Bivariate Gaussian (Normal) pdf

- Bivariate Gaussian (Normal) pdf

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho_{X Y}^{2}\right)}} \exp \left(-\frac{1}{2\left(1-\rho_{X Y}^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-2 \rho_{X Y} \frac{\left(x-\mu_{X}\right)}{\sigma_{X}} \frac{\left(y-\mu_{Y}\right)}{\sigma_{Y}}\right]\right)
$$

- The marginals and conditionals are:

$$
\begin{array}{ll}
f_{X} \propto N\left(\mu_{X}, \sigma_{X}^{2}\right) ; & f_{Y \mid X=x} \propto N\left(\mu_{Y}+\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right), \quad \sigma_{Y}^{2}\left(1-\rho_{X Y}^{2}\right)\right) \\
f_{Y} \propto N\left(\mu_{Y}, \sigma_{Y}^{2}\right) ; & f_{X \mid Y=y} \propto N\left(\mu_{X}+\rho_{X Y} \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right), \quad \sigma_{X}^{2}\left(1-\rho_{X Y}^{2}\right)\right)
\end{array}
$$

Note: If X and Y are bivariate Gaussian, then $\rho_{\mathrm{XY}}=0$ (Uncorrelated) \rightarrow independence ie. When $\rho_{X Y}=0, f_{X},{ }_{Y}(x, y)=f_{X}(x) f_{Y}(y)$; This applies only to jointly Gaussian variables.

In other cases, Independence \rightarrow uncorrelated, but
Uncorrelated does not imply independence
Modified from: From: Shanmugan 2013

Examples of Samples of Correlated Variables (Jointly Normal)

$$
\rho=0.0
$$

Examples of Samples of Correlated Variables

Not Linearly Correlated
Negative Linear Correlation

More than Two Random Variables: Random Vectors ; Multivariate Gaussian

- The notion of multiple random variables can be extended beyond to $n>2$ using the vector notation
- One of the important multi dimensional pdf is the multivariate Gaussian

$$
\left.\begin{array}{c}
\bar{X}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right] ; \bar{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] ; f_{\bar{X}}(\bar{x})=\frac{1}{\sqrt{(2 \pi)^{n}\left\|\Sigma_{\bar{X}}\right\|}} \exp \left[-\frac{1}{2}\left(\bar{x}-\mu_{\bar{X}}\right)^{T} \Sigma_{\bar{X}}^{-1}\left(\bar{x}-\mu_{\bar{X}}\right)\right] ; \\
\text { Magnitude of } \\
\text { the determinant }
\end{array}\right] ;\left[\begin{array}{c}
\mu_{X_{1}} \\
\mu_{X_{2}} \\
\vdots \\
\mu_{X_{n}}
\end{array}\right] ; \quad E\left\{\left(\bar{X}-\mu_{\bar{X}}\right)\left(\bar{X}-\mu_{\bar{X}}\right)^{T}\right\}=\Sigma_{\bar{X}}=\left[\begin{array}{cccc}
\sigma_{X_{1} X_{2}} & \sigma_{X_{1} X_{2}} & \cdots & \sigma_{X_{1} X_{n}} \\
\sigma_{X_{2} X_{1}} & \sigma_{X_{2} X_{2}} & & \sigma_{X_{2} X_{n}} \\
\vdots & & \ddots & \vdots \\
\sigma_{X_{n} X_{1}} & \sigma_{X_{n} X_{2}} & \cdots & \sigma_{X_{n} X_{n}}
\end{array}\right], ~ \$
$$

$\mu_{\bar{X}}$ is the mean vector, and $\Sigma_{\bar{X}}$ is the covariance matrix

$$
\sigma_{X_{i} X_{j}}=E\left\{\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right\} ; \quad \sigma_{X_{i} X_{i}}=E\left\{\left(X_{i}-\mu_{i}\right)^{2}\right\}=\sigma_{X_{i}}^{2}
$$

More than Two Random Variables: Random Vectors ; Multivariate Gaussian

- All marginal and conditionals are also Gaussian
- If \bar{X}_{1} and \bar{X}_{2} are subvectors of \bar{X}, then the condititonal of \bar{X}_{1} given $\bar{X}_{2}=\bar{x}_{2}$ is Gaussian with $\mu_{\bar{x}_{1} \mid \bar{X}_{2}}=\mu_{\bar{x}_{1}}+\sum_{12} \sum_{22}^{-1}\left(\bar{x}_{2}-\mu_{\bar{x}_{2}}\right)$, and $\quad \sum_{\bar{X}_{1} \mid \bar{X}_{2}}=\sum_{11}-\sum_{12} \sum_{22}^{-1} \sum_{21}$ where $\sum_{\bar{X}}=\left[\begin{array}{ll}\sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22}\end{array}\right]$ is a partiton of $\sum_{\bar{X}}$

Example:

$$
\mu_{\bar{X}}=\left[\begin{array}{l}
\mu_{\bar{X}_{1}} \\
\mu_{\bar{X}_{2}}
\end{array}\right]=\left[\begin{array}{l}
\mu_{X_{1}} \\
\mu_{X_{2}} \\
\mu_{X_{3}} \\
\mu_{X_{3}}
\end{array}\right] ; \quad \Sigma_{\bar{X}}=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]=\left[\begin{array}{ll:ll}
\sigma_{X_{1} X_{2}} & \sigma_{X_{1} X_{2}} & \sigma_{X_{1} X_{2}} & \sigma_{X_{1} X_{n}} \\
\sigma_{X_{2} X_{1}} & \sigma_{X_{2} X_{2}} & \sigma_{X_{2} X_{4} 4} & \sigma_{X_{3} X_{4} .} \\
\hdashline \sigma_{X_{3} X_{1}} & \sigma_{X_{3} X_{2}} & \sigma_{X_{3} X_{3}} & \sigma_{X_{3} X_{4}} \\
\sigma_{X_{4} X_{1}} & \sigma_{X_{4} X_{2}} & \sigma_{X_{4} X_{3}} & \sigma_{X_{4} X_{4}}
\end{array}\right]
$$

$$
\text { If } \bar{Y}=A \bar{X} \text {, then } \bar{Y} \text { is Gaussian with } \mu_{\bar{Y}}=A \mu_{\bar{X}} \text { and } \sum_{\bar{Y}}=A \sum_{\bar{X}} A^{T}
$$

