
Companion Apps or Backdoors? On the Security
of Automotive Companion Apps

Prashanthi Mallojula1, Fengjun Li1, Xiaojiang Du2, and Bo Luo1

1 University of Kansas, Lawrence, KS, USA
2 Stevens Institute of Technology, Hoboken, NJ, USA

{prashanthi.mallojula, fli, bluo}@ku.edu, xdu16@stevens.edu

Abstract. Automotive companion apps are mobile apps designed to re-
motely connect with cars to provide features such as diagnostics, logging,
navigation, and safety alerts. Specifically, onboard diagnostics (OBD)
based mobile applications directly communicate with the in-vehicle net-
work through the OBD device. This can lead to several security issues,
for instance, onboard information of vehicles can be tracked or altered
through a malicious or vulnerable app. We conduct a comprehensive mea-
surement study including static, runtime, and network traffic analysis of
OBD companion apps. Our analysis has been applied to 125 Android mo-
bile applications available on the Google Play Store. We identify a set of
vulnerabilities and further validate these vulnerabilities with real-world
vehicles. We show that 70% of the apps have vulnerabilities that can
lead to private information leakage, property theft, and direct risk while
driving. For instance, 18 apps could connect to open OBD dongles with-
out requiring any authentication, accept arbitrary CAN commands as
inputs from the (potentially malicious) user, and deliver the commands
to the CAN bus without any validation. We discuss the possible coun-
termeasures and also make responsible disclosures to app developers.

Keywords: Automotive companion apps · Security · Privacy.

1 Introduction

On-board diagnostics (OBD) is a standardized system in vehicles that enables
self-diagnosis and reporting of crucial engine and system data. The legislation
mandates the use of OBD-II for the collection of emission information in all gaso-
line vehicles that are manufactured after 1996 [42]. In addition, all the major
vehicle manufacturers utilized OBD-II to assist in vehicle diagnostics, since it is
capable of accessing internal vehicular information such as sensor values, error
codes, ECU self-diagnostics, etc. In the past decade, the cost of OBD-II access
devices has dropped dramatically. Besides the manufacturers and repair/main-
tenance service providers, OBD-II was further utilized by the industry for other
advanced functions. For example, insurance companies attach small monitoring
devices through OBD-II to collect users’ driving habits, so that they can pro-
vide discounts for safe driving behaviors. The consumer market has also adopted

2 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

this trend, leading to the development and adoption of various low-cost OBD-
II access dongles and companion mobile apps to provide real-time monitoring
and diagnostic functionalities to end users. While these devices and apps serve
practical purposes, they raise security concerns.

A limited number of research efforts have been dedicated to the security anal-
ysis of OBD-II-based consumer devices. Wen et. al. was the first to investigate
the security issues with wireless OBD-II dongles [46]. With an extensive inves-
tigation of all the OBD-II dongles on the retail market, the paper revealed a
wide range of vulnerabilities concerning connection and communication with ve-
hicles. [46] also introduced a custom tool, DongleScope, to systematically detect
security vulnerabilities in the dongles. Meanwhile, the OBD-II dongles connect
wirelessly with smartphones, in which the companion apps are installed to pro-
vide interfaces for users to interact with the vehicle through the dongles. The
apps that lack proper security controls will become additional attack surfaces.
However, an in-depth security investigation of OBD-II companion apps is still
missing in the literature. A previous effort adopted off-the-shelf tools to detect
general Android source code issues such as external storage, warnings, and file
access, related to auto infotainment and OBD-II apps [36]. Their methodology
or findings were not specific to OBD-II companion apps or vehicles.

We argue that a systematic and holistic study of the security of OBD-II
companion apps is still missing in the literature, and, in this paper, we make
the first attempt to address the gap by investigating the attack surfaces that are
not exclusively studied in the literature. We focus on the security and privacy
issues in various aspects of OBD-II companion apps. In a broader context, we
reveal vulnerabilities within the app that could be exploited by adversaries to
(1) gain unauthorized access to the dongles and to the vehicles, (2) compromise
the normal operation of the vehicles; (3) steal sensitive personal or operational
data from the vehicles, and (4) cause driver distraction and risk while driving.

To achieve this, we first identify all vehicle companion applications that work
with OBD-II dongles from the Android Play Store. We start with collecting in-
formation from each application to assess their compatibility with various vehi-
cle models and OBD-II dongles. Next, We implement static code analysis and
network traffic analysis to gain insights into the authentication and secure com-
munication protocols implemented in these apps. Simultaneously, we reverse
engineer the CAN bus communication with the vehicle to extract vehicle control
commands. Finally, we draw conclusions regarding vulnerabilities for each app
through dynamic testing of app execution, utilizing the security information ex-
tracted. In this paper, we have identified a series of security concerns that are
directly related to potential security threats. For instance, apps without authen-
tication and/or user-vehicle binding can be vulnerable to unauthorized access to
the OBD-II dongle and further to the connected vehicle. Moreover, companion
apps with vehicle control features, such as the ability to lock/unlock the vehi-
cle, and terminals that allow manual CAN bus commands, could be exploited to
compromise the vehicle and inject high-risk commands when accessed by anyone
within the covered wireless range. In addition, the companion apps often store

On the Security of Automotive Companion Apps 3

sensitive user and vehicle-related data and provide access to vehicle diagnostic
logs. With inappropriate data protection protocols, this can result in the leak-
age of sensitive information. Finally, apps with no access control over features
allowed while driving can lead to driver distraction and risk while driving.

The main contributions of the paper are summarized as follows:
• We are the first to present a comprehensive study on the security and privacy
issues with vehicle/OBD-II companion apps.
• We uncover distinct vulnerabilities in companion apps that are rooted in inap-
propriate security practices. These vulnerabilities may lead to vehicle diagnostic
leaks, eavesdropping, and, more critically, the disruption or compromise of a
vehicle by attackers.
• To demonstrate the practical risk associated with these vulnerabilities, we
tested them on different real-world vehicles. Our extensive analysis of 125 apps
gathered from the Google Play Store reveals that 70% are vulnerable to unautho-
rized access, potentially leading to the leakage of sensitive vehicle information,
while 40% of the apps can leak driving information logs, trip locations, etc from
vehicles. Worst of all, 18 apps could be easily exploited as practical hacking tools
to compromise vehicle control.
Ethical Considerations. Our goal is to expose vulnerable security practices
in OBD II companion apps and demonstrate the potential impact of these vul-
nerabilities. All the app analyses were conducted in a lab and did not target or
interfere with any vehicle. The final experiments on real vehicles were conducted
in a safe environment (empty parking lot, stationary vehicle, did not attempt
to move the vehicle). We exclusively tested on vehicles that we have authorized
access to and ensured that no harm or interference occurred. Given that this is a
mobile app-based analysis that can be applied to any vehicle model, we adhere
to the authority of the vehicle owner. We further made responsible disclosures
to app developers on all the identified vulnerabilities.

The rest of the paper is organized as follows: We introduce the system and
threat models in Section 2. We present our methodology in Section 3, followed
by the vulnerability identification results in Section 4. We discuss the potential
controls in Section 5, followed by a brief literature review in Section 6. Finally,
we conclude the paper in Section 7.

2 The System Model and the Threat Model

2.1 The System Model

The system model of our study is shown in Figure 1.
(a) On-Board Diagnostics II Port. OBD-II is an industrial standard data
link connector for vehicles. While OBD-II was initially used by professionals for
diagnosis and service, it has been recently adopted in the consumer market to
provide real-time vehicle operation information to end users. The OBD port is
standardized as a 16-pin connector. Each of these pins is dedicated to a spe-
cific purpose, e.g., power supply, CAN data communication (pins 6 and 14), and

4 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

Fig. 1: The system model: (a) OBD-II port; (b) wireless OBD-II Dongle; (c)
WiFi or Bluetooth communication; (d) companion app.

ground connections. The majority of modern vehicles support a range of commu-
nication protocols, ISO 9141-2, ISO 14230-4 (referred to as Keyword Protocol),
ISO 15765-4 (CAN), and SAE J1850 [9].

(b) Wireless ODB-II Dongle. A wireless OBD-II dongle connects to the
OBD-II port of a consumer vehicle and interacts with the ECUs through the
Control Area Network (CAN) bus. OBD dongles are responsible for converting
OBD commands into CAN standards. Most of the OBD-II dongles are capable
of two-way communications with the CAN bus. The majority of OBD dongles
are ELM327-based [5] and support a standardized “AT” command format. The
security issues of the OBD-II dongles have been extensively studied in [46].

(c) Wireless Communication. The wireless OBD-II dongles are capable of
communicating with external devices through WiFi (IEEE 802.11) or Bluetooth.
They connect with smartphones with automotive companion apps so that they
serve as bridges between the CAN bus and the apps. A Bluetooth dongle could
communicate with only one smartphone at any time, while a WiFi dongle may
communicate with multiple devices simultaneously.

(d) Automotive Companion Apps. As the primary objective of our paper,
numerous OBD-II or automotive companion apps are available in app markets,
such as the Apple App Store and Google Play. Each companion app is compat-
ible with one or more OBD dongles. They support a wide range of operations
and commands to access and control the connected vehicles. For instance, they
are designed to provide diagnostic trouble codes, real-time vehicle information
(speed, engine RPM), and parking assistance. These apps may communicate
with the vehicle’s ECU when the vehicle is parked, powered off, or even driving
at high speed. Some apps also support vehicle control operations such as remote
lock/unlock, control AC, and more. Their functions are valid for legitimate pur-
poses. However, if not implemented with appropriate access control, these apps
become attack surfaces that place vehicles and drivers at risk.

2.2 The Threat Model

The main attack surface to be investigated is the companion app and its pe-
riphery. An attacker can be any malicious external individual. In particular, we
consider two types of attackers: (1) attackers who misuse the companion apps:

On the Security of Automotive Companion Apps 5

they are akin to the script kiddies, who are not skilled enough to perform vul-
nerability scanning or hacking into the companion apps. Instead, they utilize the
apps as hacking tools, i.e., they use the published functions of the apps to per-
form malicious actions against the target vehicles. And (2) attackers who target
the companion apps: they are the skilled attackers who are capable to eaves-
drop on the communication or examine the app code to identify vulnerabilities.
In both cases, the attacker’s primary objectives are: (1) To gain access to the
vehicle through a connected OBD II dongle; (2) to eavesdrop on app-to-vehicle
communication; (3) to steal information of the vehicle or the user; and (4) to
interfere with vehicle operations and potentially take control of the vehicle.

We assume that a Bluetooth or WiFi dongle is plugged into the OBD-II
port of the victim’s vehicle. This is likely to happen since such OBD-II dongles
have entered the consumer market at very low prices ($15 to $50 each). The
dongles and the companion apps have been advertised as on-board monitors
to provide real-time vehicle information such as speed and torque. They also
track the users’ driving habits and provide personalized safe driving tips. Such
functionalities and advertisements imply that the dongles are supposed to stay
plugged in during the daily operations of the vehicles. Meanwhile, the attacker
must be physically within the range of the vehicle’s WiFi/Bluetooth signals to
initiate an attack. The Bluetooth dongles advertise connection ranges of 20 to
50 meters outdoors, while WiFi dongles cover larger ranges. It is very practical
for an attacker to get into such distance with a parked or even moving vehicle
without being noticed. It is also possible for an attacker to wander around and
scan for Bluetooth/WiFi signals from available dongles. This attacker model is
the same as other Bluetooth-based attacks such as [46,15,12,14].

The attack begins with the attacker’s detection of the vehicle based on the
broadcast network information from the plugged OBD-II dongle. Note that the
dongles connected to OBD ports remain powered even when the vehicles are off.
While the dongles may have limited access to the CAN bus when the vehicles
are off, they are accessible to the companion app (to be articulated in Section
3.4). Any compatible companion app can be employed at this step. Even when
multiple vehicles with connected dongles coexist, an attacker may simultaneously
connect with each of them. The attack could be targeted (against an identified
vehicle) or untargeted (against a random vehicle). The targeted attack is made
possible by certain companion apps that can detect vehicle details. Furthermore,
even if an app requires specific knowledge of vehicle make and model to access its
diagnostics, these details can be easily inferred by visually observing the vehicle.
Overall, with the simple installation of a companion app, anyone within the
WiFi/Bluetooth range can potentially launch an attack on the victim’s vehicle.

3 Vehicle Companion App Analysis

In this section, we provide a clear and concise explanation of our analysis struc-
ture that includes application information, source code, and network traffic anal-
ysis. We then detail our approach to vulnerability definition. Overall, our analysis

6 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

of auto companion apps focuses on security concerns specific to vehicular appli-
cations. While some existing techniques have been adopted as the basic tools,
e.g., network packet capture or static code analysis, all the analysis techniques
are customized for vehicle companion apps.

3.1 App Function Analysis

To gain a better understanding of companion app execution and usage, our
initial step involves gathering app information and establishing the initial setup
procedures for each app. First, we collect information from Play Store API such
as app descriptions, manufacturer details, the number of downloads, etc. Based
on the collected information, we have summarized a series of features such as
compatibility with vehicle models, supported OBD devices, and the available
modes of connection for each app. We then installed each app on a smartphone
and performed initial setup procedures. We tested the apps to gain insights
into the connection and access of each app, with a special focus on available
user interface (UI) options. We also collected the privacy policy of each app to
understand if these security practices have user consent.

The app features examined in our security analysis are listed as follows: con-
nection mode (WiFi, Bluetooth, Both), authentication (open access, password),
user account (required, optional, no), OBD device (ELM327, manufacturer-
specific), vehicle compatibility (any, specific make/model), vehicle detection (yes,
No), access when vehicle off (yes, no), report log & share (yes, no), CAN com-
mands terminal (yes, no), data transmission (encrypted, non-encrypted).

Each feature in this list contributes to one or more vulnerabilities if it is
not properly implemented with specific security measures. We classify OBD
companion apps into two categories: generic apps that connect to any OBD-
II Dongle that is ELM327-Compatible [5], and proprietary apps that are only
compatible with manufacturer-specific dongles. A few apps claim to support both
ELM327-based and manufacturer-specific dongles, and we still classify them as
generic apps. We note the OBD compatibility of the app as ELM327-based or
manufacturer-specific. Similarly, vehicle compatibility denotes whether an app
supports all vehicle models or a specific set of vehicle models. During the ini-
tial setup, we record if the app requires vehicle information before launch, and
whether it initiates the diagnostic page when the vehicle is off. Additionally, we
assess if the app has the capability to share stored diagnostic reports or trip logs.
Some apps even provide an OBD terminal as part of the user interface, allowing
users to manually send (arbitrary) CAN bus diagnostic and crucial vehicle con-
trol commands. In these cases, unauthorized access could result in full control
over the vehicle, leading to potentially severe consequences. Finally, we record if
the app has encrypted data transmission based on network packet analysis.

3.2 Static Source Code Analysis

We perform source code analysis to verify and evaluate security protocols related
to external communication. Our main objectives include identifying and address-

On the Security of Automotive Companion Apps 7

ing any insecure network communication practices. In particular, we focused on
two main issues in the source code: (1) Insecure external communication, and
(2) Unvalidated CAN command input.
• Insecure External Communication : Companion apps often require com-
munication with external entities for various features, including user account
verification (e.g., Google, Facebook, etc.), diagnostic analytics, and the storage
of reports in external storage. This practice involves the transfer of sensitive
information, such as user data, vehicle diagnostics, and financial information.
Applications that employ insecure network transfer are at risk of leaking sensi-
tive data. For instance, we have observed instances in several companion apps,
where endpoint URLs are hard-coded or with insecure calls.

We decompile the source code of each app using the JADX decompilation tool
[41]. After extracting the Java source code, we identify URL patterns within each
app and filter out insecure links from the extracted URLs. We have developed a
customized Python script responsible for extracting methods for each URL.
• Unvalidated CAN command input: Certain apps allow users to enter raw
CAN commands and send them to the CAN bus (through the connected OBD-
II dongle) for execution. For such apps, we examine the source code to identify
any validation or post-processing of user input, including CAN command format
validation, any potential access control, and any sanitization of malicious or
unsafe commands.

3.3 Network Traffic Analysis

We subject each app to dynamic execution to observe network traffic. Our goal is
to uncover potential vulnerabilities related to insecure data transmission. During
this process, we execute each user interface (UI) within the app that corresponds
to vehicle diagnostics and sharing of vehicle diagnostic/trip logs. Concurrently
capture network packets. If any insecure data transmission is detected, we verify
if vehicular data is leaked such as diagnostic commands or user information, etc.

We have noticed that some applications transmit sensitive information with-
out encryption. When vehicle diagnostic commands are transferred without en-
cryption, it leaves an opportunity for attackers to extract this data for malicious
purposes. This vulnerability was further confirmed through network traffic anal-
ysis, which revealed instances of vehicle information leaks.

Apps require user consent for any information transfer and are informed
on security practices relating to app communication. Hence, we also verify the
consistency between the app’s security and corresponding privacy policy. Any
mismatch will be considered a privacy violation.

3.4 Vulnerability Identification

With extensive analysis of companion app behavior, code base, and execution, we
have identified a range of security vulnerabilities. These vulnerability scenarios
include every aspect of the companion app’s interaction with the vehicle.

8 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

[V1] Unauthorized app connection: Companion apps that allow connection
without secured authentication can be vulnerable as any unauthorized individ-
ual can connect to a vehicle that has a dongle plugged in. Such access can grant
attackers continuous visibility and access to vehicle information and further can
leak vehicle-sensitive information. It can be argued that in the presence of an
open connection on the dongle, limitations may arise concerning the extent to
which apps can safeguard user accounts. However, in practice, even within an
open connection device, the responsibility falls upon the application to employ
authentication and authorization. Hence, we argue that apps without strict se-
curity measures to authenticate can lead to potentially vulnerable connections.

[V2] Inadequate authentication: One of the common implementations in
these apps is user account setup and vehicle identification based on make and
model. We argue that this is considered an inadequate authentication, as any
attacker can set up an account and enter vehicle details by observing the vehicle.
We also point out that VIN is considered inadequate authentication, as it is
visible through the windshield.

[V3] Vehicle information and diagnostic leaks: Real-time vehicle informa-
tion and diagnostic data contain sensitive information regarding vehicle status,
sensor readings, and more. Improper access control may expose real-time vehicle
data to attackers. Most of the apps feature diagnostic logs and trip tracking, i.e.
the user can access full diagnostic reports and driving histories. These reports
can be stored and shared with any third party.

[V4] Unvalidated vehicle control: Certain applications provide direct OBD
terminal access allowing users to manually inject arbitrary CAN bus commands
or a user interface to transmit customized commands to the vehicle. In either
scenario, the user inputs (as text strings) are never validated or sanitized in any
capacity, so that an attacker can use the app as a hacking tool to remotely control
the vehicle. Notably, such attacks do not require advanced equipment; a basic
understanding of CAN bus commands is sufficient to compromise and manipulate
the vehicle’s functions, posing risks to both the vehicle and its occupants.

[V5] Live CAN traffic leak: Most of the companion apps are compatible with
ELM327-based dongles and support ELM327, standard “AT” commands. There
is a specific command “ATMA” (Monitor All), which allows a user with access
to extract live CAN bus traffic. This can be reverse-engineered to extract CAN
bus commands of particular vehicle models and further attack the vehicle.

[V6] Eavesdropping on Vehicular communication: In the communication
between the companion app and the vehicle, we can identify two hops: one
from the vehicle to the OBD dongle and the other from the OBD dongle to the
companion app. If data transmission is not secured, the app becomes vulnerable
and susceptible to eavesdropping on network communication.

[V7] Insecure External Communication: Apps may establish connections
with external entities through network connections. To transmit sensitive infor-
mation, it is important to ensure the confidentiality and integrity of these data
transfers. Some of these apps use the insecure “HTTP” protocol when handling
sensitive information, which raises concerns about data security.

On the Security of Automotive Companion Apps 9

Table 1: Apps with Top Downloads
App Name Downloads Rating

Car Scanner ELM OBD2 10,000,000+ 4.7
InCarDoc - OBD2 ELM327 Scanner 5,000,000+ 4.2
EOBD Facile: OBD 2 Car Scanner 1,000,000+ 4.4
Torque Lite (OBD2 & Car) 10,000,000+ 3.6
Carista OBD2 1,000,000+ 4.2
Infocar - OBD2 ELM Diagnostic 1,000,000+ 4.2
MotorData OBD ELM car scanner 5,000,000+ 4.1
FIXD - Vehicle Health Monitor 1,000,000+ 4.6
Carly OBD2 car scanner 1,000,000+ 3.9
BlueDriver OBD2 Scan Tool 1,000,000+ 4.6

[V8] Privacy Policy Violation: We verify the consistency between the defined
privacy policy for each app and the associated information handling (collection
and sharing) practice and report identified privacy violations.
[V9] Access when vehicle is off : Some apps can connect to the OBD dongle
when the vehicle is off. The OBD port remains powered even when the vehicle
is off, hence, the companion app can connect to the dongle with limited access.
In this case, some apps would terminate or display a warning message and pre-
vent the user from going further. However, some apps still allow access to the
dongle’s settings and tracking logs, even when the vehicle CAN communication
is restricted in this case. Apps with direct terminal access may enable users to
modify settings for OBD dongles when the vehicle is off, further complicating
access control for the driver/owner.

4 Vulnerability Analysis and Results

4.1 App Data Collection

We have collected 125 Android-based OBD II companion apps from the Google
Play Store. We have crawled all the available information from the Play Store
API such as No. of downloads, privacy policies, and descriptions. 68% of them
support ELM327-based OBD II dongles and the remaining apps are manufacturer-
specific (only work with a specific dongle). Considering connection modes, 66.4%
support WiFi, and 97% of apps have Bluetooth connectivity. These apps have
collectively accumulated a substantial number of downloads, demonstrating their
popularity and a consistent increase in daily downloads. The highest number of
downloads is 10,000,000+ on app Car Scanner. Overall, we have tested 70.4%
apps on real-time automobiles and the rest of them have vehicle and dongle
compatibility limitations. Further apps, with top downloads, are given in Ta-
ble 1 along with connection and vehicle compatibility. In this table, we report
the vulnerability ratio for each type can observe that most of the top downloaded
apps are highly vulnerable and can compromise vehicle security.

10 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

4.2 Experiment Setup

Our experiment requires the use of a smartphone to operate all the applications.
In our testing process, we have assessed the functionality of all the apps using
two distinct vehicle models: a 2012 Nissan Altima, and a 2016 Toyota Corolla.
We have employed a set of OBD dongles that collectively are compatible with a
majority of the applications, including two generic WiFi dongles: OBDII-WiFi-
ELM327 and Forseal-WiFi, one generic Bluetooth dongle: OBDII-Bluetooth-
ELM327, and one WiFi/Bluetooth dongle: Kobra-WiFi/Bluetooth. We also used
three manufacturer-specific dongles: Infocar, Think-driver, and Fixed. Apps that
are compatible with test vehicle models and available OBD dongles are evaluated
with real vehicles. 50 apps cannot be tested with the vehicle due to OBD and
vehicle compatibility issues, however, they are all validated with app function
analysis and static code analysis.

4.3 CAN Control Messages and Vulnerability Evaluation

Following previous techniques [7,46] on CAN message extraction through man-
ually triggering physical action on vehicles, we have reverse-engineered CAN
bus messages that can alter vehicle function. With this, we can effectively test
vulnerabilities corresponding to vehicle control features. We have obtained fun-
damental control commands to inject CAN bus such as Turning lights and head-
lights. In particular, the ‘AT SH’ command serves the purpose of specifying the
ECU identifier on the vehicle responsible for handling specific operations. Af-
ter a successful configuration, when the command ‘AT SH 60D’ is transmitted,
the CAN bus identifies the target ECU governing the headlights. Following this
command, a CAN message is sent, represented as 06 06 00 00 00 00, which
activates the headlights. Table 2 provides a list of derived control commands
on our test automobiles. We did not test critical operations such as controlling
vehicle speed while moving.

In each experiment, the app is first set up and executed in conjunction with
a compatible OBD dongle to verify connection setup, access, and associated
security measures implemented by the app. Each available UI of the app and
any vehicle control operations are examined. Access control over diagnostic and
vehicle control access is verified. Next, each app is executed, and in parallel,
network packets are captured to verify if the app has encrypted information
transfer. Vulnerability corresponding to this is assessed information such as ve-
hicle diagnostics extracted from network packets. Next, each app’s source code
is analyzed for any potential information leaks. We have performed static source
code analysis of each app and verified for potential traces of information leaks.
As mentioned in 3, we find out that insecure communication apps and CAN bus
commands are directly mentioned in apps.

4.4 Vulnerability Assessment

Our systematic experiments with OBD companion apps have detected security
vulnerabilities within each app. We did not change any function/feature of any

On the Security of Automotive Companion Apps 11

Table 2: CAN bus control commands
Vehicle CAN Control Message Action

Nissan
60D 00 46 00 00.. 00 Turn on the left signal
60D 06 06 00 00.. 00 Switch headlights On

Toyota
614 29 80 00 10.. 00 Turn on the left signal
614 29 80 00 30.. 00 Switch headlights On

app. In this section, we explain the analysis results for each vulnerability. Table
5 explains vulnerabilities found in the top 50 apps and reveals the implications
of these security gaps in each application. While the security of these appli-
cations depends on the authentication requirements of the connected dongles,
our research emphasizes the critical role of security measures within companion
apps. Notably, more than 70% of the apps exhibited vulnerabilities related to
unauthorized access and diagnostic data leaks.

[V1] Unauthorized app connection: We have tested connections using both
WiFi and Bluetooth protocols. 88 companion apps allow open connection access
without any authentication. Among these, 64 apps support unencrypted and
unauthenticated WiFi connection, while 86 of them support Bluetooth (62 apps
support both). For WiFi dongles, the attacker could connect to the dongle even
when the owner’s smartphone/app is already connected, as multiple connections
are allowed. For Bluetooth dongles, a pairing process is necessary, and only
one device could be connected to the dongle at a time. Both features provide
certain protection, however, the attacker could still remotely connect to the
dongle without having any authentication (e.g., knowing a password printed on
the dongle). The remaining 37 apps have predefined authentication processes
to connect to the OBD devices and vehicles. For example, “Think Driver” and
“Fixed” need an OBD device serial number before connection authentication.

[V2] Inadequate authentication. While connection establishment, we ob-
serve two main inadequate verification patterns: (1) User account setup, and
(2) Vehicle information. Overall, 58 apps enable user account creation and sub-
sequent verification via email or phone. Out of these, 22 apps support open
connection i.e. allow unauthorized app connection. They also store the informa-
tion of the connected vehicle as part of the user profile. However, we still view
this as an insecure practice, as the attacker could easily create an account on
her own smartphone and connect to the open dongle.

Before launching diagnostics, 53 apps that allow open connection enquire
about vehicle information. They typically seek basic details such as the vehicle’s
make and model. For instance, apps like “OBD jScan” and “Alfa Romeo” only
launch vehicle diagnostics after selecting the vehicle and providing corresponding
details. We consider these verifications to be inadequate as they do not impose
any restriction on actual OBD II connection with the app and, more importantly,
do not validate that the user has (authorized) physical access to the vehicle.
Table 3 shows % of apps for connection modes that are vulnerable.

12 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

Table 3: Connection Setup
Connection App count Open access user account Vehicle Info

WiFi 83 64 13 38
Bluetooth 122 86 21 52

Table 4: Vehicle information leakage and implications.
Information Leak Implication Information Leak Implication

Fault code Diagnostic Sensor values Diagnostic
Location Privacy Driving info Privacy
Live Dashboard Diagnostic Driving Log Privacy
Fuel calculation Diagnostic Emission Test Diagnostic
ECU Code Vehicle info ECU Details Vehicle info
Battery Info Diagnostic Graph and report Privacy

[V3] Vehicle information and diagnostic leaks. All applications that grant
unauthorized access are at risk of exposing onboard vehicle diagnostics, which
may leak critical vehicle data, including fault codes, sensor readings, and ECU
IDs. More severely, several apps also leak sensitive trip information such as
location history and trip logs. Figure 2 (A) shows the “Incar Doc Car Scanner”
app after an unauthenticated connection, where we can observe the details of the
leaked data. Figure 2 (B) and (C) show the leak of real-time vehicle status and
sensor readings from Car Scanner. Note that Figure 2 (C) is a very long screen
that could be scrolled down to reveal the readings of all accessible sensors. Table
4 summarizes the most leaked attributes and the implication of each leak.

[V4] Unvalidated vehicle control. 18 out of 125 apps have direct “OBD ter-
minal” features available without any access control or message level validation.
With all 18 apps, we successfully launched the attack on our test automobiles
to control the vehicle’s headlights and turn lights from all of these companion
apps. Almost half of the apps that allow unauthenticated and invalidated vehicle
control are the most downloaded apps. These apps mention in their descriptions
that the terminal can be used for advanced functions or manual commands to
aware users. However, the seriousness of attacks is evident from performed ex-
periments and shows the need to impose restrictions on accessing this feature,
given the open connection provided by the app. All of these apps do have the
potential to leak diagnostics, Manual CAN injection Traffic leak, etc.

[V5] Live CAN traffic leak. We observe that apps with terminal access to
allow manual CAN bus commands support standard ELM327 commands. Hence,
we tested the command “ATMA” to capture live CAN traffic, as shown in the
screen of app Car Scanner (Figure 2 (D)). With live CAN traffic, one can reverse
engineer and extract control commands of the vehicle, as shown in [1].

[V6] Eavesdropping on Vehicular communication. The next crucial com-
ponent is network traffic between the app (smartphone) and the vehicle (OBD
dongle). Our experiments reveal that, overall, 50 out of 125 apps have trans-

On the Security of Automotive Companion Apps 13

Fig. 2: (A) Vehicle information from InCarDoc; (B) Real-time vehicle status from
CarSCanner; (C) Sensor readings from CarSCanner; (D) Real-time CAN traffic.

mitted information over unencrypted connections, posing eavesdropping vulner-
ability. With this, we have captured live CAN bus commands sent from the
app to the dongle through network traffic. We were able to observe the vehicle
diagnostic commands and vehicle status from the unencrypted communication.

[V7] Insecure External Communication. Our static analysis results reveal
that 57 apps have utilized insecure URLs to send diagnostics reports and trip
logs over unencrypted communication channels. We further validated each app
through dynamic analysis and network traffic eavesdropping and found UIs re-
sponsible for third-party communication. We found that diagnostic reports and
trip logs are stored mostly in device storage and shared with external entities.
The trip logs contain the highly sensitive historical location information of the
vehicle, which could be captured through network eavesdropping.

[V8] Privacy Policy Violation. We have mapped the consistency between the
privacy policy and corresponding security practices. Apps with no user consent
for information sharing are considered to violate privacy. We have verified the
app API and 25 apps do not mention anything about information transfer but
they indeed transmitted vehicle information and/or diagnostics reports.

[V9] Access when the vehicle is off. 47 out of 125 of the apps allow connec-
tion to the app when the vehicle is turned off. While CAN bus access is restricted
in such cases, an attacker can still access previous diagnostics, if such information
is continuously tracked. Moreover, apps with terminal access still allow access
to connected dongles and configuration commands such as setting up CAN bus
protocol. In this case, any malicious act can change the configuration related to
a vehicle communication protocol, if the app has a specific UI that allows the
change of settings related to vehicle access, these can be changed even when the
vehicle is off. Apps without this vulnerability would terminate when the vehicle
is turned off or display a warning message, which blocks all app functions.

14 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

4.5 Attack Summary

Our analysis results point critical importance of implementing robust security
measures, especially in sensitive categories like vehicle communication. In this
section, we evaluate attack objectives defined in section 2.2 using real-world ve-
hicles, OBD-II dongles, and vulnerable companion apps. Each attack is executed
by exploiting one or more vulnerabilities. Further, We explain the consequences
associated with each attack in detail.
• Gain access to the vehicle through a connected OBD II dongle. The attacker’s
primary goal is to establish a connection and gain access to a vehicle. As shown
in the experiments, this goal is easily achievable in the majority of the evaluated
companion apps. Once access is obtained, the attacker may exploit the vehicle’s
systems, potentially leading to leaks of vehicle-related information, location data,
and driving history. In cases of continuous connection, this poses a risk to the
server and can further complicate the situation. This attack phase serves as a
starting point to complicate further.
• Eavesdrop on app-to-vehicle communication. As we have validated, an external
attacker could eavesdrop on app-to-vehicle communication due to a lack of link
layer encryption and lack of end-to-end encryption. We have shown that vehicle
information and diagnostics can be extracted from network packets captured
during app-to-vehicle communication.
• Steal information of the vehicle or the user. As we have demonstrated, due to
lack of authentication, encryption, and access control, vehicle information could
be obtained through different attack surfaces, e.g., by directly connecting to a
plugged dongle, or by eavesdropping on the app-to-vehicle communication of
a legitimate user. This has the potential to leak location information, vehicle
diagnostics, real-time vehicle operations, and even user information.
• Interfere with vehicle operations and potentially take control of the vehicle.
As validated in our experiments, companion apps susceptible to unauthorized
access can be leveraged to compromise vehicle control in two scenarios: 1. When
an app features a user interface (UI) supporting vehicle control operations, such
as door lock/unlock functions; 2. When an app includes an OBD II terminal
for sending manual CAN bus commands. In both cases, the repercussions can
be severe, as such attacks can potentially grant malicious actors the ability to
compromise the vehicle’s control and security. Also, this can cause Risky driving
conditions as attackers can even connect to the vehicle while moving. Last, there
is a possibility that an attacker can send incompatible commands to the vehicle’s
CAN bus, potentially causing further damage to the CAN bus.

5 Discussions

Each vulnerability identified in our study, concerning automotive companion ap-
plications, holds substantial implications for vehicle owners and their vehicles,
ranging from property theft to vehicle information leaks and risks while driving,
among others. Our analysis results point out the crucial importance of imple-
menting robust security measures, especially in sensitive categories like vehicle

On the Security of Automotive Companion Apps 15

communication. Our comprehensive analysis executed each attack scenario and
overall, results show that 70% of off-the-shelf OBD II companion apps are vul-
nerable. It is concerning to see that apps with poor security controls are allowed
to be deployed in safety-critical domains.

Scope of our work. Our analysis includes all the app components that may
serve as entry points for potential attacks. We have not provided an exhaustive
examination of the source code, as this has been addressed in related research
under the domain of mobile app source code analysis [34]. We focused on the
unique elements that interact with OBD-II dongles and vehicles. Also, in the
case of network communication, we did not decrypt the secured traffic or modify
any protocol that any app uses.

Possible app security controls. We have observed that a few companion apps
incorporate secure authentication methods by following measures such as user
account verification, device identification, and restriction on full access to the
app in the case of open-access devices. This reduces the likelihood of the app
being malicious, even when the compatible dongle has open access. In summary,
we suggest the following security controls for car companion apps: (1) Device
authentication: a strong authentication measure should be employed when the
companion app (the smartphone) attempts to connect to the OBD-II dongle,
to validate that the user has physical ownership/access to the dongle/vehicle.
For instance, the companion app may prompt the user for a serial number or
a pin that is printed on the dongle. (2) User authentication: when the user
profile is created and the vehicle information is associated with the profile, user
authentication should be required when the user attempts to access the profile
and the corresponding vehicle. (3) Encryption: all communications, including
app-dongle communication and external communication, should properly utilize
encryption. (4) Validate user input: while it could be a useful advanced function
to allow users to directly enter CAN commands, such input should always be
validated and sanitized. (5) Restricted functions for insecure dongles: for dongles
that allow open access (unauthorized connection), the app should only provide
very limited functionalities in terms of interacting with the dongle. In short, we
emphasize the companion app’s responsibility to guard against encouraging an
attack and highlight specific security issues directly present in these apps.

Vehicle Hardware and CAN security. While the apps exhibit privacy and
security concerns, it is equally important to address the security of OBD II hard-
ware and the CAN protocol. Numerous studies proposed enhanced security mea-
sures for CAN bus communication [45] or OBD-II dongles [46]. However, these
proposals have not yet seen widespread implementation in the market. CAN
bus communication is a basic broadcast protocol that sends vehicle information
without any encryption by design. External entities accessing the information
are responsible for encrypting the information extracted from the CAN bus.

Responsible Disclosure We were not able to find developer details for most
of the apps. For the 12 companion apps that provided developer contact in-
formation, we made a responsible disclosure in November 2023 regarding the

16 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

vulnerabilities found in our study. As of the submission of this paper, we have
not received any response.

6 Related Work

A thrust of the existing work on vehicular security focuses on CAN bus security,
e.g., [20,37,16,27,32,29,28]. The modern vehicles are integrated with network
communication capacity enabling vehicles to communicate with external enti-
ties in real-time [23,51]. However, advanced integration such as companion apps
needs to be thoroughly analyzed before they can be securely deployed. Here we
briefly summarize the recent attacks against vehicles and discuss three major
categories of defense: in-vehicle communication (CAN bus), vehicle communica-
tion with external entities, and mobile app security.
Recent Attacks on Vehicle. In the past decade, there has been a rise in
vehicle attacks, particularly exploiting vulnerabilities in CAN bus and in-vehicle
network systems. Attackers can compromise vehicles when they gain access to
the vehicle’s CAN bus [3,6,2]. A keyless car theft incident involving a Toyota
RAV4 was reported as a CAN bus injection theft with CAN bus command [10].
Recent demonstrations of potential vehicle vulnerabilities highlighted security
flaws in companion apps for electric vehicles like Nissan Leaf [4], and featured
an illustrative showcase of an attack through Hyundai’s Blue Link app [8]. These
attacks highlight the importance of examining all the entities that can connect,
access, and control the CAN bus, including the vehicle companion apps.
In-vehicle communication and CAN Bus Security. CAN bus communi-
cation has been studied in research, explaining possible vehicle attacks, in case
of insecure CAN bus configuration and communication. CAN bus attacks such
as “weeping attack” [18,30] can be executed through the OBD port. Several
measures such as intrusion detection [31,38], cryptographic solutions [21], CAN
firewall [27], and error handling have been proposed [39]. In this paper, we do not
consider the security of the CAN bus itself, instead, we investigate how vehicle
companion apps may be exploited to launch attacks against the CAN bus.
Auto Infotainment and OBD II Security. Several surveys explained secu-
rity challenges in advanced vehicular communications [17,40,22]. [33] highlighted
the importance of privacy-preserving vehicle information. “AT” commands sent
to CAN bus are studied in [43]. Vehicle companion apps were analyzed to retrieve
CAN commands [47,48]. [49,46,26] studies the attacks and defenses through
OBD-II ports. In this paper, our scope is different from these works as we inves-
tigate how vehicle companion apps could be exploited as attacking tools.
Mobile App Security. Mobile apps have been widely studied for source code
analysis, dynamic analysis, network traffic, etc [50,24,34]. Online tools such as
MOBSF and Qark are available for static analysis from source code [11,35].
The backend cloud servers are also examined [52,13]. However, there have been
limited efforts in security analysis for safety-critical domains. For instance, [25]
works on Health IoT mobile apps to verify privacy information protection. Static
analysis on the IoT apps revealed vulnerabilities such as poor access control [44].

On the Security of Automotive Companion Apps 17

Security analysis also revealed security concerns in industrial control systems
(ICS) apps [19]. Our work further confirms that there has been minimal progress
in enhancing security measures since the publication of [19].

7 Conclusion

In this paper, we conducted a comprehensive analysis of 125 OBD II companion
apps, identifying 9 unique vulnerabilities through an examination of app func-
tions, source code, and network traffic. We further evaluated each app to gain
access to vehicle information, app information, user information, and vehicle
control. Our experiments reveal that 70% of companion apps are insecure and
impose vulnerabilities. Through the analysis and evaluation, we find that many
existing vehicles and OBD-II companion apps continue the practice with mini-
mal attention to security. Our work highlights the need to implement security
protocols in safety-critical domains like vehicle communications.

Acknowledgments. This paper was supported in part by United States Na-
tional Science Foundation (NSF) under grants IIS-2014552, DGE-1565570, DGE-
1922649, CNS-2204785, and CNS-2205868, and the Ripple University Blockchain
Research Initiative. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions

References

1. A complete guide to hacking your vehicle bus on the cheap and easy). https:
//theksmith.com/software/hack-vehicle-bus-cheap-easy-part-1/

2. A Remote Attack on the Bosch Drive log Connector Dongle. https://argus-sec.
com/blog/cyber-security-blog/remote-attack-bosch-drivelog-connector-dongle/

3. Auto cyberattacks becoming more widespread, https://semiengineering.com/
auto-cyberattacks-becoming-more-widespread

4. Controlling vehicle features of Nissan LEAFs across the globe via vulnerable APIs.
https://www.troyhunt.com/controlling-vehicle-features-of-nissan/

5. ELM 327 detailed info. https://www.sparkfun.com/datasheets/Widgets/ELM327
AT Commands.pdf

6. Hacking cars remotely with just their vin, https://www.bitdefender.com/blog/
hotforsecurity/hacking-cars-remotely-with-just-their-vin

7. How to hack a car — a quick crash-course, https://www.freecodecamp.org/news/
hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec

8. Hyundai ‘Blue Link’ Vulnerability Allows Thieves To Start Cars Re-
motely (Update: Hyundai’s Statement). https://www.tomshardware.com/news/
hyundai-blue-link-vulnerability-thieves,34248.html

9. OBD2 Explained - A Simple Intro. https://www.csselectronics.com/pages/
obd2-explained-simple-intro

10. There’s a new form of keyless car theft that works in under 2 minutes (2023)
11. Abraham, A., et al.: Mobile Security Framework (MobSF). https://github.com/

ajinabraham/Mobile-Security-Framework-MobSF, accessed January 2024

https://theksmith.com/software/hack-vehicle-bus-cheap-easy-part-1/
https://theksmith.com/software/hack-vehicle-bus-cheap-easy-part-1/
https://argus-sec.com/blog/cyber-security-blog/remote-attack-bosch-drivelog-connector-dongle/
https://argus-sec.com/blog/cyber-security-blog/remote-attack-bosch-drivelog-connector-dongle/
https://semiengineering.com/auto-cyberattacks-becoming-more-widespread
https://semiengineering.com/auto-cyberattacks-becoming-more-widespread
https://www.troyhunt.com/controlling-vehicle-features-of-nissan/
https://www.sparkfun.com/datasheets/Widgets/ELM327_AT_Commands.pdf
https://www.sparkfun.com/datasheets/Widgets/ELM327_AT_Commands.pdf
https://www.bitdefender.com/blog/hotforsecurity/hacking-cars-remotely-with-just-their-vin
https://www.bitdefender.com/blog/hotforsecurity/hacking-cars-remotely-with-just-their-vin
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://www.tomshardware.com/news/hyundai-blue-link-vulnerability-thieves,34248.html
https://www.tomshardware.com/news/hyundai-blue-link-vulnerability-thieves,34248.html
https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://github.com/ajinabraham/Mobile-Security-Framework-MobSF
https://github.com/ajinabraham/Mobile-Security-Framework-MobSF

18 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

12. Ai, M., Xue, K., Luo, B., Chen, L., Yu, N., Sun, Q., Wu, F.: Blacktooth: breaking
through the defense of bluetooth in silence. In: ACM CCS (2022)

13. Alrawi, O., Zuo, C., Duan, R., Kasturi, R.P., Lin, Z., Saltaformaggio, B.: The
betrayal at cloud city: an empirical analysis of cloud-based mobile backends. In:
USENIX Security Symposium). pp. 551–566 (2019)

14. Antonioli, D., Payer, M.: On the insecurity of vehicles against protocol-level blue-
tooth threats. In: IEEE Security and Privacy Workshops (2022)

15. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.B.: The {KNOB} is broken: Ex-
ploiting low entropy in the encryption key negotiation of bluetooth {BR/EDR}.
In: USENIX security symposium (2019)

16. Avatefipour, O., Malik, H.: State-of-the-art survey on in-vehicle network commu-
nication (can-bus) security and vulnerabilities. arXiv:1802.01725 (2018)

17. Bernardini, C., Asghar, M.R., Crispo, B.: Security and privacy in vehicular com-
munications: Challenges and opportunities. Vehicular Communications 10 (2017)

18. Bloom, G.: Weepingcan: A stealthy can bus-off attack. In: Workshop on Automo-
tive and Autonomous Vehicle Security (2021)

19. Bolshev, A., Yushkevich, I.: Scada and mobile security in the internet of things
era. EMBEDI, IOActive, Whitepaper (2017)

20. Bozdal, M., Samie, M., Aslam, S., Jennions, I.: Evaluation of can bus security
challenges. Sensors 20(8), 2364 (2020)

21. Bruton, J.A.: Securing can bus communication: An analysis of cryptographic ap-
proaches. Nat. Univ. Ireland, Galway pp. 1–5 (2014)

22. De La Torre, G., Rad, P., Choo, K.K.R.: Driverless vehicle security: Challenges and
future research opportunities. Future Generation Computer Systems 108, 1092–
1111 (2020)

23. Demba, A., Möller, D.P.: Vehicle-to-vehicle communication technology. In: IEEE
international conference on electro/information technology (EIT) (2018)

24. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Rajara-
jan, M.: Android security: a survey of issues, malware penetration, and defenses.
IEEE communications surveys & tutorials 17(2), 998–1022 (2014)

25. He, D., Naveed, M., Gunter, C.A., Nahrstedt, K.: Security concerns in android
mhealth apps. In: AMIA annual symposium proceedings. vol. 2014, p. 645. Amer-
ican Medical Informatics Association (2014)

26. Humayed, A.: An overview of vehicle obd-ii port countermeasures. In: International
Conference on Interactive Collaborative Robotics (2023)

27. Humayed, A., Li, F., Lin, J., Luo, B.: Cansentry: Securing can-based cyber-physical
systems against denial and spoofing attacks. In: ESORICS (2020)

28. Humayed, A., Luo, B.: Poster: Cyber-physical security for smart cars: taxonomy
of vulnerabilities, threats, and attacks. In: ACM/IEEE ICCPS (2015)

29. Humayed, A., Luo, B.: Using id-hopping to defend against targeted dos on can. In:
International Workshop on Safe Control of Connected and Autonomous Vehicles
(2017)

30. Iehira, K., Inoue, H., Ishida, K.: Spoofing attack using bus-off attacks against a
specific ecu of the can bus. In: IEEE CCNC (2018)

31. Jedh, M., Othmane, L.B., Ahmed, N., Bhargava, B.: Detection of message injection
attacks onto the can bus using similarities of successive messages-sequence graphs.
IEEE Transactions on Information Forensics and Security 16, 4133–4146 (2021)

32. Jo, H.J., Choi, W.: A survey of attacks on controller area networks and correspond-
ing countermeasures. IEEE Transactions on Intelligent Transportation Systems
23(7), 6123–6141 (2021)

On the Security of Automotive Companion Apps 19

33. Krishna, A.M., Tyagi, A.K., Prasad, S.: Preserving privacy in future vehicles of
tomorrow. JCR 7(19), 6675–6684 (2020)

34. Li, L., Bissyandé, T.F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., Klein,
J., Traon, L.: Static analysis of android apps: A systematic literature review. In-
formation and Software Technology 88, 67–95 (2017)

35. LinkedIn: QARK. https://github.com/linkedin/qark, 2018
36. Mandal, A.K., Panarotto, F., Cortesi, A., Ferrara, P., Spoto, F.: Static analysis

of android auto infotainment and on-board diagnostics ii apps. Software: Practice
and Experience 49(7), 1131–1161 (2019)

37. Nowdehi, N., Lautenbach, A., Olovsson, T.: In-vehicle can message authentication:
An evaluation based on industrial criteria. In: IEEE VTC (2017)

38. Serag, K., Bhatia, R., Faqih, A., Ozmen, M.O., Kumar, V., Celik, Z.B., Xu, D.:
{ZBCAN}: A {Zero-Byte}{CAN} defense system. In: USENIX Security (2023)

39. Serag, K., Bhatia, R., Kumar, V., Celik, Z.B., Xu, D.: Exposing new vulnerabilities
of error handling mechanism in {CAN}. In: USENIX Security Symposium (2021)

40. Sharma, S., Kaushik, B.: A survey on internet of vehicles: Applications, security
issues & solutions. Vehicular Communications 20, 100182 (2019)

41. skylot: Jadx - Dex to Java decompiler, 2020.
42. skylot: On-board diagnostic ii (obd ii) systems fact sheet (2019), https://ww2.arb.

ca.gov/resources/fact-sheets/board-diagnostic-ii-obd-ii-systems-fact-sheet
43. Tian, D.J., Hernandez, G., Choi, J.I., Frost, V., Raules, C., Traynor, P., Vijayaku-

mar, H., Harrison, L., Rahmati, A., Grace, M., et al.: Attention spanned: Compre-
hensive vulnerability analysis of {AT} commands within the android ecosystem.
In: USENIX Security (2018)

44. Tian, Y., Zhang, N., Lin, Y.H., Wang, X., Ur, B., Guo, X., Tague, P.: Smartauth:
User-centered authorization for the internet of things. In: USENIX Security Sym-
posium. vol. 5, pp. 8–2 (2017)

45. Van Herrewege, A., Singelee, D., Verbauwhede, I.: Canauth-a simple, backward
compatible broadcast authentication protocol for can bus. In: ECRYPT workshop
on Lightweight Cryptography. vol. 2011, p. 20. ECRYPT (2011)

46. Wen, H., Chen, Q.A., Lin, Z.: Plug-n-pwned: Comprehensive vulnerability analysis
of obd-ii dongles as a new over-the-air attack surface in automotive iot. In: USENIX
Security Symposium (2020)

47. Wen, H., Zhao, Q., Chen, Q.A., Lin, Z.: Automated cross-platform reverse engi-
neering of can bus commands from mobile apps. In: NDSS (2020)

48. Yu, L., Liu, Y., Jing, P., Luo, X., Xue, L., Zhao, K., Zhou, Y., Wang, T., Gu,
G., Nie, S., et al.: Towards automatically reverse engineering vehicle diagnostic
protocols. In: USENIX Security Symposium (2022)

49. Zhang, Y., Ge, B., Li, X., Shi, B., Li, B.: Controlling a car through obd injection.
In: IEEE International Conference on Cyber Security and Cloud Computing (2016)

50. Zhang, Y., Dai, J., Zhang, X., Huang, S., Yang, Z., Yang, M., Chen, H.: Detecting
third-party libraries in android applications with high precision and recall. In:
IEEE Intl. Conf. on Software Analysis, Evolution and Reengineering (2018)

51. Zhao, J., Chen, Y., Gong, Y.: Study of connectivity probability of vehicle-to-vehicle
and vehicle-to-infrastructure communication systems. In: IEEE VTC (2016)

52. Zuo, C., Lin, Z., Zhang, Y.: Why does your data leak? uncovering the data leakage
in cloud from mobile apps. In: IEEE Symposium on Security & Privacy (2019)

A Summary of Vulnerabilities in Top Apps

In Table 5, we summarize the vulnerabilities in the top most downloaded apps.

https://github.com/linkedin/qark
https://ww2.arb.ca.gov/resources/fact-sheets/board-diagnostic-ii-obd-ii-systems-fact-sheet
https://ww2.arb.ca.gov/resources/fact-sheets/board-diagnostic-ii-obd-ii-systems-fact-sheet

20 Prashanthi Mallojula , Fengjun Li , Xiaojiang Du, and Bo Luo

Table 5: Vehicle Companion Apps Vulnerability Summary. WF: WiFi, BT: Blue-
tooth
App Name and Version Conn. V1 V2 V3 V4 V5 V6 V7 V8 V9

CarScannerELMOBD2 v1.89 WF&BT ✓ ✓ ✓ ✓ ✓ ✓ ✓
Carista OBD2 v8.1 WF&BT ✓ ✓ ✓ ✓
Torque Lite (OBD2 & Car) v1.2 BT ✓ ✓ ✓ ✓
inCarDoc - OBD2 ELM327 Scanner v7.6 WF&BT ✓ ✓ ✓ ✓ ✓ ✓ ✓
MotorData OBD ELM car scanner v1.25 WF&BT ✓ ✓ ✓
BlueDriver OBD2 Scan Tool v7.13 BT ✓
Carly — OBD2 car scanner v48.08 WF ✓ ✓ ✓
DashCommand OBD ELM App v4.8 WF&BT ✓ ✓ ✓ ✓ ✓
EOBD Facile OBD2 Car Scanner v3.45 WF&BT ✓ ✓ ✓ ✓ ✓ ✓ ✓
FIXD OBD2 Scanner v7.33 BT
Infocar - OBD2 ELM Diagnostic v2.24 WF&BT ✓ ✓ ✓ ✓
Obd Arny - ELM327 car scanner v0.14 WF&BT ✓ ✓ ✓ ✓
Obd Harry Scan -ELM car scanner v0.99 WF&BT ✓ ✓ ✓ ✓ ✓
Obd Mary – OBD2 car scanner v1.19 WF&BT ✓ ✓ ✓ ✓ ✓ ✓
OBD2 Auto Scaner Olivia Drive v22.1 WF&BT ✓ ✓ ✓ ✓ ✓ ✓
OBD Auto Doctor scanner v6.6 WF&BT ✓ ✓ ✓ ✓
OBDclick Car Scanner OBD2 ELM v0.9 WF&BT ✓ ✓ ✓ ✓ ✓ ✓
OBDeleven VAG car diagnostics v0.60 BT ✓ ✓ ✓
OBD Link v5.32 WF&BT
Piston - OBD2 Car Scanner v3.1 WF&BT ✓ ✓ ✓ ✓ ✓
Scan Master for ELM327 OBD2 v5.3 WF&BT ✓ ✓ ✓ ✓
Speedboat. GPS/OBD2 Speedometer v3.3 WF&BT ✓ ✓ ✓
Torque Pro (OBD2 & Car) v1.8 BT ✓ ✓ ✓ ✓ ✓
Clear And Go - OBD2 Scanner v1.12 WF&BT ✓ ✓ ✓ ✓
Elm327 OBD Terminal v1.3 BT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GaragePro Car OBD2 Scanner v2.9 BT ✓ ✓ ✓ ✓
GPS Speedometer OBD2 Dashboard v2.5 WF&BT ✓ ✓ ✓
Hybrid Assistant v3.31 BT ✓ ✓ ✓
OBD 2: Torque Car Scanner FixD v1.3 BT ✓ ✓ ✓ ✓
RealDash v2.2 WF ✓ ✓ ✓ ✓
Repair Solutions2 v2.0 BT
CarBit ELM327 OBD2 v3.5 WF&BT ✓ ✓ ✓ ✓ ✓ ✓ ✓
AlfaOBD Demo v2.3 WF&BT ✓ ✓ ✓ ✓
Autel MaxiAP200 v1.58 BT
Auto Agent v1.29 BT
Car Diagnostic Pro (OBD2) v7.17 WF&BT ✓ ✓ ✓ ✓
CarDiag: Car Diagnostic OBD2 v1.1 BT ✓ ✓ ✓ ✓ ✓
CarSys Scan (Best OBD2&ELM32) v1.8 BT ✓ ✓ ✓
ChevroSys Scan Lite v1.1 WF&BT ✓ ✓ ✓
DeepOBD v1.01 BT ✓ ✓ ✓ ✓
Dr. Prius / Dr. Hybrid v6.1 WF&BT ✓ ✓ ✓
EconTool Nissan ELM327 v3.31 WF&BT ✓ ✓ ✓ ✓ ✓
Elm327 WiFi Terminal OBD v1.1 WF&BT ✓ ✓ ✓ ✓ ✓ ✓ ✓
FordSys Scan Lite v1.1 WF&BT ✓ ✓ ✓
GPS Speedometer: Car Dashboard v1.0 WF&BT ✓ ✓ ✓
HobDrive OBD2 diag, trip v1.6 WF&BT ✓ ✓ ✓
Hondash v2.8 BT ✓ ✓ ✓
Ht200 v1.58 BT
OBD Jscan v28.10 WF&BT ✓ ✓ ✓ ✓ ✓
OBD2 Bluetooth Car Scanner v2.6 BT ✓ ✓ ✓

	Companion Apps or Backdoors? On the Security of Automotive Companion Apps

