, as shown in Figure 2 (D. The goal of this
project is to ensure data confidentiality through access control,
i.e., only authorized users could perform authorized operations on
authorized data objects. The data owners will utilize the access
control model supported by the data management and sharing
platform to specify access control policies to be enforced by the
platform.

e In this project, the data management and sharing platform, in-
cluding software and hardware, is assumed to be secure and fully
trusted by both the data owners and the users. It is expected to
faithfully and correctly enforce access control policies.

In real-world applications, the platform may be untrusted and/or
compromised so that data confidentiality is jeopardized. For in-
stance, the cloud or the database may not be trusted with plaintext
data, system vulnerabilities may cause data/privacy leakage, the
implementation of access control enforcement may be buggy, etc.
Significant amount of research efforts have been devoted to these
topics. Cloud, OS, big data platform and software security issues
are considered outside of the scope of this paper.

o From access control perspective, the users are correctly and se-
curely authenticated by the platform. Their roles/attributes are prop-
erly managed. They only use the designated data analytics engines
or APIs to access data, i.e., they cannot bypass the access control

mechanism to directly read from the underlying data sources using
python, R, java, scala APIs, or the Resilient Distributed Datasets
APIs [72]. Meanwhile, the users are assumed to be curious—if the ac-
cess control policies or enforcement mechanisms accidentally give
them access to an data object that they are not supposed to, they will
utilize the access rights that violates the data owners’ access control
intentions. Last, the users will not attack the software/hardware of
the platform (in this paper, Spark).

3.2 Solution Overview

In this paper, we present the GuardSpark++ solution, which con-
tains a purpose-aware access control (PAAC) model and a PAAC
enforcement mechanism for Apache Spark.

The PAAC model introduces the concepts of data processing
purpose and data operation purpose to the conventional PBAC
model. The data operation purpose (DOP) defines the purpose of
each data operation in data processing logic, e.g., each step in the
query logics shown in Example 3. Therefore, a sequence of DOPs
are extracted from each data processing logic. The data processing
purpose of the data processing logic is identified as the most signifi-
cant DOP within the sequence. A PAAC policy specifies acceptable
data processing purposes from a subject (user or application) on
a data object. We further develop a purpose analysis algorithm to
examine the logical query plans and extract data operation and
processing purposes automatically.

Next, we develop a PAAC enforcement mechanism to be hosted
in the Catalyst optimizer of Apache Spark. As shown in Figure 2 (),
the original optimization pipeline of Catalyst includes four stages:
transformation, analysis, optimization, and materialization. We add
anew stage, named secure logical plan generation, between the anal-
ysis and optimization stages. The added stage enforces PAAC by
comparing intended purposes extracted from logical plans against
all allowed purposes. In this way, GuardSpark++ transforms ana-
lyzed logical plans into secure logical plans that comply with PAAC
policies specified by data owners. Subsequently, the secure logical
plans are further optimized to eliminate any potential overhead
induced by access control. GuardSpark++ also provides pre-defined
secure logic templates of secure logical plans for the Structured
Streaming engine, which originally utilizes analyzed logical plans
as pre-defined logic templates [21, 25].

GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark

4 PURPOSE-AWARE ACCESS CONTROL

In this section, we first formally present the fine-grained purpose-
ware access control (PAAC) model, and then describe a purpose
analysis algorithm, which will be essential in PAAC enforcement.

4.1 The Purpose-Aware Access Control Model

In general, an access control model contains the following core
components: {subject, action, object, [context], “allow|deny”}. Differ-
ent access control models specify these component differently, e.g.,
the ABAC policies combine attributes to specify authorizations.

In the proposed Purpose-Aware Access Control (PAAC) model,
the object is any data object that could be referenced in a structured
data model. In big data processing platforms such as Spark, it could
be a data object from any structured data source that feeds data to the
platform, including 1) tables in relational databases, 2) structured
files treated as tables in distributed storage systems (e.g., HDFS)
or local file systems, 3) streaming data treated as a table, and 4)
other data with explicitly defined column structures. Fine-grained
protection of data objects is supported at column-level, row-level,
and cell-level. Data owners could define a protected data object
using any attribute, e.g., owner or source.

Example 4. Hospital R hosts the medical database shown in Fig-
ure 1 in a MySQL DBMS identified as 196.168.12.110:3306. The data
object Expense attribute of the patient table is referred to as {ta-
ble:patient, column:Expense, x}, in which x denotes (owner:R and
source:MySQL(196.168.12.110:3306:medical)). We denote this data
object as O hereafter. In the same way, the second record is re-
ferred to as {table:patient, columns:(Id, Disease, Expense, Patient-
Name), boolean:Id=102, x}. Finally, Brown’s expense is denoted as
{table:patient, column:Expense, boolean:PatientName= Brown’, }.

Now we formally define the data processing purpose and the data
operation purpose. When a user or an application issues a query or
a data analytics algorithm, the query/algorithm will be internally
translated to an executable data processing plan (query plan). In
practice, the data processing logic is usually organized in a tree
structure (i.e., query tree) in the query processor, in which leaf nodes
are data objects and internal nodes are operations. A leaf-to-root
path represents a data processing logic of the specific data object
at the leaf node !. The ultimate objective of this data processing
logic is the data processing purpose for this data object. Note that
a data object may have multiple data processing purposes, when it
is involved in different leaf nodes and processed differently in the
query plan.

Definition 1 (Data Processing Purpose). The data processing pur-
pose indicates the ultimate purpose of a data processing logic for a
data object in a big data application.

While we may ask the user or application to manually indicate
a data processing purpose along with the query or data analytics
algorithm, however, we cannot trust the self-claimed purpose and
use it to enforce access control. In practice, the data processing
purpose needs to be discovered at the data management platform
based on the query/algorithm content. Meanwhile, we also observe

!We would like to note that a data processing logic in the assistance role may end
as an operand in an internal node and not carried to the final output. They are not
discussed here but they are properly handled in access control enforcement.

ACSAC 2020, December 7-11, 2020, Austin, USA

that it is difficult to directly identify the data processing purpose
due to the complexity of the query or the algorithm. Therefore, we
further decompose the data processing purpose into fine-grained
data operation purposes.

Definition 2 (Data Operation Purpose). A data operation purpose
is the purpose(s) of an operation in the data processing logic of a
query or a data analytics algorithm.

Example 5. If we examine the data processing logics introduced
in Example 3, the sequences of data operation purposes (DOP) are:
DOP-S1 (PatientName): “retrieve” (selectExpr) — “carry” (filter)
— “carry/assist” (groupBy) — “carry” (sum) — “output” (project)
DOP-S2 (Expense): “retrieve” (selectExpr) — “retrieve/assist” (fil-
ter) — “carry” (groupBy) — “compute” (sum) — “output” (project)
Note that we show the data operations, such as selectExpr and filter,
together with each purpose. They are not part of the purpose. In
DOP-S2, Expense takes two roles at the “filter” operator: 1) some
Expense elements are retrieved from the set and passed to the next
operation; and 2) the data object is also used as an operand in the
Boolean expression in an assistance role. PatientName also takes
two roles in the “groupBy” operator: assist and carry.

Data operation purposes are defined by the data management
and sharing platforms and provided to the data owners, who are
expected to use them to specify access control policies. Meanwhile,
the platforms are also expected to automatically recognize the pre-
defined purposes from query plans, so that the access control poli-
cies could be enforced accordingly. In this project, we demonstrate
the capacity of PAAC using five sample purposes:

Retrieve (DOP-R). When a data object is retrieved from the data
source or processed through a selection (filter) function, the cor-
responding data operation purpose is DOP-R. It is the de facto
pre-requisite purpose of many other purposes, since data must be
retrieved before it can be used.

Compute (DOP-C). When the data object is an operand of a com-
puting operation and it is transformed in this operation, the data
operation purpose is DOP-C. In Example 5, data object Expense is
aggregated in the “sum” operation, hence, the purpose is DOP-C.
Assist (DOP-A). When a data object is involved in an operation
but its value is not changed, the data operation purpose is DOP-A,
i.e., the data object takes an assistance role in the operation. In
Example 5, PatientName assisted in the “groupBy” operation.
Carry (DOP-Ca). When a data object is carried during an operation
but not otherwise involved, it is denoted as DOP-Ca. In Example 5
2 PatientName is carried in operation filter(“exp1 >600”), hence, its
data operation purpose is DOP-Ca at this step. Note that the “carry”
purposes do not impact data operation or access decisions at all,
hence, they could be safely ignored in access control enforcement.
Output (DOP-0). When a data object is returned to the user or
application, the data operation purpose is DOP-O. In big data appli-
cations, whether a DOP-O purpose could be allowed often relies on
the previous operations on this data object. For example, “DOP-R-O”
may be denied, while “DOP-R-C-O” could be allowed.

The join operations are not shown in the examples. In practice, each join operation
(i.e., natural join or theta join) contains a Boolean condition that indicates which data
objects are used to assist in pairing data while other data objects are carried. Thus,
one join operation indicates two kinds of operation purposes: DOP-A and DOP-Ca. In
addition, the union operation and Cartesian product operation are DOP-Ca.

ACSAC 2020, December 7-11, 2020, Austin, USA

As we discussed earlier, a leaf-to-root path in the query tree
represents a data processing logic of the data object at the leaf. The
data operation purposes of this object are sequentially concatenated
along the path. Ideally, the data owners may specify all acceptable
(or denied) patterns of data operation purposes, such as “Expense:
DOP-R-*-C-*-O”, where * indicates wildcard. Meanwhile, the big
data platform is expected to enforce the policies by matching every
path of a query tree against the patterns. However, usability is a
concern due to the complexity of the patterns—the data owners may
not want to define every allowed or denied pattern, or they may be
incapable of doing so. In this project, we present a simplified model
that captures the key purpose in each data operation logic, which
shadows all other purposes in the same sequence. In particular, we
observed that: 1) All the data operation purposes are sequentially
applied to the data object, while only a subset of the operations
may modify the data, e.g., DOP-C. 2) The total modification to
the data object is no less than the most significant modification in
the sequence of operations. 3) From data protection perspective,
the data owner would specify how much modification needs to be
performed on a data object before it may be sent to output, or if
a data object cannot be sent to output. With these observations,
we add a new attribute priority to each pre-defined data operation
purpose, which denotes the level of modifications (i.e., impacts) this
operation would add to the data object. In the five data operation
purposes we defined in this project, DOP-C has the highest priority,
DOP-A and DOP-R has lower priority, while DOP-Ca has NULL
priority. Note that DOP-O is a special purpose that will be handled
differently than other purposes in the sequence.

Eventually, the data operation purposes in a sequence collectively
determine the data processing purpose for the data object. In our
simplified model, the data processing purpose is denoted as two-
tuple {DPP, DOP-O|NULL}, where the DPP is the highest-priority
DOP in the sequence, and “DOP-O|NULL” denotes whether the data
object is eventually sent to user after the sequence of operations.

Example 6. Following Example 5, the data processing purpose of
DOP-S1 is denoted as DPP1(PatientName) {DOP-A, DOP-O}, while
the data processing purpose of DOP-S2 is DPP2(Expense) {DOP-C,
DOP-O}. According to the access control intention introduced in
Example 1, DPP2 is allowed to Alice, while DPP1 is denied.

Finally, we define the PAAC access control policy.

Definition 3. An purpose-aware access control policy is a 4-tuple
(S, 0,E,P), where S demotes the subject, O denotes the object, E
specifies the environment conditions that the requests must satisfy,
and P denotes the data processing purposes that are allowed.

Note that the PAAC model may employ any existing access
control model, such as RBAC or ABAC, to identify the subject (user
or application). Last, we give a sample PAAC policy.

Example 7. A PAAC policy for Alice, as introduced in Example
1, may be specified as: (Alice, O, E, {DOP-C, DOP-O}), where O is
defined in Example 4, E denotes the additional conditions such
as Alice’s visiting IPs, and the purpose explicitly allows Alice to
compute with the data object (Expense column) and view the re-
sult of the computation. Similarly, we can also specify purpose
{DOP-A, NULL} on PatientName to specify that Alice could use

Tao Xue, et al.

this column to assist data analytics (e.g., in groupBy), but she can-
not include it in the output.

Algorithm 1 Purpose Analysis Algorithm

Require: DOPIPE: data operations pipeline for an object O.
Ensure: PAG: purpose analysis graph, each node containing operation
purpose and purpose’ priority attributes.
1: PAG < 0
2: for each OPERA € DOPIPE do
3: Determine OPERA’s purpose(s) according to the operator or func-
tion.
if OPERA has one purpose on O then
Append one node to each branch in PAG.
else
Append multiple nodes to each branch in PAG.
end if
: end for
10: for each PATH € PAG do
11: DPP « the highest-priority operation purpose of PATH.
12: Bind DPP with PATH.
13: end for

R A AN

4.2 Purpose Analysis Algorithm

Based on the structured data analytics engines/APIs in Spark, users
use column-level objects to express various data operations in all
data processing logics of an application. Now, we present an algo-
rithm to automatically identify the data operation purpose sequence
of each data processing logic.

We view the lifecycle of a data object in an application as a
pipeline of data operations. The operations pipeline can be ob-
tained directly — the application codes contain all data operations
information, and the logical plan in Spark Catalyst is also the con-
tainer of data operations. Each object in the pipeline sequentially
passes through the data operations. For example, the PatientName
and Expense objects have the same pipeline as shown in Example
3. However, each object is used differently in these operations and
has its own sequence of data operation purposes, such as DOP-S1
and DOP-S2 in Example 5.

The purpose extraction algorithm first extracts all data operation
purposes (DOPs) from the operations along the pipeline for a data
object, and then generates a purpose analysis graph for the object
and identifies the data processing purpose (DPP) for each path. The
algorithm is shown in Algorithm 1.

e The DOP of each operation is determined by the operator or
function (Line 3). For example, the “sum” function and its input
object “exp1” determine DOP-C purpose on the input object; the
“filter” function and its predicate (“expl > 6000”) determine the
DOP-A purpose of the object in the predicate.

o We follow the data operations pipeline to add nodes to the purpose
graph (Lines 4-8). Each node in the graph contains an operation
purpose and its priority. For an operation with one purpose, we
directly append a node to the graph. Meanwhile, a data operation
may have multiple purposes, e.g., the data object Expense takes two
DOPs at the “filter(exp1>6000)” operation, DOP-R and DOP-A. For
an operation with multiple purposes, we split the path so that each
new DOP is added to a branch. Note that when a branch already has

GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark

Ca:Carry R:Retrieve A:Assist C: Compute O: Output

bigger number, higher priority
« ”
table

“filter” “groupBy” sum “select”

purpose: RHpurpose: CaHpurpose:C - path_1
purpose: O =

priority: 1 | “|priority: nulll 7| priority: 3 {DOP-C, DOP-O}

“selectExpr”

“filter”
purpose: Al path_2
priority: 2| {DOP-A, NULL}

Figure 3: Purpose analysis graph of data object Expense.

the highest-priority DOP, we stop appending nodes to this branch,
except for the final DOP-O (if any). In Figure 3, we demonstrate the
purpose graph of data object Expense in Example 5.

o Finally, we identify the highest-priority DOP in each path of the
graph and label it as the DPP of the the path (Lines 10-13). For
example, the DPP of path_1 in Figure 3 is DOP-C, which is the
purpose of the “sum” operation.

The generated purpose graph captures all DOPs for each data
object. Each path in the graph represents a data processing logic
and eventually indicates its data processing purpose. For example,
the path_1 is the main data processing logic of Expense, which
indicates its DPP as {DOP-C, DOP-O}.

5 PAAC ENFORCEMENT IN GUARDSPARK++

In this section, we present the details of the design and implemen-
tation of the PAAC enforcement mechanism on Spark.

5.1 GuardSpark++ Architecture

We choose to enforce the purpose aware access control model in
Catalyst due to the following reasons: 1) All the structured data
analytics engines/APIs are built on top of Catalyst, so that queries
and data analytics algorithms from these APIs must go through
Catalyst. Therefore, building GuardSpark++ in Catalyst ensures
that access control is enforced on all the requests from designated
sources. 2) The original (before optimization) logical query plans
are directly accessible at the Catalyst optimizer, so that we can effi-
ciently and effectively examine, modify or deny the query plans. 3)
The modified query plans are further optimized by Catalyst, so that
modifications by GuardSpark++ will not affect query performance.
To generate secure logical plan, we design four core modules
based on the PAAC model: data object recognition, purpose analy-
sis, compliance checking, and compliance enforcement. The first
two modules utilize analyzed logical plan to recognize objects and
each object’s data operation/processing purposes, and to determine
object and each object’s purpose. To make access decisions, the
third module evaluates subject, object, environment and purpose
against access control policies. The forth module enforces access
decisions on analyzed logical plan to produce secure logical plan.

Example 8. As shown in Figure 5, the analyzed logical plan of
the example code in Section 2.2 is used to exemplify secure plan
generation. An analyzed logical plan, a tree-like data structure,
utilizes ordered data operations on column-level objects to describe
each data processing logic in an application [26]. Each node in
analyzed logical plan is an operator (e.g., Project, Aggregate and
Filter) which encapsulates a set of expressions®. The leaf node

3Catalyst has its own expression system. Expression is used to evaluate a result value
according to given input values [13, 26]. For example, Computation expression (e.g.,
SUM expression, AVG expression) can evaluate a computation result of given input
values; Alias expression is used to evaluate an alias for input expression; Attribute

ACSAC 2020, December 7-11, 2020, Austin, USA

Subject/Environment data
Attributes users

Original Analyzed
Logical Plan

[Data Object Recognition] Oﬁ\ec‘&es Compliance
v - prfe—s Checking
Purpose Analysis og\’\‘l-e
Purpose e wose
Data operation Data processing o Compliance
purpose purpose Enforcement

Secure Logical
Plan Generation

‘ Secure
Logical Plan

Figure 4: Secure logical plan generation stage

operator encapsulates raw data objects in data source. Each internal
operator encapsulates which objects the operator is inputted, how
objects are operated, and which objects (after being operated) are
delivered to its following operator(s) or are returned to data users.

5.2 Data Object Recognition

The column-level objects in analyzed logical plan are recognized.
This does not mean that GuardSpark++ cannot control the access to
row-level and cell-level objects. The module aims to recognize raw
and alias column-level objects in plan and describe those objects
using object attributes — each raw object is analyzed data oper-
ation/processing purposes by purpose analysis module (Section
5.3) (relevant alias objects participate); raw object attributes and its
purpose(s) are used by compliance checking module (Section 5.4).

All raw objects are recognized from leaf node operators in plan.
For example, the Expense column of the “Relation” operator in Fig-
ure 5 is a raw object, and can be described as {fowner:R, source:MySQL
(196.168.12.110:3306:medical), table:patient, column:Expense}.

However, besides the raw objects, the alias mechanism 4in Spark
produces alias objects in order to facilitate the description of data
processing logic in the plan [35]. Alias objects are contained in
non-leaf node operators of the plan (e.g., the first “Project” operator
in Figure 5 contains exp1 alias) and also need to be recognized to
accurately analyze data processing purposes (Section 5.3). Because
aliases are produced by the alias mechanism of Spark, the owner
and source attributes of an alias are null and the table attribute is
the operator initiating the alias through an Alias expression. For
example, sum(exp1) object in Figure 5 is described as fowner:null,
source:null, table:Aggregate, column:sum(exp1)}. Because aliases are
located in non-leaf nodes of plan, GuardSpark++ must traverse
plan; as sub-products, a series of operators passed by each object
are obtained and form an operator-processing path. As shown in
Figure 6, these three objects: Expense, exp1, sum(exp1) have three
operator-processing paths. Lineage exists among paths of each raw
object and its relevant alias objects due to the alias mechanism.
This lineage is convenient to purpose analysis in Section 5.3.

5.3 Purpose Analysis

This module recognizes data processing purposes for all raw objects
in the logical plan. According to the purpose analysis algorithm in

expression is able to evaluate an attribute according to input name string; Predicate
expression is used to evaluate boolean value.

4 Aljases for any column can be named by users (e.g., in Figure 5, users name the alias
of Expense as the exp1). Many temporary aliases indicating the intermediate results
of application are usually produced by Catalyst (e.g., the sum(exp1) in the second
“Project” operator is this kind of alias). An alias is carried by an Alias expression.

ACSAC 2020, December 7-11, 2020, Austin, USA

Attribute expression: e.g.,, [) Alias expression:e.g, C___)
Predicate expression: e.g.,, [| SUM expression:e.g.,/ /]

(P2) Project [patientName#8)sum(exp1)#36L]

(A) Aggregate [PatientName#8], [PatientName#8,6um (exp1#32)AS sum(exp1)#36]
(F) Filter|(exp1#32 > 6000)

(P1) Project [PatientName#8,Expense#7 AS exp1#32]

(R) Relation [Id#5, Disease#6,Expense#7,PatientName#8]

Note : The integer after the # notation is the serial number assigned by Catalyst, not affecting the
understanding of our design. Various operators are denoted by typefaces like R

R: representing
“patient” DataFrame

Figure 5: Analyzed logical plan.

Section 4.2, this module first obtains the data operations pipeline for
each raw object. Then, it constructs the purpose analysis graph by
recognizing data operation purposes along the pipeline. Finally, to
identify the data processing purpose, this module finds the highest-
priority DOP in each path of the purpose analysis graph. Here
we mainly focus on the logical-plan-based method to obtain data
operations pipeline and to recognize data operation purpose.

To obtain the data operations pipeline for a raw object in the
logical plan, this module finds the complete sequence of operators
for the object. The operators are obtained according to the lineage
mentioned in Section 5.2. For example, Path (2) in Figure 6 is derived
from Path @), while Path 3 is developed from (2). All three paths
combined provide the complete sequence of operators of Expense.

To construct the purpose analysis graph, this module recognizes
each DOP along the sequence of operators for each raw object. In
the logical plan, a DOP is identified by the expression encapsulated
in the operator node. We employ pre-defined heuristics to recognize
operation purpose: 1) DOP-R is assigned to operators which explic-
itly retrieve data out of leaf nodes or implicitly retrieve object using
filter (or similar) functions (e.g., the first “Project” operator gets
PatientName from Relation, and the “Filter” operator implicitly
allows PatientName and exp1 to pass). 2) DOP-C is assigned to
operators which make computation on data objects (e.g., in Figure 5,
the DOP-C on exp1 is assigned to the “Aggregate” operator which
makes computation on the object using SUM expression.). 3) DOP-A
is designated by operators which use column-level object as assis-
tance in an expression (e.g., the “Filter” operator uses exp1 in the
expression “exp1#32 > 6000” to filter data.). Last, if the sequence of
operators ends at the root of the logical plan, DOP-O is recognized.
Note that we ignore DOP-Ca purposes as explained in Section 4.1.

5.4 Compliance Checking

This module makes access decisions by evaluating identified objects,
subjects, environments and purposes against policy rules. Here
we explain how the recognized purposes are compared with data-
owners-specified data processing purposes of column-level, row-
level or cell-level objects (Section 4). Meanwhile, there are existing
works in the literature to handle the subject and environment.
GuardSpark++ evaluates each recognized column-level object
as follows: We first identify all relevant fine-grained access control
policies using subject and object attributes. Then, we employ the
following heuristics to identify the allowed cells for each kind of
data processing purpose on the column. For the object, we can
directly extract data processing purposes from each purpose-bound
path in its purpose analysis graph. 1) If the purpose of a path is
{DOP-R, DOP-O}, we find retrieval-regulating rules from selected
rules in the second step, and bind allowed cells with the path. 2)

Tao Xue, et al.

R: Relation P1: Project F:Filter A: Aggregate P2: Project

@ Expense @ expl @ sum(expl)

Figure 6: Operator-processing path examples.

If the purpose of a path is {DOP-C, DOP-O}, we find computation-
regulating rules from selected rules in the second step, and bind
allowed cells with the path. 3) If the purpose of a path is {DOP-A,
NULL}, we find assistance-regulating rules from selected rules in
the second step, and bind allowed cells with the path. As a result,
each access decision means allowed cells of each data processing
purpose in a purpose analysis graph.

5.5 Compliance Enforcement

With the access decisions from Section 5.4, GuardSpark++ trans-
forms the original logical plan into a secure query plan using query
rewriting — modifying operators or producing guard operators to
insert secure operators at appropriate enforcement positions in the
original plan.

When the allowed cells are empty, we consider two situations. 1)
If data processing purpose is {DOP-R, DOP-O} or {DOP-C, DOP-O},
the enforcement position is the root operator in the original plan
and GuardSpark++ uses zero setting logic based on the Alias expres-
sion to replace corresponding expression. For example, if a doctor is
prohibited from using DOP-C on the expenses, the sum(exp1) will
be respectively replaced with “0 AS sum(exp1)”. This replacement
obviously has no effect on other processing purposes, and obeys
the immutable schema structure of immutable DataFrame/Dataset
[6, 26]. 2) If {DOP-A, NULL}, the enforcement position is operators
connected with the assistance purpose and GuardSpark++ deletes
all expressions relevant with the assistance purpose. For example,
if a doctor is not allowed to use Expense for assistance purpose,
the expression in “Filter” operator is deleted. In the above cases, we
insert secure operator through modifying an operator.

When the allowed cells are non-empty, a secure expression is
constructed to retain them. A guard operator uses the secure ex-
pression to retain allowed cells and erase prohibited cells. A guard
operator is described as Guard(“allowed_sells”, “column”) where
“allowed_cells” is represented by secure expression and “column” is
the targeted column. The enforcement position is below the last op-
erator passed by the corresponding object. For instance, if a doctor
is prohibited from counting the expense of two patients “Aaron” and
“Brown”, a new guard operator “Guard(PatientName#8 != (Aaron
OR Brown), Expense)” is inserted below the first “Project” operator.

6 EXPERIMENTAL RESULTS

With Spark as the baseline, we test GuardSpark++’s overhead
and scalability. We also evaluate the recognition of data opera-
tion/processing purposes in GuardSpark++ through case studies
on five data sources and four structured data analytics engines.

6.1 Settings

Hardware and Software Configurations. We conduct our ex-
periments on a cluster of 7 nodes, including one primary and six
secondary nodes. Each node is equipped with 32 Intel Xeon CPUs
E5-2630 v3 @ 2.40GHz, 130GB of RAM and 4TB of disk capacity,

GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark

2000 Query02 ng::SpakH % Query27 (S;::ss;)akH

gl

200

Time(s)

128G 2G 4G 8G 116G 32G 64G 128G

GuardSpark++ GuardSpark++
Query35 7 Query93 55

XX spark Spark h
300
200
w w
2 £ §
2 = J
100 e ;
,’) 4
gy |
P
B 4 mmBRE
2G 4G 8G 16G 32G 64G 128G 2G 4G 8G 16G 32G 64G 128G

Figure 7: Query processing efficiency of GuardSpark-++.

running 64-bit CentOS. HDFS (v. 2.6.0) is used to store the data with
a replication factor of 2. We build GuardSpark++ on Spark v. 2.4.0.
Datasets and Benchmarks. To test GuardSpark++’s efficiency
and scalability, we use the TPC-DS benchmark [23], which covers
various query types in decision support systems and is used as
the performance testing framework for Spark SQL in Spark 2.2+
[1, 11]. In our case studies, we also test access control on SQL
engine with the TPC-DS benchmark. We use the popular Iris [9]
and BigDataBench [69] for the ML Pipelines engine. We use the
Pokec [8] for the GraphFrame engine. The datasets used in the
tests are stored on HDFS. For Structured Streaming engine, we
evaluate network streaming, LFS, HDFS and Kafka sources, and test
a common logs analysis system. Finally, we evaluate GuardSpark++
on a relational data source MySQL.

6.2 Efficiency of GuardSpark++

We evaluate the efficiency of GuardSpark++ using 2GB, 4GB, 8GB,
16GB, 32GB, 64GB and 128GB retail datasets generated by TPC-
DS data generator. We choose Query02, Query27, Query35, and
Query93 in TPC-DS package as they cover various data operations
and contain complex data processing logics. In particular, Query93,
Query27, and Query02 have minimum, moderate and maximum
number of expressions designating operation purposes, respectively,
while Query35 contains three sub queries. The queries contain the
following data processing purposes: {DOP-R, DOP-O}, {DOP-C,
DOP-0} and {DOP-A, NULL}. With Spark as the baseline, to ensure
dataset size consistency, we customize access control policies in
GuardSpark++ in terms of queries’ own operation information.
For example, if the condition in WHERE clause of a query means
the value of column 5 in a relation equals to 2 and the column
is retrieved and outputted, we can state the policy that its value
for {DOP-R, DOP-O} should be greater than 0. Table 1 shows all
policies of the four queries. In this way, we can avoid data size
change because of access control, and only probe into the cost of
our control. Each query is repeated 100 times on each dataset, and
the average execution time is calculated as the final index.

ACSAC 2020, December 7-11, 2020, Austin, USA

2500 3.5x10°

T T T T
7] time consumption per rule —=— total time consumption
fitted curve 3.0x10° |- 3.03*10%6 m 4
2000
2.5x10° |- 1
1500 — 2.0x10° - 1
T T
E B 1.5x10° B
l_‘1000 =
1.0x10° - 7
500 5.0x10° - b
3.39*%10"5
00 m—W% 16%10n4 B
0 . 2.13*10%4 . .
10 100 1000 10000 10 100 1000 10000
Rule Set Size Rule Set Size

Figure 8: The scalability of GuardSpark++ against access con-
trol policy size.

As shown in Figure 7, GuardSpark++ introduces a small over-
head to Spark: 8.44% (2GB dataset), 6.40% (4GB), 4.69% (8GB), 3.52%
(16GB), 2.17% (32GB), 1.65% (64GB) and 0.89% (128GB). Apparently,
the relative overhead is below 10% in all cases and gradually de-
creases with larger datasets. This is because Spark’s query execution
time increases with larger datasets, while the time to produce a se-
cure logical plan stays stable. The result shows that GuardSpark++
is highly scalable, which could be used in big data sharing scenarios,
where exabytes or even zettabytes of data may be evaluated.

6.3 Policy Scalability

The data scalability of GuardSpark++ is discussed in Section 6.2.
Next, we measure the scalability of GuardSpark++ with respect to
the size of the access control policy. According to the architecture
of GuardSpark++, the policy scalability is mainly determined by
the purpose compliance checking module. To directly evaluate how
this module affects the scalability of GuardSpark++, we conduct
experiments with the following access control rule set sizes: 10, 100,
1000, and 10000. For each rule set, we execute Query02 100 times
and compute the average query processing time in the purpose
compliance checking module.

Figure 8 (left) shows the average purpose compliance checking
time execution per-rule. As shown in the figure, the per-rule execu-
tion time reduces significantly when the rule set size grows from
10 to 100. Figure 8 (right) shows the growth of the total compliance
checking time when the rule set size grows. Note that the X-axis
is in logarithmic scale. As shown, when the size of the rule set
size increases, the total compliance checking time increases ap-
proximately linearly. The total compliance checking time for 10000
rules is approximately 3 seconds, which implies that the proposed
mechanism is highly practical.

6.4 Case Study

Next, we show some use cases from four data analytics engines
and five data sources. The following empirical results show that
GuardSpark++ works effectively and correctly.

6.4.1 SQL. We perform the assessment on the TPC-DS benchmark
which contains various tables. These tables record much sensitive
information. For instance, the “customer_address” table contains
addresses of all customers; the “customer_demographics” table
records demographics of all customers; the “store” table includes

ACSAC 2020, December 7-11, 2020, Austin, USA

Tao Xue, et al.

Table 1: Access control policies specified in GuardSpark++ for efficiency test

All data objects in these queries, except the column objects in policies, are used without restriction.
We only show protected data and its specified data processing purpose in policy.

the value (>0) of column 5 in table data_time is allowed {DOP-R, DOP-O}.
the value (>0) of column 13 in table store_sales is allowed {DOP-C, DOP-O}.
the value (!="no’) of column 2 in table customer_demographics is allowed {DOP-R, DOP-O}.
the value (!="-1’) of column 4 in table store_sales is allowed {DOP-R, DOP-O}.

simulate the policy enforcement by manually deleting the corre-
sponding data from Iris dataset and obtain the WSSSE set based on
the same K values. Also, basing the same K values on, we run Spark
without policy enforcement to obtain the WSSSE set as a baseline.
The experimental results are shown in Figure 9(a). Apparently, the
last K-WSSSE set is different from the first two identical K-WSSSE
sets. Second, we utilize 4GB data generated using BigDataBench

Query Protected Object and Specified Purpose
Query02
Query27
Query35
Query93
—— WSSSE(MP) —— WSSSE(AP) —— WSSSE(Spark)
160f 35x10%F
140} 3.0x10%
120¢ 25x10%
% 1001 #20x102|
z 80 — 2 15x10%
cor ~ 10x10%
0l T .
ol 5.0x10% | o
: : : : : 00k
(a;lrls 8 é ° ° (b)zBlgDataBench é ¢

Figure 9: Using Iris dataset and BigDataBench to measure
K-WSSSEs. We run GuardSpark++ to automatically enforce
access control policy (AP) and simulate the policy enforce-
ment by manually deleting corresponding data (MP); we run
Spark without policy enforcement (Spark).

addresses of all stores; the “store_sales” table has sale price of
each commodity. The access control policies protect all sensitive
information from being seen.

To show the assessment, we select the Query35 (Figure 10 in Ap-
pendix A) in the TPC-DS benchmark. This query discloses consump-
tion dependent and some information about living address, gender
and marital status [23]. This query, which contains various data
processing purposes, aliases and sub queries, is complicated enough
for showing our assessment. The assessments on other queries are
announced on the website (https://github.com/liveonearthormars/
SparkSQL-test).

The Figure 11 in Appendix A shows detailed analysis about
the control on data processing purposes. Particularly, we utilize
zero setting logic (Section 5.5) to prevent sensitive data from being
seen while various computation results are correct. For intuitively
demonstrating the control effect, we provide three result sets about
Query35 in Figure 12 in Appendix A. Specifically, the computation
results in Figure 12(b) are consistent with those in Figure 12(c)
because only outputted sensitive information is set to zero accord-
ing to access control policies. However, the computation results
in Figure 12(a) are different from those in both Figure 12(b) and
Figure 12(c) because directly deleting sensitive information from
data source alters computation results that data users expect.

6.4.2 ML Pipelines. We select a clustering algorithm K-means [17]
and regard the Within Set Sum of Squared Error (WSSSE) as the
metric. First, we use Iris dataset [9], and access control policy regu-
lates that the computation of the first column’s value less than or
equal to 5.5 is prohibited, other columns are used without restric-
tion. We run GuardSpark++ to automatically enforce the policy and
obtain the WSSSE set in the case of different K values (2,3,4,5,6). We

[69]. With the same experimental method above, we obtain the
results (similar to the first test) shown in Figure 9(b). Obviously,
GuardSpark++ can constrain data usage for ML algorithm. Access
control for ML engine is vital when data owners share their data
and customize their policies to protect their sensitive data from be-
ing used by ML algorithms that may indirectly expose more privacy
information about data owners [24].

6.4.3 GraphFrame. We select PageRank algorithm [14] originally
used to measure the relative importance of website pages, and
set the maximum iteration to 100. We use Pokec social network
dataset, each node containing user data about gender, age, hobbies,
interest, education etc [8]. In the dataset, the most influential node
has ID 5935 and the PageRank value is 625.1821405718983. We
assess the real scenario — data owners share their data containing
sensitive data to social network. To protect sensitive data of the
most influential node, data owners customize the access control
policy that the computation of the second column’s value equal to
5935 is banned. As a result, in GuardSpark++, we obtain the most
influential node, ID 5876 with PageRank value 287.1705351204417.
Obviously, the original node ID 5935 has been isolated. Access
control for graph engine is necessary when data owners share their
data and customize policies to prevent sensitive data from being
analyzed by graph algorithms which may dig out more privacy
information about data owners [31, 56].

6.4.4 Structured Streaming. To showcase continuous access con-
trol enforcement for Structured Streaming, we select several data
sources. First, we test network stream source in the common use
case given in [21]. The Netcat (a small utility in Linux) serves
as streaming data server; the following sensitive words groups —
(“Fund”, “Association”) and (“Fund”, “Association”, “Insurance”) —
are respectively sent by port 9999 of localhost; the same words are
counted. We run the use case on GuardSpark++ with access control
policy: the sensitive word “Fund” from port 9999 of localhost cannot
be computed by user. Each experimental result set does not contain
“Fund” after each sending. Second, we leverage file sources (LFS
and HDFS [30]) and Kafka source [54] to conduct similar tests to
the first, and experimental results show that we still can control
which sensitive word cannot be computed. Finally, we construct a

https://github.com/liveonearthormars/SparkSQL-test
https://github.com/liveonearthormars/SparkSQL-test

GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark

common logs analysis system, which consists of Sysdig (generating
logs by its default format) [22], flume (collecting logs) [50] and
Kafka (transporting logs to GuardSpark++) [54]. We consider the IP
in logs as sensitive data and forbid IP from being seen. As a result,
IP information cannot be seen in GuardSpark++.

6.4.5 Various data sources. The previous case studies embody these
low-level data sources: LFS, HDFS, network streaming and Kafka —
the low-level data read permission in these sources [7, 16, 58, 65]
is opened. Next, we select MySQL to measure the effectiveness on
relational data source. We use real world data from business domain.
Similar to [37], we consider MyCompany which provides catering
for elderly people (customers). For better services, MyCompany
collects customers’ data, including customer table, address table and
order table (the customer’s “id” is the primary key for each table).
MyCompany puts those tables into MySQL and authorizes our
Spark cluster to access those tables according to the access control
mechanism in MySQL [18]. However, MyCompany customizes the
access control policy in GuardSpark++: the “id” attribute value must
be greater than 10 when users retrieve and output data. In such
case, we use the JDBC APIs in DataFrame to retrieve those tables.
The result set only contains records whose ids are greater than 10.

7 SECURITY ANALYSIS AND DISCUSSIONS

The security of GuardSpark++ relies on the following factors: 1)
GuardSpark++ correctly decomposes the logical plans and recog-
nizes the data processing purposes, 2) GuardSpark++ correctly
enforces access policies that are consistent with the data owner’s
access intentions, and 3) all user queries that need access control
are processed through Catalyst and GuardSpark++.

The correctness of the first two factors is ensured in the design of
GuardSpark++. In particular, GuardSpark++ recognizes the DOPs
(e.g., DOP-R, DOP-C, DOP-A) and the data processing purpose
(DPP) for each data object from its logical plan (Sections 5.2 & 5.3).
According to the restriction of the PAAC policies specified by the
data owners, GuardSpark++ identifies which cell-level data objects
are allowed for which purposes (Section 5.4). With these decisions,
the secure logical plan is generated (Section 5.5), which eliminates
any unauthorized access to sensitive data at cell-level.

The third factor requires all user queries that are subject to access
control to be submitted through Spark’s structured data analytics
engines/APIs. To enforce this, we can configure Spark to prevent
certain users from using the unprotected APIs. Meanwhile, if this
requirement is not enforced, a user can read data directly from the
underlying data sources in Spark by employing python, R, java,
scala APIs, or RDDs APIs. In such case, GuardSpark++ treats user’s
codes as untrusted codes, and can exploit existing works [46, 47, 66]
to circumscribe untrusted codes to immune itself. We would like to
note that RDD-based access control enforcement is independent of
GuardSpark++ and is an interesting future direction.

Inference Attacks. The inference attack is usually considered a
problem beyond the conventional access control paradigm [62, 71].
In GuardSpark++, sensitive data may be subject to inference attacks
when 1) the “computing” operations do not effectively fuse or trans-
form information from raw data, such as the “sum” of only one
(or a few) value(s); or 2) multiple overlapping or relevant queries

ACSAC 2020, December 7-11, 2020, Austin, USA

are submitted and the returned results are examined. The first at-
tack could be mitigated in a combination of static and dynamic
approaches. In static analysis, certain (simple) operations may be
excluded from DOP-C purposes, and considered as DOP-R instead.
Meanwhile, we could generate a runtime validator, CompGuard,
in the logical plan for each DOP-C operation. The CompGuard is
a Boolean expression that validates the corresponding operation
based on its runtime data size. All the CompGuards are aggre-
gated to determine if the query should be allowed or denied during
the runtime check. On the other hand, the second attack could
be partially mitigated by tuning PAAC policies to deny certain at-
tributes from being used in DOP-A. For example, Alice can use two
queries: “patient.selectExpr(“Expense”).sum(“Expense”).show” and
“patient.filter(“PatientName != Aaron”).selectExpr(“Expense”).sum
(“Expense”).show” to infer Aaron’s expenses. However, the attack
will be ineffective if the PAAC policy prohibits PatientName from
the DOP-A purpose. Last, we would like to emphasize that the infer-
ence attack is not the focus of this paper. A complete mitigation of
inference attacks require more efforts that are beyond conventional
access control mechanisms.

Generalization. First, the proposed PAAC model has enough ex-
tensibility in response to new access control needs. The data opera-
tion purposes introduced in Section 4.1 could be easily extended to
handle complex access control intentions. For instance, we can di-
vide DOP-C into “count” and “sum” purposes to allow more specific
control of operations and potentially mitigate complicated infer-
ence attacks [45, 62, 71]. Meanwhile, the design of GuardSpark++
in Catalyst is a practical example that could be migrated into other
big data platforms inspired by SQL, e.g., Presto [19], Spanner [27],
Hive [67], SCOPE [76]. With reasonable modifications, the imple-
mentation of GuardSpark++ could be adapted into the logical query
optimizer or processor of these platforms.

Compatibility with RBAC and ABAC. First, PAAC could em-
ploy existing access control models, especially RBAC and ABAC, to
specify the subjects (users or applications). PAAC could also adopt
other concepts from existing access control paradigms that do not
interfere with the concept of purposes, such as resource attributes,
contexts, etc. Second, our model may be adapted into the ABAC
model [52] by adding purposes into the environmental attributes
of ABAC. However, as we have explained in the paper, purpose
recognition and processing algorithms need to be developed in
order to enforce the purposes.

Remaining Attack Surfaces. GuardSpark++ is an access control
mechanism, not a silver bullet that addresses all attacks. Conven-
tional attacks, such as DoS [55], collusion attacks [77], or traf-
fic analysis [75], will still work even if GuardSpark++ is in place.
In particular, if the Spark platform is untrusted or compromised,
GuardSpark++ becomes ineffective. Our research on access con-
trol is independent of and complementary to research efforts on
protecting big data against the attacks mentioned above.

Future Improvements. The policies in GuardSpark++ can be im-
proved to support more features in addition to the high level DOP-*
criteria. 1) We may introduce the obligation concept [36, 59], which
can regulate the actions that big data sharing system should take

ACSAC 2020, December 7-11, 2020, Austin, USA

to allow data owners to have the right to know what is happening
to their sensitive data [34, 52]. For instance, to receive the infor-
mation about all usage purposes in each query statement of any
subject, data owner can describe the obligation as {subject:anyone,
algorithm:query, purposes:(DOP-R, DOP-C, DOP-A, DOP-0)}. Based
on the obligations, GuardSpark++ can send corresponding infor-
mation to Spark-external obligation severs which fulfill system’s
obligation to data owners. In this way, data owners can get more
control on their sensitive data. For example, a data owner can pro-
hibit all usage purposes on their sensitive data when he/she is
alerted that the sensitive data may have been unlawfully accessed
by a user, and then initiates an audit for this user. Meanwhile, be-
cause of the supervisory role, data owners have deterrent effect
on users. 2) Data users may need to know what happens to their
queries/algorithms in GuardSpark++ after they submit them to
system for execution. To support this requirement, we could allow
data owners to specify policies with corresponding components to
identify if the system could provide transparency to the users, and
let GuardSpark++ enforces it. However, such transparency to the
data users may potentially give adversarial users more information
to launch inference attacks.

8 RELATED WORK

In this section, we briefly summarize the literature on access control
techniques.

Access Control for Spark. SparkXS [63] is a customized attribute-
based access control solution for Spark Streaming. This ABAC solu-
tion cannot support purpose-aware access control. A cryptography-
based solution [64] targets to protect sensitive data in RDD [72];
the solution does not aim to provide access control solution for
protecting sensitive data in big data sharing scenarios. A recently
proposed method [15] supports Spark SQL by depending on existing
Apache Range policies defined for Apache Hive. Another solution
[12] proposed by Databricks enables table-based access control for
Spark SQL. The two solutions are not only engine-specific but also
do not support purpose-aware access control.

Access Control for Hadoop. Apache Sentry [5], a middleware
system, can be deployed between Hadoop runtime engine and
data sources, e.g., Hive, Impala, Solr or HDFS, and implements
fine-grained role-based access control for Hadoop ecosystem [3].
Although this solution can be unified and fine-grained, it needs to
develop new plugins for new data sources and GuardSpark++ does
not. Apache Ranger [4] is similar to Apache Sentry. GuradMR [68]
provides a fine-grained access control solution for unstructured data
in MapReduce system. HeABAC [49] allows the access isolation of
collected data in multi-tenant Hadoop ecosystem through ABAC
mechanism. None of them provide purpose-aware access control
for big data sharing scenarios.

Access Control for NoSQL A recent work [53] improves the ac-
cess control capability of HBase by customizing fine-grained ABAC
for HBase, supporting context-based access control. Depending on
SQL++ [60], a unified fine-grained ABAC solution [39] is proposed
to improve data security in NoSQL datastores. The two works are
not for big data sharing scenarios.

Tao Xue, et al.

9 CONCLUSION

In this paper, we have proposed GuardSpark++, a novel fine-grained
purpose-aware access control model and enforcement mechanism
for big data sharing. We first introduce the purpose-aware access
control model. In particular, we have defined the data processing
purpose and data operation purpose; and then introduced an algo-
rithm to automatically analyze and extract purposes from logical
query plans. On the other hand, we have developed a PAAC enforce-
ment mechanism for Spark’s structured data analytics engines/APIs.
The mechanism is deployed in Spark Catalyst, to re-write logical
plans into secure ones on-the-fly. With extensive experiments, we
show that GuardSpark++ effectively enforces PAAC and it only in-
troduces a small overhead to Spark. GuardSpark++ is open sourced
at (https://github.com/liveonearthormars).

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their construc-
tive comments. We also thank Dr. Fangxiao Ning’s technical help.
Tao Xue, Yu Wen, et al. were supported by the Strategic Priority
Research Program of CAS, Grant No.XDC02010300. Bo Luo was
sponsored in part by NSF CNS-1422206, DGE-1565570, NSA Science
of Security Initiative H98230-18-D-0009, and the Ripple University
Blockchain Research Initiative. Yingjiu Li was also supported in
part by the Ripple University Blockchain Research Initiative.

REFERENCES

[1] AMPlab.University of California, Berkeley.Big data benchmark. https://amplab.
cs.berkeley.edu/benchmark/.
] Apache Beam. https://beam.apache.org/.

[3] Apache Hadoop. http://hadoop.apache.org/.

] Apache Ranger. https://hortonworks.com/apache/ranger/.

[5] Apache Sentry. https://sentry.apache.org/.

[6] Apache Spark. https://spark.apache.org/.

[7] The Big Data Security Gap: Protecting the Hadoop Cluster, White Paper, Zit-
taset, 2014. http://www.zettaset.com/wp-content/uploads/2014/04/zettaset_wp_
security_0413.pdf.

[8] By Jure Leskovec. http://snap.stanford.edu/data/soc-Pokec.html.

[9] C.L.Blake and C.J. Merz (1998). UCI Repository of Machine Learning Databases.
University of California. http://archive.ics.uci.edu/ml/datasets/Iris.

[10] Data Sharing and Data Integration. https://www.european-big-data-value-
forum.eu/data- sharing-and- data- integration/.

[11] Databricks, Spark SQL Performance Tests, 2019. https://github.com/databricks/
spark-sql-perf.

[12] Enable Table Access Control. 2017. https://docs.databricks.com/administration-

guide/admin-settings/table-acls/table-acl.html.

] GitBook, 2019. https://jaceklaskowski.gitbooks.io/mastering- spark-sql/.

[14] GraphFrames User Guide, 2018. https://graphframes.github.io/user-guide.html.

5] Introducing Row/Column Level Access Control for Apache Spark, 2017. https:

//ko.hortonworks.com/blog/row-column-level-control-apache-spark/.

[16] Kafka Security, 2019. http://www.cs.toronto-.edu/~kriz/cifar.html.

[17] MLIib:Main Guid, 2018. http://spark.apache.org/docs/latest/ml-clustering.html.

[18] MySQLTutorial. 2019. https://www.mysqltutorial.org/mysql-adminsitration/,
2019.

[19] Presto. https://prestodb.github.io/.

[20] Sharing in the Era of Big Bata. https://sciencenode.org/feature/improving-
sharing-in-the-era-of-big-data.php.

[21] Structured Streaming Programming Guide, 2018. http://spark.apache.org/docs/
latest/structured- streaming- programming- guide.html.

[22] Sysdig. https://sysdig.com/.

[23] TPC BENCHMARK DS Standard Specificationversion 2.3.0, Transaction Pro-
cessing Performance Council (TPC), 2016. http://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-ds_v2.3.0.pdf.

[24] Privacy-Preserving Machine Learning: Threats and Solutions. IEEE Security &

Privacy, S&P’19 (2019).

Structured Streaming: A Declarative API for Real-Time Applications in Apache

Spark. In Proceedings of the 2018 International Conference on Management of Data,

SIGMOD’18.

&
)

https://github.com/liveonearthormars
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://beam.apache.org/
http://hadoop.apache.org/
https://hortonworks.com/apache/ranger/
 https://sentry.apache.org/
 https://spark.apache.org/
 http://www.zettaset.com/wp-content/uploads/2014/04/zettaset_wp_security_0413.pdf
 http://www.zettaset.com/wp-content/uploads/2014/04/zettaset_wp_security_0413.pdf
http://snap.stanford.edu/data/soc-Pokec.html
 http://archive.ics.uci.edu/ml/datasets/Iris
https://www.european-big-data-value-forum.eu/data-sharing-and-data-integration/
https://www.european-big-data-value-forum.eu/data-sharing-and-data-integration/
 https://github.com/databricks/spark-sql-perf
 https://github.com/databricks/spark-sql-perf
 https://docs.databricks.com/administration-guide/admin-settings/table-acls/table-acl.html
 https://docs.databricks.com/administration-guide/admin-settings/table-acls/table-acl.html
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/
https://graphframes.github.io/user-guide.html
 https://ko.hortonworks.com/blog/row-column-level-control-apache-spark/
 https://ko.hortonworks.com/blog/row-column-level-control-apache-spark/
http://www.cs.toronto-.edu/~kriz/cifar.html
http://spark.apache.org/docs/latest/ml-clustering.html
 https://www.mysqltutorial.org/mysql-adminsitration/
https://prestodb.github.io/
https://sciencenode.org/feature/improving-sharing-in-the-era-of-big-data.php
https://sciencenode.org/feature/improving-sharing-in-the-era-of-big-data.php
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://sysdig.com/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.3.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.3.0.pdf

GuardSpark++: Fine-Grained Purpose-Aware Access Control for Secure Data Sharing and Analysis in Spark

[26

[27]

[28

[29
[30
[31]

[32

[33]

[34]

[35]
[36

[37

[38

[39]

[40

[41]

[42]

[43]

[44

[45]
[46]

[47

[48]

[49]

[50
[51]
[52]

[53]

[54]

[55

[57]
[58

[59

Spark SQL: Relational Data Processing in Spark. In Proceedings of the 2015 ACM
SIGMOD international conference on management of data, SIGMOD’15.

Spanner: Becoming a SQL System. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD’17.

Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale
Analytical Processing. In Proceedings of the 1st ACM Symposium on Cloud Comput-
ing (Indianapolis, Indiana, USA) (SoCC’10). Association for Computing Machinery,
New York, NY, USA, 119-130. https://doi.org/10.1145/1807128.1807148

Big Data Security and Privacy, 2018.

HDFS Architecture Guide. Hadoop Apache Project (2008).

Privacy-Preserving Graph Algorithms in the Semi-Honest Model. In International
Conference on the Theory and Application of Cryptology and Information Security,
ASIACRYPT 05.

Purpose Based Access Control for Privacy Protection in Relational Database
Systems. The International Journal on Very Large Data Bases, VLDB Journal 08
(2008).

Apache Flink: Stream and Batch Processing in a Single Engine. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering 36, 4 (2015).
The Importance of ABAC: Attribute-Based Access Control to Big Data: Privacy
and Context. Privacy and Big Data Institute, Ryerson University, Toronto, Canada
(2015).

Spark: the Definitive Guide: Big Data Processing Made Simple, 2018.

Enforcing Obligations within RelationalDatabase Management Systems. IEEE
Transactions on Dependable and Secure Computing 11, 4 (2013), 318-331.
Enforcement of Purpose Based Access Control within Relational Database Man-
agement Systems. IEEE Transactions on Knowledge and Data Engineering, TKDE’14
(2014).

Efficient Enforcement of Action-Aware Purpose-Based Access Control within
Relational Database Management Systems. In IEEE International Conference on
Data Engineering, ICDE’16.

Towards a Unifying Attribute Based Access Control Approach for NoSQL Data-
stores. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE).
IEEE, 709-720.

Managing and Sharing Research Data: a Guide to Good Practice. SAGE Publications
Limited.

Privacy by Design in Big Data: an Overview of Privacy Enhancing Technologies
in the Era of Big Data Analytics. arXiv preprint arXiv:1512.06000 (2015).

GraphFrames: An Integrated API for Mixing Graph and Relational Queries. In
Proceedings of the Fourth International Workshop on Graph Data Management
Experiences and Systems, GRADES’16.

MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM, 2008
(2008).

Big Data Sharing and Analysis to Advance Research in Post-Traumatic Epilepsy.
Neurobiology of disease 123 (2019), 127-136.

The Inference Problem: A Survey. ACM SIGKDD Explorations Newsletter (2002).
A Secure Environment for Untrusted Helper Applications: Confining the Wily
Hacker. In Proceedings of the 6th conference on USENIX Security Symposium,
Focusing on Applications of Cryptography.

Going beyond the Sandbox: An Overview of the New Security Architecture in
the Java Development Kit 1.2.. In USENIX Symposium on Internet Technologies
and Systems.

GraphX: Graph Processing in a Distributed Dataflow Framework. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and Implementation,
OSDI'14.

An Attribute-Based Access Control Model for Secure Big Data Processing in
Hadoop Ecosystem. In Proceedings of the Third ACM Workshop on Attribute-Based
Access Control (ABAC’18).

Apache Flume: Distributed Log Collection for Hadoop, 2013.

Big Data: Storage, Sharing, and Security. CRC Press, 2016.

Guide to Attribute Based Access Control (ABAC) Definition and Considerations
(draft). NIST special publication 800, 162 (2013).

An Attribute-Based Fine-Grained Access Control Mechanism for HBase. In
International Conference on Database and Expert Systems Applications. Springer,
44-59.

Kafka: A Distributed Messaging System for Log Processing. In Proceedings of the
NetDB, 2011.

Distributed Denial of Service Attacks. In Smc 2000 conference proceedings. 2000
ieee international conference on systems, man and cybernetics. cybernetics evolving
to systems, humans, organizations, and their complex interactions’(cat. no. 0, Vol. 3.
IEEE, 2275-2280.

Graph-Based Privacy-Preserving Data Publication. In IEEE INFOCOM 2016-
The 35th Annual IEEE International Conference on Computer Communications,
INFOCOM’16.

MLIib: Machine Learning in Apache Spark. J. Mach. Learn. Res. (2016).

Linux Security Modules: General Security Support for the Linux Kernel. In
USENIX Security Symposium, USENIX Security’02.

An obligation model bridging access control policies and privacy policies.. In
SACMAT, Vol. 8. 133-142.

=
20,

3
=

ACSAC 2020, December 7-11, 2020, Austin, USA

The SQL++ Semi-Structured Data Model and Query Language: A Capabilities
Survey of SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR (2014).
Role-Based Access Control. Network Security Technology & Application (2007).
Security in Computing. Prentice Hall Professional Technical Reference, 2002.
SparkXS: Efficient Access Control for Intelligent and Large-Scale Streaming Data
Applications. In International Conference on Intelligent Environments, 2015.

Data-at-Rest Security for Spark. In 2016 IEEE International Conference on Big
Data (Big Data). IEEE, 1464-1473.

Big Data Security: The Evolution of Hadoop’s Security Model, 2013. https:
//www.infoq.com/articles/HadoopSecurityModel/.

Bringing Java’s Wild Native World under Control. ACM Transactions on Infor-
mation and System Security (TISSEC) (2013).

Hive-A Petabyte Scale Data Warehouse using Hadoop. In 2010 IEEE 26th interna-
tional conference on data engineering, ICDE’10.

GuardMR: Fine-Grained Security Policy Enforcement for MapReduce Systems.
In Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, ASIA CCS ’15.

Bigdatabench: A Big Data Benchmark Suite from Internet Services. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture,
HPCA’14.

MeDShare: Trust-Less Medical Data Sharing among Cloud Service Providers via
Blockchain. IEEE Access 5 (2017), 14757-14767.

Data Level Inference Detection in Database Systems. In Proceedings. 11th IEEE
Computer Security Foundations Workshop, CSFW’98.

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory
Cluster Computing. In Presented as part of the 9th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 12). 15-28.

Discretized Streams: Fault-Tolerant Streaming Computation at Scale. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP’13.

Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM (2016).
Statistical Privacy for Streaming Traffic. In NDSS.

SCOPE: Parallel Databases Meet MapReduce. The International Journal on Very
Large Data Bases, VLDB Journal’12 (2012).

A Secure Anti-Collusion Data Sharing Scheme for Dynamic Groups in the Cloud.
IEEE Transactions on parallel and distributed systems 27, 1 (2015), 40-50.

https://doi.org/10.1145/1807128.1807148
https://www.infoq.com/articles/HadoopSecurityModel/
https://www.infoq.com/articles/HadoopSecurityModel/

ACSAC 2020, December 7-11, 2020, Austin, USA

A EXPERIMENTAL TABLE AND FIGURES

SELECT ca_state, cd_gender, cd_marital_status, count(*) cnt1, min(cd_dep_count),
max(cd_dep_count), avg(cd_dep_count), cd_dep_employed_count, count(*) cnt2,
min(cd_dep_employed_count), max(cd_dep_employed_count),
avg(cd_dep_employed_count), cd_dep_college_count, count(*) cnt3,
min(cd_dep_college_count), max(cd_dep_college_count), avg(cd_dep_college_count)
FROM customer c, customer_address ca, customer_demographics
WHERE c.c_current_addr_sk = ca.ca_address_sk
AND cd_demo_sk = c.c_current_cdemo_sk
AND Exists (SELECT * FROM store_sales, date_dim WHERE c.c_customer_sk =
ss_customer_sk AND ss_sold_date_sk = d_date_sk AND d_year = 2002 AND d_goy < 4)
AND (Exists(SELECT * FROM web_sales, date_dim WHERE c.c_customer_sk =
ws_bill_customer_sk AND ws_sold_date_sk = d_date_sk AND d_year = 2002 AND d_goy
<4) OR Exists(SELECT * FROM catalog_sales, date_dim WHERE c.c_customer_sk =
cs_ship_customer_sk AND cs_sold_date_sk = d_date_sk AND d_year = 2002 AND d_qoy
<4))
GROUP BY ca_state, cd_gender, cd_marital_status, cd_dep_count,
cd_dep_employed_count, cd_dep_college_count
ORDER BY ca_state, cd_gender, cd_marital_status, cd_dep_count,
cd_dep_employed_count, cd_dep_college_count
LIMIT 100

Figure 10: The Query35 string.

A\=>1Project [0AS ca_state1750,0 AS cd_gender#1751, 0 AS cd_marital_status#1753, cntl#1700L, 'i
|avg(cdidepicoum))#1724, 0 AS cd_dep_employed_count#1754, cnt2#1701L, ...,

=> Project [ca_state#497, cd_gender#406, cd_marital_status#407, cnt1#1700L, ...,
avg(cd_dep_count))#1724, cd_dep_employed_count#412,
cnt2#1701L, ...,avg(cd_dep_employed_count)#3041, cd_dep_college_count#413, cnt3#1702L, ...]

=> Sort [ca_state#497, cd_gender#406, cd_marital_status#407, aggOrder#1730,
cd_dep_employed_count#412, cd_dep_college_count#413]

=> Aggregate [ca_state#497,...], [ca_state#497, cd_gender#406, cd_marital_status#407, count(1) AS
cnt1#1700L, ..., avg(cd_dep_count#411) AS avg(cd_dep_count)#1724, cd_dep_employed_count#412,
count(1) AS cnt2#1701L, avg(cd_dep_employed_count#412) AS avg(cd_dep_employed_count)#3041,
cd_dep_college_count#413, count(1) AS cnt3#1702L, ..., cd_dep_count#411 AS aggOrder#1730]

=>Filter ((... && ...) && (exists#1703 [c_customer_sk#422] && (exists#1704
[c_customer_sk#422] || exists#1705 [c_customer_sk#422])))

T => Project [..., ss_sales_price#876, ...]

=> Underlying tables Cincluding store_sales table)
T => Project [..., ws_sales_price#1150, ...] Three sub queries

. . . of Filter operator
=> Underlying tables (including web_sales table)

T:> Project [..., cs_sales_price#256, ...]

=> Underlying tables (including catalog_sales table)

=> Underlying tables (including customer_address and customer_demographics tables)

Figure 11: The original analyzed logical plan and secure log-
ical plan of Query35 (Figure 10).

Figure 10 provides Query35 string used in the case study for
SQL engine (Section 6.4.1). This query, which contains various data
processing purposes, aliases and sub queries, is complicated enough
for showing our assessment. Figure 11 shows its original analyzed
logical plan and secure logical plan. Figure 12 shows the results
about the Query35. The reader will find that some information is
omitted in the logical plans in Figure 11. The omitted information
cannot obscure the understanding of this assessment. And, it is easy
for the reader to find some direct correspondences between the
SQL string and its logical plan (e.g., the cd_dep_employed_count
corresponds to the cd_dep_employed_count in Figure 11.)

As shown in Figure 11, the two plans have a common part in-
cluding the “Sort” operator and its below operators. The “Project”
operator above the “Sort” operator belongs to the original logical
plan and another in dotted box belongs to the secure logical plan.
The original logical plan makes computation on several objects
while outputting these objects (e.g., cd_dep_employed_count ob-
ject, and one of DOP-C purposes on this object is designated by
the expression avg(cd_dep_employed_count#412) (Section 5.3)).

Tao Xue, et al.

¢y © ca_state, ¢, cd_gender, c3 cd_marital_status, ¢4: cntl,
cs: min(cd_dep_count), ¢s: max(cd_dep_count), c¢;: avg(cd_dep_count),
cg: cd_dep_employed_count, ¢9 : cnt2, co: min(cd_dep_employed_count),
cq1: max(cd_dep_employed_count), «¢qp: avg(cd_dep_employed_count),
cy3: cd_dep_college_count, cq4: cnt3, «c¢45: min(cd_dep_college_count),
cig: max(cd_dep_college_count), ¢y7: avg(cd_dep_college_count)
Note: The bold italics represent sensitive information. (¢4, ¢, c3, cg, €13)
The others are computation results.

C1|CofCs| C4 |C5|Ce|CrfCg| Cg |C10]|Cr1|Ci2|Ca3| Cas |Ci5|Cag6|Ca7
0f[0]0([1698/0|0|0Of0]1698 0| 0| O] O [1698[O] O
0fo]of1807}1|1|1f{ 01807 0| 0| O] O [1807{ 0] O
0[0]0([1782|2]|2|2[0]1782) 0| 0| 0| O [1782[0| O
(a) The results of Query 35 are got from 2GB data with sensitive information
directly deleted from these data.

ol|lo|o

Cy1|CofC3) C4 |C5[Ce[C7|Cs| Cg [C10|C11|C12|C13| Cia [Ci5]Ca6|C1r
ofojof 1 |ojojofo] 1 jJofJOofjO|]Of 1 [3]3
ofojof 1]ojojofo] 1 Jo|JOoOJO|Of 1 [5]5
ofojJof 1]ojojofo] 1 |3|3|3|]0f1f2]2
(b) The results of Query 35 are got from 2GB data with sensitive information
deleted by zero setting logic in secure logical plan.

Nl w

C1]CofCs3) C4 |Cs5[Cs[C7|Cs| Co [C10]C11|C12|C13| Cisa [Ci5]Ci6|C17
nll F[D|] 1 |0fojoj0O0] 1 [0]0O|JO] 3 113
nullfl F|D| 1 JofoJoJOof 1 [0o]JOfO|5] 1]5
nullfl F{D| 1 |Jofo]Oo|3| 1 [3]|3|3]|]2]1]2
(c) The results of Query 35 are got from 2GB data without access control
policy.

Njo|w
Nl |w

Figure 12: Three computation results about Query35.

This plan contains many aliases obviously exhibited in the for-
mat _ AS _ (e.g., avg(cd_dep_employed_count)#3041 is the alias
of computation expression avg(cd_dep_employed_count#412)).
Moreover, it includes three sub queries in the “Filter” operator.

The access control policy is that sensitive information in those ta-
bles accessed by Query35 cannot be seen. The corresponding objects
representing sensitive information in each table can be recognized
by initial abbreviation, e.g., ca_state object represents state infor-
mation in customer_address table; cd_gender represents gender
information in customer_demographics; ss_sales_price repre-
sents price information in store_sales.

Obviously, in the secure logical plan, all sensitive information is
prevented from direct disclosure by the zero setting logic (Section
5.5). The zero setting logic has the format “0 AS _”. For example,
the “0 AS cd_dep_employed_count#1754” indicates the value of the
cd_dep_employed_count object is set to zero). Meanwhile, compu-
tation results of some sensitive information are disclosed although
aliases are used on these results in the secure logical plan. For ex-
ample, the average of cd_dep_employed_count object is disclosed.
In addition, those three sub queries try to disclose sensitive infor-
mation (e.g., price information) to its “Filter” operator; however,
the sensitive information is not directly disclosed to a data user and
thus we don’t use zero setting logic to restrict this disclosing.

The computation results in Figure 12(b) are consistent with ones
in Figure 12(c) while outputted sensitive information is set to zero
in Figure 12(b). However, the computation results in Figure 12(a) are
obviously different from the ones in Figure 12(c) because directly
deleting sensitive information from data sources alters computation
results.

	Abstract
	1 Introduction
	2 BACKGROUND AND MOTIVATION
	2.1 Introduction to Apache Spark
	2.2 Motivation

	3 THREAT MODEL AND solution OVERVIEW
	3.1 Threat Model
	3.2 Solution Overview

	4 PURPOSE-AWARE ACCESS CONTROL
	4.1 The Purpose-Aware Access Control Model
	4.2 Purpose Analysis Algorithm

	5 PAAC Enforcement in GuardSpark++
	5.1 GuardSpark++ Architecture
	5.2 Data Object Recognition
	5.3 Purpose Analysis
	5.4 Compliance Checking
	5.5 Compliance Enforcement

	6 Experimental Results
	6.1 Settings
	6.2 Efficiency of GuardSpark++
	6.3 Policy Scalability
	6.4 Case Study

	7 SECURITY ANALYSIS and discussions
	8 RELATED WORK
	9 CONCLUSION
	Acknowledgments
	References
	A Experimental Table and Figures

