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Abstract—With the advancement of Internet of Things (IoT), a
large number of electronic devices are connected to the Internet.
These connected electronic devices acquire, transmit information
and respond to any received actions. In medical ecosystem, hospi-
tals can implement medical diagnosis with medical sensors, espe-
cially for remote auxiliary medical diagnosis. But, in this context,
patients privacy is paramount importance, and confidentiality of
medical data is crucial. Therefore, the main challenge ahead
is how to realize remote auxiliary medical diagnosis while pro-
tecting confidentiality of the medical data and ensuring patients
privacy. In this paper, based on somewhat homomorphic encryp-
tion (SHE) scheme addressed by Junfeng Fan and Frederik Ver-
cauteren (FV), we provide the first instance of a new efficient SHE
scheme for homomorphic evaluation over Single Instruction Mul-
tiple Data (SIMD). We also implement a new set of efficient SIMD
homomorphic comparison and division schemes. Based on these
findings, we implement efficient privacy-preserving and SIMD
homomorphic surf and multi-retina-image matching schemes. Of-
fered functionalities include SIMD homomorphic feature point
detection, multi-retina-image matching and lesion detection for
the encrypted retinal image of diabetic retinopathy. Finally, we
provide a proof-of-concept application implementation towards
remote auxiliary diagnosis systems for diabetes in order to show-
case the core security and privacy pillars of our solution. In the
meantime, our IoT system designed with lattice-based cryptogra-
phy preserves data confidentiality under quantum computation
and quantum computers.

Index Terms—Somewhat homomorphic encryption, Surf algo-
rithm, Internet of Things, Medical diagnosis.

I. INTRODUCTION

INTERNET of Things (IoT) [1] is a very large network con-
necting every electronic device all over the world, and this

emerging trend is currently changing the communication land-
scape. By connected house appliances, users enjoy convenient
and intelligent services of life [2]. Connected sensors, such as
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humidity sensors, temperature sensors, light sensors and so on,
can realize automatic and intelligent industrial manufacturing
and agricultural cultivation [3]. Sensors in the vehicles [4] can
sense status of vehicles and roads in real time. In hospitals,
doctors can utilize sensors to monitor patients in real time too
[5] [6]. Sensors can also be used for auxiliary disease diagnosis
and treatment remotely [7] [8] [9].

But, transmission, storage and utilization of the data ac-
quired from sensors of IoT involve in data confidentiality and
users privacy [10] [11] [12]. With the acquired data from sen-
sors in a house, the malicious attackers can control and take
advantage of house appliances, and even spy users life. Egre-
gious attacks can destroy industrial and agricultural produc-
tion, and so far as to threat users life in intelligent driving. For
industrial and agricultural users, commercial competitors can
fulfill attacks to sensors to destroy industrial and agricultural
production of their competitors. In the field of intelligent driv-
ing, once attackers acquire data of your vehicle sensors, they
can not only obtain driving states and tracks of your vehicle,
but also cause malicious traffic accident by controlling vehicle
sensors.

Especially, in the health and medical ecosystems, patients
health condition and medical information, which can only be
accessed by their attending physicians, are sensitive (e.g. Ac-
quired Immune Deficiency Syndrome (AIDS), Hepatitis, Car-
diopathy, Diabetes, etc.). The leak of sensitive health condition
and medical information would cause great distress and dis-
crimination against patients, and indeed affect their treatment,
work and life[13]. To protect data confidentiality and patients
privacy, we can utilize traditional encryption schemes to en-
crypt all of data acquired from medical sensors. Encrypted data
from the medical sensors is transmitted and stored in IoT.

Nonetheless, the traditional encryption schemes can not sup-
port direct computational operation for the encrypted data [14],
such as the Advanced Encryption Standard scheme (AES), the
Triple Data Encryption Algorithm (DEA), the Elliptic Curve
Integrated Encryption Scheme (ECIES), etc. [15] [16] [17].
After acquiring encrypted patients medical data by the med-
ical sensors, doctors decrypt the encrypted medical data, and
do with the decrypted medical data to make a diagnosis for
patients diseases. Another case is that doctors want to make
full use of a cloud server for the auxiliary diagnosis to reduce
their heavy workloads. When doctors use a cloud server to
perform auxiliary diagnosis with machine leaning algorithms,
a cloud server firstly decrypts the encrypted medical data ac-
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quired from medical sensors, and then utilizes the decrypted
medical data and machine learning algorithms to perform ef-
ficient auxiliary diagnosis directly. Neither of both cases pre-
serves data confidentiality from the medical sensors, because
the medical data is decrypted when performing medical diag-
nosis. Therefore, there is the possibility of breaching patients
privacy.

And all the time, the rapid development of quantum compu-
tation and computer heralds the advent of the era of quantum
computation [18], while traditional encryption schemes are not
quantum-resistant encryption schemes, such as Triple DEA,
ECIES, Paillier, etc. [19] [20]. In order to perform the auxiliary
diagnosis with encrypted data and machine learning schemes
via a cloud server, and protect users privacy at the era of quan-
tum computation, an efficient quantum-resistant homomorphic
encryption scheme is one of the best options.

Motivation & contributions: A cloud server has powerful
computation and storage capabilities. With a cloud server, doc-
tors can utilize medical data from sensors and machine learn-
ing algorithms to perform efficient auxiliary diagnosis to re-
duce their heavy workloads. Simultaneously, patients living in
the remote areas can also hold high levels of disease diag-
nosis. In order to preserve data confidentiality from medical
sensors and patients privacy, and avail of a cloud server to
complete auxiliary diagnosis with machine leaning algorithms
over encrypted medical data, we propose a secure and efficient
medical diagnosis system, which can carry out the following
functionalities: (1) High efficient and complex homomorphic
evaluation. Efficiency of encryption scheme is very important
for tiny appliance of IoT (e.g. fast encryption and decryption,
low storage and communication cost, efficient homomorphic
evaluation, etc.). Image processing and machine learning algo-
rithms require complex homomorphic evaluation, such as ho-
momorphic comparison and division over the encrypted data.
Our designed homomorphic encryption scheme supports small
encryption key and encrypted image size, low communication
cost, efficient and complex homomorphic evaluation. (2) Ho-
momorphic image processing and machine learning. In our
medical IoT system, all computations are performed with ho-
momorphic evaluation. A doctor can directly utilize a cloud
server to perform auxiliary medical diagnosis by homomorphic
image processing and machine learning. This greatly reduces
doctors workloads, and improves the diagnosis efficiency of
doctors and service capability of hospitals. (3) Quantum Re-
sistance. Quantum computation model makes many hard prob-
lems (in classical computation) used in cryptography not to be
hard. The quantum computer would render all widely used tra-
ditional encryption schemes insecure [21]. Our homomorphic
encryption scheme based on lattice is quantum resistance. All
of the medical data in our IoT system is also secure under the
quantum computation model and a quantum computer. Med-
ical data can be securely transmitted and stored in our IoT
system for a long time.

To realize above functionalities, we use somewhat homo-
morphic encryption (SHE) proposed by Junfeng Fan and Fred-
erik Vercauteren (FV) as the basic encryption scheme [22].
The FV scheme is based on ideal lattice (quantum resistance),
and has small public key. In the meantime, we employ Single

Instruction Multiple Data (SIMD) to pack multi-bits into a sin-
gle ciphertext, and perform parallel homomorphic evaluation.
Packing technology can compress ciphertext for transmission
and storage. Parallelism improves the efficiency of homomor-
phic evaluation. With the help of above optimized FV scheme,
we design the new efficient homomorphic comparison and di-
vision schemes. Homomorphic comparison scheme has low
communication cost between two parties. Utilizing above our
designed homomorphic schemes, a cloud server can implement
medical image processing (SIMD is very efficient for image
processing [23]) and machine learning about auxiliary medical
diagnosis over the encrypted medical data.

Our IoT system acquires patients retinal images of diabetic
retinopathy (DR) by the camera sensor connected to a Rasp-
berry Pi (RP) [24]. The acquired retinal images are encrypted
with our homomorphic encryption in a RP. The encrypted reti-
nal images are transmitted in our IoT system, and stored in
a cloud server, which performs efficient auxiliary diabetes di-
agnosis. We proved that our IoT system is the known plain-
text attack (KPA) [25] and the ciphertext only attack (COA)
[26] security in honest-but-curious [25]. KPA security is an
attack, in which an attacker has samples of both the plain-
text and corresponding ciphertext. An attacker conducts an
analysis with samples of both the plaintext and corresponding
ciphertext to get the secret key used to encrypt and decrypt the
information. COA security is an attack, in which an attacker
has only the knowledge of ciphertext. An attacker conducts
an analysis ciphertext to get the secret key used to encrypt
and decrypt the information. The honest-but-curious model
is a secure computation (or a protocol), where attackers are
restricted to follow all of the computation steps (or a protocol),
but after implementing computation steps (or a protocol), they
may analyze the data they have received to try to recover
inputs. In our IoT system, encrypted retinal images of DR
are just like in a black box. Homomorphic image processing
and machine learning algorithms can not reveal image content
and diagnostic results. A good balance about storage overhead,
communication cost, computational efficiency and privacy pro-
tection is achieved by our IoT system.

The rest of this paper is organized as follows: Sec. II
presents our system model & threat model. Then, we provide
security and privacy requirements of our system in Sec. III.
In Sec. IV, we describe preliminaries and related work before
providing system architecture in Sec. V. Then, in Sec. VI,
the detailed system scheme is offered. Next, We give out the
detailed security and privacy analysis of our system in Sec.
VII, and describe system performance evaluation in Sec. VIII.
Finally, we provide conclusion of the paper in Sec. XI.

II. SYSTEM MODEL & THREAT MODEL

In this section, we present our system model & threat model.

A. System Model

Our IoT system implements privacy-preserving auxiliary di-
abetes diagnosis with sensors as showed in Fig. 1. Our system
model includes the following constituent elements:



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2936532, IEEE Internet of
Things Journal

3

Fig. 1. System model-Homomorphic diabetes diagnosis over the encrypted retinal image of diabetic retinopathy.

Patient (Pi) and Sensor (Si): Pi is a potential diabetic
patient. Camera (Raspberry Pi Noir Camera V2), a handheld
condensing lens and RP constitute a sensor (Si), which ac-
quires patients retinal images of DR [27] and encrypt them.

Cloud Server (CS): CS implements data storage, homo-
morphic retinal image processing and machine learning over
the encrypted retinal images of DR. Data storage includes the
encrypted retinal images of DR, the encrypted training dataset
(the retinal images of DR), the intermediate and final homo-
morphic evaluation results about the retinal image process-
ing of DR and machine learning over the encrypted training
dataset, the trained machine leaning model, the classification
of retinal images of DR and doctors final diagnostic results.
Homomorphic retinal image processing of DR includes homo-
morphic feature extraction and feature points matching over
the encrypted retinal images of DR. Homomorphic machine
learning includes homomorphic machine learning model train-
ing and the retinal image classification of DR with the trained
machine learning model.

Hospital (H) and Doctor (Di): H has a certificate authority
(CA) center (in hospital’s server group), which issues digital
certificates to certificate ownership of public key. Si makes use
of certificated public key to encrypt retinal images of DR. Di

makes final diagnosis based on acquired retinal images of DR
and classification results with machine learning model by CS.
Doctors final diagnostic results are encrypted and uploaded to
CS by H. Pi receives the final diagnostic result from H.

B. Threat Model

Our IoT system preserves confidentiality of the retinal im-
ages of DR and patients privacy [28]. In our threat model, we
mainly consider the following threats:

1) Threats to confidentiality of the retinal images of DR.
Threats to confidentiality of the retinal images of DR mainly
comes from the security of our SIMD homomorphic encryp-
tion scheme, encrypted data transmission, storage and process-
ing of the encrypted retinal images of DR in our IoT system.
Malicious attackers can use the quantum computation model
(or a quantum computer) to analysis and attack the encryp-
tion scheme. In the process of encrypted data transmission,
a malicious attacker can eavesdrop and obtain the encrypted
data. A portable device (a sensor in our IoT system), doctors
computers and a cloud server store the encrypted data and
homomorphic evaluation results over the encrypted data. A
cloud service provider, a portable device provider, a computer

provider and a malicious attacker can obtain the encrypted
data.

2) Cloud server is honest-but-curious. CS can also keep de-
tailed record of each operation and the result of each operation
performed by our schemes in our IoT system. CS may want to
recover the plaintext of the encrypted data, and reveal content
of images of DR and the final diagnostic results. Especially,
in the honest-but-curious model [25], CS can correctly per-
form all the schemes in our IoT system. In the meanwhile, CS
takes advantage of all the operating recordings and acquired
encrypted data to perform analysis for the benefit of a cloud
service provider.

III. SECURITY AND PRIVACY REQUIREMENTS

In this section, we provide the security and privacy require-
ments of our IoT system for the data confidentiality and pa-
tients privacy. The security and privacy requirements include
the following aspects:

Data Confidentiality (DC): In our IoT system, patients reti-
nal images of DR are transmitted and stored at different de-
vices (CS, Si, H’s servers, and doctors computers). The en-
crypted retinal images of DR for transmission and storage can
not be broken by the quantum computation model (or a quan-
tum computer), because our IoT system uses our quantum-
resistant homomorphic encryption scheme. Therefore, the en-
crypted data stored in CS, H’s servers, Si and doctors com-
puters can not reveal contents of retinal images of DR for
patients.

Homomorphic retinal image processing of DR in our IoT
system can not reveal contents of retinal images of DR, includ-
ing the pixel value, the feature point location and the extracted
feature vectors. In the meantime, homomorphic machine learn-
ing can not reveal the classification results of retinal images of
DR. The reason of getting above results is that image process-
ing and machine learning are implemented with homomorphic
evaluation based on ideal lattice over encrypted data. The hos-
pital internal data interaction makes use of authentic & secure
channel between the H’s servers and doctors computers [29]
[30], so it can not reveal contents of retinal images of DR.

Because our SIMD SHE scheme is malleable [31] [32], tam-
per attacks about encrypted data transmission and storage are
not considered for security in our IoT system.

Patients Privacy (PP): Retinal images of DR contain pa-
tients medical information. In our IoT system, transmission
and storage of the encrypted medical images can not reveal
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contents of the retinal images of DR. During homomorphic im-
age processing and image classification with machine learning,
the CS and H’s servers can not reveal any information of the
retinal images of DR too. During the auxiliary diagnosis with
a Si, a CS and H’s servers, the retinal images of DR stored in
a Si, a CS and H’s servers are encrypted by our homomorphic
encryption. Any information of the retinal images of DR can
not be revealed by a Si, a CS and H’s servers. For doctors
final diagnosis, H’s servers and doctors computers preserve
security of diagnostic result by authentic & secure channel [29]
[30]. Patients privacy is protected during hospital’s internal
data interaction. Hence, patients privacy is protected in the
whole diagnostic processing.

IV. PRELIMINARIES AND RELATED WORK

In this section, we present somewhat homomorphic encryp-
tion (SHE), Speed up Robust Features (Surf ) (feature extrac-
tion of a medical image) and machine learning schemes. These
schemes are basis to construct our efficient IoT system.

A. SHE Scheme

Homomorphic encryption includes partially homomorphic
encryption (PHE), SHE and fully homomorphic encryption
(FHE) schemes. PHE only supports multiplicative homomor-
phic evaluation (eg. RSA [31]) or additive homomorphic evalu-
ation (eg. Paillier [32]). To construct a FHE scheme, we firstly
construct a SHE scheme, which supports a certain number
of additive and multiplicative homomorphic evaluation. When
adding a bootstrapping operation to a SHE scheme, we can
convert it into a FHE scheme. Based on ideal lattice, Gentry
proposes the first FHE scheme [33] [34] in 2009. A FHE
scheme supports any times of additive and multiplicative ho-
momorphic evaluation simultaneously. The FHE scheme from
ring learning with errors (Rlwe) [35-42] is more efficient than
the FHE scheme from learning with errors (Lwe). But, a FHE
scheme with bootstrapping is inefficient.

A SHE scheme based on Rlwe is more efficient than a FHE
scheme based on Lwe. In the scheme [41], authors compare
SHE FV scheme [22] with Yet Another Somewhat Homomor-
phic Encryption (YASHE) scheme [42]. In the scheme [43],
a SHE scheme (BGV) presented by Brakerski, Gentry and
Vaikuntanathan [37] is compared with YASHE scheme [42].
The SHE FV scheme has smaller ciphertexts than the BGV
scheme. We choose SHE FV scheme as our basic encryption
scheme. Let Ẽ be the SHE FV scheme, and mi(i = 1, 2) be the
plaintext. For c1 and c2 (c1 = Ẽ(m1) and c2 = Ẽ(m2)), SHE
FV scheme can get the following results: cAdd = [c1 + c2]q =
Ẽ(m1+m2) and cMult = [c1 ·c2]q = Ẽ(m1 ·m2). The scheme
details are introduced in Supplement A.

B. Surf Scheme

Bay H, et al. [44] present surf scheme, which uses the Hes-
sian matrix-based measure for the detector and a distribution
based descriptor. Hessian matrix utilizing box filters simpli-
fies computation of feature point detection. Distribution-based

description of feature point also simplifies computation of de-
scriptor. Surf scheme can realize real-time image feature de-
tection, and becomes more efficient than scale invariant feature
transform (Sift) algorithm [45] [46] [47]. The scheme details
are introduced in Supplement B. The main computation steps
of surf scheme are as follows:

Conversion from Grey Image to Integral Image: We
firstly converse grey image (Ĩ) of image I to integral image.
The integral image of Ĩ in the pixel grid (Ω) is computed as
follows: ∀(x, y) (pixel of Ĩ)∈ Ω, the corresponding integral
image pixel is:

˜̃I(x, y) =
∑

0≤i≤x

∑
0≤j≤y

Ĩ(x, y).

Hessian Matrix Construction and Eigenvalue Compu-
tation: Making use of box filters (BF), we can complete a
simplified approximate computing of Hessian matrix: The con-
volution of BF with the discrete image I can be computed with
the integral image ˜̃I: ∀(x, y) ∈ Ω,

BF ∗ I(x, y) = ˜̃I(x− a, y − c) + ˜̃I(x− b− 1, y − d− 1)

− ˜̃I(x− a, y − d− 1)− ˜̃I(x− b− 1, y − c).

The first-order partial derivative computing can be approx-
imately completed with BF at different scales (L):

BFLx = (BF[−˜̀,−1]×[−˜̀,˜̀] −BF[1,˜̀]×[−˜̀,˜̀]) ∗ Ĩ ,
BFLy = (BF[−˜̀,˜̀]×[−˜̀,−1] −BF[−˜̀,˜̀]×[1,˜̀]) ∗ Ĩ ,

where ˜̀(L) ∈ N .
For the multi-scale computing, the second-order partial

derivative computing can be approximately completed with
BF at different L:

BFLxx = (BFT1
− 3BFT2

) ∗ Ĩ ,
BFLyy = (BFT3

− 3BFT4
) ∗ Ĩ ,

BFLxy = (BFT5
+BFT6

−BFT7
−BFT8

) ∗ Ĩ ,

where Ti(i = 1, 2, · · · , 8) is a rectangular domain. Finally, we
get determinant approximation of Hessian matrix:

det(Happrox) = BFxxBFyy − (wBFxy)2.

In general, we let w = 0.9.
Construction of Gaussian Pyramid and Scalar Space: We

make use of Gaussian pyramid to construct the scalar space.
Gaussian pyramid is divided into different octaves, which are
divided into a lot of levels. Different octaves have the same
image size. But, template sizes of BF are increased gradually.
Different levels of a octave have the same filter, but fuzziness
is different.

Feature Point Detection: After constructing scale space
with BF, we can complete feature point detection as follows:

1) Filtration of feature point. In order to detect saddle points,
we utilize scale-normalized determinant of Hessian matrix to
complete it as follows:

DoHL(Ĩ) = (BFxxBFyy − (ωBFLxy)2)/L4,

where L = 2oi+ 1, ω = 0.912, and o is the octave. Parameter
L and ω are separately used for keeping scale invariance and
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balancing the expression of the determinant of Hessian matrix
by BF.

2) Feature point selection. We can use 3×3 filters. There are
9 pixel points in each scalar level. With the adjacent upper and
lower layers, each pixel point compares with 26 pixel points.
Finally, we obtain key points of image. Surf algorithm can set
the threshold tH to eliminate noise perturbation.

3) Refinement of feature point. For a key point X(x0, y0, L0)
in the box space, the refined result is X = X0 + ζ, where
ζ = (ζx, ζy, ζL)T = −H−1

0 d0, d0 is the discrete gradient, H0

is the discrete Hessian matrix of DoHL(Ĩ). d0 and H0 can
be computed in the box space.

Feature Point Description: To extract descriptor of a fea-
ture point, a square region centred around a feature point is
constructed. This region is oriented along the orientation of
a feature point, and is divided into 4 × 4 subregions (Ri,j).
There are 4 values in each subregion. Finally, a 64 dimensional
vector µk = (µk(i, j))1<i,j<4 is obtained. This is descriptor
of a feature point.

C. Machine Learning Scheme

S = {(I(1), I(2), · · · , I(M)} is the database for the retinal
images of DR. a(1)

I(i)
, a

(2)

I(i)
, · · · , a(Ni)

I(i)
is the feature set for the

I(i)-th retinal image of DR. Because pairwise matching for
retinal images of DR is inefficient, our application implements
multi-image matching scheme called multi-image matching via
density-based clustering [48] to classify the retinal images of
DR. The core part of multi-image matching via density-based
clustering is Quick-Match scheme. It is an efficient data clus-
tering scheme with linear time complexity.

Quick-Match scheme firstly collects and puts all the fea-
ture points of retinal images of DR (a(1)

I(i)
, a

(2)

I(i)
, · · · , a(Ni)

I(i)
, i ∈

{1, 2, · · · ,M}) into a tree. Then, the constructed tree is broken
into different clusters, which represent different multi-image
matching. We can define a density function DF . Based on den-
sity estimation, we can construct the feature point tree. For the
given feature point a(e)

I(s)
, the parent node from another image

in the tree can be computed by Parent function. Finally, we
can break the constructed tree into clusters, which correspond
to the multi-image matching. The algorithm is terminated until
all the edges are considered. The scheme details are introduced
in Supplement C.

V. SYSTEM ARCHITECTURE

In this section, we provide our IoT system architecture in-
cluding a high level overview. Our IoT system architecture
contains the following three modules as showed in Fig. 2:
encryption scheme, application and management over the en-
crypted retinal images of DR.

A. High Level Overview

Our IoT system mainly performs privacy-preserving auxil-
iary medical diagnosis through image processing and machine
leaning schemes with a cloud service. The execution process
is as follows:

1) System starts and calls for the camera connected to RP to
acquire patients retinal images of DR. RP calls for the encryp-
tion algorithm, performs encryption operation and uploads the
encrypted patients retinal images of DR.

2) CS performs auxiliary medical diagnosis based on ho-
momorphic image processing and machine learning schemes.
After finishing medical diagnosis, CS stores encrypted diag-
nostic results and send them to Di.

3) Di makes the final medical diagnosis based on the de-
crypted retinal images of DR and classification results returned
by CS. Then, Di sends the final encrypted diagnostic results
to H’s servers and CS.

4) H returns each final encrypted diagnostic result to Pi.
In our IoT system, the acquired patients retinal images of

DR are encrypted with our efficient and quantum resistant
SIMD SHE scheme. Image processing and machine learning
schemes of diagnosis both perform homomorphic evaluation.
The final diagnostic results are also encrypted. No information
about patients is revealed during the entire diagnostic process.
System preserves data confidentiality and patients privacy.

B. System Architecture
Key Generation and Management (KGM): H has a server

group to perform key generation and distribution, certification
and management. H’s servers generate public key and private
key for data encryption, certification and decryption. H’s CA
centre distributes digital certificates for public key, which is
used for Si to execute our SIMD SHE scheme. We show this
as process 1© in our IoT system architecture. At the same
time, H’s servers and doctors computers build secure & au-
thenticated channel for secure data and doctors final diagnosis
transmission. We show this as process 6© in our IoT system
architecture. Such secure & authenticated channel is easy to
implement by post-quantum key exchange protocol [49] [50].
This is beyond the scope of our paper.

Medical Image Acquisition and Encryption (MIAE): In
our IoT system, H utilizes Si and lens to acquire patients
retinal images of DR. We show this as process 2© in our IoT
system architecture. Si holds the public key distributed by H
with certificated digital certificate. The acquired retinal images
are encrypted by Si with our SIMD SHE scheme and the public
key. Then, the encrypted retinal images are transmitted in IoT,
and are uploaded to CS. Process 3© shows this operation.

Medical Image Processing (MIP) and Machine Learning:
After Si uploads data, CS performs homomorphic feature de-
tection over the encrypted retinal images of DR. This operation
is completed with our homomorphic surf scheme. Process 4©
shows this operation. Then, CS performs homomorphic ma-
chine leaning with the encrypted database (data encrypted with
the public key hold by Si) and the data uploaded by Si. Finally,
CS implements homomorphic retinal image classification of
DR. Process 5© shows this operation. The extracted feature
over each retinal image of DR is encrypted, and the retinal
image classification result of DR is also encrypted.

Medical Diagnosis (MD): The encrypted retinal images of
DR and their classification results are stored in CS. Di down-
loads the encrypted retinal images of DR and their classifi-
cation results, and decrypt them. Di makes a diagnosis with
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Fig. 2. System model-Homomorphic diabetes diagnosis over the encrypted diabetic retinopathy image.

decrypted retinal images of DR, and compare his (or her) diag-
nostic results with decrypted retinal image classification results
of DR. In the end, Di gives the final diagnostic results.

Result Feedback of Medical Diagnosis (RFMD): After Di

makes the final diagnosis, Di encrypts diagnostic results and
uploads them to H’s servers. H uploads the final diagnostic
results to CS, and returns each final diagnostic result to Pi.
Process 7© and Process 8© show these operations.

VI. SYSTEM SCHEME-PRIVACY-PRESERVING SERVICES

In this section, we firstly present our encoding and SIMD
SHE schemes. Then, our SIMD homomorphic comparison and
division schemes are constructed through our encoding and
SIMD SHE schemes. Ultimately, we present our SIMD homo-
morphic surf, clustering and multi-image matching schemes.

A. Our Encoding Scheme

Our IoT system refers to computing about fixed point real
number. In general, homomorphic encryption based on Rlwe
only supports integer and polynomial computing. In order to
implement our IoT system, we need to encode fixed point real
number into polynomial under certain accuracy and reliability.

We convert a fixed point real number into an unsigned in-
teger as follows: We multiply a fix point real number with a
larger factor firstly. Then, all of fixed point real numbers are
converted into integers. Each integer is expressed with com-
plement. All of integers are converted into unsigned integers.
Making use of encoding in GF (2<) field, it is conventional to
express elements of GF (2<) as binary numbers. Usually, let
GF (2<) = GF (28) for image processing [21], we can convert
unsigned integer into a polynomial, which is

∑`−1
i=0 mix

i =
(m0, m1, · · · , m`−1), where mi ∈ GF (2). Finally, the fixed
point real number can be represented as polynomial.

B. Our SIMD SHE FV

SIMD technology [37] can implement the same operation
on ` inputs parasynchronously. Namely, in our SIMD SHE
scheme, SIMD technology can perform homomorphic evalua-
tion for `-bits plaintext simultaneously. For Φd(x) = Π`

iFi(x)

mod 2, we can get Z2[x]/(Φd(X)) ∼= Z2[x]/Fi(x) ⊗
Z2[x]/Fi(x) · · ·⊗Z2[x]/F`−1(x), and then pack ` independent
messages (m0, · · · ,m`−1) into the unique element (one
ciphertext R2 = Z2[x]/(Φd(X))). This greatly improve the
efficiency of homomorphic evaluation. c1 is the ciphertext of
plaintext (m0, · · · ,m`−1), and c2 is the ciphertext of plaintext
(m′0, · · · ,m′`−1). Finally, we can perform the homomorphic
evaluation: c1 + c2 = E(m0 + m′0, · · · ,m`−1 + m′`−1),
c1 · c2 = E(m0 ·m′0, · · · ,m`−1 ·m′`−1). E is our SIMD SHE
FV.

C. Our Homomorphic Comparison Scheme (HCS)

For homomorphic image processing and machine learning
(feature detection and description, feature point matching,
clustering algorithm, etc.), homomorphic comparison over the
encrypted data is a basic operation.

We utilize a comparator in digital system to perform com-
parison of two numbers (x, y). The comparator is a logic cir-
cuit for comparison on two numbers (x, y). The computational
results are divided into two conditions. Namely, G(x > y)
or M(x < y). With the help of single-bit digit-comparator,
we can construct parallel multi-bit digital comparator. Table I
shows single-bit digit-comparator over the encrypted data.

TABLE I
SINGLE-BIT DIGIT-COMPARATOR OVER THE ENCRYPTED DATA

Input Output
E(x0) E(y0) E(Gx0>y0 ) E(Mx0<y0 )
E(0) E(0) E(0) E(0)
E(0) E(1) E(0) E(1)
E(1) E(0) E(1) E(0)
E(1) E(1) E(0) E(0)

According to our encoding scheme in GF (2<), user en-
codes two one-bit integer x0 and y0 as polynomials. Then, x0

and y0 is encrypted, and uploaded to CS. CS performs homo-
morphic comparison with comparator: E(G) = E[x0(1− y0)]
and E(M) = E[(1−x0)y0]. Then, CS returns E(G) or E(M)
to the H’s server, which decrypts E(G) or E(M). The H’s
server returns G = 1 or M = 1 to CS. Finally, CS gets x > y
or x < y.



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2936532, IEEE Internet of
Things Journal

7

Algorithm 1 SIMD homomorphic comparison algorithm.
Input:

x, y and public key pk , where x = x1x2 · · ·xn and y =
y1y2 · · · yn.

Output:
x > y or x < y.

1: x and y are encrypted with E. Base on our encoding
and packing methods, E(x) = E(x1, x2, · · · , xn) and
E(y) = E(y1, y2, · · · , yn). E(x) and E(y) are uploaded
to CS.

2: CS computes E(M) and E(G) by SIMD operation, where
E(G) = E[x1(1 − y1), · · · , xn(1 − yn)] and E(M) =
E[(1− x1)y1, · · · , (1− xn)yn].

3: CS call for n single-bit digital comparators in parallelism.
Then, CS return E(M) or E(G) to H’s server.

4: The H’s server decrypts E(G) or E(M).
5: return x > y or x < y.

Two fixed real numbers x and y are encoded as polynomials,
where the coefficients of polynomials are in GF (2). Based on
above packing technology, we can pack x1, x2, · · · , xn and
y1, y2, · · · , yn into E(x) and E(y). Using SIMD technology,
we implement homomorphic comparison over the encrypted
data. Algorithm 1 gives our detailed SIMD homomorphic com-
parison algorithm.

In our homomorphic comparison algorithm, G = 1 or M =
1 stand for x > y or x < y, respectively. The H’s server
returns G = 1 or M = 1 to CS. Finally, CS gets x > y or
x < y.

D. Our Homomorphic Division Scheme (HDS)

For homomorphic image processing and machine learning,
encrypted data division is another key computation. Homo-
morphic encryption does not support homomorphic division
directly. We can transform division into addition and multi-
plication, and then perform additive and multiplicative homo-
morphic evaluation over the encrypted data. In the following,
we provide the detailed Repeated-squaring and Conversion
algorithms for HDS.

For two positive integers a and b, we can denote them as
polynomial (a(x) and b(x)) by above-mentioned encoding
scheme. E is our SIMD SHE FV scheme. The corresponding
ciphertexts are E(a(x)) and E(b(x)) respectively.

Based on Cook et al. scheme [51], we can compute a
b ap-

proximatively. For two positive integers a and b, we can com-
pute a · 1

b . 1
b can be computed approximatively as follows:

Let u = 1 − ( b2j )(u ∈ (0, 1
2 )). With help of Taylor series

expansion and approximation, we can get 1
(1−u) ≈ Σn−1

i=0 u
i.

Namely, 1
b ≈ 2−j(Σn−1

i=0 u
i).

HDS (E(a(x)
b(x) )) includes the following four algorithms:

SHE.Enc, SHE.Add, homomorphic Repeated-squaring and
Conversion algorithms. SHE.Enc and SHE.Add algorithms
are the same as in our SIMD SHE FV scheme. Algorithm
2 and algorithm 3 present homomorphic Repeated-squaring
and Conversion algorithms in details.

Algorithm 2 Homomorphic Repeated-squaring algorithm.
Input:

E(b(x)) and n.
Output:

[E(b(x))]n mod Φ(x);
1: Let n = (kr−1 · · · ki · · · k0)2 be the binary representation

of n.
2: Compute E(b(x)) mod Φ(x), [E(b(x))]2 mod Φ(x), · · · ,

[E(b(x))]2
i

mod Φ(x), · · · , [E(b(x))]2
blog2nc

mod Φ(x).
3: Compute (E(b(x)))k0 mod Φ(x), [E(b(x))]2k1 mod Φ(x

), · · · , [E(b(x))]kblog2nc2
blog2nc

mod Φ(x).
4: Compute (E(b(x)))k0 mod Φ(x)×[E(b(x))]2k1 mod Φ(
x)×· · ·×[E(b(x))]kblog2nc2

blog2nc
mod Φ(x).

5: return [E(b(x))]n mod Φ(x).

In order to computing [E(b(x))]n mod Φ(x), we represent
n as a sum of power of 2 with the binary representation, that
is n = (kblog2nc · · · k0)2, where ki ∈ {0, 1}. Namely, n =∑blog2nc
i=0 ki2

i. Then, we perform the following computation:
[E(b(x))]n mod Φ(x) = [E(b(x))]k0 × [E(b(x))]2k1 ×
[E(b(x))]4k2 · · ·×[E(b(x))]kblog2nc2

blog2nc
mod Φ(x). We can

prepare a list of basics: E(b(x)) mod Φ(x), [E(b(x))]2 mod

Φ(x), · · · , [E(b(x) )]2
i

mod Φ(x), · · · , [E(b(x))]2
blog2nc

mod
Φ(x). The basic ([E(b(x))]2

i

mod Φ(x)) can be computed
as (((E(b(x)))2)2 · · · )2 mod Φ(x). Finally, we can compute
[E(b(x))]n mod Φ(x) with blog2nc+h(n)−1 multiplications,
where h(n) is the number of one-bit for the binary
representation of n.

Based on homomorphic Repeated-squaring and SHE.Add
algorithms, we can compute E(ui) and Σn−1

i=0 E(ui). With the
help of homomorphic Conversion algorithm, we can compute
E(a) · E( 1

b ) = E(a · 1
b ).

Algorithm 3 Homomorphic Conversion algorithm.
Input:

E(a), E(b) and evk(= γ), where a = a(x) and b = b(x).
Output:

E(ab ).
1: For small enough u = (1− b

2j ), where j is the number of
bits in b.

2: Call for the homomorphic Repeated-squaring algorithm to
compute [E(2j − b)]i, where i = 0, · · · , n− 1.

3: Compute E(ab ) = E(a)
∑n−1
i=0 E

i((2j − b))(2j)i, where
i = 0, · · · , n− 1.

4: Compute E(b)E(ab ).
5: Compare E(b)E(ab ) to E(a) by HCS algorithm.
6: return E(ab ).

E. Our Homomorphic Surf Scheme

By means of our SIMD SHE FV, HCS and HDS schemes,
we can implement efficient homomorphic feature point de-
tection with surf scheme over each encrypted retinal image
of DR. We provide the detailed description for key steps of
homomorphic surf scheme as follows:
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Homomorphic Integral Image: Firstly, each retinal image
of DR is partitioned into Γ̃2 blocks and scrambled [52]. Then,
we converse a color image to a grey image and a integral
image finally. We can easily get the grey image of I as follows:
E[Gray1(x, y)] = E[R(x, y)], E[Gray2(x, y)] = E[G(x, y)]
and E[Gray3(x, y)] = E[B(x, y)], where R(x, y) is the red
component value of I(x, y), G(x, y) is the green component
value of I(x, y), and B(x, y) is the blue component value of
I(x, y). In the encrypted domain, we can get the encrypted
grey image of I.

Then, we can converse the encrypted grey image to the
encrypted integral image by additive and multiplicative homo-
morphic evaluation: E( ˜̃I(x, y)) =

∑
0≤i≤x

∑
0≤j≤y E(Ĩ(x, y)).

Homomorphic evaluation of Hessian Matrix Approx-
imation: We can get determinant approximation of Hessian
matrix by additive and multiplicative homomorphic evaluation:
E(det(Happrox)) = E(BFxx)E(BFyy) − [E(wBFxy))]2,
where w = 0.9. The second-order partial derivative computing
can be approximately completed as follows:

E(BFLxx) =E(BFT1
∗ Ĩ)− E((3BFT2

) ∗ Ĩ),

E(BFLyy) =E(BFT3
∗ Ĩ)− E((3BFT4

) ∗ Ĩ),

E(BFLxy) =E(BFT5
∗ Ĩ) + E(BFT6

∗ Ĩ)

− E(BFT7
∗ Ĩ)− E(BFT8

∗ Ĩ),

where Ti is the rectangular domain as the original surf scheme.
For a rectangular domain D̃ = [a, b] × [c, d] ⊂ Ω and BF

function in two dimension space, the convolution of encrypted
BF with the encrypted discrete image I can be computed with
the encrypted integral image E( ˜̃I): ∀(x, y) ∈ Ω,

E(BF ∗ I(x, y))

= E( ˜̃I(x− a, y − c)) + E( ˜̃I(x− b− 1, y − d− 1))

− E( ˜̃I(x− a, y − d− 1))− E( ˜̃I(x− b− 1, y − c)).

Finally, we get determinant approximation of Hessian ma-
trix by additive and multiplicative homomorphic evaluation.

Homomorphic feature point detection: Utilizing the dif-
ferent sizes BF, we can construct Gaussian pyramid and scalar
space in the encrypted domain. After constructing scale space
with BF, we can complete homomorphic feature point detec-
tion. The main homomorphic evaluation includes the following
steps:

(1) Homomorphic filtration of feature point. We can use
homomorphic scale-normalized determinant of Hessian matrix
to implement it easily.

E[DoHL(Ĩ)] = (E[BFxx]E[BFyy]− E[(ωBFLxy)2])/E(L4),

where ω = 0.912, L(= 2oi+ 1) is scale, and o is octave. By
homomorphic integral image, we can compute E[DoHL(Ĩ)]
with additive and multiplicative homomorphic evaluation for
each point in the box space.

(2) Homomorphic feature point selection. We can use 3×3
filters. There are 9 pixel points in every scalar level. With
the adjacent upper and lower layers, each pixel point com-
pares with 26 pixel points. We can get DoHL(Ĩ) > tH with

our SIMD HCS scheme, where tH is the pre-set threshold to
eliminate noise perturbation.

(3) Homomorphic refinement of feature point. For the fea-
ture point X , the refined result is E(X) = E(X0) + E(ζ),
where ζ = (ζx, ζy, ζL)T = −H−1

0 d0, d0 is the discrete gra-
dient, H0 is the discrete Hessian of DoHL(Ĩ). Utilizing a
3× 3× 3 centred neighborhood, E(d0) and E(H0) with scale
(L0) and location (E[(x0, y0)]) can be computed with homo-
morphic evaluation in the box space as follows:

E(d0) =

 E(dx)
E(dy)
E(dL)

,
E(H0) =

 E(Hxx) E(Hxy) E(HxL)
E(Hxy) E(Hyy) E(HyL)
E(HxL) E(HyL) E(HLL)

,
where E[dx(X0)], E[dx(Y0)], E[dL(X0)], E[Hxx(X0)],
E[Hxy(X0)], E[HxL(X0)] and E[HLL(X0)] are computed
through homomorphic additive, multiplicative and division
evaluation.

When E(ζx), E(ζy) and E(ζL) meet up with max((ζx)2,

(ζy)2, (ζL)2

2 ) < p2, where E(p) = E(2o−1), the refined
feature point is reliable. Otherwise, the refined feature point
E(X) = E(X0) + E(ζ) is not in the neighbourhood of
E(X). max((ζx)2, (ζy)2, (ζL)2

2 ) < p2 can be computed by
our SIMD HCS scheme.

Feature Point Description: We can compute the encrypted
weighted gradient of a feature point E[(x, y)] with our
SIMD SHE FV and HCS schemes as follows: E[φk(x, y)] =
E[(BFLx , BF

L
y )T ∗ I(x, y)] ·E[G1(x−xk2σk

, y−yk2σk
)]. Sum of all

the weighted gradients in circular neighbourhood can be com-
puted as follows: E[Φk(θ)] =

∑
(x,y)∈B6σk

(xk,yk)E[φk(x, y)]·
E[BF (x, y)[θ−π6 ,θ+

π
6 ](θ̃φ)], where θ̃φ(∈ [−π, π)) denotes the

angle between φk(x, y) and x-axis. Then, the orientation of
feature point is computed as follows: E(θk) = E(θ̃Φk(θ∗)),
where θ∗ ∈ argmax‖Φk(θ)‖. argmax‖Φk(θ)‖ is computed
via our SIMD HCS scheme. Finally, we get the encrypted
main direction of each feature point.

The encrypted weighted gradient at point E[(u, v)] can be
computed as follows:[

E[dx(u, v)]
E[dy(u, v)]

]
:= E(R−θk)

[
E[BFLkx ]
E[BFLky ]

]
×

E[Ĩ(X,Y )]× E[G1(u/3.3, v/3.3)],

where [
x
y

]
−
[
xk
yk

]
= σkRθk

[
u
v

]
,

Rθk =

[
cos(θk),−sin(θk)
sin(θk), cos(θk)

]
.

We can directly compute E[cos(θk)] and E[sin(θk)] via ho-
momorphic evaluation. In this way, there are 4 values in each
subregion:

E[µk(i, j)] =


∑

(u,v)∈Ri,j E[dx(u, v)]∑
(u,v)∈Ri,j E[dy(u, v)]∑

(u,v)∈Ri,j E[|dx(u, v)|]∑
(u,v)∈Ri,j E[|dy(u, v)|]

.
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Finally, the encrypted vector E(µk) = E[(µk(i, j))1<i,j<4] is
obtained. This is the descriptor of a feature point.

F. Homomorphic Diabetic Retinopathy Detection

For surf-based diabetic retinopathy (DR) detection schemes
[53] [54], the training of retinal lesion detectors is the criti-
cal factors. All the existing schemes are to take full advan-
tage of the following schemes: surf, clustering (k-means) (or
hard-assignment coding/sum pooling (HARD-SUM) and soft-
assignment coding/max pooling (SOFT-MAX)), bag-of-visual-
words (BoVW) and two-class classifier (Support Vector Ma-
chine (SVM)) schemes. The key ideas of the existing schemes
are to use surf scheme to detect the low-level points of inter-
est (PoIs) with a region of interest (RoI) containing specific
lesions indicated by experts for DR. Then, utilizing clustering
(k-means) (or HARD-SUM and SOFT-MAX) to create BoVW
(or max-pooling) for training two-class classifier (SVM) of the
lesion detectors. Finally, a trained two-class classifier is uti-
lized for the final classification about the individual lesion de-
tectors.

But, the above methods need complex clustering (k-means)
process (or HARD-SUM and SOFT-MAX) to create BoVW (or
max-pooling) for training two-class classifier (SVM) of the le-
sion detectors, and a trained two-class classifier for the final
classification about the individual lesion detectors.

In this section, we use homomorphic fast multi-retina-
image matching to simplify the whole process of lesions
detection and DR detection simultaneously. With the help
of the encrypted RoIs containing specific lesions indicated
by expert, we can implement the parameters modification
of homomorphic surf and fast multi-retina-image matching
schemes based on the feedback matching results of the
encrypted multi-retina-image matching. Finally, homomorphic
surf and fast multi-retina-image matching schemes confirm a
suitable number of feature points in specific lesions. A good
specific lesions matching is implemented. Then, based on
the modified homomorphic surf and fast multi-retina-image
matching schemes with right parameters, the lesions and DR
detection can be implemented for a new encrypted retinal
image of DR. With the help of homomorphic multi-retina-
image matching scheme, our scheme can directly implement
homomorphic lesions detection and classification for many
encrypted retinal images of DR. Algorithm 4 presents the
detailed homomorphic multi-retina-image matching algorithm,
which includes the following operations:

1) For feature points (E(a
(1)

I(i)
), E(a

(2)

I(i)
), · · · , E(a

(Ni)

I(i)
), i ∈

{1, 2, · · · ,M}) of retinal images of DR, we firstly construct
the following encrypted density function:

E(DF ) =
M∑
i=1

Ni∑
k=1

E[a(D
(e)

I(s)
)]E[h̃(x, a

(e)

I(s)
; ρdenD

(e)

I(s)
)],

where h̃(x, a
(e)

I(s)
;σ) = exp(−

‖x−a(e)
I(s)
‖2

2σ2 ) with bandwidth
ρdenD

(e)

I(1)
, ρden = 0.25, a(D

(e)

I(s)
) = log(1 + D

(e)

I(s)
),

D
(e)

I(s)
= D

(2)

I(1)
, and σ = ρdenD

(2)

I(1)
. Based on e−x defined

by the following power series: e−x = 1 + (−x) + x2

2! +

Algorithm 4 Homomorphic multi-image matching algorithm.
Input:

Encrypted data set: Feature points of retinal images of DR
(E[a

(1)

I(i)
], E[a

(2)

I(i)
], · · · , E[a

(Ni)

I(i)
], i ∈ {1, 2, · · · ,M}).

Output:
Encrypted clusters EC with encrypted multi-image match-
ing;

1: For all encrypted pairs (E[a
(e)

I(s)
], E[a

(v)

I(t)
]), CS compute

E[DF ] =
M∑
i=1

Ni∑
k=1

E[a(D
(e)

I(s)
)]E[h̃(x, a

(e)

I(s)
; ρdenD

(e)

I(s)
)],

where h̃ is the density kernel function with bandwidth
ρdenD

(e)

I(1)
, ρden is the user-defined ration (0 < ρden < 1),

a is an arbitrary adaptive amplification factor that depends
on D

(e)

I(s)
, which is the distance between a

(e)

I(s)
and the

closet descriptor from the same image.
2: To build the homomorphic tree, CS computes:

E[Parent(a
(e)

I(s)
)] = E[argmin(v,I(t))∈JD(a

(e)

I(s)
, a

(v)

I(t)
)],

where J = {(v, I(t)) : I(s) 6= I(t), D
(v)

I(t)
> D

(e)

I(s)
}, D(·, ·)

is the distance for the feature point space.
3: To break the built homomorphic tree and merge E[CM ]

and E[CM ′ ], CS computes:
E[MD(CMat)] = E[min

(e,I(s)):a
(e)

I(s)
∈CM

D
(e)

I(s)
],

E[D(a
(e)

I(s)
, a

(v)

I(t)
) ≤ ρedgemin{MD(CM ),MD(CM ′)}],

and E[MD(CM ) ∩MD(CM ′) = ∅].
4: return Encrypted clusters EC with encrypted multi-image

matches.

(−x)3

3! + · · · + (−x)n

n! + · · · , we can approximately compute
E[h̃(x, a

(e)

I(s)
;σ)] ≈ E[1] + E[(−z)] + E[ z

2

2! ] + E[ (−z)3
3! ] +

· · ·+E[ (−z)n
n! ], where z equals −

‖x−a(e)
I(s)
‖2

2σ2 , ‖ x−a(e)

I(s)
‖2 is

Euclidean distance. We can compute E[(x − a(e)

I(s)
)2] instead

of E[‖ x − a(e)

I(s)
‖2] with our SIMD homomorphic addition

and multiplication. Then, via our HDS scheme, we compute

E[
−(x−a(e)

I(s)
)2

2σ2 ] instead of E[−
‖x−a(e)

I(s)
‖2

2σ2 ]. Finally, we get an
approximation of E[h̃(x, a

(e)

I(s)
;σ)].

2) Through the encrypted density estimation, we construct
an encrypted feature point tree. For the given encrypted feature
point E[a

(e)

I(s)
], we can implement the following computing

with our SIMD SHE FV and HCS schemes:
E[Parent(a

(e)

I(s)
)] = E[argmin(v,I(t))∈JD(a

(e)

I(s)
, a

(v)

I(t)
)],

where J = {(v, I(t)) : I(s) 6= I(t), D
(v)

I(t)
> D

(e)

I(s)
}, D(·, ·)

is the distance for the feature point space. We can compute
E[D(a

(e)

I(s)
, a

(v)

I(t)
)] with homomorphic addition, and compute

D
(v)

I(t)
> D

(e)

I(s)
via our HCS scheme for E[D(a

(e)

I(s)
] and

E[D(a
(v)

I(t)
)].

3) Finally, for the previous constructed tree, we implement
homomorphic break to form different clusters, which corre-
spond to the encrypted multi-retina-image matching results of
DR. Namely, we complete the lesions detection. By our HCS
scheme, we can compute:
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E[MatchDis(CMat)] = E[min
(e,I(s)):a

(e)

I(s)
∈CMat

D
(e)

I(s)
].

We cluster for each encrypted node (feature point) with the
bottom-up procedure. Then, we compute E[D(a

(e)

I(s)
, a

(v)

I(t)
) ≤

ρedgemin{MatchDis(CMat),MatchDis(CMat′)}] and E[
MatchDis(CMat) ∩MatchDis(CMat′) = ∅], which can be
implement with our HCS scheme directly. We can decide the
valid edge and merge E[CMat] and E[CMat′ ] until all the
edges are considered.

To modified the parameters of homomorphic surf (PoIs in
the RoI) and fast multi-retina-image matching schemes (the
lesions detection), we utilize encrypted RoIs containing spe-
cific lesions indicated by expert with the database. After a
certain number of running tests, we can hold the parameters
of homomorphic surf (PoIs in the RoI) and fast multi-retina-
image matching schemes (the lesions detection). Based on the
determined parameters of homomorphic surf (PoIs in the RoI)
and fast multi-retina-image matching schemes (the lesions de-
tection), we can implement the lesions detection for any new
encrypted retinal image. From the results of the lesions detec-
tion, we can achieve DR detection.

VII. SYSTEM SECURITY AND PRIVACY ANALYSIS

For the security of our IoT system, we mainly consider our
SIMD SHE FV, HCS, HDS, homomorphic surf and clustering
schemes according to our threat model.

Based on our threat model, confidentiality of the retinal im-
ages of DR mainly relies on the security of our SIMD SHE FV
scheme, transmission, storage and processing of the encrypted
retinal images of DR in our IoT system. Our SIMD SHE FV
scheme is quantum-resistant encryption scheme based on lat-
tice. The data is encrypted during the transmission process.
The processing over the encrypted retinal images of DR in
our IoT system is homomorphic evaluation. Therefore, con-
fidentiality of the retinal images of DR in our IoT system is
guaranteed even in the era of quantum computation.

According to our threat model, CS is honest-but-curious.
When CS implements HCS, HDS, homomorphic surf and clus-
tering schemes, CS wants to get the encryption parameters g1

and g2 or e1 and e2 for revealing x or y. Finally, CS wants
to obtain the content about the retinal images of DR and their
classification results. We mainly consider KPA and COA at-
tacks. Under KPA and COA attacks, for our IoT system, any
information about each retinal image of DR and its classifica-
tion is not revealed by CS. Patients privacy can be preserved
in our IoT system.

Definition 1 (Ring-Learning with Error Problem [36]). Ring-
Learning with Error Problem is the problem to distinguish
with non-negligible probability between independent samples
(ai, [ais+ ei]q) from the Ring-LWE distribution and the same
number of independent samples (ai, bi) from the uniform dis-
tribution on Rq ×Rq .

Definition 2 (α−BDD Problem [55]). Let a lattice L and a
vector y (within distance α · λ1(L)), α−BDD problem is to
find a lattice point x ∈ L within distance α · λ1(L) from the
target.

Theorem 1 (Security of HCS scheme). Homomorphic com-
parison scheme HCS is COA and KPA security.

Proof. For homomorphic comparison scheme HCS, we can
prove it is COA and KPA security. When CS obtains x > y
or x < y, CS wants to derive x or y. CS selects a threshold
h̄, where h̄ < x or h̄ > y. CS encrypted h̄ with parameters
ã, b̃, g3, e

′′
1 and e′′2 . CS can computes c1 − c3 = ([4([x]t −

[h̄]t) + b̃(g1 − g3) + (e1 − e′′1)]q, [ã(g1 − g3) + (e2 − e′′2)]q) or
c3 − c2 = ([4([h̄]t − [y]t) + b̃(g3 − g2) + (e′′1 − e′1)]q, [ã(g3 −
g2) + (e′′2 − e′2)]q). Based on Rlwe assumption (Definition 1)
and α−BDD problem (Definition 2), CS can not get x or y.

Theorem 2 (Security of homomorphic surf and multi-image
clustering schemes). Security of our homomorphic surf and
multi-image clustering schemes are COA and KPA security.

Proof. We can prove our homomorphic surf and multi-
image clustering schemes are COA and KPA security. Our
SIMD SHE FV scheme (E) is IND-CPA security, which is
based on Rlwe assumption (Definition 1).
E and HDS schemes are all IND-CPA security. Due to the-

orem 1, HCS is KPA and COA security. When CS performs
feature point detection, it can not get encrypted parameters
e, s, x, y and I(x, y). Our homomorphic surf scheme also
can not reveal any content about each retinal image of DR in
the encrypted domain. Each retinal image of DR is partitioned
into Γ̃2 blocks and scrambled before performing encryption
operation [52]. Scramble makes one of the sub-images has
Γ̃2 possible location. The joint image has Γ̃2! possible com-
bination. When Γ̃ ≥ 5, probability of CS to get the original
partitioned image is negligible. Hence, our homomorphic surf
scheme is COA and KPA security.

When CS performs homomorphic multi-image clustering, it
employs HCS and HDS schemes. Based on security of our
HCS, HD and homomorphic surf, homomorphic multi-image
clustering scheme is COA and KPA security.

VIII. SYSTEM PERFORMANCE EVALUATION

In this section, we provide the detailed performance evalua-
tion about our SIMD SHE FV, HCS, HDS, homomorphic surf
and clustering schemes for the DR diagnosis. Our IoT system
use Camera (Raspberry Pi Noir Camera V2), a hand held con-
densing lens and Raspberry Pi 2 Model B [24] to constitute a
sensor (Si) to acquire the patients retinal images of DR, and
perform image splitting and encryption. Then, the encrypted
retinal image processing of DR and machine learning-based
diagnosis are implemented by a cloud server (CS) with an
Intel Xeon E5-1630 v4 CPU and 256 GB memory. The retinal
image databases of DR are DR1 [56], RetiDB database [57]
and Messidor database [58].

A. Efficiency Analysis of SIMD SHE FV and SIMD SHE FV-
based Schemes

In this section, we provide efficiency analysis of our SIMD
SHE FV, HDS and HCS schemes.

For the retinal image processing of DR, the pixel value of a
grey image is in the range [0, 256]. Making use of our encoding
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TABLE II
OUR SIMD SHE FV EFFICIENCY WITH SELECTED PARAMETERS

Scheme Parameters PK SK Ciphertext Enc Dec Add Mult
Size(kb) Time(ms) Size(kb) Time(ms) Size(kb) Time(ms) Time(ms) Time(ms) Time(ms)

Our SIMD SHE FV
λ = 80, n = 8192, t = 28

3276.81 94.01 300 2.1 600 160.03 98.04 2.4 865.06
BGV SHE [35] 3281.69 1256.06 306.98 46.18 612 1842.12 567.25 6.23 1081.02

method, each value of the pixel can be encoded as a polyno-
mial in the finite filed GF (28). Security parameter λ = 80
for Rlwe-based SHE is quantum resistant [41] [42] [43]. Our
SIMD SHE FV scheme chooses the following parameters: λ =
80 and R28 = Z28 [X]/(X8192 + 1). Such parameters meet up
with security and application requirements of our IoT system.

Table II shows that our SIMD SHE FV scheme have smaller
(public and private) key and ciphertext size than BGV SHE
scheme [37]. The times for key generation and homomorphic
evaluation (homomorphic addition and multiplication) are
much shorter than BGV SHE scheme. For the retinal images
of DR acquired by camera, sensor takes average 524ms to
encrypt each acquired image. The ciphertext size of each
retinal image of DR is about 68.52MB.

(a) (b)

Fig. 3. (a) Efficiency of our HDS scheme. (b) Efficiency of our HCS scheme.

Fig. 3 (a) shows efficiency analysis of our HDS scheme. By
means of our Repeated-squaring and Conversion algorithms,
CS can efficiently perform homomorphic division evaluation
by HDS scheme. For a 8 or 32 bit number, CS can implement
homomorphic division evaluation in 150ms or 650ms.

Fig. 3 (b) presents efficiency analysis of our HCS scheme.
We compare our HCS scheme with secure comparison proto-
col based on garbled circuit [59]. The result shows that our
HCS scheme is more efficient than secure comparison protocol
based on garbled circuit. It is because our HCS scheme just
computes E(M) and E(G) once by SIMD operation, which
greatly reduces the interaction number and the bit number of
two different numbers to compare between the CS and the H’s
server.

B. Efficiency Analysis of Our Homomorphic Surf Scheme

In this section, we provide efficiency analysis of our homo-
morphic surf scheme for feature detection about each retinal
image of DR. Synchronously, we compare communication cost
about the feature detection via our HCS scheme with secure
comparison protocol based on garbled circuit between the CS
and the H’s server. The retinal image databases of DR (DR1
[56], RetiDB database [57] and Messidor database [58]) in-
clude five abnormal findings in the eye fundus caused by the
DR: (1) microaneuryms (MAs); (2) hemorrhages (HMs); (3)

(a) (b)

(c) (d)

(e) (f)
Fig. 4. (a)(c) Original retinal image of DR-1. (b) Feature detection of
grey retinal image of DR-1 with original surf scheme. (d) Feature detection
of grey retinal image of DR-1 with our homomorphic surf scheme. (e)
Efficiency comparison of feature detection between the original surf and our
homomorphic surf schemes. (f) Average communication cost comparison of
feature detection about retinal images of DR between our homomorphic surf
scheme with HCS and garbled circuit.

hard exudates (HEs); (4) soft exudate (SEs); (5) neovascular-
ization (NV). Red lesions include MAs and HMs. Bright le-
sions include HEs and SEs [60]. We mainly consider the retinal
image of DR (containing MAs, HMs, HEs, SEs and NV) for
feature detection with the original surf and our homomorphic
surf schemes.

Fig. 4(a)(c) show the same retinal image of DR. Fig. 4(b)
holds up feature detection of a grey retinal image of DR with
original surf scheme. Fig. 4(d) shows the result of the feature
detection (with our homomorphic surf scheme) for a grey reti-
nal image of DR in the encrypted domain (the detection results
recover from encrypted data to decrypted data). The results of
feature point detection showed in Fig. 4(b)(d) demonstrate our
homomorphic surf scheme can efficiently detect the feature
points over the encrypted retinal images of DR as the original
surf scheme [44].

In order to detect different abnormal findings in the eye
fundus caused by DR, such as MAs, HMs, HEs, SEs and NV,
we choose different parameters for our homomorphic surf
scheme. The parameters modification is based on a certain
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(a) (b) (c) (d)
Fig. 5. (a) Efficiency comparison of lesions detection between the original multi-retina-image matching and our homomorphic multi-retina-image matching
schemes. (b) Communication cost comparison of lesions detection about retinal images of DR between our homomorphic surf scheme with HCS and garbled
circuit. (c) Comprehensive measure comparison between the scheme [53] and our scheme for bright and red lesions detection. Training/Parameters modification
with DR1 database and testing over the RetiDB database. (d) Comprehensive measure comparison between the scheme [53] and our scheme for bright and
red lesions detection. Training/Parameters modification with DR1 database and testing over the Messidor database.

number of running testing results about homomorphic surf
and fast multi-retina-image matching schemes for PoIs in
the RoI and the lesions detection. In this way, according to
the feature points detecting results of the encrypted retinal
images of DR, we can implement the lesions detection about
different abnormal findings in the eye fundus caused by the
DR for our efficient homomorphic fast multi-retina-image
matching scheme.

Fig. 4(e) shows the efficiency comparison of feature point
detection between the original surf scheme [44] and our ho-
momorphic surf scheme. It is about ten minutes that our homo-
morphic surf scheme can finished the feature point detection
over the encrypted retinal images of DR. Fig. 4(f) shows com-
munication cost comparison between our HCS scheme and se-
cure comparison protocol based on garbled circuit [59] during
the homomorphic feature point detection. The result proves
that our HCS scheme greatly reduces the communication cost.
Our HCS scheme used for homomorphic feature point detec-
tion is more efficient than secure compare protocol based on
garbled circuit [59].

C. Homomorphic Lesions Detection and Medical Diagnosis

In this section, with the aid of our homomorphic surf and
fast multi-retina-image matching schemes, we provide exper-
iments about homomorphic lesions detection of the DR and
privacy-preserving remote DR diagnosis.

Fig. 5(a) shows the efficiency comparison of lesions detec-
tion between the original multi-retina-image matching and our
homomorphic multi-retina-image matching schemes. Utilizing
our homomorphic multi-retina-image matching scheme, a doc-
tor can obtain the results of lesions detection and diagnosis in
seven minutes. It is more efficient than manual work in hos-
pital, and greatly reduces doctors workloads. Fig. 5(b) shows
the communication cost comparison of lesions detection about
retinal images of DR between our homomorphic surf scheme
with HCS and garbled circuit schemes. The results proves that
our HCS scheme greatly reduces communication cost between
CS and the hospital’s server.

For the automatic detection of DR, we utilize receiver opera-
tor characteristic (ROC) curves as the comprehensive measure
of system performance [60] [53] [54]. ROC is created by the
sensitivity/specificity pairs for every retinal image of DR. Fig.
5(c) shows comprehensive measure comparison between the

scheme [53] and our scheme for bright and red lesions detec-
tion. The scheme [53] utilizes the DR1 database to train its
system and test the trained system over the RetiDB database.
But, our homomorphic system utilizes DR1 database to modify
parameters about our homomorphic surf and fast multi-retina-
image matching schemes for PoIs in the RoI and the lesions
detection. Then, our system utilizes the RetiDB database for
testing. For the bright lesions detection, our system results
in an AUC = 88.1% as the scheme [53] with 500 words
over the RetiDB database. For the red lesions detection, our
system results in an AUC = 76.4% as the scheme [53] with
200 words over the RetiDB database.

Fig. 5(d) shows the comprehensive measure comparison be-
tween the scheme [53] and our scheme for bright and red
lesions detection. The scheme [53] utilizes the DR1 database
to train his system and test the trained system over the Messi-
dor database. But, our homomorphic system utilizes the DR1
database to modify parameters about our homomorphic surf
and fast multi-retina-image matching schemes for PoIs in the
RoI and the lesions detection. Then, our system utilizes the
Messidor database for testing. For the bright lesions detection,
our system results in an AUC = 89.3% (for 90% sensitivity
and 64%) as the scheme [53] with 500 words over the Messi-
dor database. For the red lesions detection, our system results
in AUC = 86.2% of Risk3, AUC = 63.3% of Risk2 and
AUC = 86.2% of Risk2+3 as the scheme [53] with 200 words
(combined Risk) over the Messidor database.

According to the result, our scheme can efficiently performs
classification of the encrypted image of DR.

IX. CONCLUSION

The world is changed by feat of IoT. Taking advantage of
IoT and somewhat homomorphic encryption, we implement
privacy-preserving diabetic retinopathy detection early. In this
paper, we provide a SIMD SHE FV scheme. Based on SIMD
SHE FV scheme, we realize efficient homomorphic compari-
son and division schemes. With the help of above our findings,
we provide the privacy-preserving homomorphic surf and fast
multi-retina-image matching schemes, which can perform ef-
ficient feature point detection and image matching for reti-
nal images of diabetic retinopathy. Finally, by means of ho-
momorphic fast multi-retina-image matching, we implement
an efficient privacy-preserving remote diagnosis for diabetes.
Computation of diagnostic process is homomorphic evaluation
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in our IoT system. Hence, patients privacy is protected. At the
same time, our encryption scheme based on lattice, which is
quantum-resistant, can preserves data confidentiality even in
the era of quantum computation.
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[8] Stachel, J. R., Sejdić, E., Ogirala, A., & Mickle, M. H. (2013, May). The
impact of the internet of Things on implanted medical devices including
pacemakers, and ICDs. In 2013 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC) (pp. 839-844). IEEE.

[9] Al-Taee, M. A., Al-Nuaimy, W., Muhsin, Z. J., & Al-Ataby, A. (2017).
Robot assistant in management of diabetes in children based on the
Internet of things. IEEE Internet of Things Journal, 4(2), 437-445.

[10] Zhou, J., Cao, Z., Dong, X., & Vasilakos, A. V. (2017). Security
and privacy for cloud-based IoT: Challenges. IEEE Communications
Magazine, 55(1), 26-33.

[11] Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2018). Evaluating critical
security issues of the IoT world: Present and Future challenges. IEEE
Internet of Things Journal, 5(4), 2483-2495.

[12] Vasilomanolakis, E., Daubert, J., Luthra, M., Gazis, V., Wiesmaier, A.,
& Kikiras, P. (2015, September). On the security and privacy of Internet
of Things architectures and systems. In 2015 International Workshop on
Secure Internet of Things (SIoT) (pp. 49-57). IEEE.

[13] https://twitter.com/leehsienloong
[14] Kocabas, O., Soyata, T., & Aktas, M. K. (2016). Emerging security

mechanisms for medical cyber physical systems. IEEE/ACM transactions
on computational biology and bioinformatics, 13(3), 401-416.

[15] National Institute of Standards and Technology, U.S. Department of
Commerce, ”Advanced Encryption Standard”, Federal Information Pro-
cessing Standards Publication 197, Washington, DC, November 2001.

[16] Standard, DES Encryption. ”National Bureau of Standards (US).”
Federal Information Processing Standards Publication 46 (1997).

[17] Shoup, V. (2001). A proposal for an ISO standard for public key
encryption (version 2.1). IACR e-Print Archive, 112.

[18] Mosca, M. (2018). Cybersecurity in an era with quantum computers:
will we be ready?. IEEE Security & Privacy, 16(5), 38-41.

[19] Andrushkevych, A., Kuznetsova, T., Bilozertsev, I., & Bohucharskyi, S.
(2016, October). The block symmetric ciphers in the post-quantum period.
In 2016 Third International Scientific-Practical Conference Problems of
Infocommunications Science and Technology (PIC S&T) (pp. 43-46).
IEEE.

[20] Bernstein, D. J. (2009). Introduction to post-quantum cryptography. In
Post-quantum cryptography (pp. 1-14). Springer, Berlin, Heidelberg.

[21] Perlner, R. A., & Cooper, D. A. (2009, April). Quantum resistant public
key cryptography: a survey. In Proceedings of the 8th Symposium on
Identity and Trust on the Internet (pp. 85-93). ACM.

[22] Fan, J., & Vercauteren, F. (2012). Somewhat Practical Fully Homomor-
phic Encryption. IACR Cryptology ePrint Archive, 2012, 144.

[23] Duclos, P., Boeri, F., Auguin, M., & Giraudon, G. (1988, November).
Image processing on a SIMD/SPMD architecture: OPSILA. In [1988
Proceedings] 9th International Conference on Pattern Recognition (pp.
430-433). IEEE.

[24] Bray, Jonathan. ”Raspberry Pi 2 Model B.” Pc Pro (2015).
[25] Smart, N. P. (2003). Cryptography: an introduction (Vol. 3). New York:

McGraw-Hill.
[26] Biryukov, A., & Kushilevitz, E. (1998, August). From differential crypt-

analysis to ciphertext-only attacks. In Annual International Cryptology
Conference (pp. 72-88). Springer, Berlin, Heidelberg.

[27] Shen, B. Y., & Mukai, S. (2017). A portable, inexpensive, nonmydri-
atic fundus camera based on the Raspberry Pi? Computer. Journal of
ophthalmology, 2017.

[28] Birkett, J., & Dent, A. W. (2014). Security models and proof strategies
for plaintext-aware encryption. Journal of cryptology, 27(1), 139-180.

[29] Nagao, W., Manabe, Y., & Okamoto, T. (2005, February). A universally
composable secure channel based on the KEM-DEM framework. In
Theory of Cryptography Conference (pp. 426-444). Springer, Berlin,
Heidelberg.

[30] Herranz, J., Hofheinz, D., & Kiltz, E. (2006). KEM/DEM: Necessary
and sufficient conditions for secure hybrid encryption. Manuscript in
preparation.

[31] Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks
and privacy homomorphisms. Foundations of secure computation, 4(11),
169-180.

[32] Paillier, P. (1999, May). Public-key cryptosystems based on composite
degree residuosity classes. In International Conference on the Theory
and Applications of Cryptographic Techniques (pp. 223-238). Springer,
Berlin, Heidelberg.

[33] Gentry, C. (2010). Computing arbitrary functions of encrypted data.
Communications of the ACM, 53(3), 97-105.

[34] Gentry, C. (2009, May). Fully homomorphic encryption using ideal
lattices. In Stoc (Vol. 9, No. 2009, pp. 169-178).

[35] Alperin-Sheriff, J., & Peikert, C. (2014, August). Faster bootstrapping
with polynomial error. In Annual Cryptology Conference (pp. 297-314).
Springer, Berlin, Heidelberg.

[36] Lyubashevsky, V., Peikert, C., & Regev, O. (2010, May). On ideal
lattices and learning with errors over rings. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(pp. 1-23). Springer, Berlin, Heidelberg.

[37] Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3), 13.

[38] Smart, N. P., & Vercauteren, F. (2010, May). Fully homomorphic
encryption with relatively small key and ciphertext sizes. In International
Workshop on Public Key Cryptography (pp. 420-443). Springer, Berlin,
Heidelberg.

[39] Smart, N. P., & Vercauteren, F. (2014). Fully homomorphic SIMD
operations. Designs, codes and cryptography, 71(1), 57-81.

[40] Gentry, C., Halevi, S., & Smart, N. P. (2012, April). Fully homomorphic
encryption with polylog overhead. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques (pp. 465-482).
Springer, Berlin, Heidelberg.

[41] Lepoint, T., & Naehrig, M. (2014, May). A comparison of the homo-
morphic encryption schemes FV and YASHE. In International Conference
on Cryptology in Africa (pp. 318-335). Springer, Cham.

[42] Bos, J. W., Lauter, K., Loftus, J., & Naehrig, M. (2013, December). Im-
proved security for a ring-based fully homomorphic encryption scheme.
In IMA International Conference on Cryptography and Coding (pp. 45-
64). Springer, Berlin, Heidelberg.

[43] Costache, A., & Smart, N. P. (2016, February). Which ring based
somewhat homomorphic encryption scheme is best?. In Cryptographers
Track at the RSA Conference (pp. 325-340). Springer, Cham.



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2936532, IEEE Internet of
Things Journal

14

[44] Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-
up robust features (SURF). Computer vision and image understanding,
110(3), 346-359.

[45] Lowe, D. G. (1999, September). Object recognition from local scale-
invariant features. In iccv (Vol. 99, No. 2, pp. 1150-1157).

[46] Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International journal of computer vision, 60(2), 91-110.

[47] Juan, L., & Gwon, L. (2007). A comparison of sift, pca-sift and surf.
International Journal of Signal Processing, Image Processing and Pattern
Recognition, 8(3), 169-176.

[48] Tron, R., Zhou, X., Esteves, C., & Daniilidis, K. (2017). Fast multi-
image matching via density-based clustering. In Proceedings of the IEEE
International Conference on Computer Vision (pp. 4057-4066).

[49] Alkim, E., Ducas, L., P?ppelmann, T., & Schwabe, P. (2016). Post-
quantum key exchangeła new hope. In 25th USENIX Security Symposium
(USENIX Security 16) (pp. 327-343).

[50] Bos, J. W., Costello, C., Naehrig, M., & Stebila, D. (2015, May). Post-
quantum key exchange for the TLS protocol from the ring learning with
errors problem. In 2015 IEEE Symposium on Security and Privacy (pp.
553-570). IEEE.

[51] Coyne, D. T. (2010). Restructuring Proposal for the Criminal Division
of the Circuit Court of Cook County.

[52] Wu, Y., Zhou, Y., Noonan, J. P., Panetta, K., & Agaian, S. (2010, April).
Image encryption using the sudoku matrix. In Mobile Multimedia/Image
Processing, Security, and Applications 2010 (Vol. 7708, p. 77080P).
International Society for Optics and Photonics.

[53] Rocha, A., Carvalho, T., Jelinek, H. F., Goldenstein, S., & Wainer, J.
(2012). Points of interest and visual dictionaries for automatic retinal
lesion detection. IEEE transactions on biomedical engineering, 59(8),
2244-2253.

[54] Pires, R., Jelinek, H. F., Wainer, J., Goldenstein, S., Valle, E., &
Rocha, A. (2013). Assessing the need for referral in automatic diabetic
retinopathy detection. IEEE Transactions on Biomedical Engineering,
60(12), 3391-3398.

[55] Jiang, L., Xu, C., Wang, X., & Lin, C. (2017). Statistical learning
based fully homomorphic encryption on encrypted data. Soft Computing,
21(24), 7473-7483.

[56] Diabetic Retinopathy Datasets (DR1), in 2010. [Online]. Available:
https://recodbr.wordpress.com/code-n-data/retinopathy.

[57] Diabetic Retinopathy Datasets (RetiDB), in 2007. [Online]. Available:
http://www.it.lut.fi/project/imageret/.

[58] Diabetic Retinopathy Datasets (Messidor), in 2014. [Online]. Available:
http://www.adcis.net/en/Download-Third-Party/Messidor.html.

[59] Huang, Y., Evans, D., Katz, J., & Malka, L. (2011, August). Faster
secure two-party computation using garbled circuits. In USENIX Security
Symposium (Vol. 201, No. 1, pp. 331-335).

[60] Abrmoff, M. D., Niemeijer, M., Suttorp-Schulten, M. S., Viergever, M.
A., Russell, S. R., & Van Ginneken, B. (2008). Evaluation of a system for
automatic detection of diabetic retinopathy from color fundus photographs
in a large population of patients with diabetes. Diabetes care, 31(2), 193-
198.

Linzhi Jiang is a scientific researcher at Guilin
University of Electronic Technology in China. He
is also the Research Fellow at University of Surrey,
United Kingdom. He received his Ph.D. from
University of Electronic Science and Technology
of China. His research interests include Fully
Homomorphic Encryption, IoT Security, Trusted
Computing, Quantum-Resistant Cryptography,
Big Data and Cloud Computing Security. E-mail:
linzjiang@hotmail.com, linzhi.jiang@surrey.ac.uk.

Liqun Chen is a professor in Surrey Centre for Cy-
ber Security, University of Surrey, United Kingdom.
Prior to this appointment, she was a principal re-
search scientist at Hewlett-Packard Laboratories (HP
Labs) in Bristol, United Kingdom. She has devel-
oped several cryptographic schemes adopted by the
International Standards and some of them have been
implemented in Trusted Platform Modules. She has
an extensive publication record and holds a large
number of granted patents in cryptography and in-
formation security.

Thanassis Giannetsos earned his Ph.D. degree
from University of Allaborg, Denmark in 2012.
Prior to his appointment as an Associate Professor
within the Cyber Security Section, Technical
University of Denmark, he was a Senior Researcher
at the Networked Systems Security group with
KTH, Sweden and then an Assistant Professor at the
Department of Computer Science with University
of Surrey, UK. His research interests span from
applied cryptography to security and privacy in
information technology. He has expertise in the

design and implementation of secure and privacy-preserving protocols and
risk management.

Bo Luo received the BE degree from the University
of Sciences and Technology of China in 2001, the
MPhil degree from the Chinese University of Hong
Kong in 2003, and the PhD degree from The Penn-
sylvania State University in 2008. He is currently an
assistant professor with Electrical Engineering and
Computer Science Department at the University of
Kansas. He is interested in information retrieval, in-
formation security, and privacy. He is a member of
the IEEE Computer Society.

Kaitai Liang is an assistant professor in Surrey
Centre for Cyber Security, University of Surrey,
United Kingdom. He received the Ph.D. degree of
Computer Science from City University of Hong
Kong in 2014. His research interests include applied
cryptography and information security, in particular,
data encryption, user privacy, blockchain security,
post-quantum secure solutions, trusted computing,
privacy-enhancing technologies and light-weight
secure systems. He has published over 60 research
works in high-tier security conference and journals.

Jinguang Han received his Ph.D from University
of Wollongong, Australia, in 2013. He currently
is a lecturer in the Centre for Secure Information
Technologies (CSIT), Institute of Electronics,
Communications and Information Technology
(ECIT), Queens University, UK. His main research
interests include cryptography, access control,
blockchain and privacy-preserving systems. He
has served as a program co-chair of ProvSec 2016
and a program committee member of over 60
international conferences. He is a senior member of

the IEEE.


