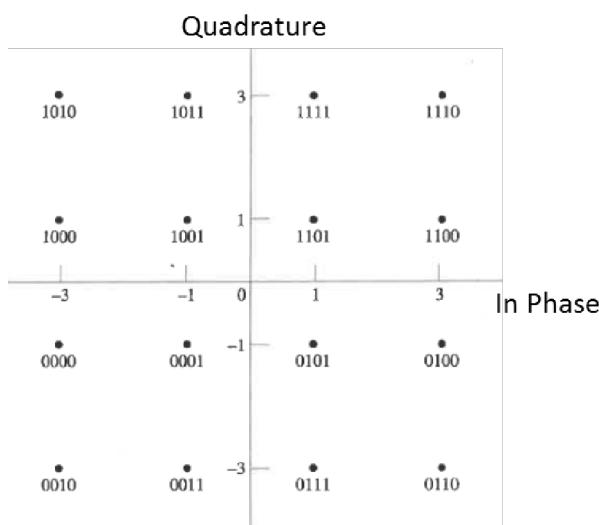


EECS 562
Homework 5

1. Let z_i be a complex symbol for $i=1\dots4$

In[]:= z1 = 1 + j; z2 = 1 - j; z3 = -1 + j; z4 = -1 - j;

In a stream of bits to be transmitted each pair of bits (2 bits) is mapped into one complex symbol, here,
 $(0,0) \rightarrow z_1$,
 $(0,1) \rightarrow z_2$,
 $(1,0) \rightarrow z_3$,
 $(1,1) \rightarrow z_4$.


The stream of information bits is thus mapped into a sequence of complex symbols. The modulated RF signal $y_i(t) = \text{Re}[z_i e^{-j2\pi f_c t}]$ transmitted one symbol time. Here $f_c=10\text{MHz}$ a complex symbol is transmitted every symbol time of $T_s=1\ \mu\text{s}$. The modulated RF signal $y_i(t)$ is processed by a quadrature receiver.

- Find $y_2(t) = \text{Re}[z_2 * e^{-j2\pi f_c t}]$
- What is the transmission bit rate? [Hint: the units of bit rate is bits/sec.]
- For a bit sequence = {1,1,0,0,0,0,1,0,0,1} list the transmitted complex symbols.
- For a bit sequence = {1,1,0,0,0,0,1,0,0,1} plot the RF signal, assume a convenient f_c ; note $f_c > \frac{10}{T_s}$.
- Does the RF signal have a constant envelope?
- Let $g(t) = \text{Re}[z_1 e^{-j2\pi f_c t}] \cos(2\pi f_c t)$. Find $x(t)$ where $x(t) = h_{\text{ILPF}}(t) * g(t)$ (where $*$ means convolution), that is, $g(t)$ is input to a ILPF with bandwidth $\frac{1}{T_s}$.

2. What is the transmitted (RF) signal for each QPSK symbol with a bit time = $T_b=5\ \mu\text{s}$ and $f_c=10\text{MHz}$ and the energy per symbol $E_s=1 \times 10^{-6}$.

3. Draw a QPSK receiver using a LPF followed by a sampler and a QPSK receiver using an integrate-and-dump in the in-phase and quadrature channels respectively. Explain why these provide the same functionality.

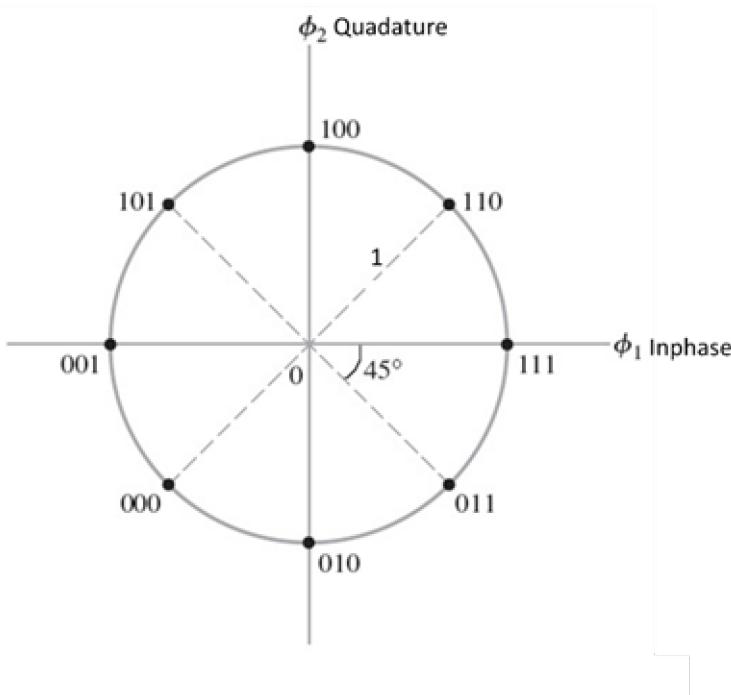
4. A signal space diagram (constellation) is given below:

a. For this constellation what is M in M-QAM?

b. If the T_s = symbol time = $100\mu s$ what is the bit rate?

c. With raised cosine pulse shaping with $\alpha=0.5$ what is the required RF bandwidth?

d. For detection what is the required integration time?


e. What is the RF signal for the symbol 1101, let $f_c=10\text{MHz}$?

f. Does the RF signal have a constant envelope?

g. A QAM coherent detector uses and integrate and dump in the in-phase and quadrature channels respectively at the end of an integration time the I channel sample is -3.1 and Q channel sample is -0.9 what are the output bits?

h. A QAM coherent detector uses and integrate and dump in the in-phase and quadrature channels respectively at the end of an integration time the I channel sample is 3.1 and Q channel sample is -0.9 what are the output bits?

5. The signal space diagram (constellation) for a digital RF signal is given below. The symbol time is $100\mu s$ and the carrier frequency = $f_c=20\text{MHz}$.

a. What is the transmitted bit rate?

b. With raised cosine pulse shaping with $\alpha=0.75$ what is the required RF bandwidth?

c. What is the transmitted RF signal for the symbol 110?

d. What is the Energy/symbol?

e. What is the Energy/bit?

f. Does the RF signal have a constant envelope?

g. What is the received symbol if the recovered complex signal is $z=1.1+j0.05$?

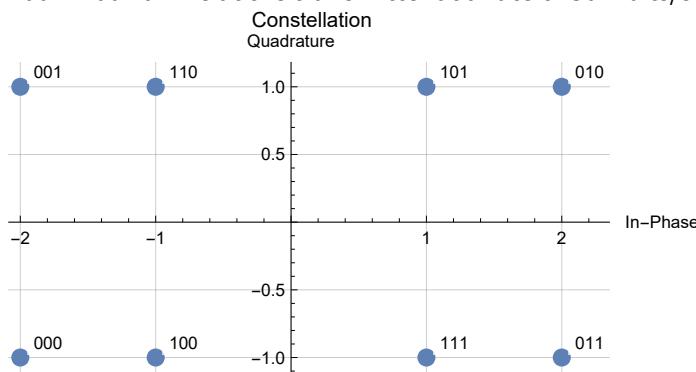
h. An envelope detector can be used in this case. TRUE or FALSE.

6. Using

Digital Modulation: Quadrature Phase-Shift Keying (QPSK) Signal Constellation and Eye Diagrams

Explain the impact in terms of the eye diagram, transmission bandwidth, and signal quality of the following parameter changes:

- Changing the raised cosine roll-off factor from .1 to 0.9.
- Changing the I/Q phase error from 0 to 25^0 .
- Explain what happened when you click on the trajectory.


7. What is the advantage of a constant envelope RF signal?

8. Fill out the table below assuming a bit rate of 1 Mb/s.

Define the spectral efficiency as $\eta_{\text{eff}} = (\text{bits/sec})/(\text{RF bandwidth Hz})$

Modulation	B_{RF} (MHz) with $\alpha = 0$	η_{eff} with $\alpha = 0$	B_{RF} (MHz) with $\alpha = 0.5$	η_{eff} with $\alpha = 0.5$	B_{RF} (MHz) with $\alpha = 1$	η_{eff} with $\alpha = 1$
ASK	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
BPSK	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
QPSK	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
8 – PSK	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
16 – QAM	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
64 – QAM	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
256 – QAM	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
1024 – QAM	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
4096 – QAM	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

9. A digital RF system uses the constellation shown below. Given a sequence of information bits 100111001 arrive at the transmitter at a rate of 30 Mbits/sec.

- What is the symbol rate?
- Is the energy/symbol the same for all symbols?
- Using the mapping of bits to symbols given above and information bits 100111001 and find and plot the RF signal, assume $f_c=100$ MHz.
- Specify the integration time (in μs) QAM coherent detector used in the integrate-and-dump in the receiver.
- Does the RF signal have a constant envelope?