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Abstract. This research addresses the challenge of conducting in-
terpretable causal inference between a binary treatment and its re-
sulting outcome when not all confounders are known. Confounders
are factors that have an influence on both the treatment and the out-
come. We relax the requirement of knowing all confounders under
desired treatment, which we refer to as Selective Confounding, to en-
able causal inference in diverse real-world scenarios. Our proposed
scheme is designed to work in situations where multiple decision-
makers with different policies are involved and where there is a re-
evaluation mechanism after the initial decision to ensure consistency.
These assumptions are more practical to fulfill compared to the avail-
ability of all confounders under all treatments. To tackle the issue of
Selective Confounding, we propose the use of dual-treatment sam-
ples. These samples allow us to employ two-step procedures, such
as Regression Adjustment or Doubly-Robust, to learn counterfac-
tual predictors. We provide both theoretical error bounds and em-
pirical evidence of the effectiveness of our proposed scheme using
synthetic and real-world child placement data. Furthermore, we in-
troduce three evaluation methods specifically tailored to assess the
performance in child placement scenarios. By emphasizing trans-
parency and interpretability, our approach aims to provide decision-
makers with a valuable tool. The source code repository of this work
is located at https://github.com/sohaib730/CausalML.

1 Introduction

Accurately predicting treatment outcomes is crucial for decision-
makers in various domains, including health care [3], child welfare
[11], criminal justice [5], and marketing [4]. Predictive algorithms
that can extract valuable insights from rich case information have
the potential to enable better decision-making and improve future
outcomes. Counterfactual prediction algorithms have been widely
adopted in healthcare [39] and are now increasingly used in other
domains, such as child welfare [10] and education [47, 48]. For ex-
ample, in child welfare, practitioners often face challenges regarding
whether to remove children from their homes and place them in fos-
ter care or keep them with their families [2]. Errors in judgment can
occur on either end of this decision spectrum. Children who remain
at home may experience additional maltreatment, while children er-
roneously removed from their homes may eventually return after a
short stay in out-of-home placement, causing unnecessary trauma for
the child and family [36]. A counterfactual prediction algorithm can
address both issues by answering the question: What would be the
risk of maltreatment if a child is kept in their home?
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The problem of counterfactual prediction differs from the standard
supervised learning problem [30, 42]. Confounders are the factors
that influence both treatment assignment and outcome [45]. Standard
predictive algorithms may either underestimate or overestimate the
risk when trained over whole populations [11] or exhibit selective
bias when trained only on the population that received the desired
treatment. This scenario can be likened to a missing label problem,
where outcomes for all treatments are not observed for each unit.
Therefore, for applications involving interventional decisions, coun-
terfactual learning is essential to avoid biases that can otherwise lead
to erroneous training, performance, and fairness evaluations [11].

While randomized control trials (RCTs) are viewed as the ideal
approach for establishing causal relationships, they are often imprac-
tical for numerous applications due to their cost, ethical consider-
ations, or the unavailability of sufficient data [32]. Conversely, in-
ferring causality from observed data necessitates the observation of
all confounding variables [12]. This stringent requirement consider-
ably restricts the practicality of these models in real-world scenarios
where not all confounding factors are reported or obtainable [19, 10].

In various decision-making scenarios, such as child placement,
ICU admission, or police arrests, limited information is available un-
der the baseline treatment with no intervention. For example, in the
field of child welfare, decision-making factors include demographic
data, case records, and sensitive information such as maltreatment
reports, mental health, and disabilities. It is common for the informa-
tion reported for children who remain with their families to be less
comprehensive compared to those who are placed out of the home
[8, 9]. This poses a challenge of hidden confounders under the de-
sired treatment, which we refer to as Selective Confounding.

Learning causal relationships from observed data is already a com-
plex task, and it becomes even more challenging when confounding
factors are hidden [17]. Existing techniques in the literature address
this issue in specific settings, such as when hidden confounders are
proxies of observed confounders [26], when there is limited random-
ized control trial (RCT) data available [19], or when confounders
are hidden only during prediction [10]. However, to the best of our
knowledge, no method has been proposed that provides an inter-
pretable counterfactual model under the scenario of Selective Con-
founding.

In this work, we address the challenge of Selective Confounding
using interpretable techniques, relying on two key assumptions: 1)
there exists a variation in decision policies during the initial decision-
making process. 2) the recidivism of the initial decision in appeal
or reevaluation is attributed to errors or biases in the initial judg-
ment, rather than being a consequence of covariate shift. These con-
ditions are applicable in real-world scenarios involving child place-
ment, ICU admission, and police arrests, where multiple decision-
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makers are involved, and opportunities for appeal or reevaluation ex-
ist. For instance, in child placement, we often observe varying deci-
sion policies, with initial screenings conducted by police officers or
trained child welfare professionals [37, 28]. Then there exist short-
stayer children who are reunited with their families soon after being
removed due to erroneous out-of-home placements [13]. Similarly,
in cases of short stays in the ICU, where patients are released after
two days of monitoring, different hospitals or attending physicians
correspond to varying decision policies, and the release without any
intervention indicates that the stay could have been avoided. Like-
wise, in instances where individuals are arrested but subsequently
released because no charges are filed against them by the attorney,
different police officers and locations reflect varying decision poli-
cies, and the release without charges indicates the arrest could have
been avoided.

This paper proposes a specialized approach that leverages the
structure of selective confounding by using dual-treatment samples,
such as short stayers in child placement applications. These sam-
ples are unconfounded under selective confounding and can be ad-
justed to obtain the desired treatment outcome, allowing us to iden-
tify the target estimator without any confounding bias [17, 10]. We
adapt well-known two-stage counterfactual learning algorithms, Re-
gression Adjustment (RA) and Doubly Robust (DR) [45], to train
the target model. In this regard, we have opted for Linear regression
as our target model, owing to its intrinsic interpretability, making it
highly suitable for sensitive social applications.

We demonstrate the effectiveness of our approach through empir-
ical evaluations on both synthetic and real-world data. Since evalua-
tion over real-world data is not straightforward due to missing ground
truth labels over subpopulations, we propose novel evaluation meth-
ods specifically tailored to child placement applications. Our work
represents a significant contribution to the field of causal inference
and has the potential to enhance decision-making in sensitive do-
mains, including child welfare and ICU admissions, among others.
The complete code for training and reproducing the results over syn-
thetic data is accessible at https://github.com/sohaib730/CausalML.

2 Setup

Selective Confounding: Our goal is to predict the outcome under a
desired treatment a1 for a binary treatment application where pos-
sible treatments are {a1, a2}. Here a1 is the desired treatment that
involves no intervention like a child kept in-home or no ICU admis-
sion. Let X,Z be the confounding factors. We have considered the
problem setting of selective confounding where Z represents hidden
confounders that are not available under desired treatment T = a1

and X are observable under all treatments. Our aim is to relax the
condition of observable confounding features to accommodate more
applications. According to the potential outcome framework [17], the
target estimator is νa1(x) := E(Ya1 |X = x), where Ya1 ∈ R is the
potential outcome one would observe under treatment T = a1.
Dual-Treatment Samples: In an observational study of a binary
treatment application, few samples experience treatment reversal,
e.g., a child reunited with their family after removal or a patient
released from ICU without any intervention. These samples were
previously ignored or considered only under one treatment to en-
sure training samples are independent. In our work, we still main-
tain that samples are independent by either including them under
one treatment or identifying them with another treatment T = a3

- namely, dual-treatment. We argue that a change in treatment usu-
ally occurs due to two reasons: 1) Covariate Shift, when things im-

prove or deteriorate over time, or 2) Error in the Initial judgment. The
dual-treatment samples are those where decisions have been reverted
from a2 to the desired treatment a1 due to a mistake in the initial
judgment. For example, in the child placement application, Short-
stayers are considered dual-treatment samples. Short-stayers are the
children who are reunited with their families within 30-days after
out-of-home placement [13]. The 30-day separation window is quite
small for a change in covariates, and the main reason behind reunifi-
cation is errors in earlier judgment [36]. Thus, to separately identify
dual-treatment samples, the observed treatment for each sample is
given as T ∈ {a1, a2, a3}.
Data: The n i.i.d. samples in a training data are described as
Di={1..n} = (Xi, Zi, Ti, Yi), where Ti ∈ {a1, a2, a3} is the ob-
served treatment, Xi ∈ R

p are the observable confounding features,
Zi ∈ {z : z ∈ R

q and Ti �= a1} are the hidden confounding fea-
tures not reported under desired treatment T = a1, and Yi ∈ R is
the observed outcome. The impact of hidden confounders is evident
through the following propositions:

P.2.1 - Training Ignorability: Decisions are unconfounded given
X and Z: Ya2 , Ya3 ⊥ T |X,Z.
P.2.2 - Selective Confounding: Decisions are confounded given
only X: Ya1 �⊥ T |X .

This means that when all confounders are observed, the potential
outcomes Ya2 or Ya3 are directly identifiable from observed data,
i.e., E(Ya2 |X,Z) = E(Y |X,Z, T = a2). Conversely, due to
the hidden confounders, the target quantity is not identifiable, i.e.,
E(Ya1 |X) �= E(Y |X,T = a1) [17].

Next, the marginal and conditional propensity to receive any treat-
ment t are defined as πT=t(X,Z) := P (T = t|X = x, Z = z)
and πT=t|T �=t′(X,Z) := P (T = t|X = x, Z = z, T �= t′) re-
spectively. The outcome regression for treatment T = t is defined as
μt(X,Z) := E(Yt|X = x, Z = z).
Assumptions: To identify the target quantity νa1(x), we adopt the
following standard assumptions commonly used in causal inference
research [30], which are easier to satisfy:

Consistency: A case that receives treatment t has outcome Y =
Yt. This gives Y = I(T = a1)Ya1 + I(T = a2)Ya2 + I(T =
a3)Ya3 .
Positivity: There is a non-zero probability of assigning any treat-
ment to a unit, i.e., P(πT=t(X,Z) ≥ ε > 0) = 1 ∀ t ∈
{a1, a2, a3}.

Miscellaneous notation: In the paper, we use both f̂ and f̃ to denote
estimate of f , and I to represent the indicator function. We will use
It instead of IT=t. For simplicity, we denote the propensity score
with short subscripts, such as πt(.) and πt|�=t′(.) for πT=t(.) and
πT=t|T �=t′(.), respectively. Finally, we represent the target estimator
as ν̂(x) instead of ν̂a1(x).

3 Related Work

There has been a significant amount of research on causal learning
with no hidden confounders. One of the classical methods for coun-
terfactual estimation is matching [35, 1, 22]. Matching methods es-
timate the counterfactual outcomes by the nearest neighbor of each
individual in terms of covariates. Because the curse of dimension-
ality makes finding appropriate nearest neighbors of each individual
more difficult, propensity score matching, was developed [34]. Tree-
based methods, such as Random forest and Bayesian additive regres-
sion trees (BART), have also been applied . [7, 16]. Some literature
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has focused on learning treatment-invariant representations [18, 46].
These methods are not applicable for counterfactual prediction with
hidden confounders and will result in more loss [23].

Methods for addressing the problem of hidden confounders in
counterfactual estimation can generally be divided into generic and
specialized approaches. Generic approaches tend to focus on robust-
ness and one such approach is sensitivity analysis [20]. It aims to
minimize the worst-case estimated regret of a candidate decision pol-
icy compared to a baseline decision policy over an uncertainty set for
propensity weights that control the extent of unobserved confound-
ing. However, this approach is unsuitable for our problem settings
as it requires observed outcomes from all treatments to estimate the
uncertainty set for propensity weights. Another generic approach for
addressing hidden confounders is learning latent representations us-
ing Variational Autoencoder (VAE) [26, 27, 15]. These methods as-
sume that observed confounders are proxies of hidden confounders
and that hidden confounders can be estimated to some extent through
a generative model. The deep generative models such as VAE do not
leverage the structure in selective confounding to outperform pro-
posed methods. Also, they are not interpretable to be applicable in
the social science domain.

In contrast to generic ones, specialized methods exploit the struc-
ture in problem setting to address hidden confounders. Similar to
our approach, these methods are more specific to the applications at
hand, and provide better performance gains than generic approaches.

For applications where limited RCT data is available, Kallus et.
al. proposed an approach to address hidden confounders [19]. Since
scope of experimental data does not cover observational data, they
have proposed to learn calibration parameter from experimental data
to adjust counterfactual outcome of observational data. Another ap-
proach utilized the network information to unravel patterns of hidden
confounders [14].

Structural nested models (SNMs) have been applied in various
contexts to address the issue of hidden confounders in data that
has multiple levels, such as cross-sectional or longitudinal settings
[33, 44]. In our case, the focus is on safety when a child stays at
home, and not how state-level predictors or programs play any role
in the outcome [31]. Additionally, the longitudinal aspect of the data
is irrelevant to this research question as the aim is not to study how
the likelihood of abuse changes over time [31].

Another widely used approach for addressing hidden confounding
in causal inference is the use of Instrument Variables (IV) [24, 6, 40].
It is important to note that when using IV, certain assumptions must
be met such as: 1) the IV being strongly correlated with the treat-
ment variable, 2) independent of the outcome variable and any un-
observed confounding factors, and 3) not affecting the outcome vari-
able through any other path than through the treatment variable. In
our study, it’s not possible that decision policy will always be a valid
IV. For instance, in child placement example, a lenient decision pol-
icy results in other programs offered by state that ensures In-Home
treatment is safe.

Negative control outcomes are used to address the problem of hid-
den confounding by providing a way to control for the effects of
hidden confounding factors [43, 29]. The idea is to find an outcome
variable that is not affected by the treatment or exposure of inter-
est, but is affected by the same unobserved confounding factors. By
comparing the treatment effect on the negative control outcome to the
treatment effect on the outcome of interest, it is possible to control
for the effects of unobserved confounding factors. These approaches
are only suitable for applications where negative control exposures
or outcomes exist. This technique is not suitable for societal applica-

tions, as it’s not possible to record additional outcomes due to privacy
concerns.

The work closest to ours deals with run-time confounding only
[10]. For them, training nuisance estimator without confounding bias
was straightforward due to no hidden confounders during training.
Our work address selective confounding, where confounding bias is
present during both training and prediction.

4 Methodology

The target model ν̂(x) is usually termed as a counterfactual predic-
tor [10]. Since in an observational study, all samples did not get the
desired-treatment to have the factual outcome Ya1 . In this section, we
start by introducing the standard method to learn the target model.
Then will present the proposed two-step approaches.

4.1 Standard Predictor (SP)

One straightforward method to estimate the target quantity ν̂(x) is
to ignore all samples that did not receive the proposed treatment,
i.e., those with T �= a1. This approach involves learning Ê[Y |T =
a1, X = x] to estimate the target quantity. However, this method
may suffer from selective bias, which is relatively easier to handle if
we have access to all the confounders, meaning T ⊥ Ya1 |X .

The challenge arises under Selective Confounding, where hidden
confounders Z are present, and the quantities are no longer condi-
tionally independent. In such cases, this method does not target the
correct counterfactual quantity and can produce misleading predic-
tions due to confounding bias [41].

4.2 Counterfactual Predictors

Standard method involves training the model on samples with avail-
able ground truth labels Ya1 , leading to an estimator ω̃a1(x) =
Ê(Ya1 |X) = Ê(Y |X,T = a1) [38, 11]. However, this approach
will have no confounding bias under certain conditions, such as when
all confounders are observed as given in proposition P.2.1, or in ran-
domized controlled trials (RCT) [19].

To overcome confounding bias, we propose leveraging dual-
treatment samples, which are defined in Section 2. The intuition be-
hind our solution is that dual-treatment samples are unconfounded
and it is possible to estimate potential outcome Ŷa1 for them. In
that case, the outcome estimator μ̂a1(x, z) = Ê(Ŷa1 |X,Z) =
Ê(Ŷa1 |X,Z, T = a3) and the conditional propensity score estimator
π̂a3|�=a1

= P̂ (T = a3|X = x, Z = z, T �= a1) can be identified
without any confounding bias. These two nuisance estimators with
no confounding bias can then be used to train the target estimator
ν̂(x) using two-step methods like Regression Adjustment (RA) and
Doubly Robust (DR).

4.2.1 Data Preprocessing - Treatment Adjustment for
Dual-Treatment Samples

In order to learn target estimator using a two-step procedure, we re-
quire potential outcome label Ya1 for dual-treatment samples but the
observed label is Ya3 for them. The difference between the outcomes
of two treatments is usually given as the Conditional Average Treat-
ment Effect (CATE) given in eq.1. By design, samples from desired-
treatment T = a1 are closely related to dual-treatment samples.
It is possible for certain applications that CATE(a1, a3) is negligi-
ble. In that case, the observed label Ya3 for dual-treatment samples
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is equivalent to potential outcome Ya1 and the outcome regressor
is identifiable by μa1(x, z) = E(Ya1 |X,Z) = E(Ya3 |X,Z) =
E(Y |X,Z, T = a3).

CATE(a1, a3) = E(Ya1 |X,Z)− E(Ya3 |X,Z) (1)

In case there is a possibility that CATE might be non-zero between
two treatments a1, a3, then it’s necessary to estimate potential out-
come Ŷa1 for dual-treatment samples.

Figure 1: Decision policies across different locations

The proposed solution works irrespective of the CATE value. It
assumes there exist multiple locations with slightly different initial
decision policies (dp) as shown in Figure 1. It represents a real-
world scenario when some judges are strict and some are lenient [25].
The same is the case in child welfare, where some initial placement
screenings are performed by police officers or by trained child wel-
fare professionals [37] or state policies are different [28].

As mentioned earlier, the regressor ω̃a1(x) = Ê(Y |X,T = a1)
will be erroneous due to confounding bias. However, in the case of
randomized controlled trials (RCT), where Ya1 ⊥ T , there will be
no confounding bias for ω̃a1(x) even with hidden confounders [19].
Although observed samples from the whole population do not re-
sult from RCT, here we only need to estimate Ŷa1 for dual-treatment
samples. In cases where we have varying decision boundaries be-
tween locations, the scope of samples with treatment T = a1 from
one location covers samples with treatment T = a3 from another
location, resembling an RCT between two treatments a1 and a3.

For instance, let’s consider there are three different decision poli-
cies (DPs) resulting in different decision boundaries for the initial
decision as shown in Figure 1. It shows dp1 is the lenient, and dp3
is the strictest. Also, it is expected that the final decision boundary
is uniform among locations since the review process is to ensure re-
moving any personal biases in the judgment process. As a result,
the scope of desired-treatment sample T = a1 in dp1 will cover
the scope of dual-treatment samples T = a3 in dp2 and dp3. Even-
tually when samples from all locations are considered as a whole,
it will resemble a scenario of RCT between treatments a1, a3 with
P (T = a1|X,Z, T �= a2) = P (T = a3|X,Z, T �= a2) ≈ 0.5.

The two subpopulations with treatments a1 and a3 satisfy Ya1 ⊥
T |T �= a2. Thus, it is possible to correctly estimate potential out-
come Ŷa1 for dual-treatment samples from ω̃a1(x) without any con-
founding bias. The detailed procedure is provided in Algorithm 1.
First, it learns ω̃a1(x) = Ê(Y |T = a1, x), and then estimates poten-
tial outcome Ŷa1 for dual-treatment samples. In Section 5.1, we have
presented the effectiveness of this approach with varying CATE over
synthetic data.

Algorithm 1 Label Estimation for dual-treatment samples

Input: Data Dd∈{dp1...dpL} = {(Xi, Zi, Ti, Yi)}nd
i=1

1. Train regressor ω̃a1(x) over Y ∼ X|T = a1

2. Estimate Ŷa1 from ω̃a1(x) for samples with T = a3

Return: Desired Labels Ŷa1 for dual-treatment samples

4.2.2 Regression-Adjustment (RA) Predictor

In the Regression Adjustment (RA) method, target estimator ν̂(x)
is learned in two stages. The procedure is presented in Algorithm
2. First a nuisance estimator μ̂a1(X,Z) = Ê(Ŷa1 |X,Z, T = a3)
is learned with no confounding bias using dual-treatment samples.
Then similar to the semi-supervised learning approach the nuisance
estimator will be used to provide a pseudo-outcome for the whole
population. Then target model ν̂(x) is estimated over the whole
population using ground truth label for samples received treatment
T = a1 and pseudo outcome μ̂a1(X,Z) for other samples with
T = {a2, a3}.

For theoretical error bounds, we have adopted a procedure similar
to [21] which bounds the error for a two-stage regression on the full
set of confounding variables.

Theorem 1 Under sample-splitting to learn μ̂a1(x, z), ν̂(x), the RA
method has pointwise regression error that is bounded by:

E

[(
ν̂(x)− ν(x)

)2] � E

[(
ν̃(X)− ν(X)

)2]
+ E

[(
μ̃a1(x, Z)− μa1(x, Z)

)2|X = x
]

+ E

[(
Δ(x, Z)

)2|X = x
]

(2)

where ν̂(x) is the final regressor. The right-hand side splits the er-
ror bounds according to the different stages of the algorithm, where
ν̃(x) = Ê(Ia1Y + I �=a1μa1(X,Z)|X = x) denotes second-stage
regression with oracle access to the first-stage output. μ̃a1(X,Z) =
Ê(Ya1 |X,Z) is the first stage regressor with oracle access to Ya1

and Δ(X,Z) = E(Ŷa1 −Ya1 |X,Z, T = a3) is the label estimation
error for dual-treatment samples. Notably, the bound depend linearly
on the Mean square error of μ̃a1(x, Z). The next approach provides a
more robust mechanism by introducing another first-stage estimator.

Algorithm 2 Regression-Adjustment (RA) Algorithm

Input: Data D = {(Xi, Zi, Ti, Yi)}ni=1

Randomly divide D into two partitions W 1,W 2

for (i,j) ∈ {(1,2),(2,1)} do

Stage 1: On W i, learn regression function μ̂a1(X,Z) over
Ŷa1 ∼ X = x, Z = z|T = a3

Stage 2: On W j , learn regressor ν̂j(x) over Ia1Y +
I �=a1 μ̂a1(X,Z) ∼ X

end for

Prediction: ν̂(x) =
∑2

q=1 ν̂
q(x)
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4.2.3 Doubly-Robust (DR) Predictor

This method introduces two nuisance estimators, i.e. μ̂a1(X,Z) and
π̂a3|�=a1

(X,Z). It guarantees robustness since it requires only one
of the nuisance estimators to be closer to the true estimator. The DR
method is presented in Algorithm 3. Again it’s a two-step procedure.
At the first, it trains regressor μ̂a1(X,Z) and conditional propensity
score model π̂a3|�=a1

(X,Z). The propensity score model allows us
to give higher weightage to those dual-treatment samples that resem-
ble samples from treatment T = a2. The second step of the DR al-
gorithm involves training the target model ν̂(x) over the whole pop-
ulation.

DR method provides better theoretical guarantees as compared to
RA due to two nuisance estimators.

Theorem 2 Under sample-splitting to learn μ̂a1(x, z), ν̂(x) and
π̂a3|�=a1

(x, z) the pointwise error bound for proposed DR method
is given as:

E

[(
ν̂(x)− ν(x)

)2] � E

[(
ν̃(x)− ν(x)

)2]
+ E

[(
μ̃a1(x, Z)− μa1(x, Z)

)2|X=x
]

× E

[(
π̂a3|�=a1

(x, Z)− πa3|�=a1
(x, Z)

)2|X=x
]

+ E

[(
Δ(x, Z)

)2|X=x
]

(3)

where ν̂(x) is the final regressor and the error bound is split between
different stages at the right-hand side. ν̃(x) denotes second-stage re-
gressor with oracle access to true first-stage estimators μa1(x, Z),
πa3|�=a1

(x, Z). μ̃a1(x, Z) is the first stage regressor with oracle ac-
cess to Ya1 and π̂a3|�=a1

(x, Z) is the propensity score estimator. Fi-
nally, Δ(x, Z) = E(Ŷa1 − Ya1 |X,Z, T = a3) is the desired label
estimation error for dual-treatment samples. Here, in the error bound
there is a product between errors of nuisance estimators. It guaran-
tees robustness because only one of the nuisance estimators needs
to be converged. The error bound still linearly depends on the label
estimation error of dual-treatment samples. However, that estimation
error over subpopulation is much simpler to handle as compared to
the target problem of the whole population. Also, in some cases la-
bel estimation for dual-treatment samples might not be needed at all
where CATE(a1, a3) is negligible, as mentioned in Section 4.2.1.

Algorithm 3 Doubly-Robust (DR) Algorithm

Input: D = {(Xi, Zi, Ti, Yi)}ni=1

Randomly divide D into three partitions W 1,W 2,W 3

for (i,j,k) ∈ {(1,2,3), (3,1,2), (2,3,1)} do

Stage 1: On W i, train regression function μ̂a1(X,Z) over
Ŷa1 ∼ X = x, Z = z|T = a3

On W j , train conditional propensity estimator
π̂a3|�=a1

(X,Z) over Ia3 ∼ X = x, Z = z|T �= a1

Stage 2: On W k, train ν̂k(x) by regressing Ia1Y +

I �=a1

[
Ia3

π̂a3|�=a1
(X,Z)

(
Ŷa1 − μ̂a1(X,Z)

)
+ μ̂a1(X,Z)

]
∼ X

end for

Prediction: ν̂(x) =
∑3

q=1 ν̂
q(x)

5 Experiments

The evaluation of counterfactual prediction algorithms is challenging
due to the absence of ground truth labels for subpopulations with dif-
ferent treatments. To overcome this challenge, counterfactual evalu-
ation is typically performed using synthetic, semi-synthetic, or RCT
data [45, 18]. In this study, we evaluated the proposed counterfac-
tual prediction algorithms using both synthetic and real-world child
placement data. For comparison we have either used SP as baseline
approach or human decision maker in child-placement data. We are
not aware that there exist any other techniques that are both inter-
pretable and able to predict under selective confounding, as discussed
in Section 3.

5.1 Synthetic-Data Evaluation

Data: The synthetic data is generated for L = 20 locations to sim-
ulate different decision policies. For each location, the acceptance
rate between ar = [0.3, 0.5] is randomly picked which will deter-
mine how strict or lenient the initial decision policy is. Once deter-
mined, the acceptance rate will stay fixed for each location. There is
n = 1000 number of data points in each location.

The confounders X,Z are sampled from Normal Distribution and
the correlation among them is controlled using parameter ρ.

Xi ∼ N(0, 1) , Zi ∼ N(ρXi, 1− ρ2) ; 0 ≤ i ≤ d (4)

where 2 ∗ d is the total number of confounders present in a single
sample. The potential outcome μa1 , μa3 under treatments a1, a3 is
determined by:

μa1(X,Z) =
kx

kx + ρkz

(
kx∑
i=0

Xi +

kz∑
i=0

Zi

)
+ ε (5)

μa3(X,Z) =
kx

kx + ρkz

[ d∑
i=0

Xi +
d∑

i=0

Zi

− τ
( d∑

i=0

Xi +
d∑

i=0

Z2
i

)]
+ ε (6)

where,

ε ∼ N
(
0,

1

2n
‖μa1(X,Z)‖22)

and kx, kz determines the number of confounders impacting the out-
come. CATE between two treatments a1, a3 is controlled with pa-
rameter τ in eq. 6. To compare learned estimator ν̂(x), the ground
truth outcome based on confounders X is given as:

ν(X) =
kx

kx + ρkz

[ kx∑
i=0

Xi + ρ

kz∑
i=0

Xi

]
(7)

The propensity score, probability of treatment assignment, is given
as π(X,Z) in eq. 8. To replicate real-world scenarios where deci-
sion reversal is possible through appeals and gives dual-treatment
samples, we simulate two decision stages d1, d2, given in eq. 9 and
10 respectively, corresponding to the initial and final decision.

π(X,Z) = σ
( 1√

kx + kz

( kv∑
i=0

Xi +

kz∑
i=0

Zi

))
(8)

d1 = Bernoulli(min(
π(X,Z)

ar
∗ 0.5, 0.99)) (9)

d2 = Bernoulli(π(X,Z)) (10)
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Figure 2: Performance under Varying
Treatment Effects

Figure 3: Performance Comparison over
Confounders Correlation

Figure 4: Performance comparison over
Hidden-Confounders

where σ(x) = 1
1+e−x and ar = [0.3, 0.5] is the acceptance rate

randomly picked for each location in the dataset. Lower ar values
mean a strict decision policy as it brings down the decision boundary
from 0.5. Based on d1, d2, the assigned treatment is given as:

T =

⎧⎨
⎩

a1 d1 = 0
a2 d1 = 1 & d2 = 1
a3 d1 = 1 & d2 = 0

(11)

Evaluation Metric: The dataset contain samples from all L loca-
tions. For evaluation, the dataset is partitioned into train and test sets.
The metric used to evaluate the performance of target estimator ν̂(x)
is Mean Square Error (MSE) given as:

MSE =
1

n

n∑
i=1

[
(ν(xi)− ν̂(xi))

2] (12)

where n is the total number of points in the test set.
Results: Our solution comprises of two main components: 1) Esti-
mation of potential outcome Ŷa1 for dual-treatment samples using
Algorithm 1 and 2) Training a counterfactual predictor model ν̂(x)
using RA (Algorithm 2) and DR (Algorithm 3) schemes.

Figure 2 demonstrates Algorithm 1’s effectiveness by comparing
its performance over varying CATE(a1, a3) with three techniques for
handling labels in dual-treatment samples. The estimator ν̂(x) used
only the DR scheme to ensure a fair comparison, and setting A in Ta-
ble 1 was used to generate data for this experiment. The error lower
bound is obtained with oracle access to potential outcome Ya1 for
dual-treatment samples. In the case of label estimation Ŷa1 is not
performed for dual-treatment samples and their observed label Ya3

is used as it is, performance deteriorates with increasing τ . However,
when Algorithm 1 is used to estimate Ŷa1 for dual-treatment sam-
ples, performance does not degrade with τ . Moreover, the proposed
algorithm 1 performs similarly to using observed label Ya3 as it is
when the treatment effect is negligible (i.e., when τ ≈ 0). Thus, the
proposed algorithm 1 can be used in any situation irrespective of the
value of τ .

Table 1: Experimental settings over synthetic-data

Setting d kx kz ρ τ

A 250 25 25 0.25 *
B 250 25 25 * 0.5
C 250 25 * 0.25 0.5

In Figure 3, we compare the final predictor approaches of AR and
DR with the baseline SP. To generate data, we have used Setting
B in Table 1. We plot the performances of three algorithms against

the correlation ρ between hidden and observed confounders. As ρ
increases, the observed features X serve as proxies for Z. In such
cases, SP performs comparably due to negligible confounding bias.
However, when the correlation is low meaning confounding bias will
be higher in case of SP, there is a clear advantage of using proposed
counterfactual estimation approaches AR and DR presented in Algo-
rithm 2, 3 respectively.

Figure 4 also demonstrate prediction algorithms’ performance
over confounding bias. Here, we control confounding bias using kz .
The parameter setting for data generation is Setting C in Table 1. As
expected, the performance of all algorithms decreases as the value of
kz increases. However, the proposed counterfactual approaches, AR
and DR, outperform the baseline SP when the confounding bias is
non-zero.

It is important to note that in our experiments, there was no clear
advantage of using the DR scheme over RA. Since, DR guarantees
robustness, in case the outcome regressor μ̂a1(x, z) does not con-
verge properly, instead of gain in performance.

5.2 Real-World Data Evaluation

Data: The real-world data used in this study consists of placement
decisions from eight states in the USA, with In-Home placement
(T = a1) as the desired treatment. While the eight locations cover a
wide area with overlapping attributes, each state may handle cases
differently. The observed features X include demographics, case
records, and complaints, while hidden features Z include substan-
tiated maltreatment, mental health, and disability type. The relevant
outcome is whether or not further maltreatment occurred within six
months of In-Home placement.

Figure 5 displays N = 5000 samples randomly drawn from each
location. To compare the characteristics of sub-populations or the
effectiveness of initial decision criteria among each state, two new
metrics are introduced: Acceptance Rate (AR) and Failure Rate (FR),
given as follows:

AR =
Number of In-Home samples

N

FR =
Number of maltreated In-Home samples

N

While a high AR usually results in a high FR and vice versa, not
all locations follow the same trend, as shown in Figure 5. This sug-
gests that In-home sample distribution may vary among locations,
and certain locations may have room for improvement in terms of
FR.
Evaluation: To circumvent the issue of missing ground truth labels
in evaluation, we have devised three new methods that are applicable
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Figure 5: Real-World data Statistics

in applications similar to child placement. The first method enables
us to quantify the benefit of using a prediction model as compared to
human decision-makers [25]. Meanwhile, the second and third meth-
ods allow us to compare different prediction models to select the best.

Method 1 - Comparison with Humans: In the child placement
application, initial decisions may be wrong in two ways 1) higher
FR among the In-home population, and 2) significant proportions
of dual-treatment samples. For comparison, we see if the proposed
prediction model (DR) can switch high-risk in-home samples with
low-risk dual-treatment samples. The risk-score for dual-treatment
samples can be estimated using Algorithm 1.

First using DR method, we estimate the risk score for the In-Home
and dual-treatment samples. Then without modifying the AR of each
location, assign In-Home treatment based on predicted risk scores of
In-Home and dual-treatment samples. It can be seen in Figure 6, that
prediction models bring down the FR for all locations. Also, it means
that the proportion of dual-treatment samples will decrease as some
of them are now assigned in-home treatment by the prediction model.
After further analyses, we have discovered that the most common
predictor responsible for short-stays is reported as child neglect [36],
and our prediction algorithm rightfully assigns negative weightage to
this predictor while determining the risk score.

Method 2 - Evaluation over Outlier State: In Figure 5, AR and
FR for different states are presented. Two locations, A and G, stand
out with relatively higher FR and lower AR as compared to other lo-
cations. It means their In-Home samples contain a significant number
of high-risk samples that are usually Out-of-Home samples in other
locations. It allows us to train predictors over other locations B to F
and evaluate them over In-Home samples of Location A and G. The
results are reported in Table 2, and it can be seen that MSE is differ-
ent between Standard Predictors (SP) and counterfactual predictors
(RA, DR). First, it validates the evaluation method and also shows a
gain in performance by circa 10% due to counterfactual predictors.

Table 2: MSE Comparison from Proposed Evaluation Methods

Prediction Algorithm Method 2 Method 3

Standard Predictor (SP) 0.8 0.83
Regression Adjustment (RA) 0.69 0.39
Doubly-Robust (DR) 0.68 0.26

Method 3 - Doubly-Robust Evaluation: The prediction error is
identifiable when there are no hidden confounders under desired
treatment as E((Ya1− ν̂(x))2|X,Z) = E((Ŷa1− ν̂(x))2|X,Z, T =
a3). We propose the Doubly-Robust Evaluation approach similar to

Figure 6: FR Comparison with Similar AR

[10], with the difference that it can handle selective confounding. Our
evaluation procedure identifies error term using dual-treatment sam-
ples. Defining identifiable error regressor as η(X,Z) := E((Ŷa1 −
ν̂(x))2|X,Z, T = a3), the doubly-robust estimate of MSE is given
as:

1

n

n∑
i=1

[
I
i
�=a1

[
I
i
a3

π̂a3|�=a1
(Xi, Zi)

(
(Ŷ i

a1
− ν̂(xi))

2 − η̂(Xi, Zi)
)

+ η̂(Xi, Zi)
]
+ I

i
a1
(Yi − ν̂(xi))

2

]
(13)

The results are reported in Table 2. It can be seen that there is a signif-
icant gain in using counterfactual predictors RA and DR as compared
to SP. It is interesting to note that DR performs slightly better than
RA which is highlighted by this method.

6 Summary

Counterfactual predictions for desired treatments play a crucial role
in aiding decision-makers in real-world applications. However, as-
suming all confounders or their proxies are observable might not be
realistic. In this work, we address this limitation by considering the
scenario of selective confounding, where confounders can be hid-
den under a desired treatment. Despite this relaxation, our proposed
method guarantees the identifiability of the target quantity and of-
fers an interpretable target model, subject to two key assumptions: 1)
The existence of different decision makers and 2) the possibility of
appeal. To train the target model, we employ a two-stage counterfac-
tual learning technique with no confounding bias over nuisance esti-
mators. This allows us to use Linear Regression as the target model,
making it inherently interpretable and suitable for societal applica-
tions. Our empirical results demonstrate that the proposed framework
surpasses both human decision-makers and conventional statistical
learning models in terms of performance. While we provide results
for child-placement examples, the proposed method can be extended
to other applications such as ICU admission and police arrests that
satisfy the two conditions.
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