EECS 861

Homework #3

- 1. (Concept: Relationship between the variance, mean square, and the square of the mean) Show that $\sigma_x^2 = \text{Var}[X] = E[X^2] (E[X])^2$
- 2. (Concept: Discrete random variable, total probability, finding mean, variance, and mean square) X is a discrete random variable with

$$P(X=-2) = 0.3, P(X=-1) = 0.2, P(X=1) = 0.2, P(X=2) = a$$

- a. Find "a"
- Given "a" find:
- b. Find P(X<-3)
- c. Find P(X=0)
- d. Find E[X]
- e. Find E[X²]
- f. Find Var[X]
- 3. (Concept: calculating mean and mean square from data; comparing empirical data to a model) Using 200 samples $\{x_1....x_{200}\}$ of a discrete random variable X is given in http://www.ittc.ku.e du/~frost/EECS_861/EECS_861 HW Fall 2025/data_HW3_Prob_2.csv
 - a. Given this data what is an estimate for $p_k = P(X=k)$ for k=-2, -1, 1, 2?
 - b. Find the sample mean of X using $\overline{X} = \frac{1}{200} \sum_{i=1}^{200} x_i$
 - c. Estimate the mean of X using $\hat{X} = \sum_{k=-2}^2 k p_k$
 - d. Find the sample mean square of X using $\overline{X}^2 = \frac{1}{200} \sum_{i=1}^{200} x_i^2$
 - e. Estimate the mean square of X using $\hat{X}^2 = \sum_{k=-2}^2 k^2 p_k$
 - f. Is the pmf given in problem 1 a "good" probabilistic model for this data?
- 4. (Concept: properties of the pdf, and expected value and variance) X is a random variable with $f_X(x) = 0.1\delta(x) + 0.1\delta(x-1) + K^*u(x-1)e^{-(x-1)}$ where u(x) = unit step function
 - a. Sketch $f_x(x)$.
 - b. Find K.
 - c. What is P(X=0)?
 - d. What is P(X=2)?
 - e. What is P(.5<X< 3)?
 - f. Find E[X]
 - g. Var[X]

5. (Concept: Gaussian and Uniform random variables)

X is a Gaussian random variable X with $\mu_X = 0$ and $\sigma_X = 0.5$

- a. What is P(-0.5<X<.5)?
- b. Plot $P(X < x_i)$ for x_i = -4.0,-1.0, -0.5, -0.25, 0.0, 0.25, 0.5, 1.0, 4.0
- c. Confirm your answers using

https://www.mathportal.org/calculators/statistics-calculator/normal-distribution-calculator.php

- d. Assuming X is a Uniform random variable [-1.5, 1.5] repeat part b.
- e. Is a Uniform random variable [-1.5, 1.5] "good" probabilistic model for the data given in Homework 2-Problem 2?
- 6. (Concept: joint and conditional distribution functions; correlation coefficient; and SI) X and Y have the following joint distribution function

	X = -2	X = 0	X = 2
Y = -2	1/8	1/8	0
Y = 0	0	0	1/4
Y = 2	1/8	1/8	1/4

- a. Find P(X=0).
- b. Find P(Y=2).
- c. Find P(X=0|Y=2).
- d. Find Covar[X,Y]
- e. Find ρ_{XY} .
- f. Are X and Y SI random variables?
- 7. (Concept: Properties of expected value and variance)

Given a and b are constants and X and Y are RV's.

Find:

- a. E[a+bX]
- b. E[aX+bY]
- c. Var[aX]
- d. Var[aX+bY]
- e. Assuming X and Y are SI find Var[aX+bY]
- f. Assuming N is a constant, $Var[X_i] = \sigma_X^2 \ \forall i$, and the X_i 's are SI. Define $Z = \frac{1}{N} \sum_{i=1}^{N} X_i$. Find Var[Z]