
mTor: A Multipath Tor Routing Beyond Bandwidth
Throttling

Lei Yang and Fengjun Li
The University of Kansas, Lawrence, Kansas, US, 66045

Email: {lei.yang, fli}@ku.edu

Abstract—One of the main obstacles that impede further
expansion of Tor, the most popular anonymous communication
system, is its large performance variance. The problem becomes
worse when bandwidth-intensive applications, such as video
streaming, contend with latency-sensitive applications, such as
web browsing, for the scarce resources. Most of the existing
solutions involve circuit-scheduling techniques to prioritize in-
teractive traffic over bulk traffic or to completely throttle traffic
of bandwidth-intensive applications. However, these approaches
not only rely on accurate detection of traffic types but also
adopt detection strategies that are easy to game. In this paper,
we propose a different approach by exploring new capabilities
of Tor to support bulk data transfers without degrading the
performance of interactive traffic. Based on our observations
that a large portion of low-bandwidth relays are under-utilized,
we develop a multi-path Tor (mTor) routing algorithm to cater
to bandwidth-intensive applications by constructing multiple
circuits across low-bandwidth Tor relays. We present a self-
adaptive “pulling” scheduling technique to dynamically allocate
cells across multiple circuits, and an active congestion detection
scheme to prevent slow circuits from becoming a bottleneck of the
entire tunnel. Based on the results from experiments on the live
Tor network and simulations over the Shadow simulator [1], we
conclude that mTor not only achieves a desirable performance
for bandwidth-intensive applications by utilizing multiple low-
bandwidth relays, but also benefits latency-sensitive applications
by reducing the load on high-bandwidth relays.

I. INTRODUCTION

Tor [2], also known as The Second-Generation Onion
Router, is the most popular and widely deployed tool for
anonymous communications over the Internet today. It pro-
vides services to millions of users on a daily basis [3]. Tor
was initially designed to provide anonymity service with low
latency and reasonable throughput for interactive applications
such as web browsing, instant message and SSH. However, Tor
users often experience performance with large variance, which
becomes a big obstacle to impede Tor’s further expansion.

Many causes lead to Tor’s performance variance. Two
main reasons that slow down Tor are: (1) the path selec-
tion schemes designed for balancing traffic over the entire
Tor network [4], [5], and (2) bulk traffic contending for
bandwidth with interactive users [6]–[8]. The current path
selection scheme excludes slowest relays while selecting from
the remaining relays in proportion to their weighted bandwidth
(i.e., consensus weight). In other words, a router with higher
weighted bandwidth is more likely to be selected. The pref-
erence on high-bandwidth relays in the current path selection
scheme makes some routers persist in being under-utilized or

congested [5]. On the other hand, bulk traffic also significantly
affects the performance under the current Tor architecture.
McCoy et al. found that 40% of network capacity is consumed
by only a small fraction of BitTorrent users (3.5% of all
connections) [6]. To achieve a good performance, most of
BitTorrent traffic go through the scarce high-bandwidth relays,
which increases the congestion and degrades the performance
of interactive users.

To solve Tor’s performance problems for interactive traffic,
the existing work follows three thrusts. The first attempt is
to increase the overall network capacity. [9]–[12] proposed
various incentive schemes to attract more people in contribut-
ing more Tor relays. The increased overall bandwidth benefits
both interactive and bulk data clients. However, we argue
that without an effective allocation mechanism, the newly
introduced resources may attract more bulk traffic requests that
consume bandwidth more aggressively than interactive traffic
and thus make the situation worse. Along the second direction
are the schemes aiming at optimizing path selection based on
relays’ geographic locations [13] or performance history [4],
[5]. A better performance is achieved for interactive users by
avoiding instinctively slow relay and/or transiently congested
relays being selected in the anonymity route. However, while
optimizing the performance of individual circuits, these ap-
proaches reduce the global utility of the anonymity network by
imposing too many restrains that excludes the capacity of low-
bandwidth relays despite very limited. A different attempt in
improving the performance of interactive traffic is to prioritize
it over bulk traffic [7] or completely throttle bulk traffic [8].
However, one problem with these schemes is that the metrics
used to detect bulk traffic are simple to game [14]. Besides,
the throttling techniques enforce strict restrictions to block bulk
traffic resulting in reduced overall network utilization.

Moreover, we argue that simply blocking bandwidth-
intensive applications (e.g., video chat and video streaming)
over Tor is not a good solution due to their increasing popular-
ity. Cisco forecasts that the portion of video traffic will increase
from 48% of total traffic in 2012 to 67% in 2017 [15]. In the
mean time, the traffic from web, email, and data applications
is expected to decrease from 23% to 18% [16]. On the other
hand, the demand for anonymity services is continuously
increasing in response to the increased network monitoring
and censorship. For instance, several video chat applications
(e.g., Gajim and Riseup Chat) recommend users with strong
anonymity needs to use their service over Tor. It is reasonable
to conjecture that the increasing demand for privacy protection
among Internet users will generate a large number of bulk data

2015 IEEE Conference on Communications and Network Security (CNS)

978-1-4673-7876-5/15/$31.00 ©2015 IEEE 479

requests to the Tor network. Therefore, supporting bandwidth-
intensive applications on existing anonymous communication
platforms is of great necessity.

In this work, we propose a multipath Tor (mTor) rout-
ing scheme for bandwidth-intensive applications by utilizing
low-bandwidth relays, without degrading the performance of
latency-sensitive applications. In particular, mTor selects relays
from a set of low-bandwidth routers, which are under-utilized
or completely excluded by the current path selection algo-
rithms, to construct multiple circuits and form an anonymous
tunnel for bulk data transfer. mTor adopts a self-adaptive
“pulling” scheduling technique to dynamically allocate cells
across multiple circuits, and an active congestion detection
scheme to prevent slow circuits from becoming a bottleneck
of the entire tunnel. We conduct experiments on live Tor and
find that by increasing the number of circuits in a tunnel,
mTor can always achieve a desirable performance for bulk data
transfer. Our simulation results on the Shadow simulator show
that mTor significantly reduces the load on high-bandwidth
relays and potentially benefits interactive streams.

To this end, this paper makes the following contributions:
(1) We investigate the significant performance variance of dif-
ferent types of relays and the low utilization of low-bandwidth
relays caused by the current path selection algorithm and
explore the reasons that motivate us to design a multipath
Tor. (2) We elaborate the detailed designs of mTor that utilizes
low-bandwidth relays and dynamically distributes traffic across
multiple circuits. (3) We evaluate the performance of mTor on
both live Tor platform and the Shadow simulator. And (4) We
analyze the security of mTor against traffic correlation attacks
and theoretically measure the anonymity it provides.

II. BACKGROUND

Tor and Tor path selection. The Tor network is an overlay
network contributed by volunteers running Onion Routers
(ORs). An OR’s parameters, such as bandwidth and exit policy,
are configured by its operator, and sent to a set of centralized
servers known as directory authorities. These authorities also
actively measure the real capacity of ORs, negotiate the
network status and publish a consensus about all ORs. Onion
proxy (OP) running at the clients will download the consensus
file, and select ORs in proportion to their weighted bandwidth
to establish a circuit through them. OP encrypts the application
data in layers, packs them to 512-byte cells and sends data cells
through the circuit. Each relay along the circuit decrypts its
layer and forwards the cell to the next relay until it reaches the
last relay (known as “exit”), which further forwards the data
to the original destination. Each hop only knows who has sent
the data (predecessor) and to whom it is relaying (successor)
due to layered encryption. OP typically selects the first-hop
router from a set of “entry guards” [17] to defend against the
predecessor attack [18].

Flow control. Tor uses a two-layer window-based end-to-
end flow control scheme to guarantee a steady flow between
the client and the exit. Since multiple streams multiplex a
circuit, the outer layer is circuit-level control which restricts
the number of cells that can be transmitted on a circuit for
all streams. The inner layer is a stream-level control applied

to individual streams. At two edges of a circuit, OP and exit
control the speed of data cells entering and leaving the circuit
by keeping track of circuit and stream windows. By default, a
circuit window starts with 1000 cells and a stream window
is initialized to 500 cells. When a data cell is sent, both
windows will be decreased by one. When a stream window is
decreased to zero, the sender stops sending from this stream.
When a circuit window reaches zero, the sender stops sending
from all streams on this circuit. Windows are increased when
the corresponding acknowledgment cell known as SENDME
is received. For every 100 cells received on a circuit, the
receiver sends a circuit SENDME to inform the sender to
forward another 100 cells from this circuit. For every 50 cells
received from a stream in this circuit, the receiver sends a
stream SENDME to request another 50 cells from this stream.

III. WHY TOR IS POSSIBLE FOR BULK APPLICATIONS

As an overlay network, bandwidth is a scarce resource for
Tor users. If all bandwidth had been fully utilized, there is no
doubt that support to bulk data applications will hurt all current
users. So, in this section the first question that we will explore
is the current utilization of Tor relays. Then, if some routers
are under-utilized, we will examine what quality of services
they can provide. Finally, we will discuss the observations that
motivate us to design mTor.

A. Low Utilization of Low-BW Relays

Since there is no publicly available data about relay uti-
lization, to answer the first question, we implemented a path
selection simulator which constructs a huge volume of circuits
using the default Tor path selection scheme according to a
given network consensus. A relay is considered as an idle
relay if it is not used by any circuit. These idle relays can be
potentially utilized to serve bulk traffic. To avoid introducing
extra burden to the Tor network, each circuit construction
terminates once the three hops are selected without further
key exchange and TLS connection establishment.

The goal is to explore how the number of concurrently
constructed circuits affects the number of idle relays. Since
the statistics for the number of users per hour on the live
Tor are considered too detailed and might put users at risk,
Tor Project publishes only aggregated statistics for a 24-hour
period. We get the daily statistics between 2011 and 2015
from [3], the number of daily visits changes from 0.49M to
5.92M with a mean of 1.8M and a median of 0.99M. The
recent daily statistics in 2015 are around 2.2M, which leads
to an estimated average client visit of 92K per hour, so we
compare the results of constructing 50K, 100K, 150K and
200K concurrent circuits.

Results. Figure 1 shows the relation between the number
of established circuits and the number of idle relays. It is
obvious that the more clients using Tor at the same time,
the fewer relays remaining idle. But we can also see that
even if 200K clients are simultaneously building circuits,
25.6% of relays are still unused, indicating that many relays
with available bandwidth are less utilized by the current path
selection scheme.

2015 IEEE Conference on Communications and Network Security (CNS)

480

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
of

id
le

re
la

ys

40.8% 32.4% 28.7% 25.6%

50000 100000 150000 200000
0

2,000

4,000

6,000

8,000

Number of constructed concurrent circuits

N
um

be
r

of
re

la
ys

Idle relays Used relays

Fig. 1: The number of idle relays changes with the number of
constructed circuits.

We further explore the characteristic of relays that con-
stitute the set of idle relays. When 200K circuits are con-
structed, 1,811 relays with bandwidth varying from 1KiB/s
to 7,400KiB/s are idle. Among them, the bandwidth of 1,769
relays (97.7%) is less than 100 KiB/s. Tor assigns “Fast” flag
to relays with bandwidth either in the top 7/8th active routers
or at least 100KiB/s. By default, OP only selects fast relays
to construct circuits. In this work, we define low-bandwidth
relays as the relays with less than 100KiB/s. There are totally
2,740 relays with bandwidth of less than 100 KiB/s in our
given consensus, while almost 64.6% of them are idle. From
this experiment, we answer the first question: there are a large
number of under-utilized relays in Tor and the bandwidth of
these relays are highly likely less than 100KiB/s each.

B. Large Performance Deviation

In this section, we will explore the service quality that
these low-bandwidth relays can provide by performing an
experiment to measure their performance. We customize a
Tor client and deploy an exit relay (namely “KUITTC”)
running Tor v0.2.5.6-alpha in the campus network of KU. The
customized client disables the default circuit establishment,
and instead constructs two-hop circuits exiting at our KUITTC
exit node. The first hop of a circuit is the relay that we want
to measure, which is all active relays in the Tor network.
The measurements are carried out by downloading a 1MB
file through the tested circuits from an HTTP server, which is
also located in the campus network. The client is implemented
in Python and constructs circuits using Stem [19]. Since
client, KUITTC and HTTP server all run on machines with
very powerful CPUs and 10Gbps to the Internet, the only
possible bottleneck in the experiment is the tested first-hop
relays. Therefore, we consider the circuit performance as the
performance of the tested relays. We measure all relays in the
Tor network three times from December 23, 2014 to January
5, 2015 to calculate the average. The download timeout is set
to 60 seconds to avoid long waiting.

Results. 6,053 out of 7,069 measured relays successfully
finish the downloading task within 60 seconds. The remaining
relays fail due to various reasons, including circuit construction
failure, relay failure during downloading or download timeout.
For the successful downloads, the average download time is

10 20 30 40
0

0.2

0.4

0.6

0.8

1

Download time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

Idle relays

Used relays

(a) Used relays v.s.
Idle relays

10 20 30 40
0

0.2

0.4

0.6

0.8

1

Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

Used relays>100KiB/s

Used relays≤100KiB/s

(b) fast relays v.s. slow re-
lays in used relays

Fig. 2: Performance comparison of used relays and idle relays:
download time measured in downloading 1MB files.

8.11 seconds with a standard deviation of 9.69 seconds and a
median of 4.06 seconds. The significant standard deviation and
the large difference between mean and median indicate that the
capacity of relays deviates dramatically from each other.

We further compare the performance of idle relays and
used relays identified in the last experiment. From Figure 2a
we can see that the performance of idle relays is much worse
than that of used relays. Because 97.7% of idle relays are
low-bandwidth relays, it is consistent with the expectation
of the current Tor path selection scheme that aims to avoid
slow routers. However, the current path selection does not
completely exclude slow routers, the clients still have some
chance to select them. Figure 2b compares the performance of
fast relays (≥ 100 KiB/s bandwidth) and slow relays (<100
KiB/s bandwidth) in the set of used relays. It is obvious that
relays with less than 100KiB/s are much slower. Although they
are selected in the experiment, the clients selecting them will
have very poor user experience. This experiment answers the
second question: the service quality of these low-bandwidth
relays are very low, so interactive users should avoid them.

C. Discussion.

Based on the above experiment results, it seems that the
current path selection algorithm is confronting a paradox:
poor performance – selecting low-bandwidth relays indicates a
higher chance to experience poor performance vs. low utiliza-
tion – avoiding them means that many bandwidth resources are
under-utilized. No existing solution including path selection
optimization and limiting bulk traffic discussed previously can
solve the paradox. However, the fact that under the current Tor
design a large number of low-bandwidth relays are indeed idle,
but they should not be used by interactive users for the purpose
of performance shows potential to support bulk applications.
If we can make use of these low-quality resources to transfer
bulk traffic, the relay utilization will be increased and the traffic
on high-bandwidth relays will be reduced, so that interactive
users will also benefit from it.

IV. MULTI-PATH TOR DESIGN

In this work, we propose a multi-path routing scheme,
namely mTor, to solve the performance paradox caused by
bulk traffic. As illustrated in Figure 3, mTor constructs an
anonymous tunnel consisting of m circuits where m is a client-
specific parameter. Different from the throttling schemes,

2015 IEEE Conference on Communications and Network Security (CNS)

481

mTor supports bulk traffic by distributing it to multiple low-
bandwidth relays. This mitigates potential congestion on high-
bandwidth relays and thus addresses the low utilization aspect
of the paradox. On the other hand, while the capacity of each
circuit is limited and dynamic over time, the proposed mTor
scheme can adaptively distribute bulk traffic onto circuits in
proportion to their dynamic capacities and thus achieve an
acceptable overall performance. mTor is transparent to regular
Tor relays employed in the first two hops. However, small
modifications are needed at the edge components, i.e., exit
relays and OPs of the clients with bulk traffic transfer needs,
for associating multiple circuits to a client stream, adding
sequence number to data cell, reordering out-of-sequence cells
and scheduling cells across multiple circuits. Next, we elabo-
rate the process of tunnel construction and data transmission.

A. Tunnel Construction

Relay selection. As shown in Figure 3, a mTor tunnel consists
of m circuits across different relays. To implement this design,
small modifications are made to the current path selection
scheme of Tor, mainly in the selection of middle relays.
In particular, mTor employs middle relays from a set of
low-bandwidth relays (e.g., relays with less than 100KiB/s
bandwidth) to avoid bulk data applications scrambling with
interactive applications for the scarce fast routers. For entry
and exit nodes, mTor follows the current scheme to select
routers in proportion to their weighted bandwidth. Circuits in
a tunnel recruit different entry relays but share a same exit
on which packets of bulk traffic applications are reassembled
before reaching the destination. Note that employing multiple
entry relays may increase the chance that a selected entry is
controlled by an attacker and thus affect the anonymity pro-
vided by the system. Details will be discussed in Section VI.

Tunnel initialization and management. Atop circuit manage-
ment of Tor, mTor introduces additional tunnel management to
initiate and group multiple circuits into a tunnel for bulk traffic
transmission. After relay selection, the client OP constructs a
first circuit and sends a relay multipath cell to the selected
exit relay to request a multipath connection. In response, the
exit relay generates a unique 32-bit tunnel identifier (TID)
and incorporates it in the replied relay multipath ack. To join
the tunnel, OP sends a relay join cell, which contains TID,
through each established circuit so that the exit can link all
circuits with the same TID together to form a multipath tunnel.
The exit acknowledges a successful joining by sending back a
relay joined cell. Once the OP receives m− 1 acknowledge-
ments, a multipath tunnel is successfully constructed. Note that
all the cells are layered encrypted so only OP and the exit at
two ends see TID. This prevents the entry and middle nodes
from linking TID with a specific client.

mTor manages multipath tunnels dynamically according to
the congestion status of member circuits over time. If OP
detects that the transmission on a member circuit becomes very
slow, it will construct a new circuit to replace the slow one. We
will discuss how to define “slow” in Section IV-B. The slow-
circuit-closing scheme provides OP the ability of responding
real-time network dynamics, which prevents a slow circuit
from becoming a bottleneck of the entire tunnel. Besides tear-
ing down slow circuits, an mTor circuit is replaced by a new

Fig. 3: mTor architecture.

one when it gets “dirty” - with a lifetime exceeding 10 minutes
and no streams on it, similar as in Tor circuit management.
This also makes periodical tunnel reconstruction unnecessary,
because member circuits of a tunnel are frequently updated.

B. Data Transmission

When a bulk application stream arrives at OP via SOCKS,
OP spawns the client stream (denoted as the parent stream)
to m subflows and appends them to the tunnel by associating
each subflow with a member circuit. Each subflow has its own
stream window and inherits a common stream ID from the
parent stream. Next, OP sends a relay begin cell through a
randomly selected member circuit to inform the exit about the
stream ID and the destination, and then starts data transmis-
sion.

Scheduling and data cell allocation. Conceptually, data cells
can be forwarded through any member circuit in the tunnel.
However, if the number of allocated cells on a particular circuit
exceeds its capacity, it will become congested. Since the over-
all performance of a tunnel is bounded by the slowest circuit,
two endpoints of a tunnel need to cooperate to schedule cells
across multiple circuits based on the capacities of individual
circuits. A straightforward approach for cell allocation is to
probe the capacity of each circuit after it is initiated and sched-
ule traffic in proportion to the probed capacity. However, the
method is unrealistic and less accurate. First, it will introduce
a large amount of extra traffic to the Tor network. Moreover,
the capacity of each circuit may change dramatically after
the probing. Therefore, the static scheduling scheme cannot
adapt to network dynamics which makes the allocation less
useful. In [20], Alsabah et al. presented an opportunistic
probing approach to estimate the round-trip-time (RTT) of a
circuit based on Tor’s circuit-level congestion control scheme,
where RTT is measured as the difference between the time
of sending out every 100th cell and the time of receiving
a circuit SENDME flag. The number of cells allocated to a
circuit is reversely proportional to the measured RTT. The
RTT-based approach is reactive to network dynamics, but it
is still not very accurate because the congestion feedbacks
are received infrequently (every 100 cells) [21]. Besides, cells
may spend several hundred milliseconds in the circuit queue
before being transmitted over a TCP connection [7], after
which the circuit’s capacity may change non-negligibly. Based
on this consideration, we argue that RTT-based approach may
not be a good choice in cross-layer scheduling, which is also
recognized in multipath TCP design [22]. In mTor, we adopt a
“pulling” scheduling – instead of pushing data cells to circuits
by a scheduler, we let each subflow actively pull data from
a shared send buffer whenever its stream window becomes
nonempty. Initially, each subflow has a stream window of 500
cells. As described in Section II, the stream window decreases

2015 IEEE Conference on Communications and Network Security (CNS)

482

by one when sending a cell out and increases by 50 when
receiving a stream-level SENDME notification. Consequently,
a subflow stops sending cells when its stream window size
drops to zero and resumes when it receives a SENDME. It is
obvious that when the circuit to which a subflow is appended
becomes congested, cells will be moving much slowly towards
the receiver resulting in delayed stream-level SENDMEs and
long waiting at the sender end. Whereas, subflows on fast
circuits will send out data cells steadily. In this way, the
“pulling” scheduling is subflow self-adaptive without accurate
explicit circuit RTT measurements. When multiple subflows
have a nonzero stream window, we adopt a FIFO (first-in-
first-out) queue to schedule them.

Slow circuits detection. Another challenging issue in mTor de-
sign is the detection of slow circuits. Since mTor recruits low-
bandwidth routers, its circuits are more likely to be congested.
To avoid a congested circuit becoming the bottleneck of the
entire tunnel, OP will construct new circuits to replace the slow
ones. In this work, we adopt a distance-based outlier detection
approach to determine whether a circuit is congested based on
a sliding window of 50 cells. In particular, we measure the
time of receiving every 50 cells and find the lower and upper
quartiles (Q1 and Q3) of ten most recent records to calculate
the interquartile range (IQR) where IQR = Q3−Q1. If a new
measurement falls out of the range of (0, Q3 +1.5IQD], it is
considered as an outlier indicating the circuit is experiencing
a congestion. To increase detection reliability, OP considers
a circuit as congested if at least three consecutive outliers
occur. Once detected, OP and the exit will collaborate to
tear down the congested circuit and replace it with a new
one. First, OP informs the exit to drop the congested circuit
via a relay drop message with the number of cells already
received on the circuit (denoted as nr). Next, OP initiates a
new circuit and requests to join the existing tunnel by sending
a relay join message with the same TID. After receiving
relay drop, the exit immediately stops sending cells on this
circuit and compares nr with the number of cells already sent,
denoted as ns. If nr equals to ns, a relay dropped message
will be sent to inform OP to tear down the circuit. Otherwise,
a relay stopped message will be sent to inform OP to keep
receiving the remaining ns − nr cells from the circuit before
tearing it down.

Data re-ordering. Combining the self-adaptive “pulling”
scheduling and active congestion detection schemes, mTor is
able to adapt to network dynamics, which potentially pre-
vents slow circuits from degrading the overall performance
of multipath tunnels. However, due to dynamic scheduling,
data cells may arrive at the receiver out of order. To solve
this issue, we have to modify the format of Tor data cell to
incorporate a 32-bit sequence number in the multipath data
packets. As shown in Figure 4, the first four bytes of data
payload is reserved for this purpose. Moreover, we add a new
relay subdata command to indicate a data cell is multipath
data. When OP receives a multipath data cell from a subflow,
it first checks if the sequence number is what it expects.
An expected cell is immediately forwarded to the application
stream, while an out-of-order cell is stored in a buffer and
ordered according to its sequence numbers.

Fig. 4: Cell format.

V. PERFORMANCE MEASUREMENTS

To explore the performance improvements introduced by
mTor, we perform experiments on the live Tor network and
compare the average download time of the standard single-path
Tor (denoted as sTor) with the one of mTor. We also conduct
simulations on the Shadow simulator [1] to study the impacts
of mTor on interactive traffic.

A. Measurements on Live Tor

Setup. In the live Tor experiments, a client is asked to
download large documents from a web server over HTTP to
simulate bulk data traffic. Since mTor requires modifications
on the exit node, we deploy our own exit relay (namely
“KUITTC”) in the Tor network and recruit it as the exit in
all the experiments. Both “KUITTC” exit and the web server
are located in the campus network of KU, so the transmission
latency of the last step is very small. For sTor, the client
machine running Tor v0.2.5.6-alpha follows the current Tor
path selection algorithm to select the entry and middle relays
from the Tor network and constructs a three-relay circuit. For
multipath routing, the client OP follows the proposed mTor
design with m varying from 2 to 3 and 5.

Results. Since the design goal of mTor is to support bulk
data applications without affecting interactive traffic, download
time is considered a more important metric than latency.There-
fore, we measure the download time to compare the per-
formance of sTor and mTor. Figure 5 shows the cumulative
distribution of the download time for 5MB and 10MB files
through sTor and mTor. From the figure, we see that mTor-2
with a tunnel of two circuits performs worst. This indicates the
combined capacity of a small number of slow paths may not
be enough to compensate for the low capacity of each circuit.
However, the performance of mTor increases fast along with
the increase of m. When downloading 5MB documents, mTor-
3 can achieve a comparable performance as sTor does and the
CDF of mTor-3 has a shorter tail regardless of file size. We
further measure the standard deviation as 19.76s and 10.34s
for sTor and mTor respectively when downloading 5MB file,
and 23.98s and 12.33s respectively when downloading 10MB
file. The much smaller standard deviation of mTor indicates
desirable small performance deviation. This is because mTor is
more sensitive and adaptive to circuit-level congestions, while
sTor is less responsive to the single congested path. We also
see that in both settings, mTor-5 outperforms sTor, indicating
that even with low-bandwidth relays, a bulk data application
can achieve a comparable performance with a reasonable large
m. More importantly, as mTor becomes more attractive to bulk
data applications, it will shift the load from high-bandwidth
routers to low-bandwidth ones and thus potentially benefit

2015 IEEE Conference on Communications and Network Security (CNS)

483

0 5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor

mTor-2

mTor-3

mTor-5

(a) 5MiB download time

0 5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n sTor

mTor-2

mTor-3

mTor-5

(b) 10MiB download time
Fig. 5: Comparison of measured time of downloading 5MiB
and 10MiB files through sTor, mTor-2, mTor-3 and mTor-5.

interactive traffic. Next, we will investigate the impact of mTor
on reducing the load of high-bandwidth relays.

B. Measurements on Shadow

Setup. The Shadow simulator [1] is a discrete event simulator
implementing Tor algorithms over a simulated network topol-
ogy. We plug mTor into Shadow to build a private Tor network
and compare the performance of web traffic and the load on
high-bandwidth relays using sTor and mTor. In particular, we
build a small network with 50 Tor relays, 200 HTTP servers,
990 web clients, and 110 bulk clients, where the ratio of the
number of relays to the number of clients is proportional to
the real distribution in the Tor network, the ratio of different
types of relays is sampled from the Tor network statistics in
February 2015, and the ratio of two types of clients follows
client distribution suggested in [6]. Simulating web browsing
behavior, web clients download a 320K file, as of an average
webpage size, from a randomly selected HTTP server and
wait for between 1 and 60 seconds before starting the next
download. The bulk clients repeatedly download a 5M file
with no stop between any two downloads. For sTor, all clients
and relays adopt the default Tor setting, while for mTor all
bulk clients and exit relays operate in the multipath mode.

Results. Since web clients are delay-sensitive, we consider
two metrics, time to first byte (TTFB) and download time, in
evaluating the performance for web traffic. We first investigate
the impact of bulk traffic to interactive traffic. Figures 6a-6h
show the performance of web clients with bulk traffic load
varying from light (with 110 bulk clients) to medium (with
310 bulk clients) and heavy (with 510 bulk clients). mTor
(with m = 3 and 5) demonstrates smaller TTFB and shorter
download time than sTor under three types of loads, indicating
improved network responsiveness and overall download time.
This result is consistent with our expectation that mTor can
reduce the load on high-bandwidth relays, which are frequently
recruited by web clients. This is because by restricting the
selection of middle nodes among only the low-bandwidth
relays, mTor preserves more resource on high-bandwidth relays
for web traffic and mitigates potential congestion.

To demonstrate that mTor reduces the contention of bulk
clients for high-bandwidth relays with web clients, we further
compare the bandwidth consumption ratio of bulk traffic on
fast routers and slow routers in both sTor and mTor. In
particular, we record the number of bytes that each relay
reads and writes per second on all circuits to calculate the

overall bandwidth consumed by each client on each relay
along a circuit. As shown in Table I, under medium load,
the bandwidth consumed by bulk traffic on all fast routers
decreases from 19.86% of the overall bandwidth in sTor to
14.69% in mTor-3, while the ratio on slow routers increases
from 17.33% in sTor to 95.16% in mTor-3. In the case of heavy
load, load shifting from fast routers to slow routers is more
obvious, dropping from 34.96% to 15.30%.

Medium load Heavy load
sTor mTor-3 sTor mTor-3

Fast router 19.86% 14.69% 34.96% 15.30%
(≥ 100KB/s)
Slow router 17.33% 95.16% 30.32% 95.74%
(< 100KB/s)

TABLE I: Comparison of bandwidth consumed by bulk clients on
fast routers and slow routers for sTor and mTor under medium load
and heavy load.

Finally, we compare the performance of bulk traffic in
sTor, mTor-3 and mTor-5 under different network loads. As
shown in Figure 6c, 6f and 6i, sTor outperforms mTor-3 and
mTor-5, which slightly deviates from the results obtained from
previous live experiments. This indicates that m should be
larger than 5 for an approximate performance in sTor. In
fact, this inconsistency implies that the real capacity of slow
routers in the live Tor network is greatly underestimated.
For instance, the authority directory often assigns a lower
bandwidth consensus weight than its real capacity to a newly
joined relay in the early time of its lifecycle [23]. On the
contrary, the advertised bandwidth is the exact capacity of the
simulated relays. Another possible reason is the comparably
small set of low-bandwidth routers in the simulated network.
When a large number of bulk traffic circuits go through a small
number of low-bandwidth routers, they are easily overloaded.
This is not the case in the live Tor network, in which over
80% relays are low-bandwidth routers.

VI. ANONYMITY ANALYSIS

Grouping multiple paths in a tunnel may result in degraded
anonymity, especially when under the traffic correlation at-
tacks [24]. In this section, we will study the impact of the
proposed multipath Tor on the anonymity of a 3-hop tunnel
and discuss the potential vulnerabilities introduced by mTor.

A. Adversary Model

It is widely acknowledged that Tor provides good
anonymity if at least one of the three relays in a Tor circuit
is honest. However, the anonymity degrades due to traffic
correlation if the first and last relays are controlled by an
adversity. Known as the traffic correlation attacks [17], [24],
[25], the attacker is assumed to be able to monitor two
endpoints from which clients’ traffic enters and leaves the Tor
network and perform traffic analysis to link the sender and
receiver regardless of the intermediate relay. Therefore, we
assume there exists a relay adversary who controls a small
number of geographically distributed Tor relays (e.g., through
a botnet). We further assume the relay adversary can add and
alter the traffic over its controlled relays.

2015 IEEE Conference on Communications and Network Security (CNS)

484

(a) Web clients, normal load

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Web Time to First Byte (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

(b) Web clients, normal load

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Web Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

(c) Bulk clients, normal load

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Bulk Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

(d) Web clients, medium load

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Web Time to First Byte (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

(e) Web clients, medium load

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Web Download Time (s)
C

um
ul

at
iv

e
Fr

ac
tio

n

sTor
mTor-3
mTor-5

(f) Bulk clients, medium load

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Bulk Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

(g) Web clients, heavy load

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Web Time to First Byte (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

(h) Web clients, heavy load

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Web Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

(i) Bulk clients, heavy load

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Bulk Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5

Fig. 6: Comparison of client performance for sTor (the standard single-path Tor), mTor-3 and mTor-5 under fixed web load (990
web clients) and different bulk load changing from light load (110 bulk clients for 6a-6c), to medium load (310 bulk clients for
6d-6f), and to heavy load (510 bulk clients for 6g-6i).

B. Correlation Risk

The concept of entry guards is introduced in the current
Tor implementation to mitigate the threat of traffic correlation
attacks. Entry guards are a set of reliable, high-bandwidth
relays trusted by the client to play as the entry node. Instead
of picking a new entry relay for each circuit, a client maintains
a set of entry nodes for a period of time and randomly selects
an entry relay from this set for each circuit. By default, an
entry guard set has a size of 3 and expires after 30 to 60 days.

If no relay in the guard set is controlled by the adversary,
the client is completely secure, otherwise, there exists a small
chance of being compromised (i.e., correlated). We can calcu-
late the probability of a successful compromise as follows:

Pcompromised =

g∑
a=0

P (a) · P (compromised|a)

where g represents the size of guard set (g = 3 by default)
and a denotes the number of adversary relays in the guard set.
P (a) is the probability that the guard set contains a adversary
relays, and P (compromised|a) is a conditional probability of
being compromised given a adversary relays in the guard set.
Given the ratio of the number of compromised relays over the
number of overall relays, a follows the binomial distribution:

P (a) =

(
g

a

)
· fa

gbw · (1− fgbw)
g−a

where fgbw and fxbw represent the fraction of bandwidth of
malicious guards and exits with respect to the total bandwidth

of guards and exits in Tor, respectively. Therefore, the condi-
tional probability P (compromise|a) can be computed as:

P (compromised|a) = fxbw ·

[
1−

(
g−a
m

)(
g
m

)]
where m is the number of circuits in a tunnel and

(
g−a
m

)
= 0

if g − a < m. In sTor, m equals to 1. However, in mTor, if
m ≥ g, the formula can be rewritten as P (compromised|a) =
fxbw · [1 −

(
g−a
g

)
], because m circuits will use up all g

entry relays in the guard set. As a result, there is a high
risk of recruiting a malicious relay as the entry. If any of m
circuits chooses both the malicious entry and exit, the client
is considered compromised.

Now we quantify the correlation risk of mTor clients. First,
we compute the risk under the general literature setting [20],
that is, less than 20% bandwidth are controlled by an adver-
sary. Figure 7 compares the probabilities of compromise with
different m under fixed malicious exit bandwidth and varying
malicious guard bandwidth. mTor increases the probability
from 4% of sTor to 13.45% of mTor-5.

In the above analysis, the adversary who controls 20%
of guards and 20% of exits may be more powerful than
the reality, so we then will discuss how vulnerable mTor
is under a realistic adversary. To determine the amount of
bandwidth controlled by a relay adversary, in Table II we list
the top five families with the largest bandwidth on March 20,
2015. Referring to Table II, we assume that a realistic relay
adversary controls totally 240MiB/s bandwidth. To maximize

2015 IEEE Conference on Communications and Network Security (CNS)

485

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

Fraction of Adversary Guard Bandwidth
(fxbw = 0.2)

Pr
ob

ab
ili

ty
of

C
om

pr
om

is
e

sTor
mTor-2
mTor-3
mTor-4
mTor-5

Fig. 7: Compromise probability for mTor with different m.

the probability of compromising a client, the adversary must
reasonably allocate his limited bandwidth to entry guards and
exit nodes. We follow the finding in [25] that 5:1 entry:exit
ratio maximizes the chance that the adversary successfully
compromises at least one circuit.

Instead of directly using advertised bandwidth, the path
selection of Tor is based on consensus weight of each relay,
which is computed by directory authorities via measuring
the relay bandwidth and then applying PID control feedback.
Because computing the consensus weight is a complicated
process, and considering the fact that the consensus weight of
each relay is related to its advertised bandwidth, for the sake
of simplicity, the consensus weight of the adversary can be re-
ferred to the family members of “kalach” in Table II, which has
approximate total advertised bandwidth. The total consensus
weight of kalach’s family is 560,210, so 466,841.7 is allocated
to guards while 93,368.3 is allocated to exits according to 5:1
ratio. We also investigate the total consensus weight of relays
in Tor network, which are guard-only (17,761,271), exit-only
(983,520) and guard&exit (9,466,357) on March 20, 2015,
respectively. After adjustment by bandwidth weights (e.g. Wg
and We) in the consensus on March 20, 2015, fgbw and fxbw
are 2.63% and 4.47%, respectively. Compared to the adversary
setting in the literature, a realistic adversary controls much
less bandwidth resource. Table III shows the probability of
the adversary compromising a mTor client with the increase
of tunnel width m. When m equals 1, it represents Tor. From
the result we can see that confronted with a realistic relay
adversary the deanonymization risk of mTor is very low.

Rank Bandwidth (MiB/s) Rep. Family Mem.
1 526.4 theoden
2 263.4 NCC75633
3 243.0 kalach
4 192.4 AccessNow011
5 159.3 torpidsCZgtt

TABLE II: Top 5 relay families with the highest advertised bandwidth
which is the lesser of observed bandwidth and configured bandwidth.

Obviously, the more circuits are used by a mTor client, the
higher risk of being compromised it takes. As we have seen in
Section V-A, to achieve comparable or better performance, a
m-Tor user should set m to 3 or greater, which means a mTor
user will have three times higher risk of being compromised
than sTor as Table III shows.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Download time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

sTor
mTor-3
mTor-5
mTor-3-common-entry
mTor-5-common-entry

Fig. 8: Comparison of measured time of downloading 5MiB
files through sTor, mTor-3, mTor-5, mTor-3-common-entry and
mTor-5-common-entry.

To avoid sacrificing any anonymity, a mTor client can force
m circuits to share a common entry guard so that mTor can
achieve the same anonymity level like sTor. Figure 8 compares
the performance of downloading 5MiB files between mTor
with the common entry guard, original mTor and sTor. From
the Figure 8, we can see that the performance of mTor-5 with
common entry guard is slightly worse than original mTor-5,
because multiple circuits have to share the bandwidth of a
single guard relay, which reduces the available bandwidth for
each circuit. Overall, we can see that even if a mTor client
uses a single entry guard for his all circuits in the tunnel, he
can still achieve comparable or even better performance than
he uses sTor.

Therefore, clients can adjust m and the entry guard to
balance the tradeoff between performance and security. For
a bulk client requiring high anonymity, he can choose small m
and a common entry guard for his tunnel to achieve acceptable
performance without sacrificing anonymity, while for a client
preferring performance more, he can adopt the default setting
and choose a larger m.

m 1(Tor) 2 3 4 5
Pcom 0.12% 0.23% 0.34% 0.45% 0.56%

TABLE III: The probability of a mTor client being compromised by
a relay adversary.

VII. RELATED WORK

Plenty of work has been proposed to improve Tor’s perfor-
mance for interactive users. LASTor [13] takes into account
the inferred geographic locations of relays in path selection to
reduce latency. Snader and Borisov [4] propose a tunable path
selection algorithm according to relays’ relative ranking which
is assigned based on the median of the peak bandwidth that
all other relays recently have seen. These approaches prefer
relays with high confidence to provide good services based
on their performance history, however, they do not consider
the current load of relays, which may affect a relay’s real
performance. The new implementation of Tor path selection
considers circuit construction time as the current load indicator
and drops circuits with long construction time, but it cannot
deal with congestion which occurs after the circuit establish-
ment. Another congestion-aware path selection approach [5]
selects relays with good congestion history and actively detects

2015 IEEE Conference on Communications and Network Security (CNS)

486

congestion during data transfer. Once congestion is detected,
it switches to another idle circuit instead.

Tang and Goldberg propose a new circuit scheduler which
prioritizes interactive traffic over bulk traffic based on the
exponentially weighted moving average (EWMA) of relayed
cells [7]. However, experiments on simulator show that
EWMA-based scheduler highly depends on network and load,
so it is not clear if performance will always improve [1]. Dif-
ferent from scheduling scheme, more aggressive approaches
have been proposed to throttle bulk traffic. Jansen et al.
proposes EWMA-based adaptive throttling algorithms that
select the busiest connections on entry node to throttle and
dynamically adjust the throttle rate of each connection [8].

Another multipath routing scheme “Conflux” [20] over
Tor is proposed to improve the performance for bridge and
video streaming users, which first implements the multipath
scheme in Tor and provides a thorough anonymity analysis.
However, Conflux still adopts the default path selection scheme
so that a bulk client have multiple circuits contending for high-
bandwidth relays, which is unfair to regular interactive users.
Our work, despite the adoption of the same multipath idea like
“Conflux”, has different insights to relay utilization and new
implementations for path selection, tunnel management and
circuit scheduling, which utilizes unused bandwidth to support
bulk traffic with better fairness.

VIII. CONCLUSION

In this paper, we propose a multipath Tor (mTor) routing
scheme to enable Tor to support bandwidth-intensive applica-
tions without hurting the interactive clients. We explore the
difficulty in utilizing low-bandwidth routers in the current
Tor architecture, that is, if web clients use them, they will
experience very poor performance; otherwise, a large amount
of bandwidth resource would be under-utilized. mTor solves
this problem and serves bulk clients using low-bandwidth
relays to reduce the effects of bulk traffic on interactive traffic.
Meanwhile it utilizes multipath routing scheme to make up the
low capacity of slow relays and avoids congestion on a single
circuit by dynamically allocating traffic across multiple circuits
according to their capacities. In the live experiments and
Shadow simulator, we show that mTor can achieve desirable
performance for bulk clients and also benefits the web clients
by reducing the load on high-bandwidth relays. Anonymity
analysis shows that mTor slightly increases the chance that a
bulk client is compromised, but users can adjust the tradeoff
between performance and anonymity by changing m and
limiting the number of distinct entry guards in the tunnel.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation under Award EPS0903806, KU General Research
Fund under Award GRF2301075, and KU Research Investment
Council Strategic Initiative Grant under Award INS0073037.

REFERENCES

[1] R. Jansen and N. Hopper, “Shadow: Running Tor in a Box for Accurate
and Efficient Experimentation,” in Proceedings of the Network and
Distributed System Security Symposium - NDSS’12, February 2012.

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Security
Symposium, August 2004.

[3] TorProject. Estimated Number of Clients in the Tor Network. https:
//metrics.torproject.org/clients-data.html.

[4] R. Snader and N. Borisov, “A tune-up for Tor: Improving security and
performance in the Tor network,” in Proceedings of the Network and
Distributed Security Symposium - NDSS ’08, February 2008.

[5] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware Path
Selection for Tor,” in Proceedings of Financial Cryptography and Data
Security, 2012.

[6] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining
light in dark places: Understanding the Tor network,” in Proc. of the 8th
International Symposium on Privacy Enhancing Technologies, 2008.

[7] C. Tang and I. Goldberg, “An improved algorithm for Tor circuit
scheduling,” in Proceedings of the 2010 ACM Conference on Computer
and Communications Security (CCS 2010), October 2010.

[8] R. Jansen, P. Syverson, and N. Hopper, “Throttling Tor Bandwidth
Parasites,” in Proceedings of the 21st USENIX Security Symposium,
August 2012.

[9] R. Jansen, N. Hopper, and Y. Kim, “Recruiting new Tor relays with
BRAIDS,” in Proceedings of the 2010 ACM Conference on Computer
and Communications Security (CCS 2010), October 2010.

[10] T.-W. J. Ngan, R. Dingledine, and D. S. Wallach, “Building Incentives
into Tor,” in Proceedings of Financial Cryptography, January 2010.

[11] W. B. Moore, C. Wacek, and M. Sherr, “Exploring the potential
benefits of expanded rate limiting in tor: Slow and steady wins the
race with tortoise,” in Proceedings of 2011 Annual Computer Security
Applications Conference (ACSAC’11), December 2011.

[12] R. Jansen, A. Johnson, and P. Syverson, “LIRA: Lightweight Incen-
tivized Routing for Anonymity,” in Proceedings of the Network and
Distributed System Security Symposium - NDSS’13, February 2013.

[13] M. Akhoondi, C. Yu, and H. V. Madhyastha, “LASTor: A Low-Latency
AS-Aware Tor Client,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, May 2012.

[14] M. AlSabah, K. Bauer, and I. Goldberg, “Enhancing tor’s performance
using real-time traffic classification,” in Proceedings of the 19th ACM
conference on Computer and Communications Security, October 2012.

[15] Cisco. VNI Forecast Highlights. http://www.cisco.com/web/solutions/
sp/vni/vni forecast highlights/index.html.

[16] M. Kende. Global Internet Report. http://www.internetsociety.org/doc/
global-internet-report.

[17] L. Øverlier and P. Syverson, “Locating hidden servers,” in Proceedings
of the 2006 IEEE Symposium on Security and Privacy, May 2006.

[18] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of the
degradation of anonymous protocols,” in Proceedings of the Network
and Distributed Security Symposium - NDSS ’02, February 2002.

[19] D. Johnson, “Stem: a Python controller library for Tor,” https://stem.
torproject.org.

[20] M. Alsabah, K. Bauer, T. Elahi, and I. Goldberg, “The path less
travelled: Overcoming tor’s bottlenecks with traffic splitting,” in Proc.
of the 13th Privacy Enhancing Technologies Symposium, July 2013.

[21] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. Voelker, “Defenestrator: Throwing out windows in tor,” in Proc.
of the 11th Privacy Enhancing Technologies Symposium, July 2011.

[22] S. Barre, C. Paasch, and O. Bonaventure, “Multipath tcp: from theory
to practice,” in NETWORKING 2011. Springer, 2011, pp. 444–457.

[23] R. Dingledine. The Lifecycle of a New Relay. https://blog.torproject.
org/blog/lifecycle-of-a-new-relay.

[24] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proc. of the 2005 IEEE Symposium on Security and Privacy, May 2005.

[25] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users get
routed: Traffic correlation on tor by realistic adversaries,” in Proceed-
ings of the 20th ACM conference on Computer and Communications
Security, 2013.

2015 IEEE Conference on Communications and Network Security (CNS)

487

