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ABSTRACT
Federated learning (FL) is promising in supporting collaborative
learning applications that involve large datasets, massively dis-
tributed data owners and unreliable network connectivity. To pro-
tect data privacy, existing FL approaches adopt (k,n)-threshold
secret sharing schemes, based on the semi-honest assumption for
clients, to enable secure multiparty computation in local model up-
date exchange which deals with random client dropouts at the
cost of increasing data size. These approaches adopt the semi-
honest assumption for clients, therefore they are vulnerable to
malicious clients. In this work, we propose a blockchain-based
privacy-preserving federated learning (BC-based PPFL) framework,
which leverages the immutability and decentralized trust proper-
ties of blockchain to provide provenance of model updates. Our
proof-of-concept implementation of BC-based PPFL demonstrates
it is practical for secure aggregation of local model updates in the
federated setting.

CCS CONCEPTS
• Security andprivacy→Public key (asymmetric) techniques;
Privacy-preserving protocols; • Computing methodologies
→ Online learning settings.
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1 INTRODUCTION
Federated Learning (FL) was first proposed by Google [2, 3, 6] to
facilitate large-scale collaborative learning. It no longer requires to
transmit data samples distributed across multiple devices to a data
center to train or update the global model. In this approach, each
device trains its local model and exchanges local model updates
to compute the global model update. Compared with conventional
centralized learning, FL reduces not only communication costs by
movingmodel updates instead of raw data items from clients to data
centers, but also computational costs by leveraging the computing
resource of each device. Moreover, since local data items never
leave the devices (i.e., data owners), FL improves user privacy. With
these desirable properties, FL is promising to support collaborative
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learning applications that involve large datasets and massively
distributed data owners.

Early FL designs assumed that intermediate results, such as pa-
rameter updates of stochastic gradient descent, contain less infor-
mation than the raw training data [6]. Therefore, ephemeral up-
dates are often exposed. However, these gradients may leak impor-
tant information of the local data items, especially when metadata
such as the structure of data is available. To address this problem,
several secure aggregation algorithms for FL have been proposed
recently [2, 3], leveraging secret sharing and differential privacy
techniques. However, these approaches assume a loose federation
of participating clients that may join or leave the learning task
unpremeditated, and therefore suffer from random client dropouts.
[3] proposed to adopt (k,n)-threshold secret sharing to improve
the robustness against dropouts. In fact, the security guarantee of
these schemes is rooted in the semi-honest assumption for clients,
which assumes the clients shall not submit “fake” shares nor collude
with each other to manipulate learning process or outcome. This is
a strong assumption, especially when the sources of updates are
believed to be “not needed by the aggregation algorithm” and the
updates “can be transmitted without identifying meta-data” [6].
Moreover, almost all existing work on FL explicitly or implicitly
adopts a simple incentive model, which assumes that clients volun-
tarily participate in collaborative learning to trade their local model
updates and computing resources for an improved global model.
This flat incentive model neglects the fact that clients with different
data sizes and computing capabilities make different contributions
in the global optimization task and should be rewarded differently.

We propose a blockchain-based privacy-preserving federated
learning (BC-based PPFL) framework in this work. As shown in
Figure 1, the blockchain interconnects FL components, such as
the server, clients and aggregators. It uses a distributed ledger
of transactions to record information flows regarding FL tasks,
participating clients, local and global model updates, etc., among
the components. The immutable ledger supports data provenance
by tracking data flows in each FL task and provides a good trust
base to build a verification mechanism that existing FL approaches
lack. With such a verification mechanism, we can further extend
the semi-honest client assumption to a more realisticmalicious client
assumption, under which a client can drop out, submit fake local
updates, or collude with other malicious clients. Moreover, with the
distributed ledger, the server as well as other interested entities (e.g.,
clients and aggregators) in an FL task can track the contribution of
every client towards a globally optimized learning model, which
makes contribution-based incentive mechanisms possible. Based
on this, we can further introduce a premium on the ownership of
the improved model and reward the miners accordingly.
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2 THE BC-BASED PPFL FRAMEWORK
2.1 The Federated Learning Model
The primary goal of federated learning is to train a global shared
model on all the data across a large number of clients, wherein each
client maintains her data securely. While different learning tasks
have been proposed for FL, in this work, we adopt the federated
averaging model introduced in [6], where a fixed set of K clients,
each holding nk data points, compute the average gradients on their
local data with the current model wt at a fixed learning rate η:
дk = ▽Fk (wt ), where Fk (wt ) =

1
nk

∑
i ∈Pk fi (wt ) is the loss of the

prediction on local data points. Therefore, each client can update
its local model aswk

t+1 = wt − ηдk , while the server can aggregate
the received local model updates to update the global model as
wt+1 =

∑K
k=1

nk
n wk

t+1.
The primary privacy objectives of BC-based PPFL are to (a)

protect local data points from any external entity by never shipping
them out of the devices; (b) protect local data from the server by
never leaking individual local model updates to the server; and (c)
protect local and global model updates from irrelevant internal (i.e.,
aggregators, miners) and external entities. Meanwhile, the security
objectives are to ensure (a) the confidentiality and integrity of the
local model updates from committed clients and (b) the provenance
of model updates.

2.2 The Architecture
To achieve the security and privacy protection goals, we propose a
BC-based PPFL framework, which consists of five components as
shown in Figure 1. For an FL task, the server first advertises task
specifications, such as the types of applications (e.g., keystroke or
activity predication), types of devices, types and formats of training
data (e.g., gyroscope or motion sensor data, floating point format),
types of learning models (e.g., CNN) , computing requirements
(e.g., learning rate), and task settings (e.g., aggregators, number of
needed clients, batch size, etc.) in a task transaction. The clients
who are willing to join a task register to the aggregator, which then
creates a commitment transaction for all the committed clients.
Finally, the miner records all the transactions into the ledger.

During the FL task, the server first shares the initial model with
all committed clients. For model privacy, this initial model is shared
in protected mode. Then, the clients compute the local model up-
dates over their local training data and upload the updated model
parameters to the aggregator. All the updates received by the aggre-
gator in the same batchwill be wrapped in a local update transaction
and recorded into the ledger with the assistance of the miner.

2.3 Building Blocks
BC-based PPFL relies on three building blocks to provide data pri-
vacy and provenance in FL.

Homomorphic Encryption and Proxy Re-encryption. Most
of the existing privacy-preserving federated learning approaches
adopt secret sharing schemes for secure multiparty computation
(MPC), which suffer from random client dropouts. To tackle this
problem, we adopt a variant of the Paillier cryptosystem with two
trapdoor functions proposed by Cramer and Shoup [4] to protect
local models during model exchange.

Figure 1: The BC-based PPFL framework.

In our design, the server generates a pair of public and private
task keys for each task and includes the public task key in the task
specification, while each aggregator involved in a task generates a
pair of public and private batch keys and distributes the public batch
key to each committed client. The task keys and batch keys are
constructed in a form such that the batch key is the transformation
key of the corresponding task key to support proxy re-encryption.
Therefore, the server cannot directly recover individual local up-
dates recorded in the ledger, instead, it only recovers the aggregated
value after the aggregator aggregates the updates and re-encrypts
it with the transformation key.

Blockchain.There have been several proposals of using blockchain
to support deep learning [7] and federated learning [5] for incentive
purposes. While we adopt blockchain for provenance and verifi-
cation, the logic design of the blockchain network is similar. The
miners can physically be any node with sufficient computing re-
sources to run the Proof-of-Work (PoW) or Proof-of-Stake (PoS),
and record the task, commitment and update transactions into the
task block. The use of blockchain also makes contribution-based
incentive mechanisms possible, whereby we introduce a premium
on the ownership of the improved model held by the server and
reward the miners accordingly. The size of each block is related to
the header and the learning rate η. It is also worth noting that for
large model updates atop large datasets, we can store the encrypted
model updates in a distributed database such as IPFS [1] and record
only the addresses in the blockchain.

Verification. The blockchain records the flows of encrypted model
updates, which makes the tracking and verification of clients’ con-
tribution to the globally optimized model possible. In particular, the
verifier can retrieve all the updates of the clients in a batch, generate
the aggregate excluding the input from the suspicious client, and
compare the performance of the global models before and after
verification. In the preliminary experiment, we implemented the
basic verification function in which the server works as the verifier
to evaluate the gradients after recovering the aggregate in each
round. It compares the performance of the updated global model
with the initial model of that round using the loss function.

2.4 A Proof-of-Concept Implementation and
Evaluation

We developed a variant of the Paillier cryptosystem in Python to
implement homomorphic encryption and proxy re-encryption for



gradient aggregation. We built the blockchain over Ethereum and
chain operations are controlled using the Truffle suite, which is a
development and testing framework for Ethereum. Finally, to assess
the performance of our proposed framework, we adopted the nn
package of the deep-learning library PyTorch for FL tasks.

Settings. In particular, we built a binary classifier using a simple
two layer neural network, and used the Breast Cancer Dataset from
UCI Machine Learning Repository as the training data. The dataset
has 569 samples and 30 features. For all three cryptosystems used in
our framework, we generated public and private key pair of default
length 2048 bits.

We ran the blockchain on an Amazon EC2 t2.micro instance
with 1GiB RAM and 3.3GHz Intel Scalable Processor. For Server,
Aggregator and Client nodes, we adopted two settings: in Setting I,
we ran all three types of nodes on a laptop with 2 GHz Intel core i5
processor and 3 GiB of memory, from which they can interact with
the Blockchain implemented on Amazon EC2; in Setting II, we ran
them on Amazon EC2 instances too, which minimizes communica-
tion delays since all instances are on the same cloud platform. In
the future, we will further study the scalability of our framework
and the communication delays by deploying different nodes on
multiple cloud platforms.

Evaluation. To assess the performance of our scheme, we ran a
comparably small-scale experiment for FL model training. We first
randomly divided the training data among 10 clients, each having
50 examples from the IID-partitioned data. Then, we measured the
execution time for different FL operations (i.e., model encryption,
local model update, aggregation, blockchain write for local updates
and gradient average, and global model update).

We repeated model training four times and calculated the av-
erage execution time in a single iteration, as shown in Table 1.
Obviously, aggregating the gradients and writing the result to the
blockchain are the most computationally costly operation among
all FL operations under both settings. The average execution time
per iteration is the summation of all FL operations, which is 1.62 and
1.27 seconds in Setting I and II, respectively. The difference between
the two settings indicates the communication cost introduced by
reading and writing to the blockchain.

The performance of the proposed scheme, especially the gradi-
ent aggregation and blockchain write operations, is related to the
number of the clients participating in the PPFL tasks [6]. So, we
increased the client batch size to 20, 30, and 40, and measured the
execution time. The average execution time increased from 1.62
seconds for 10 clients to 1.73, 2.36, and 2.43 seconds for 20, 30 and
40 clients, respectively. This indicates that increasing the number
of clients results in a sub-linear increase in the protocol execution
time.

3 CONCLUSIONS AND FUTUREWORK
We present the design of a privacy-preserving federated learning
framework that performs gradient aggregation over private data
following a cryptographic protocol. We design a variant of the
Paillier cryptosystem to support additive homomorphic encryp-
tion and proxy re-encryption so that the encrypted local model
updates can be aggregated and transformed into a form recoverable

Table 1: Average Processing Time of each FL Operation (in
seconds; computed over 4 runs for 10 clients).

Operations Setting I Setting II

Key Generation (offline) 6.568e-05 6.317e-05
Model Encryption 0.00337 0.00403
Blockchain Write for Model 0.347 0.201
Local Model Update 0.046 0.0434
Blockchain Write for Gradient 0.36 0.236
Aggregation 0.605 0.572
Blockchain Write for Gradient Average 0.261 0.174
Global Model Update 0.079 0.1201

by the server. Throughout the process, individual local model up-
dates are protected from the server, aggregators and other clients,
while the global model update is shared among participating clients.
By integrating the blockchain in PPFL process, we can overcome
random client dropouts since their local updates are written to
the blockchain asynchronously. Moreover, due to the immutability
and data provenance properties of the global ledger, it provides a
means to identify and exclude malicious client updates. Our pre-
liminary experimental results show that BC-based PPFL supports
model training in a fully decentralized manner and provides better
transparency and verifiability, while protecting data privacy.

In the future, we will explore federated optimization by incorpo-
rating mini-batching during each training epoch at the client, and
increase multi-client parallelism to achieve a target test-set accu-
racy. We will also consider non-IID partitioned data and investigate
incentive schemes to reward clients based on their contributions.

ACKNOWLEDGEMENT
This work is sponsored in part by NSF CNS-1422206 and DGE-
1565570, NSA SoS Initiative, and the Ripple University Blockchain
Research Initiative.

REFERENCES
[1] Juan Benet. Protocol Labs, 2016. InterPlanetary File System (IPFS), 2016. (Protocol

Labs, 2016). Retrieved July 07, 2019 from https://www.ipfs.io
[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi,
H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In
Proceedings of The 2nd SysML Conference, Stanford, California, March, 2019.

[3] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of ACM Conference on Computer and Communications Security, 2017.

[4] Ronald Cramer and Victor Shoup. 2002. Universal Hash Proofs and a Paradigm
for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In Proceedings
of the 21st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT 2002.

[5] Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2019. On-
Device Federated Learning via Blockchain and its Latency Analysis. In IEEE
Communications Letters, 2019.

[6] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Proccedings of the 20th International Conference
on Artificial Intelligence and Statistics, AISTATS 2017.

[7] Jia-SiWeng, JianWeng, Ming Li, Yue Zhang, andWeiqi Luo. 2018. DeepChain: Au-
ditable and Privacy-Preserving Deep Learning with Blockchain-based Incentive.
IACR Cryptology ePrint Archive 2018 (2018), 679.

https://www.ipfs.io

	Abstract
	1 Introduction
	2 The BC-based PPFL Framework
	2.1 The Federated Learning Model
	2.2 The Architecture
	2.3 Building Blocks
	2.4 A Proof-of-Concept Implementation and Evaluation

	3 Conclusions and Future Work
	References

