
Tear Off Your Disguise: Phishing Website
Detection using Visual and Network Identities

Zhaoyu Zhou1,2, Lingjing Yu1,2?, Qingyun Liu1, Yang Liu1, and Bo Luo3

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences

3 Department of EECS, The University of Kansas, Lawrence, KS, 66045, USA
{zhouzhaoyu, yulingjing, liuqingyun, liuyang}@iie.ac.cn, bluo@ku.edu

Abstract. Adversaries create phishing websites that spoof the visual
appearances of frequently used legitimate websites in order to trick vic-
tims into providing their private information, such as bank accounts and
login credentials. Phishing detection is an ongoing combat between the
defenders and the attackers, where various defense mechanisms have been
proposed, such as blacklists, heuristics, data mining, etc. In this paper, we
present a new perspective on the identification of phishing websites. The
proposed solution, namely PhishFencing, consists of three main steps: (1)
filtering: a list of trusted and non-hosting websites is used to eliminate
pages from legitimate hosts; (2) matching: a sub-graph matching mech-
anism is developed to determine if an unknown webpage contains logo
images of whitelisted legitimate websites–once a match is detected, the
unknown webpage is considered a suspicious page; (3) identification: host
features are utilized to identify whether a suspicious webpage is hosted
on the same cluster of servers as the corresponding legitimate pages–if
not, the suspicious page is tagged as phishing. Compared with existing
approaches in the literature, PhishFencing introduces an autonomous
mechanism to replace the manual process of collecting and refreshing
groundtruth data. As a in-network solution, PhishFencing could also par-
tially detect phishing pages hosted on HTTPS servers, without requiring
any support from clients. Through intensive experiments, we show that
PhishFencing is very effective in comparing with the literature.

Keywords: Phishing · Phishing identification · Website fingerprints.

1 Introduction

Phishing websites forge frequently used, legitimate sites to lure users to submit
their sensitive personal data or account credentials. Statistics from the Anti-
Phishing Working Group [3] show that most of the phishing websites target
at payment (33.0%) or financial (14.3%) sites. Meanwhile, with the increasing
popularity of online shopping and banking over the last two decades, their client
base has grown from technophiles to normal users, who are less capable of recog-
nizing well-designed phishing sites. Victims deceived by phishing websites often

? Zhaoyu Zhou and Lingjing Yu are co-first authors of this paper.

2 Z. Zhou, et al.

suffer from serious consequences such as identity thefts and huge property losses.
Therefore, from both security research and practice perspectives, it is crucial to
efficiently and effectively identify and block phishing websites over the Internet.

Online phishing has been an active research area in the last 10 to 15 years
[16, 17], during which both the attack and defense techniques evolve simulta-
neously. Existing phishing detection methods could be roughly classified into
three categories: (1) URL-based (e.g., identifying cloaked URLs), (2) network-
based (e.g., detecting DNS poisoning or abnormal DNS registrations), and (3)
content-based (e.g., identifying suspicious websites that are visually similar to
benign sites). In the battle of online phishing between attackers and defenders,
phishing identification methods proposed in the literature may soon become in-
effective, for instance, when adversaries purposefully modify page contents or
further tampering with phishing URL, such as using “squatting” domains [26].

In this paper, we present a phishing website detection mechanism, named
PhishFencing, which attempts to detect discrepancies among a set of relatively
robust network and content features. In particular, we identify the “visual iden-
tity” of the unknown page, which is often the forged identity, from visual features
such as the logos on the page screenshots. We also identify the “network identity”
of the unknown page based on its host features, such as IP, AS and geolocation.
When both identities are inconsistent, the unknown page is highly likely to be
a phishing webpage. The proposed mechanism does not require any support or
software installation on the client side. PhishFencing will be deployed at primary
exit routers of enterprise networks or at the ISPs, to monitor incoming traffic
and to block any phishing pages from flowing into the network.

The proposed approach consists of three main steps, namely filtering, match-
ing, and identification. We first collect the logos of the legitimate websites on the
whitelist and generate a fingerprint of visual features for each logo. When a user
inside the network visits a webpage, we first invoke the filters to identify if the
user is visiting a known trusted website (not necessarily the whitelisted sites). If
the visited page comes from a unknown site or web hosting site, we move to the
matching step to render the page from passively eavesdropping the data stream.
Sub-image matching is invoked to compute the visual similarities between the
unknown page and all logos in the local fingerprint database and then compare
with a threashold. In this step, the unknown page may trigger matches with fin-
gerprints of multiple legitimate pages, since some legitimate sites may use slightly
different logos across several (entry) pages, such as https://www.amazon.com/
and https://www.amazon.co.jp/. In this situation, we pass all the matched legit-
imate sites as the target websites to the next step. In the identification step, we
first extract the network attributes of the hosts of the unknown website and the
target websites. After clustering the hosts of the target sites, we finally identify
whether the unknown webpage comes from an outlier host, compared to all the
clusters of legitimate hosts.

In practice, it is difficult for visual-similarity-based detectors to maintain
a complete and up-to-date database/whitelist of all protected legitimate sites,
especially consider the fact that the visual layout of the legitimate websites

Tear Off Your Disguise: Phishing Website Detection 3

may change. It is tedious and labor-intensive to ask system administrators to
manually monitor all the sites on the whitelist and keep an updated image
database. To tackle this challenge, we propose to utilize search engines to collect
and update the groundtruth data. With this method, we are able to collect
a larger groundtruth set with more comprehensive coverage of the the visual
appearances of the whitelist sites.

The main contributions of this paper are three-fold: (1) we propose a novel
and highly practical approach to autonomously collect/refresh logo images and
visual features from the whitedlisted legitimate websites; (2) we propose the first
approach that is able to partially identify phishing websites hosted on HTTPS
servers without requiring any interaction with the client computer/browser; and
(3) we have developed a three-stage approach, namely PhishFencing, to identify
phishing webpages based on the visual and network features that show higher re-
liability in practice. Through intensive experiments, we demonstrate the superior
performance of PhishFencing.

The rest of this paper is organized as follows: we first define the problem and
discuss the design goals in Section 2. We introduce the core algorithms and the
implementation details of PhishFencing in Sections 3 and 4. We then present the
experiment results and performance analysis in Section 5. Finally, we discuss the
related works in Section 7 and conclude the paper in Section 8.

2 Problem and Objectives

In this paper, we tackle the problem of discovering and identifying phishing web-
sites, given a whitelist of legitimate websites. Formally, we have a collection of
whiltlisted websites as T = {T1, T2, ..., Tn}, in which Ti denotes a known legiti-
mate website4. In the threat model, the adversaries would imitate the visual
appearances of a legitimate site Ti, and attempt to trick victims (users) to visit
the phishing page and provide their credentials. A user from within the enter-
prise network visits an external page Si (i.e., the unknown page), which could
be a phishing page that might bring potential damage to the enterprise net-
work. The objective of this project is to design a phishing detection mechanism
M(S, T) that, giving a new website Sx, identifies whether it is a phishing website
imitating Tx: M(Sx, Tx) = {0, 1}.

In this project, we aim to tackle two practical challenges: (1) Groundtruth
data collection and refresh: the whitelist of legitimate websites usually con-
tains a list of site names (e.g., Bank of America) and/or their entry URLs
(e.g., https://www.bankofamerica.com/). Moreover, each legitimate website may
have multiple entry points besides the root page, e.g., BoA have pages like
https://www.bankofamerica.com/credit-cards/manage-your-credit-card-account/.
It is practically impossible to manually visit all these sites to generate visual fin-
gerprints, and to keep all the fingerprints up to date. In PhishFencing, we employ
web search engines to crawl a set of logos of legitimate pages for each whitelist

4 In this paper, we use whitelisted sites and legitimate sites interchangeably.

4 Z. Zhou, et al.

entry, with the hypothesis that the top results from the largest commercial search
engine are trustworthy. (2) Encrypted traffic: to the best of our knowledge, all
existing phishing detection mechanisms for HTTPS phishing sites require col-
laboration from the client side, such as installation of browser add-ons, or local
detection mechanisms. However, it is impractical to require and enforce that
all the devices connected to the network to have anti-phishing software/client
installed. Especially, with the growing popularity of BYOD (bring your own de-
vice) programs in the industry, more personal devices are connected to corporate
networks. In PhishFencing, we present the first mechanism to (partially) detect
phishing pages hosted on HTTPS sites without requiring any assistance from
the client computer/browser.

3 Features and Algorithms

In this section, we first introduce features utilized in PhishFencing, and then
describe the core algorithms for image matching and phishing detection.

3.1 Features

We aim to extract features which are easily obtained and difficult to manipulate
by attackers. For example, URLs and content of webpages (HTML codes and re-
sources) are not stable enough and easy to be bypassed by attackers. For URLs,
adversaries may use squatting domain [26] to imitate target sites’ URLs, while
others construct normal but totally irrelevant URLs to overpass detection [2]. In
the case of content of webpages, some adversaries use exactly the same HTML
structures and resources as the target websites, while others carefully manipulate
those content to overpass detection. At the same time, most of legitimate web-
sites, such as Amazon, change texts and pictures on their webpages frequently,
which also makes content features less reliable. Features used in PhishFencing
are listed in Table 1. Next, we will describe each feature in detail.

Table 1: Features used for PhishFencing.
Feature Step # Feature Step

1 domain filtering 5 IP prefix identification
2 form filtering 6 AS number identification
3 logo matching 7 geolocation identification
4 webpage screenshot matching

Domain features. PhishFencing takes the host names of HTTP pages or Server
Name Indication extensions (SNI) of HTTPS sites as the domain feature. We
assume that pages from Alexa top sites are benign. In practice, we crawl the
domain names of Alexa top 3000 sites, and denote them as the list of trusted
websites (not to be confused with the whitelist of legitimate websites). Note that

Tear Off Your Disguise: Phishing Website Detection 5

pages from web hosting service providers, such as https://sites.google.com, are
not all trustworthy, since they have been found to be utilized to host phishing
webpages in the literature [26]. Therefore, we exclude all web hosting services
from the trusted site list. Except for the web hosting services, we can safely as-
sume that adversaries are unable to allocate sub-domains of the highly popular,
heavily monitored, and better managed sites to host phishing pages. Compro-
mised domains, as exceptions to this assumption, are discussed in Section 6.

Form features. Forms, including INPUT and FORM tags, are used to collect
information from the client side. When an HTML file does not contain any form
element, it cannot be used to harvest personal information [28].

Logo features. Logos are used in phishing detection in the literature, such as
PhishZoo [4]. However, it is tedious and labor-intensive to manually discover and
refresh all logo images of whitelisted sites. To overcome this drawback, Phish-
Fencing automatically collects and updates logo images using search engines. In
practice, a query consists of the websites’ name plus the keyword “logo”, e.g.,
“paypal.com logo”, is sent to the search engine. The top n results from picture
search are crawled to enhance the diversity of the result set, since a site may
have multiple versions of logos and they may be presented differently in images.

Webpage screenshot features. Different from PhishZoo [4], PhishFencing
uses the screenshot of an unkown webpage in matching with logos from whitelisted
sites, rather than exhaustively comparing with every image on the webpage, for
two reasons: (1) repetitively invoking the matching algorithm to compare every
image from the unknown page against the fingerprint of every logo is computa-
tionally expensive; and more importantly (2) adversaries may use tricks to avoid
using full/original logo images to avoid detection, e.g., splitting the logo into
small images, or overlay layers of images. However, they still need to preserve
the overall visual presentation of the spoofed page. Hence, we render the full
pages and utilize sub-image matching to compare them with logo fingerprints.
In practice, we use Selenium to capture a 1920 × 1080 screenshot for each un-
known page. Note that the identities (logos) of spoofed sites are always presented
at the top of the page, hence, it is not necessary to capture the entire page.

Host features. We treat all IP prefix features, Autonomous System number (AS
number) features, and geolocation features as host features. Host features are
also widely adopted in phishing webpage detection. Host features are considered
as relatively reliable. It is difficult for attackers to compromise servers hosting
legitimate websites, hence, the host distribution of phishing websites should be
different from that of legitimate websites. Note that PhishFencing passively col-
lects IP addresses of unknown and legitimate sites from the same channel, i.e. an
ISP or a gateway of enterprise network. This ensures the consistency of observed
IP distribution. For a given IP address, PhishFencing collects its AS number and
the server’s geographic location using the MAXMIND database [1]. The IP pre-
fix is extracted to represent the class C network the IP belongs to, for the reason
that prefixes contain IP addresses association information [27]. For a whitelisted
legitimate website, we collect IP address prefixes, AS numbers, latitudes and
longitudes features, to be used to train a model for outlier detection.

6 Z. Zhou, et al.

3.2 Algorithms

In this paper, we employ a graph matching algorithm to decide whether a logo
image is a sub-graph of a screenshot, as well as an classification algorithm to
identify phishing websites.
Graph Matching Algorithm. As the phishing webpage can be self-defined,
attackers can use different scales of logo images to deceive users and to evade
logo detection methods which are not robust enough on image scale variation.
So we applied Scale Invariant Feature Transform (SIFT) algorithm [19] which
can generate scale-invariant keypoint descriptors.

The major steps are briefly explained as follows. The first step is to detect
extrema in the scale-space. To achive this goal, SIFT generates smoothed im-
ages in different scale, defined as L(x, y, σ). Given a 2D image I(x, y), L(x, y, σ)
is computed from the convolution of a variable-scale Gaussian G(x, y, σ) and
I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (1)

where ∗ refers to the convolution operation, x and y are the spatial coordinates
of a plane and:

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (2)

Then through difference-of-Gaussian function, scale-space extrema, which is re-
garded as potential interest points, can be detected. The second step focus on
locating keypoints accurately. From potential interest points extracted in the
first step, SIFT rejects the points which have low contrast and are poorly local-
ized along an edge for stability. Next, based on local image gradient directions,
SIFT assigns one or more orientations to each keypoint location. In the last step,
SIFT set a region around each keypoint’s location where some points sampled
and the gradient magnitude and orientation of these points are computed to
form a 4 ∗ 4 ∗ 8 vector as the keypoint descriptor.

In particular, when using different background colors, such as white or black,
attackers need to invert the color of logo images accordingly for users to rec-
ognize. When color inverted, the keypoints’ positions could still match but the
keypoints orientation and descriptor vector would change, which will reduce our
matching performance. So we use both original image and color inverted image
for matching. To be specific, we firstly convert a BGR image to a GRAY image,
then for all x and y in the image plane, we compute I ′(x, y) = 255− I(x, y). So
for a logo image, we generate two sets of keypoint descriptors for matching. We
will compare the performance of using color inverted images or not in Secction
5.

After keypoint descriptors generated, we applied Fast Library for Approxi-
mate Nearest Neighbors (FLANN) algorithm [24] which will build up index trees
(multiple randomized kd-trees in practice) for screenshots’ keypoints to find the
nearest neighbor in a screenshot for each keypoint in logo image. The nearest
neighbor refers to the keypoint with minimum Euclidean distance from the key-
point descriptor vector. For each keypoint in logo image Plogo, the index tree
is used to locate it’s nearest keypoint in the screenshot Pscreenshot. In order to

Tear Off Your Disguise: Phishing Website Detection 7

evaluate the matchness between Plogo and the corresponding Pscreenshot, we uti-
lize the secondary neighbor keypoint P ′screenshot, to calculate the ratio Rmatching
of distances:

Rmatching =
D(Plogo, Pscreenshot)

D(Plogo, P ′screenshot)
(3)

where D refers to the Euclidean distance.
As the correct matches need to make the nearest neighbor significantly closer

than the secondary neighbor which refers to the closest incorrect match, we can
reject matches with low distance ratio R [19]. Then we calculate the percentage
of keypoints in logo images, which own correct matches Sim, to decide whether
the logo image is the sub-graph of the screenshot. Higher Sim means that more
keypoints are correctly matched and so logo images have higher possibility as
the sub-graph of the screenshot. So when the Sim is higher than a threshold,
we say the match between a logo image and a screenshot is achieved.
Phishing Website Identification Algorithm. To identify phishing websites,
we apply host features of both target websites and suspecious websites to One
Class Support Vector Machine (one-class SVM) [9] to detect outliers, which are
host features of phishing websites. One-class SVM uses only positive data, i.e.
host features from the target website, as input to estimate the support vector
of a high-dimensional distribution. Given a target website, our training vectors
can be constructed as hi = f1,i, . . . , f3,i where i = 1, . . . ,m, m is the number of
webpages, ft,i denotes the tth feature in host features and hi ∈ Rn presents the
host features extracted from the ith webpage. During the training process, we
need to find out ω and b satisfied:

min
ω,b

1

2
||ω||2 +

1

νm

m∑
i=1

εi

s.t. ωThi + b ≥ 1− εi
εi ≥ 0, i = 1, 2, . . . ,m

(4)

where ω and b are used to construct the hyperplane which is the boundary
of positive data. Since our training data can not be linearly separated, kernel
function Radial Basis Function kernel (RBF kernel) is employed to map the data
to a higher dimension feature space, in which data can be linearly separated. For
two samples h,h′, the RBF kernel K(h,h′) can be defined as:

K(h,h′) = exp
(||h− h′||22
−2σ2

)
(5)

Once ω and b are optimized, given a new vector h = f1, . . . , f3, if h satisfied:

ωTh + b < 0 (6)

then we regard this new vector as an outlier, i.e. host features from a phishing
website.

8 Z. Zhou, et al.

4 Design of PhishFencing

4.1 Overview of PhishFencing

As shown in Figure 1, PhishFencing consists of three steps: (1) in the filtering
step, we apply domain features (Alexa top 3000 domains) and form check to
filter out trusted and harmless websites. The remaining pages are called the
unknown webpages. (2) In the matching step, PhishFencing checks whether the
whitelisted legitimate websites’ logo images are sub-graphs of screenshots of un-
known webpages. If a logo image is identified as a sub-graph of the screenshot of
a webpage, we regard the webpage as a suspicious webpage. (3) Finally, Phish-
Fencing applies outlier detection on host features of these suspicious webpages
to identify phishing webpages.

Fig. 1: Model of PhishFencing

4.2 Filtering

In filtering step, PhishFencing attempts to employ simple heuristics to eliminate
websites that are definitely not phishing websites. First, PhishFencing collects
HTTP/HTTPS streams passively. From HTTP packets, host names, HTML
files and URLs can be extracted. Hence, domain features and form check can
be applied directly to filter out trusted websites in two heuristics: (1) Suffix

Tear Off Your Disguise: Phishing Website Detection 9

matching is applied on domain features to identify if the unknown page comes
from a trusted website, as introduced in Section 3.1. (2) The HTML page and all
sub-frames are scanned to identify forms. When a webpage does not contain any
form, it cannot be a phishing page. In practice, these two heuristics eliminate
majority of the unknown pages with very small computation cost. Note that this
step is only introduced to save computation. In an environment where computing
resource is not a concern, we can reduce size of the trusted sites list, just in case
an adversary compromises an Alexa top domain (or its sub-domain) to host
phishing pages. On the other hand, for HTTPS streams, we can neither access
the complete URLs nor the HTML source files since they are all encrypted.
Hence, PhishFencing only applies domain-based filtering on the SNI field, which
indicates the host name of a website, to eliminate trusted websites from going
into future steps.

4.3 Matching

In the matching step, PhishFencing identifies suspicious webpages based on the
similarities between the rendered unknown pages and logo images of whitelisted
websites. HTTP and HTTPS pages are handled differently in this step.

For HTTP pages, PhishFencing renders the unknown webpage fetched from
passive HTTP streams, and then captures a screenshot image of the fully ren-
dered page. Simultaneously, PhishFencing fetches logo images of whitelisted web-
sites as described in Section 3.1, and pass them to SIFT matching.

For HTTPS pages, PhishiFencing could only extract host names from the
packets, not the complete URL or any file name/content, hence, PhishFencing
cannot directly obtain the corresponding webpages. To (partially) solve this
problem, for each host name from the HTTPS streams, PhishFencing searches
it on search engines and crawls all the returned URLs within the domain. For
example, we search “bit.ly” which is extracted from the SNI field of the HTTPS
packet, and we can see URLs such as “https://bit.ly/2kIChZC” shown up in
results. All the returned URLs are actively crawled to obtain the screenshots
of the corresponding webpages5. At the same time, PhishFencing also visits the
host name directly to crawl the default (root) page of the domain, and follows
any link on the page to collect all accessible pages in the domain. All pages
are rendered and screenshots are captured. The rationale of these operations is
that the attackers often post phishing URLs on other websites (such as online
forums) so that they can reach out to a larger audience of potential victims.
Such URLs are likely to be captured by web search engines. Meanwhile, we
also see that many (sub)domains are only created for phishing purposes–once a
confirmed phishing page is found from the domain, especially as the root page
of the domain or accessible from the root page, other pages in the same domain
become highly suspicious.

5 An upper limit of crawled URLs is set just in case the domain is huge, however, it
is rarely reached in our experiments.

10 Z. Zhou, et al.

Next, the SIFT algorithm is invoked to generate keypoint descriptors of both
logo images and screenshots. The keypoint descriptors of each logo image and
screenshot pair are further sent to the FLANN algorithm to determine whether
the logo image matches a sub-graph of the screenshot image. When a screenshot
contains sub-graphs that are similar to a logo image in the whitelist, the corre-
sponding page is then marked as suspicious, which is sent to the next step for
further identification.

4.4 Identification

In the previous step, PhishFencing has discovered suspicious webpages, whose
visual identities carry significant similarity with whitelisted sites. In the identi-
fication step, PhishFencing attempts to finally determine whether a suspicious
page is a phishing page based on the host features, i.e., by comparing the host
distribution of the suspicious page and the whitelisted legitimate pages.

As described in Section 3.1, PhishFencing collects the IP addresses of the
websites which host suspicious webpages, and the IP addresses of the corre-
sponding legitimate websites. We then employ MAXMIND to obtain the AS
numbers and geolocation of these IP addresses. Finally, we utilize one-class

SVM on the host features of both the suspicious websites and their corresponding
legitimate websites to discover outliers. All outliers are then labeled as phishing
webpages, which should be blocked at the firewalls.

5 Experimental Evaluation

In this section, we empirically evaluate PhishFencing and demonstrate its per-
formance. We first describe our dataset. Then we define the evaluation metrics
and present the experiment results.

5.1 Dataset

Logo Fetching Mechanism. we chose domains of Alexa top 1600 sites to
evaluate the effectiveness of our logo fetching mechanism. We deployed Google
Images Download to obtain the first 10 images for each domain from Google.
At the same time we took screenshot of the root page (the landing page when
directly visit a domain) for each domain by Selenium. Since some websites apply
bot detection technologies such as reCaptcha to avoid crawlers, we verified the
correctness of logos manually.

PhishFencing. We use PhishTank as the source of phishing pages. URLs from
PhishTank are manually verified to exclude links that land on irrelevant web-
pages or with 404 errors. To obtain the groundtruth dataset, we visited verified
PhishTank URLs from computers inside our institutional network. We captured
the traffic using tcpdump at the gateway, and used them as positive (phishing)

Tear Off Your Disguise: Phishing Website Detection 11

samples. Similarly, we visited the corresponding legitimate websites to generate
negative (non-phishing) samples. For each legitimate site, we intended to visit
multiple webpages in different content, HTML structures, languages, and back-
ground colors to increase the diversity of the negative samples, and to accumulate
IP address features of the legitimate sites.

The groundtruth dataset has been collected for 7 days continuously with
77,539 phishing URLs verified by PhishTank, among which 13,902 were la-
belled with target brands. We followed SquatPhish [26] to select 8 most fre-
quently targeted brands, which cover 68.98% of the phishing webpages in our
groundtruth dataset. They are paypal, microsoft, facebook, google, amazon, apple,
dropbox, and yahoo. Since PhishFencing uses an autonomous mechanism to col-
lect groundtruth data, it could easily scale up to handle thousands of whitelisted
sites. After manually verified these phishing webpages based on the method men-
tioned in [26], only 772 URLs remained as valid phishing URLs (majority of the
phishing websites went offline after a very short lifespan), in which 48.7% are
hosted on HTTP and 51.3% are hosted on HTTPS.

For each brand, we chose its primary website(s) from Alexa as our target
website(s). For brands like Amazon, multiple target site have been identified,
such as amazon.com, amazon.cn, amazon.jp, etc. Note that in our paper, if
two host names have the same second-level domain (SLD) and the same top-
level domain (TLD), they are considered to belong to the same site. For ex-
ample, “scholar.google.com” and “www.google.com” belong to the same website
“google.com” according to our definition. For each target website, PhishFencing
crawled the top 10 logo images using Selenium with chromedriver, and elimi-
nated duplicate logos (logos with similar SIFT features), to generate the set of
logo images. Meanwhile, for all the target websites, 461 different IP addresses
were extracted by PhishFencing to build host features.

5.2 Evaluation Metrics

The overall performance is measured in terms of precision (Poverall) and recall
(Roverall) where

Poverall =
|{phising webpages} ∩ {identified webpages}|

|{identified webpages}|
, (7)

Roverall =
|{phising webpages} ∩ {identified webpages}|

|{phishing webpages}|
. (8)

We also employed the F1-score to combine both precision and recall to evaluate
the overall effectiveness of different approaches. The F1-score is defined as:

F1 =
2× Poverall ×Roverall
Poverall +Roverall

(9)

At the same time, since PhishFencing consists of three primary steps, we
also want to evaluate each steps separately to see their best performance. In

12 Z. Zhou, et al.

the filtering step, we can simply adjust the list of trusted websites to ensure all
potential phishing webpages are passed to the following steps. In the matching
step, we first evaluate the reliability of our automatic logo fetching mechanism,
we define the accurate rate (Alogo) on logo retrieving as:

Alogo =
|{websites with logo correctly fetched}|

|{websites}|
. (10)

As for PhishFencing’s matching performance, we define matching precision
(Pmatching) and matching recall (Rmatching) to describe the performance of sub-
graph matching.

Pmatching =
|{webpages with certain logo} ∩ {matched webpages}|

|{matched webpages}|
, (11)

Rmatching =
|{webpages with certain logo} ∩ {matched webpages}|

|{webpages with certain logo}|
. (12)

Last, we evaluate the performance of the identification step with samples
that are correctly matched. We define identification precision as Pidentify and
identification recall as Ridentify in a very similar way as Equations 7 and 8.

5.3 Performance Evaluation

In this section, we first present the reliability of our logo fetching mechanism.
Then we evaluate PhishFencing’s performance on groundtruth dataset.

Effectiveness of Logo Retrieval. We evaluated the performance of our auto-
matic logo fetching mechanism through manual verification: (1) we utilized the
logo fetching mechanism to retrieve the logo images of Alexa’s top 1600 websites;
(2) we also downloaded the screenshots of each domain’s landing page; (3) for
each of the top 1600 sites, we manually verified if the fetched logo appears in
the landing page. For domains which we were unable to retrieve the right logo
images, we further examine the errors and categorized them, as shown in Figure
3.

As shown in Figure 3, for 4.43% of the websites, the fetched logos do not
appear on the domains’ landing pages, while the landing pages appear to be
legitimate (Error type #1). Meanwhile, we were unable to download legitimate
landing pages for some domains: (Error type #2) the landing pages are not
reachable due to DNS error, 404 page not found error, or connection time-out.
(Error type #3) Landing pages of some domains behave maliciously such as
browser hijacking. (Error type #4) Some domains instantly redirect the browser
to other domains, hence, the original domains do not host any service. (Error
type #5) Some domains were shut down while sale or notification pages were
reached. (Error type #6) There are also domains used for ad serving, which work
as connectors between website owners and advertisers. And (Error type #7) some

Tear Off Your Disguise: Phishing Website Detection 13

Error type Error rate

1 Logo mismatch 4.43%

2 Domain unreachable 3.56%

3 Browser hijacker 2.75%

4 Redirect 2.75%

5 Shut down 1.06%

6 Ad serving 0.44%

7 No logo 0.25%

Fig. 3: Causes and frequency of
failed/wrong logo image retrieval.

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

5
0

1
5

0

2
5

0

3
5

0

4
5

0

5
5

0

6
5

0

7
5

0

8
5

0

9
5

0

1
0

5
0

1
1

5
0

1
2

5
0

1
3

5
0

1
4

5
0

1
5

5
0

A
cc

u
ra

cy

Website Number

Fig. 4: Accuracy of logo fetching on
Alexa’s top k websites.

websites do not have any logo. Domains that generate errors #2 to #6 do not
provide web services, hence, we eliminated them in our further evaluations.

After we eliminated the domains mentioned above (error types #2 to #6),
we calculated the accuracy of our logo fetching mechanism for Alexa’s top k
sites. As shown in Figure 4, PhishFencing correctly fetched the logo images of at
least 95% of the top 1600 sites. PhishFencing performs better on websites that
rank higher, for example, logo fetching accuracy reaches 98% for top 650 sites.

PhishFencing Evaluation. To present the performance of PhishFencing in
matching step, we compared our mechanism with SIFT and SURF which were
employed in PhishZoo [4] as shown in Figure 4(a). F1-scores with SIFT were
much higher than those with SURF. And with our improved algorithm, we can
slightly outperform the recall and precision of original SIFT. To be more specific,
we calculated both precision (Pmatching) and recall (Rmatching) rate of Phish-
Fencing as shown in Figure 4(b). We can see that when Sim = 0.09, we can
obtain 99.27% precision and 97.90% recall in the matching step. Note that we
used names of websites to fetch logo images which is more reliable than us-
ing brand names. For example, logo images of “amazon.cn” and “amazon.com
are different. If we simply use “amazon logo” to fetch logo images, the logo of
“amazon.cn” would not shown up in the top results.

In the identification step, PhishFencing achieved 97.8% (Pidentify) precision
and 100% recall (Ridentify) on 8 target brands on average using host features
from webpages which had been successfully matched. Note that legitimate IP
addresses were collected in nearly 2-3 hours for each target website. In Figure
6, we list the number of IP addresses collected on each of the 8 target brands.
The number of IP addresses are not necessarily massive which suggest that our
mechanism is not depending on large amount of prior data and can be used on
client side as well.

As for the overall performance, we compared PhishFencing with the Squat-
Phish approach [26], which is the state of art solution for identifying phish-
ing webpages with specific target brand. We applied SquatPhish which is open
sourced on github on our groundtruth dataset. As shown in Figure 7, we first

14 Z. Zhou, et al.

(a) (b)

Fig. 4: Matching performance: (a) F1 -score comparison of SIFT, SURF and the
matching mechanism in PhishFencing approach on groudtruth data. (b) Preci-
sion and Recall rate with different similarity threshold selected using PhishFenc-
ing on groundtruth data.

target website # of IP addresses

amazon.com 138

apple.com 98

microsoft.com 67

google.com 51

yahoo.com 50

dropbox.com 42

paypal.com 8

facebook.com 7

Fig. 6: Number of legitimate IP ad-
dresses collected for each target web-
site in groundtruth data

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

precision recall precision recall

HTTP HTTPS

Ra
te

PhishFencing on Gateway PhishFencing on Client-side

SquatPhish on Gateway SquatPhish on Client-side

Fig. 7: Overall performance compari-
son of SquatPhish on HTTP, Phish-
Fencing on HTTP and PhishFenc-
ing on HTTPS tested on groundtruth
data.

compare the performance of both approaches installed on the gateway to capture
HTTP streams. PhishFencing reaches 97.8% precision and 97.7% recall which
are both higher than SquatPhish. Then we evaluate the performance of Phish-
Fencing on HTTPS streams. Since SquatPhish utilizes webpage’s screenshot and
HTML source code which cannot be obtained from encrypted packets, Squat-
Phish cannot handle HTTPS streams when it is deployed at the gateway. The
results show that PhishFencing achieved 26.32% recall on HTTPS-hosted phish-
ing websites, when it is deployed at the gateway and only relies on two side
channels to infer if the host domain is suspicious. Although there is still room
to improve the recall, PhishFencing is the first solution of its kind to partially
detect HTTPS-hosted phishing at the gateway.

Last, we also like to note that PhishFencing performs well on small size of host
features. Therefore, it can be deployed on the client side, which only has limited
data for the host features of the legitimate sites. In the experiments, Phish-
Fencing’s performance on HTTP streams remains high when it is deployed at

Tear Off Your Disguise: Phishing Website Detection 15

the client side. Meanwhile, the recall rate on HTTPS-hosted phishing increased
dramatically since we are now able to obtain the full URLs from HTTPS packets.

6 Discussions

PhishFencing is effective in phishing detection in the experiments, however, we
still recognize its limitations and opportunities for future improvements.

First, as we have explained in Section 4.3, PhishFencing could only obtain
the domain name, not the full URL, from HTTPS streams. Therefore, we rely
on two side channels to find (other) pages hosted in this domain. This method
appears to be effective on a portion of the HTTPS-hosted phishing websites.
However, when no phishing pages are detected through the two side channels,
PhishFencing is unable to discover any “hidden” phishing page. While the prob-
lem of detecting HTTPS-hosted phishing without the support from the client
side is very challenging, we believe there is still space to improve.

We have applied suffix matching on domains of websites to filter out trusted
websites, with the assumption that pages hosted on trusted sites (excluding any
web-hosting service providers) are trustworthy. However, this assumption may
be violated, especially when the adversary compromises a trusted site to host
phishing webpages. In response, PhishFencing could cache the visits to trusted
domains, and use the non-utilized server cycles to evaluate the (sampled) cached
pages. When phishing is identified, ex post facto repairing mechanism is invoked,
while the corresponding site would be removed from the trusted site list.

For HTTPS-hosted unknown pages, PhishFencing relies on correct host names
in SNI fields. However, domain fronting, a versatile censorship circumvention
technique, can be employed to show one domain in SNI field while using another
domain in the HTTP host field [14]. In this way, attackers can replace the host
name in the SNI field with a legitimate host name to evade our detection.

Some logo images may be shown on irrelevant websites. For example, the Visa
logo may be shown on retailers’ homepages to show that visa cards are accepted,
or on a check-out/payment pages. In the first case, the pages are highly likely to
be eliminated from phish detection since they usually do not contain any form.
In the second case, a legitimate HTTPS-hosted payment page is unlikely to be
misclassified, since the page itself is not accessible to PhishFencing, while the
domain is likely to be benign. However, HTTP-hosted pages carrying Visa logos
and containing forms (e.g., a retailer’s homepage with a input box for search)
may be misclassified as phishing. Fortunately, such cases are very rare in our
experiments and they can be fixed by adding those sites to the trusted list.

Last, PhishFencing evaluates the visual identities of webpages by comparing
the logos of whitelisted sites and the phishing webpages. In the very rare case
where a whitelisted site do not have a logo or the logo image is not shown on the
phishing webpages, PhishFencing’s recall would be impacted. However, in our
groundtruth dataset, all the sites in the whitelist have logo images and there are
only 2.19% known phishing webpages that do not have any logo on them.

16 Z. Zhou, et al.

7 Related Works

Phishing website detection mechanisms can be roughly categorized into target-
independent and target-dependent approaches. Target-independent approaches
extract common features from all the phishing websites to train a model for
phishing websites identification [21, 23]. Target-dependent approaches, which
PhishFencing belongs to, identify phishing websites mainly through comparing
the similarity between target websites and on-identifying websites [28,31].

For target-independent approaches, the most commonly used features are
URL features (i.e. structures and lengths of an URL) [5, 15, 18], webpage fea-
tures (i.e. links, keywords, and HTML DOM extracted from a webpage) [20]
and host features (i.e. IP addresses, AS numbers and geolocation of a website’s
hosts). Mechanisms in [8,11,22,25,27,30] combine large amount of features men-
tioned above and employ different machine learning algorithms to detect phish-
ing websites. Apart from these machine learning methods, [10, 13, 29] make use
of websites’ identities as well as search engines. They try to figure out identities
of a website at first. For example, [29] uses Term Frequency Inverse Document
Frequency (TF-IDF) to extract terms with highest weight as a website’s identi-
ties. [13] applies Optical Character Recognition (OCR) on a webpage’s screen-
shot and regards the text generated by OCR as the webpage’s identity. [10]
uploads segmented screenshot of a webpage to Google Image Search engine and
regards the keywords returned as the webpage’s identities. Then they query
the identities of a website through search engine. If the domain name of the
on-identifying website does not match any of N top search result, they would
classify the website as a phishing one. However, target-independent approaches
use generic characteristics which can be constructed by attackers to evade the
detection systems.

For target-dependent methods, visual features such as screenshot and logo
image are most commonly used. Meerkat [6] trains deep learning models to
detect phishing webpages hosted on compromised websites via visual elements
in webpages. Apart from visual elements on the webpages, [26] applies OCR on
URLs to detect squatting phishing domains. Besides visual features, [7] compares
the layout and HTML text between target webpage and on-identifying webpage.
[4, 12] combines HTML features and visual features for identifying.

PhishFencing is different from existing approaches that: (1) PhishFencing
chooses visual and network features which are representative and difficult to
be manipulated compared to the target-independent methods. (2) PhishFencing
utilizes search engines to autonomously collect/refresh logo images and visual
features of HTTPS websites. Existing target-dependent approaches either iden-
tify logo manually or segmented the screenshot to locate logo which is less reliable
than the approach in our mechanism. (3) PhishFetching can deal with phishing
websites hosted on HTTPS which, to the best of our knowledge, has not been
mentioned by other works.

Tear Off Your Disguise: Phishing Website Detection 17

8 Conclusion

In this paper, we present a phishing website identification approach named
PhishFencing. The core idea is to detect if an unknown webpage carries the
visual identity (logo) of a whitelisted legitimate site, while its host features devi-
ate from the distribution of the known hosts of the legitimate site. PhishFencing
consists three major steps: filtering, matching, and identification. As a network-
based solution, PhishFencing will be deployed at the gateways of enterprise net-
works or at the ISPs’ network backbones, to block phishing pages from being
transmitted to end users. In the experiments, we demonstrate that PhishFencing
outperforms state-of-art phishing detection solutions in the literature.

Acknowledgements

Zhaoyu Zhou, Lingjing Yu, Qingyun Liu, and Yang Liu were supported in part by
Y8YY041101 and Y9W0013401. The authors also like to thank the anonymous
reviewers for their constructive suggestions.

References

1. Maxmind. https://www.maxmind.com/en/geoip2-databases
2. Phishtank. https://www.phishtank.com/index.php
3. Phishing activity trends report. Tech. Rep. 2nd Quarter, APWG (2018)
4. Afroz, S., Greenstadt, R.: Phishzoo: Detecting phishing websites by looking at

them. In: IEEE ICSC. pp. 368–375 (2011)
5. Blum, A., Wardman, B., Solorio, T., Warner, G.: Lexical feature based phishing

url detection using online learning. In: ACM AISec Workshop. pp. 54–60 (2010)
6. Borgolte, K., Kruegel, C., Vigna, G.: Meerkat: Detecting website defacements

through image-based object recognition. In: USENIX Security. pp. 595–610 (2015)
7. Britt, J., Wardman, B., Sprague, A., Warner, G.: Clustering potential phishing

websites using deepmd5. In: USENIX LEET (2012)
8. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-

scale detection of malicious web pages. In: WWW Conference. pp. 197–206 (2011)
9. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM TIST

2(3), 27 (2011)
10. Chang, E.H., Chiew, K.L., Tiong, W.K., et al.: Phishing detection via identification

of website identity. In: IEEE ICITCS. pp. 1–4 (2013)
11. Choi, H., Zhu, B.B., Lee, H.: Detecting malicious web links and identifying their

attack types. WebApps 11(11), 218 (2011)
12. Corona, I., Biggio, B., Contini, M., Piras, L., Corda, R., Mereu, M., Mureddu,

G., Ariu, D., Roli, F.: Deltaphish: Detecting phishing webpages in compromised
websites. In: ESORICS. pp. 370–388 (2017)

13. Dunlop, M., Groat, S., Shelly, D.: Goldphish: Using images for content-based phish-
ing analysis. In: IEEE ICIMP. pp. 123–128 (2010)

14. Fifield, D., Lan, C., Hynes, R., Wegmann, P., Paxson, V.: Blocking-resistant com-
munication through domain fronting. PETS 2015(2), 46–64 (2015)

18 Z. Zhou, et al.

15. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: ACM workshop on Recurring malcode (2007)

16. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
munications of the ACM 50(10), 94–100 (2007)

17. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. IEEE
Communications Surveys & Tutorials 15(4), 2091–2121 (2013)

18. Le, A., Markopoulou, A., Faloutsos, M.: Phishdef: Url names say it all. In: INFO-
COM. pp. 191–195 (2011)

19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision 60(2), 91–110 (2004)

20. Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness of techniques
to detect phishing sites. In: DIMVA. pp. 20–39 (2007)

21. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious urls. In: ACM KDD. pp. 1245–1254 (2009)

22. Marchal, S., Armano, G., Gröndahl, T., Saari, K., Singh, N., Asokan, N.: Off-the-
hook: An efficient and usable client-side phishing prevention application. IEEE
Trans. on Computers 66(10), 1717–1733 (2017)

23. Marchal, S., François, J., State, R., Engel, T.: Phishstorm: Detecting phishing
with streaming analytics. IEEE Transactions on Network and Service Management
11(4), 458–471 (2014)

24. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP (1) 2(331-340), 2 (2009)

25. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and evaluation of a
real-time url spam filtering service. In: IEEE S&P. pp. 447–462 (2011)

26. Tian, K., Jan, S.T., Hu, H., Yao, D., Wang, G.: Needle in a haystack: tracking
down elite phishing domains in the wild. In: ACM IMC. pp. 429–442 (2018)

27. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages (2010)

28. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: Cantina+: A feature-rich machine
learning framework for detecting phishing web sites. ACM TISSEC 14(2) (2011)

29. Xiang, G., Hong, J.I.: A hybrid phish detection approach by identity discovery and
keywords retrieval. In: WWW Conference. pp. 571–580 (2009)

30. Zhang, W., Jiang, Q., Chen, L., Li, C.: Two-stage elm for phishing web pages
detection using hybrid features. World Wide Web 20(4), 797–813 (2017)

31. Zhang, Y., Hong, J.I., Cranor, L.F.: Cantina: a content-based approach to detecting
phishing web sites. In: WWW Conference. pp. 639–648 (2007)

