
Supporting Transparent Snapshot for Bare-metal Malware
Analysis on Mobile Devices

Le Guan
Pennsylvania State University, USA

Shijie Jia∗†

Data Assurance and Communication
Security Research Center, CAS, China

Bo Chen
Michigan Technological University,

USA

Fengwei Zhang
Wayne State University, USA

Bo Luo
The University of Kansas, USA

Jingqiang Lin‡

Data Assurance and Communication
Security Research Center, CAS, China

Peng Liu
Pennsylvania State University, USA

Xinyu Xing
Pennsylvania State University, USA

Luning Xia§

Data Assurance and Communication
Security Research Center, CAS, China

ABSTRACT

The increasing growth of cybercrimes targeting mobile devices

urges an efficient malware analysis platform. With the emergence

of evasive malware, which is capable of detecting that it is being an-

alyzed in virtualized environments, bare-metal analysis has become

the definitive resort. Existing works mainly focus on extracting the

malicious behaviors exposed during bare-metal analysis. However,

after malware analysis, it is equally important to quickly restore the

system to a clean state to examine the next sample. Unfortunately,

state-of-the-art solutions on mobile platforms can only restore the

disk, and require a time-consuming system reboot. In addition, all

of the existing works require some in-guest components to assist

the restoration. Therefore, a kernel-level malware is still able to

detect the presence of the in-guest components.

We propose Bolt, a transparent restoration mechanism for bare-

metal analysis onmobile platformwithout rebooting. Bolt achieves
a reboot-less restoration by simultaneously making a snapshot for

both the physical memory and the disk. Memory snapshot is en-

abled by an isolated operating system (BoltOS) in the ARM Trust-

Zone secure world, and disk snapshot is accomplished by a piece of

customized firmware (BoltFTL) for flash-based block devices. Be-

cause both the BoltOS and the BoltFTL are isolated from the guest

system, even kernel-level malware cannot interfere with the restora-

tion. More importantly, Bolt does not require any modifications

into the guest system. As such, Bolt is the first that simultaneously

∗Corresponding author.
†Also with State Key Laboratory of Information Security, IIE, CAS, China.
‡Also with State Key Laboratory of Information Security, IIE, CAS, China.
§Also with State Key Laboratory of Information Security, IIE, CAS, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC 2017, December 4–8, 2017, Orlando, FL, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00
https://doi.org/10.1145/3134600.3134647

achieves efficiency, isolation, and stealthiness to recover from in-

fection due to malware execution. We have implemented a Bolt
prototype working with the Android OS. Experimental results show

that Bolt can restore the guest system to a clean state in only 2.80

seconds.

CCS CONCEPTS

• Security and privacy → Malware and its mitigation; Hard-

ware security implementation;

KEYWORDS

Bare-metal Analysis, Evasive Malware, Snapshot, Flash-based Block

Device

ACM Reference Format:

Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng
Liu, Xinyu Xing, and Luning Xia. 2017. Supporting Transparent Snapshot for
Bare-metal Malware Analysis on Mobile Devices. In Proceedings of ACSAC
2017, Orlando, FL, USA, December 4–8, 2017, 11 pages.
https://doi.org/10.1145/3134600.3134647

1 INTRODUCTION

Smartphones are increasingly becoming the targets of cybercrimes.

Therefore, detection of malicious behaviors beforehand is a top

priority for multiple stakeholders, such as the hardware/software

manufactures and end users. Although conventional static analy-

sis and signature-based detection mechanisms have been effective,

they still cannot detect all types of malware. In particular, when

techniques such as obfuscation, packing, and polymorphism are em-

ployed by the malware, static analysis methods fall short. Dynamic

analysis techniques overcome these limitations by executing the

samples in a sandboxed environment [10, 11, 14, 17, 32, 41, 48, 51].

The malicious behaviors can be captured by the in-guest1 moni-

toring components (e.g., using ptrace) or lower-level out-of-guest
monitoring components (e.g., a security monitor in VMM). Un-

fortunately, more sophisticated malware or evasive malware is

capable of detecting the existence of the analytic components or

1In this paper, as a convention, “guest” means the system in which the malware runs.

339

the emulated/virtualized execution environment, and refrains from

exposing any malicious activity [5, 7, 13, 23, 36].

In recent years, the bare-metal dynamic analysis technique is

becoming popular [1, 24–26, 30, 31, 40, 49, 50, 53]. By executing the

malware in an unmodified Operating System (OS) installation that

runs on an actual hardware, the malware cannot identify the exis-

tence of the monitoring component. Hence, the malware considers

itself running on a victim device, and starts to reveal its malicious

behaviors. There are two key challenges faced by bare-metal dy-

namic analysis technique. First, without an auxiliary component in

the guest system (or a security monitor in VMM), it is difficult to

transparently and accurately collect malware behaviors. Second, un-

like virtualization based solutions, restoring the analyzing system

to a clean state after each malware infection usually requires a sys-

tem reboot, which is inherently slow. However, the ever-increasing

flood of new malware demands malware analysis solutions with

high performance and high throughput. To automate the analysis in

a scalable way, the time for system restoration must be minimized.

While many efforts have been devoted to the first aspect, i.e., be-

havior extraction [1, 24, 26, 31, 40, 50, 53], very little attention has

been paid to the aspect of quick restoration. State-of-the-art solu-

tions either require modification to the guest system, thus breaking

the transparency to malware [25, 30], or only restore part of the

system state [30]. In particular, by employing a dedicated small

OS, BareBox [25] is able to restore the system state, including both

memory and disk contents, within four seconds. However, both

the small OS and the in-guest component to assist restoration are

running at the same privilege level as the guest system. Therefore,

a kernel-level malware is able to identify that it is being analyzed,

and even disrupt the small OS. BareDroid [30] is specifically de-

signed for the quick restoration of the Android OS. However, it

only handles disk image, and hence requires a full reboot after each

malware infection. Moreover, it cannot eliminate the existence of

in-guest components either.

In this paper, we propose Bolt, an OS-agnosticmechanismwhich

can quickly restore an ARM-based device to a designated state. Bolt
is able to make a full system snapshot (including both the physical

memory and the disk storage) at anytime during execution, and

quickly restore the system state without rebooting. Compared to

existing work [25, 30], Bolt supports unmodified OS on the bare-

metal platform, hence the fingerprint of its presence is minimized.

In addition, Bolt achieves three goals simultaneously: (1) Stealth-

iness. The component performing the restoration is transparent

to the guest OS that runs the malware. (2) Isolation. The malware,

even with kernel privilege, cannot interfere with the restoration

component. (3) Efficiency. Bolt can directly restore the system to

a clean checkpoint, eliminating the need of rebooting.

To achieve the design goals, we novelly utilize two hardware

features – ARM TrustZone security extension and flash-based stor-

age device, both of which are standard hardware features in all

the mainstream ARM-based mobile platforms. ARM TrustZone

extends ARM processors to provide two virtual processor cores

that run with different privilege levels. Normal mobile OSes, such

as Android and iOS, run in the normal world with less privileges,

while a lightweight OS in the secure world runs trusted applica-

tions (e.g., Trustlets) that provides security-critical services, such

as fingerprint recognition to the normal OS. Another hardware

feature equipped with mobile devices is flash-based storage device.

Nowadays, flash memory in the forms of eMMC cards, SD cards,

MicroSD cards are pervasively used in mobile platforms due to its

high throughput, low energy consumption, and small size.

Leveraging TrustZone and flash memory, Bolt performs whole-

system (including both memory state and disk state) recovery with-

out rebooting in the TrustZone secure world: (1) For the mem-

ory state, Bolt partitions the physical memory into three regions

– one for the secure-world trusted OS (i.e., BoltOS), one for the
normal-world guest OS, and the other for the snapshot of the guest

OS. BoltOS runs in the secure world, and is responsible for sav-

ing/restoring the physical memory of the guest OS to/from the

snapshot region. Note that the snapshot can only be accessed by

BoltOS in the secure world. (2) For the disk state, Bolt takes ad-

vantage of a special design feature in flash-based block devices –

out-of-place update. To accommodate the unique nature of flash

memory (Section 2.3), data overwriting in flash is usually performed

“out of place”, in which the new data are always stored in the newly

allocated flash space, while the old data being over-written will

remain intact until garbage collection is performed. Utilizing this

feature, we are able to restore flash state by only backing up a small

amount of metadata rather than the entire data. This is because

the OS can only access the flash storage via the interface provided

by flash firmware, with which we can simply manipulate the OS

view of data so that the clean-state data is invisible to the malware.

Finally, we carefully modify garbage collection/wear leveling to

prevent them from damaging the clean-state data.

Since BoltOS works without assistance from the guest OS, it

is stealthy to kernel-level malware. Moreover, with TrustZone,

BoltOS can be isolated from the guest OS. Therefore, kernel-level

malware cannot disrupt it. Finally, the performance of Bolt is

greatly boosted by avoiding both system reboot and a full restora-

tion of flash data. In summary, our work makes the following main

contributions:

• We propose Bolt, a novel approach that could transparently

restore the whole-system state of a running OS without

reboot. To the best of our knowledge, Bolt is the first design
which can simultaneously achieve stealthiness, isolation and

efficiency.

• We design a new algorithm for flash-based block storage

that supports hardware-based checkpoint working in con-

junction with BoltOS.
• As a proof of concept, we implement Bolt using the Android
OS as the guest system.2 Experimental results show that the

proposed system is able to make a full system recovery in

2.80 seconds, significantly outperforming state-of-the-art

solutions.

Roadmap. The rest of this paper is structured as follows. In Sec-

tion 2, we discuss necessary background information on Android,

ARM TrustZone and flash-based block storage. Section 3 and Sec-

tion 4 describe Bolt design and implementation respectively. Then

we evaluate the performance of the proposed system in Section 5,

followed by a discussion of the drawbacks of the current prototype

2Although our system is OS-agnostic, we cannot do experiment with iOS, because iOS
devices are tightly controlled in hardware.

340

and future work in Section 6. We review related work in Section 7.

Finally, Section 8 concludes the paper.

2 BACKGROUND

This section presents necessary background information of the pro-

posed system. We first briefly introduce the design of the Android

OS and its partitions. We then describe ARM TrustZone, a popular

security extension to the ARM processors. This security feature

is the root of trust in most mobile devices in the market. Finally,

we introduce flash-based block devices, the most popular forms of

storage media used in mobile devices.

2.1 Android

Android is an open-source OS based on Linux kernel. It is specifi-

cally optimized for mobile devices like smart phones and tablets.

Each Android application (i.e., app) is assigned a unique user ID, and

runs in its own virtual machine (VM) instance, which is sandboxed

to avoid accessing the rest of the system. The apps are written in the

Java programming language, which are first compiled to bytecode

for the Java virtual machine, and then translated to a customized

Dalvik Executable (DEX) format. The app package is loaded into

the address space of a VM, along with framework libraries that can

be invoked to request for system services.

Android partitions. The Android system organizes its non-

volatile storage into several partitions: /boot, /recovery, /system,

/data, /cache, /misc, etc. Each partition plays a distinct role and

facilitates different functionality of the device. We briefly describe

a few important partitions in the following:

• Bootloader: A non-filesystem partition that takes over the

system after executing the proprietary device ROM. It initial-

izes the SoC components such as DRAM, and then copies the

kernel and ramdisk from the Boot partition into the memory.

• Boot: A non-filesystem partition flashed with an image con-

taining the kernel and the ramdisk.

• Recovery: An alternative boot partition which serves for

advanced recovery and maintenance operations.

• System: This partition contains the entire operating system

except the kernel and the ramdisk. This includes the entire

Android framework and the pre-installed system apps, such

as the telephony.

• Data: This partition contains user data, e.g., user contacts,

messages and user installed apps. Assuming that the system
partition is unmodified, wiping this partition essentially per-

forms a factory reset.

As a reboot-less system, Bolt needs to restore the non-volatile

storage to a clean state, which only requires recovering the content

in the System and Data partitions.

2.2 ARM TrustZone and Its Usage in Android

TrustZone is a security extension added to the ARM architecture [2].

It provides an isolated execution environment for sensitive tasks.

In particular, it introduces two worlds, a normal world and a secure

world. The security-critical workloads run in the isolated secure

world, while the commodity OS runs in the normal world. Tasks

running in different worlds have different privileges to access sys-

tem resources. The secure-world components are allowed to access

all the resources system-wide, but the normal-world components

are only allowed to access non-secure resources. The current exe-

cution environment is determined by the NS (non-secure) bit in the

Security Configuration Register (SCR), which can only be accessed

when the processor runs in the secure world. When this bit is set,

the processor is in the normal world. Otherwise, the processor is in

the secure world. To switch to the other world, the privileged code

needs to issue an SMC instruction, which traps the processor in the

Monitor mode. In this mode, the processor has ultimate privilege.

Apart from accessing secure resources, it is able to manipulate the

registers in both worlds. As a result, the Monitor mode serves as

the gate for world-switching.

One of the most important components in a TrustZone-based

system is the TrustZone Address Space Controller (TZASC). Registers

of TZASC are mapped into the physical address of the SoC, and can

be accessed via normal memory operations. By configuring TZASC

in the secure world, the physical memory can be split into several

regions with different security levels. With these configurations,

secure world software can control whether a memory region can

be accessed in both the secure and normal worlds, or can only be

accessed in the secure world.

Newer Android systems comprise of two parts residing in two

worlds. The normal Android OS, including a customized Linux

kernel, framework libraries, and apps runs in the normal world.

A lightweight trusted OS runs in the secure world and provides

security-critical services to the normal Android OS. The secure-

world OS essentially constructs a Trusted Execution Environment

(TEE) for running trusted services. To request a security-critical

service, the normal Android OS issues an SMC instruction, which
traps the processor into the secure world. Based on the contents of

registers or shared memory, the trusted OS is able to identify the

intent of the request, and schedule a piece of trusted code (called

Trustlet) to perform the actual computation. Finally, the results are

sent back to the normal-world Android OS.

2.3 Flash-based Block Devices

Flash-based block devices (e.g., eMMC cards, SD cards, MicroSD

cards and SSD drives) have been widely used to replace the conven-

tional hard disk drives (HDD) due to their high I/O performance

and low energy consumption. Particularly, popular flash products

like eMMC cards and SD cards have dominated the storage media

of mobile devices (e.g., smart phones, tablets, smart watches).

Flash memory. Flash memory is a non-volatile storage medium

which can be electrically erased and reprogrammed. The flash mem-

ory family contains NOR-type and NAND-type flash. The NOR flash

allows one-byte random access, and is usually expensive with rela-

tively small capacity. Thus, it is commonly used to store executable

program (e.g., bootloader). The NAND flash, however, is cheaper

and has much larger capacity, thus it has been pervasively used in

flash storage media. NAND flash stores information in an array of

memory cells, which are grouped into blocks. The size of a block is

usually a few hundred Kilobytes. A flash block is further divided

into pages, each of which can be 512 bytes, 2 KB, or 4 KB. Note that

341

Figure 1: Comparison of an overwrite operation between

HDD and flash memory.

File System
I/O with LPA

Flash Translation Layer

NAND Flash Memory

I/O with PPA

Figure 2: The architecture of a flash-based storage system

using FTL. LPA: logical page addresses, PPA: physical page

addresses.

reading/writing flash is usually performed on the basis of pages,

and erasure can only be performed on a block basis.

Compared to conventional mechanical HDDs, flash memory has

completely different characteristics. First, a flash page cannot be

re-programmed before it has been erased. However, since erase

operations can only be performed on a block basis, overwriting a

small page requires erasing a large block. This in return, requires

copying out the valid data in the block, and writing them back after

the block has been erased, leading to significant write amplification.

To resolve such an issue, flash memory usually implements an out-

of-place update mechanism, in which when a page is overwritten,

it simply stores the new data to a new empty page, and marks the

old page as invalid. The invalid pages will be cleaned and the space

will be reclaimed later by garbage collection (GC). Figure 1 shows

a concrete example: For HDDs, when an over-write happens, the

same physical storage is directly updated with the newly written

data B. For flash memory however, to handle an overwrite, it places

the newlywritten data B on a new physical page, andmarks the page

that previously stores A as invalid. GC is periodically performed to

reclaim space occupied by invalid pages following these steps [42]:

(1) select those blocks which satisfy certain reclaim criteria (e.g., the

number of invalid pages exceeds a threshold) as victim blocks; (2)

copy the valid data stored in the victim blocks to free blocks; (3)

erase the victim blocks.

Second, each flash block only has a limited number (e.g., 10K) of

program-erase (P/E) cycles before it is worn out and cannot reliably

store information. To prolong the service life of flash memory,

wear leveling is usually required, by which writes/erasures on flash

memory are distributed evenly across the entire flash such that no

single block will have significantly larger P/E cycles than others.

Start Activity Is BoltAgentRequest
Commodity Service

Serve
Commodity Service

Find Bound Service

Save or
Restore

Memory Snapshot

First
Request

Memory RestorationFlash Restoration

Return

No

Yes

Restore

Save

Yes

Return

No

Return

Flash SnapshotReturn

BoltOSBoltFTL

BoltAgentCoordinator

Figure 3: Bolt work-flow.

Flash translation layer. To be compatible with block-based file

systems (e.g., EXT4, FAT32), a flash storage medium is usually

used by emulating it as a block device (we call it a flash-based

block device). This can be achieved by introducing a special Flash

Translation Layer (FTL), which transparently manages the special

nature of raw flash and provides a block-based access interface. As

it is shown in Figure 2, FTL translates the logical page addresses

(LPA) from the upper layer (e.g., file systems) to the physical page

addresses (PPA) of the underlying raw flash. This requires a data

structure which can maintain the mappings between LPAs and

PPAs.

3 DESIGN

This section presents the design of Bolt. We start with describing

our threat model and assumptions. We then give an overview of

Bolt. Finally, we elaborate the design details of memory recovery

and flash recovery in Bolt, respectively.

3.1 Threat Model and Assumptions

In Bolt, we consider aggressive malware which can obtain ultimate

privilege in the normal-world Android system. That is, it can exe-

cute arbitrary code in all the privilege levels of the system, including

kernel. This can be achieved by exploiting kernel vulnerabilities to

escalate privileges. With kernel-level privilege, we assume the mal-

ware could further break protections enforced by SELinux policies.

In this way, it could obtain write permission to system partitions.

We assume that the guest system relies on TrustZone-based TEE

for security-critical services. In practice, almost all the smartphones

available in the market today are equipped with TrustZone, and

newer releases of Android have even standardized the interface be-

tween the TEE and the normal-world Android OS [18]. Bolt relies

on existing code in Android to invoke the snapshot services in the

secure world. Therefore, Bolt does not require any modifications

into the Android system. In addition, we assume that the light-

weight OS in the secure world, i.e., BoltOS, is resilient to attacks

from normal world. This is a widely acceptable assumption in the

domain of TrustZone-based security solutions, although we admit

that there are some real-world attacks that could compromise the

TrustZone secure world [27].

342

Linux
Kernel

Binder

Display

TZ
Driver

...

Native C/C++ Libraries Android Runtime

Java API Framework

System Apps

BoltAgent

User Apps

M
alw

are

...

Calendar

Em
ail

ADB
Client

...

BoltOS
Kernel

M
em

ory
M

anagem
ent

Fingerprint
Driver

M
onitor

...

Fingerprint
Recognition

KeyStore

Save

Restore

...

Normal WorldSecure World

(a) Overview of the normal-world Android OS and secure-world BoltOS. Shaded com-

ponents are newly added. As shown in the Figure, the entire Android system is unmod-

ified except for a trivial non-suspicious user space app, BoltAgent.

Android
Device

Guest OS

Snapshot
Memory

RAM

Coordinator

BUS

SCSI

ADB

BoltFTL

Flash BoltOS

(b) Architecture overview. Shaded memory regions

are secure resources that cannot be accessed by the

normal-world Android System.

Figure 4: System overview

3.2 Overview

Bolt comprises of four main components: BoltAgent, BoltOS,
BoltFTL, and Coordinator (see Figure 3).

First, an in-guest app called BoltAgent runs in the Android

system (Figure 4a). This app is not suspicious in the sense that it does

nothing other than invoking two different requests of commodity

security services that are already implemented in the TEE of the

Android system, such as fingerprint recognition or trusted keyStore.

BoltOS in the secure world receives the requests from BoltAgent
as cues for save/restore operations.

Second, in the secure world, we run BoltOS, a lightweight OS
that is responsible for handling commodity security service requests

and add-on restoration services. In particular, a commodity security

service, such as fingerprint recognition, is bound with the save
service, and another service, such as keyStore, is bound with the

restore service. As shown in Figure 3, when BoltOS receives a re-

quest from BoltAgent, apart from serving the ordinary commodity

request, BoltOS executes the corresponding add-on restoration ser-

vice. A snapshot includes two parts – one for memory and the other

for disk. BoltOS handles memory snapshot directly (Section 3.3),

and forwards the disk snapshot request to the flash firmware, which

we will describe in the next paragraph. We set aside a physical

memory region of equal size with that used in the guest system

(Figure 4b). To take a memory snapshot, BoltOS simply copies

the entire physical memory assigned to the guest to the snapshot

memory. In addition, the processor contexts, including the gen-

eral purposed registers, Current Processor State Register (CPSR), and

Translation Table Base Register (TTBR)3, etc. are saved in BoltOS.
The restoration of physical memory is the reverse operation to

snapshotting.

Third, BoltFTL is a piece of customized flash firmware. It re-

ceives customized SCSI commands [19] from BoltOS to perform

save and restore operations to the flash. Taking advantage of the

out-of-place update feature of flash, it is able to efficiently save

and restore the content of the entire flash without time-consuming

overwriting. Specifically, after receiving a save command, BoltFTL

3The TTBR register is the pointer to the first level page table, similar to CR3 in x86
processors.

triggers an active garbage collection to store the clean-state data

more compactly in flash blocks, and backs up the essential FTL

metadata (e.g., the mapping table, which records the mappings be-

tween LPA and PPA) to a few reserved flash blocks. BoltFTL also
regulates the write operations issued from the upper layer such that

they will not overwrite those flash blocks that store the clean-state

data. Garbage collection in BoltFTL is also revised such that the

flash blocks storing the clean-state data will not be reclaimed. After

having received a restore command, BoltFTL simply restores the

backup metadata. Since the flash blocks storing the clean-state data

are intact, the flash can be directly restored to the clean state. The

details of BoltFTL will be elaborated in Section 3.4.

Finally, a Coordinator (Figure 4b) in a separate PC connects

the guest device through the Android Debug Bridge (ADB) utility.

It downloads the malware to the Android device, and invokes the

BoltAgent to issue a save command to take a system snapshot

after system boot and to issue a restore command whenever an

analysis is completed. Note that these requests are issued from

the normal-world Android system, which is subject to exploit. For

example, the infected Android could issue a save command af-

ter infection. Therefore, the following restore commands would

restore the system to the saved infected state. Taking another ex-

ample, the infected Android system could simply refuse to route

these commands to the secure world, leading to Denial of Service

(DoS) attacks. We address the first issue by only accepting the save
command for once and ignoring the others. Therefore, only the

clean state after system boot can be saved. For the second issue, we

set up a watch dog in the secure world. After a certain period of

in-activeness, a restore command is forced to be executed.

3.3 Memory Recovery

This section describes how BoltOS makes memory snapshot of the

running system. To begin with, we briefly introduce the architec-

tural design of the ARM processors.

ARM architecture. Almost all the modern OSes work on virtual

memory. ARM processors support virtual memory by a Memory

Management Unit (MMU) and a set of auxiliary system configura-

tion registers. Specifically, when the M bit of the System Control

343

Register (SCTLR) is set, the MMU is enabled. The following memory

accesses will first go through the page tables that translate the vir-

tual addresses to the actual physical addresses. The page table is a

multi-level data structure, with the first-level base address pointed

by the Translation Table Base Registers (TTBR). To speedup address

translations, ARM processors have a built-in Translation Lookaside

Buffer (TLB) that caches the recently executed page translations. A

TLB entry is indexed by the corresponding virtual address, plus a

Address Space Identifier (ASID) that is uniquely assigned to individ-

ual tasks. Therefore, during task switches, the TLB does not need

to be flushed.

In an ARMprocessor with TrustZone support, most of the system

registers are banked, meaning that they have different copies in each

world. This greatly simplifies the implementation of a standalone

OS in the secure world. In particular, during world switches, the

page table is automatically switched to the copy that is previously

set in the destination execution environment, without the need to

update TTBRs. In addition, the NS bit which indicates the current

execution environment is also used to index a TLB entry, making

TLB flushing unnecessary.

Snapshot and Restoration. Since BoltOS runs in an isolated ex-

ecution domain, there is no circular dependencies between the

physical memory and the processor context, which occur in in-

guest restoration solutions [25].

The first step of making memory snapshot is to save the raw

physical memory. In Bolt, we symmetrically partition the physical

memory into two regions – one is loaded with the guest system,

and the other is used to hold the snapshot of the guest system. The

first region is a non-secure resource that can be access by both

worlds, while the second one can only be access by BoltOS. Saving
and restoring the physical memory is straightforward – BoltOS
only needs to copy the guest physical memory to and from the

snapshot region.

The physical memory is tightly coupled with the processor con-

text. Changing physical memory without recovering the processor

context will crash the system. For example, the new TTBR may

point to a memory region that contains invalid entries in the snap-

shot image. As a result, the MMU immediate detects the unmapped

virtual address and triggers a data abort. In BoltOS, apart from
restoring the general purpose registers, we also recover the TTBR,

SCTLR, and ASID registers. In addition, TLB is flushed to avoid

recycling use of the same ASID at the time of saving and restoring.

3.4 Flash Recovery

Barely restoring the state of physical memory and processor is not

enough, since the state of peripherals may be inconsistent with the

system being recovered. Take flash as an example, after the memory

is recovered, the kernel, which maintains data structures related

to the file system, anticipates a matching back storage, which in

fact has been infected. This inconsistency of critical data structures

may cause system crash. More seriously, malware may retain a

copy of itself in the non-volatile flash, which may be activated later

to infect the recovered system. Therefore, it is necessary to save

and restore the content stored in flash as well. Restoring flash by

overwriting the entire content is time consuming, since flash is

“update unfriendly” (Section 2.3). This will be exacerbated when the

flash has a large capacity.

To enable fast recovery of flash, we take advantage of its out-

of-place update feature. This special feature of flash ensures that

during malware analysis, the malware cannot corrupt the clean-

state data (specifically, the content) by over-writing them, which

can be used to restore the clean state later. In addition, to avoid those

data being damaged by garbage collection/wear leveling during

malware analysis, we customize the flash firmware (FTL) by care-

fully modifying the existing garbage collection and wear leveling

implementation in FTL. Note that modifying FTL is advantageous,

since it stays between the OS and the raw flash, and is transparent

to the OS. This allows our design to be resistant to malware that

can obtain a kernel-level privilege.

The resulting design, BoltFTL, can support fast flash restoration

after malware analysis. In the following, we will elaborate the main

operations of BoltFTL. We mark off these operations into three

phases. In the first phase, following the save command received

from BoltOS, BoltFTL takes a snapshot of the clean-state flash.

This phase is executed only for once because BoltOS only responds
to the first save command. Then, in phase two, malware begins

execution and infects the flash. Our customized BoltFTL ensures
that malware can never damage pages storing clean-state data. In

the final phase, BoltFTL recovers the flash to the saved snapshot

directed by the restore command from BoltOS. After this, BoltFTL
is ready to enter phase two.

Phase 1: Malware analysis in-preparation. In this phase,

BoltFTL performs necessary operations to facilitate flash restora-

tion. In particular, after receiving the customized save SCSI com-

mand, it performs the following steps to backup the clean-state

data.

First, BoltFTL will trigger an active garbage collection such that

user data can be stored in a compact manner. Specifically, BoltFTL
marks the blocks having invalid pages as victim blocks, copies

the valid data in these victim blocks to free blocks, updates the

corresponding mappings, and finally, erases the victim blocks.

Second, BoltFTL makes a backup of essential metadata (such as

the mapping table) to facilitate restoration. Note that the metadata

is usually much smaller in size compared to the stored data. Like

other reserved blocks (e.g., blocks reserved for wear leveling and

bad block management), the blocks containing metedata backup

are invisible to the upper layer. Phase one is execute only for once.

Therefore, the clean-state metadata is backed up only for once.

After metadata backup, the flash is ready to accept I/O requests

issued by malware.

Phase 2:Malware analysis in-motion.During themalware anal-

ysis, BoltFTL carefully regulates flash operations to protect the

integrity of the clean-state data in the reserved flash blocks:

• Read. A read operation does not affect flash integrity. There-

fore, BoltFTL simply follows the same logic as that used in

a conventional FTL.

• Write. As with a conventional FTL, BoltFTL adopts an out-of-
place update mechanism to handle write operations. When

allocating a free page, BoltFTL ensures that a page contain-

ing clean-state data or backup of metadata is never selected.

344

• Garbage collection. As mentioned earlier, BoltFTL also per-

forms out-of-place updates, meaning that each write op-

eration will be performed on a new flash page. Therefore,

garbage collection is essential for the removal of stale data.

To ensure that the clean-state data are stored intact, BoltFTL
modifies garbage collection so that blocks storing clean-state

data are never selected as victim blocks.

• Wear leveling. As BoltFTL does not reclaim the blocks stor-

ing clean-state data during garbage collection, the P/E cycles

of these blocks would not increase over time. Eventually, un-

even P/E cycles will appear among the blocks storing clean-

state data and the others. To prolong the life of the flash,

BoltFTL customizes wear leveling with the following logic

that ensures an even P/E cycle distribution. (1) Whenever a

free block is allocated for data writing, a wear leveling check-

ing is performed. (2) If the P/E cycle of the block (denoted as

A) is higher than the average P/E cycle of all the blocks by a

certain threshold, wear leveling is performed. (3) To perform

wear leveling, BoltFTL selects the youngest block (i.e., the

block with the least P/E cycles, which is denoted as Y) as

the new block for data writing. (4) If Y contains clean-state

data, BoltFTL copies the clean-state data to the previously

allocated block (i.e.,A), erases the young blockY, and finally

selects Y as the final block for data writing. Moreover, the

mapping table and other metadata are updated accordingly.

Phase 3: Recovery from malware analysis. BoltOS sends a re-
store command to BoltFTL to notify the restoration of the flash.

Upon receiving this command, BoltFTL simply discards the old

metadata and activates the backup metadata by coping them to the

RAM of the flash controller. In this way, the flash can be instantly

restored to the clean state. Note that the reserved blocks storing

backup metadata is never modified during phase two and phase

three.

4 IMPLEMENTATION

We have implemented a proof-of-concept prototype for Bolt on an

i.MX 6Quad SABRE experiment board, which integrates a four-core

ARM Cortex-A9 processor, 1 GB DDR3 DRAM and 256 KB SoC

internal RAM (iRAM). In the normal world, we run an Android 7.0

OS. Our prototype implements all the designed functions, except

that we do not provide commodity security services in BoltOS. In
fact, the trusted OS in the secure world is proprietary property in

all the commercial products. In BoltOS, we only implement the

save and restore services. In Android, the BoltAgent invokes a
customized interface directly to kernel to request these services.

We connect to our i.MX experiment board a programmable flash

board LPC-H3131 [28] through USB interface. The flash board holds

the System and Data partitions of the Android system. BoltFTL
is built based on OpenNFM [8], an open source NAND flash con-

troller framework. In the following, we detail the implementation

of BoltOS and BoltFTL.

4.1 BoltOS
After the proprietary device ROM, BoltOS resumes execution in

the secure world, and initializes itself within iRAM, which is a sep-

arated on-chip memory other than DRAM. In this way, we can

symmetrically allocate the whole DRAM to the Android system

and snapshot image. In particular, BoltOS configures the TZASC so

that the first 512 MB of DRAM is set to be a non-secure resource for

the Android system and the remaining 512 MB of DRAM is set to be

a secure resource for snapshot storage. Finally, it loads the Android

bootloader to the DRAM region assigned to the Android system,

and switches to the normal world to run the Android bootloader,

which further boots the Android OS.

The type of service requested by BoltAgent is indicated by the

r0 register. BoltOS is linked with the newlib C library [46] for em-

bedded systems. Hence, we can readily invoke standard C library

functions such as memcpy to speed up memory saving and restor-

ing. In total, BoltOS consumes less than 30 KB memory in iRAM,
including 16 KB for page tables.

4.2 BoltFTL
We have implemented a prototype of BoltFTL using OpenNFM [8],

an open source NAND flash controller framework. OpenNFM uses

an architecture consisting of three layers. The highest layer mainly

handles mappings between the LPA from upper layer and the PPA

in raw flash, so that the flash-based storage device can provide a

uniform block device interface to file systems. The middle layer

mainly takes care of wear leveling and bad block management. The

lowest layer provides a raw flash abstraction, handling the physical

characteristics of different flash chips. We customized OpenNFM

to work with LPC-H3131 [28], a development board equipped with

180 MHz ARM microcontroller, 512 MB NAND flash, and 32 MB

SDRAM. The flash has 128 KB block size and 2KB page size, thus

the entire NAND flash has 4,096 erase blocks, and each block is

composed of 64 pages. Each mapping entry can be represented by

3 bytes, therefore the mapping table occupies 6 blocks.

In BoltFTL, to receive the save and restore commands from

BoltOS, we take advantage of the reserved operation codes of SCSI

commands [19]. Specially, we adopt an SCSI command with op-

eration code 0x61H to inform BoltFTL to start performing save
operations, and adopt an SCSI command with operation code 0x62H

to inform BoltFTL to start performing restore operations.

5 EVALUATION

In this section, we evaluate the proposed system. First, we mea-

sured the time required to restore the guest Android system. We

also break down the whole process to discover the most time con-

suming stage. Since the restoration time is highly dependent on the

configuration of a real hardware, we also measured the time spent

with different configurations of hardware. Following this, we dis-

sected the time spent on flash restoration. Finally, we measured the

runtime performance of flash access with our modified firmware.

If the performance is severely influenced, the malware may ob-

serve such environmental change and refuse to expose malicious

behaviors.

345

World
Switch

Memory
Restoration

Context
Resotration

World
Switch

Flash
Restoration

Command
Transmission

Figure 5: Restoration timeline

Table 1: Time breakdown for restoring the guest system (in

μs).

World Switch
Memory

Restoration

Context

Restoration

Flash

Restoration

1.2 2798087 23 433917

Table 2: Memory restoration under different physical mem-

ory sizes.

Memory Size (in MB) 384 448 512

Time (in μs) 2092653 2445271 2798087

5.1 Restoration Performance

We report the device restoring time in this section. As our experi-

ment board has only 1 GB DRAM, we measured the time required

to restore an Android system with 512 MB physical memory. The

flash has 512 MB storage, and BoltFTL is able to recover the entire

contents at a time. All the experiments ware performed for at least

10 times, and the averaged time is reported.

Breakdown measurements. Figure 5 shows the timeline of a

restoration process. After receiving the restoration command,

BoltOS issues the customized SISC command to BoltFTL. This
process is non-blocking, therefore, BoltOS immediately begins to

restore the physical memory and processor context. Finally, BoltOS
transfers control to the guest system to resume execution at the

time snapshot was taken. Note that in our experiments, the time

required to restore the physical memory is far longer than that

required to restore the flash. Hence, only the upper line in Figure 5

accounts for the time spent on system restoration.

To measure the time spent on each stage, we utilized the Per-

formance Monitor Unit (PMU) available in our experiment board,

and counted the CPU cycles spent. The time required was calcu-

lated as the elapsed cycles divided by the processor frequency. We

temporarily disabled the Linux perf support in the normal world

to eliminate its interference with the PMU state. We cannot mea-

sure the exact time spent on command transmission, because the

clocks in BoltOS and BoltFTL are not synchronized. Rather, we

recorded in BoltOS the time spent on command transmission and

flash restoration as a whole. In Table 1, we list a breakdown mea-

surement of time spent on each stage. As shown in the table, most

of time was spent on the memory restoration. Based on the timeline

shown in Figure 5, the total time to recover the system is 2.80s.

Restoration under varying memory sizes. We also assigned

different sizes of physical memory to the guest system. Restricted

SR RR SW RW
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro
ug
hp
ut
(K
B/
s)

Access Patterns

OpenNFM
BoltFTL

Figure 6: Throughput comparison between OpenNFM and

BoltFTL. SR - sequential read, RR - random read, SW - se-

quential write, RW - random write

by the size of DRAM on the device, the maximum tested size is

512 MB. In addition, Android system has minimal requirement for

physical memory. Therefore, we only tested memory sizes between

384 MB and 512 MB. As shown in Table 2, the time consumption

basically follows a linear relationship with the restored memory

size. Note that the time for memory restoration depends on not

only the physical memory size, but also the underlying SoC. A

more advanced chip with a powerful processor and high memory

bandwidth could further reduce the restoration time.

Evaluating the efficiency of flash restoration. To restore a

flash-based block device, BoltFTL simply activates the backupmeta-

data to replace the current one in the RAM (equipped with the

flash-based block device). In our evaluation with LPC-H3131, this

takes approximately 0.43s.

5.2 Flash Runtime Performance

BoltFTL is a customized flash firmware incorporating specifically

designed strategies that feature snapshot function for the whole

chip. To figure out how these strategies affect the performance of

the flash, we used the AndroBench storage benchmark to measure

the performance of the default OpenNFM and BoltFTL. We set the

buffer sizes for sequential and random accesses to 32768 KB and 4

KB respectively (default values). As shown in Figure 6, we have the

following observations.

(a) The throughput of read performances measured in BoltFTL is
almost the same as the default OpenNFM. Indeed, read operations

do not make any modification to the flash state, so the logic to

process read operations is the same in BoltFTL and OpenNFM.

(b) The throughput of write operations measured in BoltFTL
is slightly lower (2%) than the default OpenNFM. The introduced

overhead is caused by the following reasons. (1) To increase the

write throughout, FTL prepares a certain number of free blocks for

upcoming writing operations in advance. This means these blocks

need to be reclaimed by GC beforehand. However, when running

with BoltFTL, the firmware does not select the blocks storing the

clean-state data as victim blocks in GC, which inevitably increases

GC frequency slightly to satisfy the demand of free blocks. (2)

346

GC in BoltFTL introduces much more uneven P/E cycles among

flash blocks than default OpenNFM. To prolong the lifetime of the

flash-based block device, in BoltFTL, wear leveling is invoked more

frequently to ensure that programmings/erasures distribute evenly

across the entire flash.

6 DISCUSSION AND FUTUREWORK

Decreased flash capacity. To protect the blocks that hold the

clean-state data, BoltFTL never reclaims these blocks for reuse.

Therefore, operations that need new block allocations will be in-

fluenced. For example, if the malware deletes a file that exists in

the snapshot image, the number of available logical blocks is in-

creased accordingly, whereas the number of total reclaimable phys-

ical blocks is not. As a result, the flash capacity is decreased. Fortu-

nately, a clean Android system partition only occupies 268 MB in

our build, indicating that there is at most 268 MB of storage loss.

This will not be a problem for modern commercial flash-based block

devices with high storage capacities.

Ware-and-tear artifacts. Bolt assumes that the malware could

not distinguish it is being analyzed by running it in a bare-metal

hardware without modification to the guest. However, as revealed

by Miramirkhani et al. [29], more sophisticated evasive malware is

able to exploit the “wear and tear” artifacts that inevitably occur on

devices of real users, but not in-lab devices, to identify it is being

analyzed. The authors also developed a statistical model to aid

building system images that exhibit a realistic “wear and tear” state.

Note that their findings do not indicate bare-metal analysis can

be largely detected. Rather, existing solutions, including Bolt, can
improve the fidelity by further taking the “wear and tear” artifacts

into consideration.

Self restoration. In the current prototype, BoltOS in the secure

world is only responsible for taking snapshot and making restora-

tion for the normal-world guest system as required. However, in a

real-world setting, BoltOS should also provide security services for
the commodity guest OS. To exhibit a consistent view for the guest

OS after restoration, the statuses of security services in BoltOS
should be restored as well. Chicken-and-egg problem occurs here

because there is no lower level execution domain than the Trust-

Zone secure world to restore the status of BoltOS. In practice, this

inconsistence would cause exceptions to apps in the guest system.

For example, the security service typically returns a fault code to the

guest if it cannot find a session associated with the guest-provided

session id. Fortunately, the security services can be recovered after

re-establishing the session. Moreover, for BoltOS, we do not need

to restore the entire OS status as is done for the guest OS. Applica-

tion level restoration, which has been well studied [34], could be

employed for the purpose of security service restoration.

Selective restoration. Our prototype takes memory snapshot by

simplify saving the entire physical memory assigned to the guest.

However, there exists a lot of unused pages that do not need to

be restored. As the physical memory becomes large, more time is

wasted on copying unimportant pages. In the future, we plan to

employ VM introspection techniques [22] to analyze the structure

of physical memory, and only take snapshot of the pages in use.

7 RELATEDWORK

This section reviews approaches used in malware analysis on both

bare-metal and emulated platforms. We focus on the bare-mental

setting, as it leaves minimal artifacts for the malware. We describe

two fundamental challenges and their solutions in this setting –

system restoration and malware behavior extraction. Finally, we

introduce several works that take advantage of ARM TrustZone or

flash for security purposes.

7.1 Malware Analysis on Bare Metal

System restoration.BareDroid [30] provides a quick restoremech-

anism that makes the bare-metal analysis of Android applications

feasible at scale. However, it only restores the disk state of the sys-

tem, so a reboot is needed to fully recover the system status. Bolt
performs a complete system restoration including bothmemory and

flash disk. BareBox [25] is a quick restoration system for bare-metal

analysis on x86 machines. Both Bolt and BareBox are rebootless

systems. In addition, they both enable the memory restoration by

splitting the physical memory into two parts, and rely on a separate

OS to take snapshot and make restoration. Regarding disk restora-

tion, BareBox relies on an overlay-based mirror disk, whereas Bolt
relies on a customized flash firmware. The separated OS in Bare-

Box runs with the same privilege as the guest system, so it can

be easily detected by kernel-level malware, and even be disrupted.

In Bolt, we employ ARM TrustZone to implement an isolated OS.

In addition, existing works require in-guest components to assist

restoration, whereas Bolt is completely transparent to the guest.

This is made possible by a non-suspicious agent app that issues

requests for security services that already exist in the system.

Behavior extraction and analysis. LO-PHI [40] leverages addi-

tional hardware sensors to monitor the disk operation and period-

ically poll memory snapshots. It achieves a higher transparency

at the cost of incomplete view of system states. BareCloud [26] is

an armored malware detection system; it executes malware on a

bare-metal system and compares both disk-level and network-level

activities of the malware with other emulation and virtualization-

based analysis systems for evasive malware detection. The disk-

level activity is extracted by comparing the effected disk status

with the initial state. The network-level activity is captured on the

wire directly. These works focus on malicious behavior extraction

on bare-metal systems without installing any in-guest software

components, while Bolt focuses on quick restoration after each

malware infection.

Placing analytic code in the guest could significantly simplify

the process of malicious behavior extraction. TaintDroid [12] is a

system-wide information flow tracking tool. It provides variable-

level, message-level, method-level, and file-level taint propagation

by modifying the original Android framework. TaintART [44] ex-

tends the idea of TaintDroid on the most recent Android Java virtual

machine Android Runtime (ART). VetDroid [55] reconstructs the

malicious behavior of the malware based on permission usage, and

it is applicable to taint analysis. DroidTrace [56] uses ptrace to

monitor the dynamic loading code on both Java and native code

level. Although these tools attempt to analyze the target on real-

world devices to improve transparency, the modification to the

347

Android framework leaves some memory footprints or code signa-

tures, and the ptrace-based approaches can be detected by simply

check the /proc/self/status profile. Moreover, these systems

are vulnerable to privileged malware.

Zhang et al. [53] propose MalT, a bare-metal debugging tool

for malware analysis. Its core idea is to use System Manage Mode

(SMM), a special CPU mode in x86 architecture, to increase the de-

bugging transparency. Ninja [31], a follow-up system of MalT, pro-

vides a transparent malware analysis framework on ARM platform.

Willems et al. [49] used branch tracing to record all the branches

taken by a program execution. As pointed out in the paper, the data

obtainable by branch tracing is rather coarse and this approach still

suffers from a CPU register attack against branch tracing settings.

7.2 Malware Analysis via Sandboxing

DroidScope [52] rebuilds the semantic information of both the

Android OS and the Dalvik virtual machine based on QEMU. Cop-

perDroid [45] is a VMI-based analysis tool that automatically recon-

structs the behavior of Android malware including inter-process

communication (IPC) and remote procedure call interaction. Droid-

Scibe [9] uses CopperDroid [45] to collect behavior profiles of

Android malware, and automatically classifies them into different

families. Since the emulator leaves footprints, these systems are

naturally not transparent.

Ether [11] is a malware analysis framework based on hardware

virtualization extensions (e.g., Intel VT). It runs outside of the guest

operating systems by relying on underlying hardware features.

BitBlaze [39] and Anubis [3] are QEMU-based malware analysis

systems. They focus on understanding malware behaviors, instead

of achieving better transparency. V2E [51] combines both hardware

virtualization and software emulation. HyperDbg [14] uses the

hardware virtualization that allows the late launching of VMX

modes to install a virtual machinemonitor and run the analysis code

in the VMX root mode. SPIDER [10] uses Extended Page Tables to

implement invisible breakpoints and hardware virtualization to hide

its side effects. However, Ether, BitBlaze, Anubis, V2E, HyperDbg,

and SPIDER all rely on easily detected emulation or virtualization

technology [7, 35–37] and make the assumption that virtualization

or emulation is transparent from guest-OSes.

More subtle, anti-anti-analysis technique for emulated environ-

ment has also been developed. It enjoys both the benefits of scalabil-

ity in emulation-based analysis and high coverage in bare-mental

analysis. In particular, with Droid-AntiRM [47], the analytic compo-

nent is able to detect the condition statements that could trigger the

malicious behaviors and rewrite them on the fly to force a malicious

path. However, we regard it as a start of a new round of arms-race

between the malware writers and detectors. A definitive solution

could be bare-metal analysis that leaves no artifact at all.

7.3 TrustZone-based Isolation Systems

TrustZone provides an isolated execution domain apart from the

commodity OS. Based on it, a lot of work has been proposed to

meet various security requirements. TrustDump [43] builds an iso-

lated environment to reliably dump the physical memory contents

to a peripheral in case the guest OS is compromised or crashed.

BoltOS augments TrustDump by also supporting memory restora-

tion. Trusted Language Runtime (TLR) [38] and TrustShadow [16]

are two systems that shield unmodified applications from a hos-

tile OS. TZ-RKP [4] and Sprobes [15] monitor critical operations

of an OS by routing privileged operations to the secure world for

inspection. CaSE [54] extends TrustZone to execute self-contained

applications inside the cache to defeat DRAM attacks.

7.4 Data Protection in Flash Memory

A few existing works explored data protection techniques in flash

memory. DEFY [33] and DEFTL [21] investigated techniques which

can hide sensitive data into the flash media. As another important

direction of data protection, secure deletion ensures that sensitive

data can be completely removed from storage media. NFPS [20] and

TedFlash [6] explored novel techniques which can irrecoverably

remove sensitive information stored in flash.

8 CONCLUSION

Dynamic analysis on bare-metal is a promising technique to reveal

the malicious behaviors of evasive malware. This work focuses on

a less studied, but important topic in bare-metal dynamic analysis,

i.e., quickly restoring the guest system to a clean state without

exposing any instrumentation indicators. The proposed solution,

Bolt, takes advantage of two hardware features that arewidely used
in mobile platforms, to develop a reboot-less restoration solution

without any modification to the guest system. With this spotless

“sandbox”, the state-of-the-art malware is not able to identify that

it is being analyzed. This is particularly valuable for building a

scalable bare-metal analysis platform with high throughput, espe-

cially considering the ever-growing number of mobile malware and

the rapid evolution of envision techniques. Experimental results

obtained from our prototype implementation show that, Bolt is

able to restore a full system state in 2.80 seconds, outperforming

all the existing solutions.

ACKNOWLEDGMENTS

The authors would also like to thank the anonymous referees for

their valuable comments and helpful suggestions. The work is sup-

ported by the Army Research Office under Grant No.: W911NF-13-

1-0421 (MURI), and the National Science Foundation under Grant

No.: CNS-1422594, CNS-1505664, SBE-1422215, CNS-1422206, DGE-

1565570, CNS-1718459, OAC-1738929. Jingqiang Lin and Luning

Xia were partially supported by the National Natural Science Foun-

dation of China under Grant No.: 61772518, 61602476.

REFERENCES
[1] Adamwallred. 2014. nvmtrace - A proof-of-concept automated baremetal malware

analysis framework. (2014). https://github.com/adamwallred/nvmtrace.
[2] Tiago Alves and Don Felton. 2004. TrustZone: Integrated Hardware and Software

Security. White Paper (2004).
[3] Anubis. 2009. Analyzing Unknown Binaries. http://anubis.iseclab.org. (2009).
[4] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In ACM CCS’14, 2014.
90–102.

[5] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto. 2012.
Scientific but Not Academical Overview of Malware Anti-Debugging, Anti-
Disassembly and Anti-VM Technologies. In Black Hat.

348

[6] Bo Chen, Shijie Jia, Luning Xia, and Peng Liu. 2016. Sanitizing data is not enough!:
towards sanitizing structural artifacts in flash media. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM, 496–507.

[7] Xu Chen, John Andersen, Z. Morley Mao, Michael Bailey, and Jose Nazario.
2008. Towards an Understanding of Anti-Virtualization and Anti-Debugging
Behavior in Modern Malware. In Proceedings of the 38th Annual IEEE International
Conference on Dependable Systems and Networks (DSN ’08).

[8] Google Code. 2011. OpenNFM. https://code.google.com/p/opennfm/. (2011).
[9] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly Tam,

Mansour Ahmadi, Johannes Kinder, and Lorenzo Cavallaro. 2016. DroidScribe:
Classifying Android malware based on runtime behavior. Mobile Security Tech-
nologies (MoST’16) (2016).

[10] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. 2013. SPIDER: Stealthy Binary
Program Instrumentation and Debugging Via Hardware Virtualization. In Pro-
ceedings of the Annual Computer Security Applications Conference (ACSAC’13).

[11] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: Mal-
ware Analysis via Hardware Virtualization Extensions. In Proceedings of the 15th
ACM Conference on Computer and Communications Security (CCS ’08).

[12] Enck, William and Gilbert, Peter and Cox, Landon P and Jung, Jaeyeon and
McDaniel, Patrick and Sheth, Anmol N. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime PrivacyMonitoring on Smartphones. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Implementation.

[13] Nicolas Falliere. 2010. Windows Anti-Debug Reference. http://www.symantec.
com/connect/articles/windows-anti-debug-reference. (2010).

[14] Aristide Fattori, Roberto Paleari, Lorenzo Martignoni, and Mattia Monga. 2010.
Dynamic and Transparent Analysis of Commodity Production Systems. In Pro-
ceedings of the IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’10).

[15] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. Sprobes: En-
forcing kernel code integrity on the trustzone architecture. arXiv preprint
arXiv:1410.7747 .

[16] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and
Trent Jaeger. 2017. TrustShadow: Secure Execution of Unmodified Applications
with ARM TrustZone. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys ’17).

[17] Claudio Guarnieri, Allessandro Tanasi, Jurriaan Bremer, and Mark Schloesser.
2012. The Cuckoo sandbox. (2012). https://www.cuckoosandbox.org/.

[18] Google inc. 2017. Trusty TEE. (2017). https://source.android.com/security/trusty/.
[19] INCITS. 2015. SCSI Command Operation Codes. (2015). http://www.t10.org/

lists/op-num.htm.
[20] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2016. Nfps: Adding undetectable

secure deletion to flash translation layer. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 305–315.

[21] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2017. DEFTL: Implementing
Plausibly Deniable Encryption in Flash Translation Layer. In Proceedings of the
24th ACM conference on Computer and communications security. ACM.

[22] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. 2007. Stealthy Malware De-
tection Through Vmm-based “Out-of-the-box” Semantic View Reconstruction.
In Proceedings of the 14th ACM Conference on Computer and Communications
Security (CCS ’07). ACM, New York, NY, USA, 128–138.

[23] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. 2014. Morpheus:
Automatically Generating Heuristics to Detect Android Emulators. In Proceedings
of the 30th Annual Computer Security Applications Conference. 216–225.

[24] Dhilung Kirat and Giovanni Vigna. 2015. MalGene: Automatic Extraction of
Malware Analysis Evasion Signature. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security (CCS ’15). 769–780.

[25] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2011. BareBox: Efficient
Malware Analysis on Bare-metal. In Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC ’11). 403–412.

[26] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. BareCloud:
Bare-metal Analysis-based Evasive Malware Detection. In 23rd USENIX Security
Symposium (USENIX Security 14). USENIX Association, San Diego, CA, 287–301.

[27] AravindMachiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. 2017. BOOMERANG: Exploiting the Semantic Gap in Trusted
Execution Environments. In Proceedings of the Network and Distributed System
Security Symposium.

[28] Mantech. 2017. LPC-H3131. http://www.mantech.co.za/. (2017).
[29] Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis

Polychronakis. 2017. Spotless Sandboxes: Evading Malware Analysis Systems
using Wear-and-Tear Artifactsy. In 2017 IEEE Symposium on Security and Privacy.

[30] Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi, Jacopo Cor-
betta, Dhilung Kirat, Christopher Kruegel, and Giovanni Vigna. 2015. BareDroid:
Large-Scale Analysis of Android Apps on Real Devices. In Proceedings of the 31st
Annual Computer Security Applications Conference (ACSAC 2015). 71–80.

[31] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards Transparent Tracing
and Debugging on ARM. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/ning
[32] Jon Oberheide and Charlie Miller. 2012. Dissecting the android bouncer. Sum-

merCon2012, New York (2012).
[33] Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. 2015. DEFY: A

deniable, encrypted file system for log-structured storage. (2015).
[34] J. S. Plank, M. Beck, G. Kingsley, and K. Li. 1995. Libckpt: Transparent Check-

pointing under Unix. In Usenix Winter Technical Conference. 213–223.
[35] D. Quist and V. Val Smith. 2006. Detecting the Presence of Virtual Machines

Using the Local Data Table. http://www.offensivecomputing.net. (2006).
[36] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. 2007. Detecting

System Emulators. In Information Security. Springer Berlin Heidelberg.
[37] Joanna Rutkowska. 2004. Red Pill... or how to detect VMM using (almost) one

CPU instruction. http://www.ouah.org/Red_Pill.html. (2004).
[38] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. 2014. Using ARM

Trustzone to Build a Trusted Language Runtime for Mobile Applications. In
ASPLOS’14, 2014. 67–80.

[39] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
Proceedings of the 4th International Conference on Information Systems Security.

[40] Chad Spensky, Hongyi Hu, and Kevin Leach. 2016. LO-PHI: Low-Observable
Physical Host Instrumentation for Malware Analysis. In 23nd Annual Network
and Distributed System Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016.

[41] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and
Johannes Hoffmann. 2013. Mobile-sandbox: Having a Deeper Look into Android
Applications. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing (SAC ’13). ACM, New York, NY, USA, 1808–1815.

[42] Raja Subramani, Haritima Swapnil, Niharika Thakur, Bharath Radhakrishnan, and
Krishnamurthy Puttaiah. 2013. Garbage Collection Algorithms for NAND Flash
Memory Devices–An Overview. In Modelling Symposium (EMS), 2013 European.
IEEE, 81–86.

[43] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. 2014. TrustDump:
Reliable Memory Acquisition on Smartphones. In in Proceedings of 19th European
Symposium on Research in Computer Security. 202–218.

[44] Mingshen Sun, Tao Wei, and John Lui. 2016. TaintART: a practical multi-level
information-flow tracking system for Android RunTime. In Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communications Security (CCS’16).

[45] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.
CopperDroid: Automatic reconstruction of Android malware behaviors. In Pro-
ceedings of 22nd Network and Distributed System Security Symposium (NDSS’15).

[46] Vinschen, Corinna and Johnsto, Jeff . 1999. Red Hat newlib C Library. (1999).
https://sourceware.org/newlib/.

[47] Xiaolei Wang, Sencun Zhu, and Yuexiang Yang. 2017. Droid-AntiRM: Taming
Control Flow Anti-analysis to Support Automated Dynamic Analysis of Android
Malware. In Proceedings of the 33rd Annual Conference on Computer Security
Applications (ACSAC ’17).

[48] Lukas Weichselbaum, Matthias Neugschwandtner, Martina Lindorfer, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. 2014. Andrubis: Android
malware under the magnifying glass. Vienna University of Technology, Tech. Rep.
TR-ISECLAB-0414-001 (2014).

[49] Carsten Willems, Ralf Hund, Andreas Fobian, Dennis Felsch, Thorsten Holz, and
Amit Vasudevan. 2012. Down to the Bare Metal: Using Processor Features for
Binary Analysis. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC’12).

[50] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards
On-Device Non-Invasive Mobile Malware Analysis for ART. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC.

[51] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. 2012. V2E:
Combining Hardware Virtualization and Software Emulation for Transparent
and Extensible Malware Analysis. In Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments (VEE’12). 12.

[52] Yan, Lok Kwong and Yin, Heng. 2012. Droidscope: Seamlessly reconstructing
the OS and Dalvik semantic views for dynamic Android malware analysis. In
Proceedings of the 21st USENIX Security Symposium (USENIX Security’12).

[53] Fengwei Zhang, Kevin Leach, Angelos Stavrou, HainingWang, and Kun Sun. 2015.
Using Hardware Features for Increased Debugging Transparency. In Proceedings
of the 36th IEEE Symposium on Security and Privacy (S&P’15).

[54] Ning Zhang, Kun Sun, Wenjing Lou, and Tom Hou. 2016. CaSE: Cache-Assisted
Secure Execution on ARM Processors. In The 37th IEEE Symposium on Security
and Privacy (S&P). SAN JOSE, CA.

[55] Yuan Zhang,Min Yang, BingquanXu, Zhemin Yang, Guofei Gu, PengNing, X Sean
Wang, and Binyu Zang. 2013. Vetting undesirable behaviors in Android apps
with permission use analysis. In Proceedings of the 20th ACM SIGSAC Conference
on Computer and Communications Security (CCS’13).

[56] Zheng, Min and Sun, Mingshen and Lui, John CS. 2014. DroidTrace: A ptrace
based Android dynamic analysis system with forward execution capability. In
2014 International Wireless Communications and Mobile Computing Conference.

349

