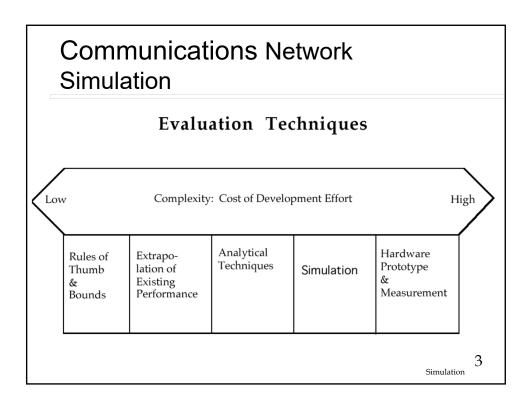
Communications Network Simulation

Victor S. Frost


Dan F. Servey Distinguished Professor Electrical Engineering and Computer Science University of Kansas 2291 Irving Hill Dr. Lawrence, Kansas 66045 Phone: (785) 864-1028 e-mail: vsfrost@ku.edu http://www.ittc.ku.edu/

Simulation

1

Communications Network Simulation: Overview

- Introduce Discrete Event Simulation and Approaches
- Building Extendsim models
- Discuss Verification and Validation of Communication Network Simulation Models
- Deriving statistically significant results from simulation models
- Discussion of Statistical Considerations in the Analysis of Results from Communication Network Simulation Models
- Communication Network Simulation Modeling Tools and Examples

Communications Network Simulation: Attributes

- ☐ Simulation can be used to model general communications network in minute detail.
- ☐ Simulation models can be expensive to construct.
- □ Simulation models can be expensive to run.
- □ Statistical analysis of the results generated by a simulation can be difficult.
- □ It can be difficult to gain general insights into system behavior based on simulation results.

Communications Network Simulation: When to Use Simulation

- □ For studying transient behavior of networks.
- □ For systems with adaptive routing.
- □ For systems with adaptive flow control.
- □ For systems with blocking (finite buffers).

'imaaalati'aa

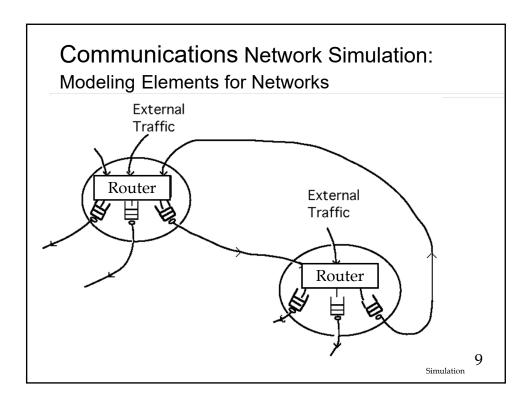
5

Communications Network Simulation: When to Use Simulation

- □ For systems with general message interarrival statistics.
- □ Validation of analytic models and approximations.
- ☐ For experimentation without disturbing an operational system.

Common Mistakes in Simulation

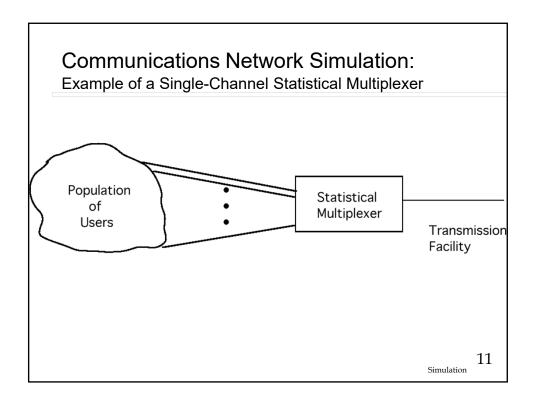
- Inappropriate Level of Detail:
 - □ More detail \Rightarrow More time \Rightarrow More Bugs \Rightarrow More CPU
 - □ More parameters ≠ More accurate
- Unverified Models: Bugs
- □ Invalid Models: Model vs. reality
- Improperly Handled Initial Conditions
- Too Short Simulations: Need confidence intervals
- Poor Random Number Generators: Safer to use a well-known generator
- ☐ Improper Selection of pseudo random number seeds


Modified from: "The Art of Computer Systems Performance Analysis" Raj Jain, Wiley, 1991 Simulation

-

Common Mistakes in Simulation

- □ Inadequate Estimate of Development Time & Effort
- Unclear Goal: Inadequate framing of question
- Project Team has Incomplete Mix of Essential Skills: Team Lacks-
 - □ Project Leadership
 - Modeling and Programming
 - □ Knowledge of the Target System
 - Statistical Analysis
- Inadequate Level of User Participation
- Lack of Planning for Success


ς

Communications Network Simulation:

Definition of Communication Network Simulation

Communication network simulation involves generating <u>pseudo-random</u> <u>sequences</u> of message lengths an interarrival times (or other input processes, e.g. time varying link quality) the using these sequences to <u>exercise an algorithmic</u> <u>description of the network operation</u>.

Traffic & Input Processes

- □ Message Length L_k's
 - E.g., Exponential pdf
- \square Message Interarrival Times A_k 's
 - E.g., Exponential pdf
- Other
 - Time of day variations
 - BER vs. Time
 - · Link Reliability
 - · Node Reliability

Sample Realization of an Input Process

Message number	1	2	3	4	5	6	7	8	9	10	11	12
Interarrival time between i+1 and i message (seconds)	2	1	3	1	1	4	2	5	1	4	2	
Length of i th message (seconds)	1	3	6	2	1	1	4	2	5	1	1	3

13 Simulation

Communications Network Simulation:

- □ Approaches to Discrete Event Simulation
 - □ Time Step Approach
 - $\hfill \Box$ Event-Scheduling Approach
- □ Network Modeling Approaches
 - □ Extended Queueing Networks
 - ☐ Finite State Machine
 - □ Petri Nets
 - □ Data Flow Block Diagram

Communications Network Simulation:

Time Step Approach to Network Simulation

- □ Fixed-Increment Time Advance
- Update System States at End of Each Fixed Time Interval

Simulation

15

Communications Network Simulation:

Sample Realization of an Input Process

Message number	1	2	3	4	5	6	7	8	9	10	11	12
Interarrival time between i+1 and i message (seconds)	2	1	3	1	1	4	2	5	1	4	2	
Length of i th message (seconds)	1	3	6	2	1	1	4	2	5	1	1	3

Simulated Time	Message Arrival		End of Transmission	Number in	Number in	Time in	Time in	
Time	Arrivai	Transmission	Transmission	Buffer	System	Buffer	System	
0	0	Θ		0	1	0,0		
1 2	@		O	0	0 1	0,0	1,0	
2 3 4	3			1	2			
5		3	0	<u>'</u>	1	2,3	3, (2)	
6 7	9			1	3			
8				3	4			
9 10					4			
11		(4)	3	3	3	5,🕥	8,3	
12 13	Ø	<u> </u>	<u></u>	3	4 3	6,5	7,4	
14 15	(8)	000	8	2	3 2	6, 6	7, ©	
16		<u>.</u>		<u> </u>	2	3,0	<u>/, @</u> .	
17 18	ļ			1	2			
19		®	Ø	<u> ;</u>	2	5, 🔞	7, ()	
20 21	 -		®	1	2	2, 🕥	7, ③	
22	 			<u>;</u>	2	-, 🕓		
23 24	0			2	3			
25 26	0	0		2 2	3	6,🗘	7, ③	Simulation

Performance Metrics Derived from Time History

Average Delay =
$$\frac{\sum \text{Time in System for i}^{\text{th}} \text{ Message}}{\text{Total Number of Messages Processed}}$$

Average number in System =
$$\frac{\sum N(t)}{\text{Total time}}$$

19

Simulation

Communications Network Simulation:

- □ Event Scheduling Approach
 - □Variable Time Advance
 - Update System State Only When Events Occur, e.g.Arrivals or Departures

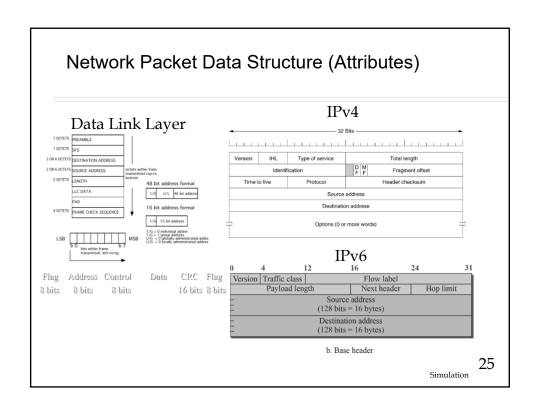
Communications Network Simulation: Event Calendar

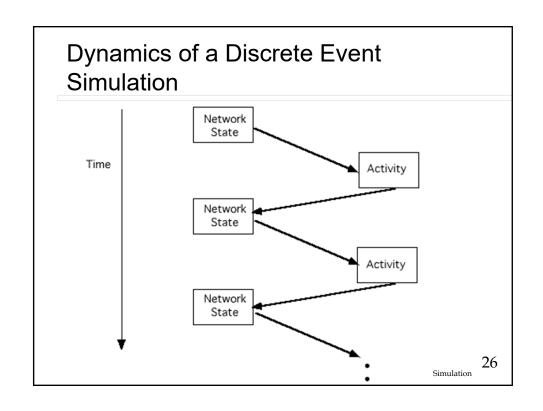
- Events are Instantaneous OccurrencesWhich Change the State of the System
- □ An Event is Described by
 - ☐ The time the event is to occur
 - ☐ The action to take place at the event time
- ☐ The Event Calendar is a Time Ordered List of Events

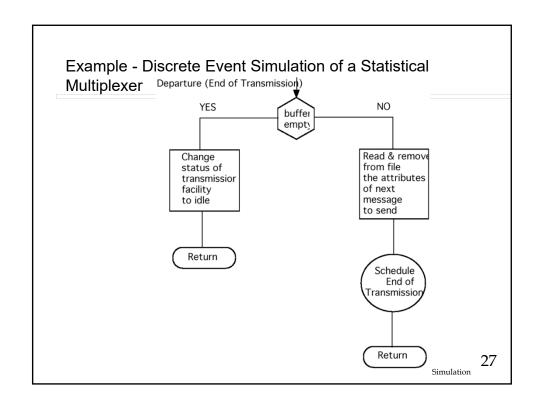
 $\underset{\text{Simulation}}{21}$

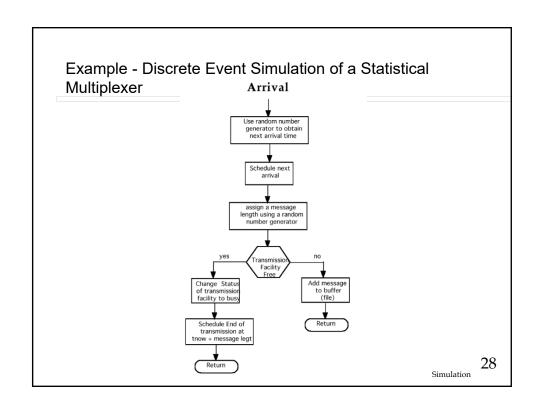
Simplified Flow Control for the Event Scheduling Approach Use Event List to determine next An Executive event to process (or Mainline) Controls the Advance simulation clock to event time Selection of Next **Event** Update system state using event routines Update event list using event routines 22 Simulation

Entities, Attributes, Activities, and Files

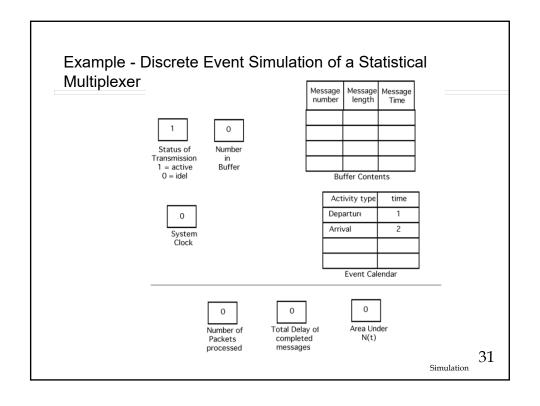

- □ Entities (items) are the objects upon which action is performed. In network simulation entities are messages.
- □ Attributes are characteristics which describe entities, e.g. message length or message type.


Simulation


23


Entities, Attributes, Activities, and Files

- □ Activities are the operations that change the state of the network, e.g. increment number of messages waiting in a buffer.
- □ Files are groupings of entities which share a common attribute, all messages waiting in buffer.



Example - Discrete Event Simulation of a Statistical Multiplexer

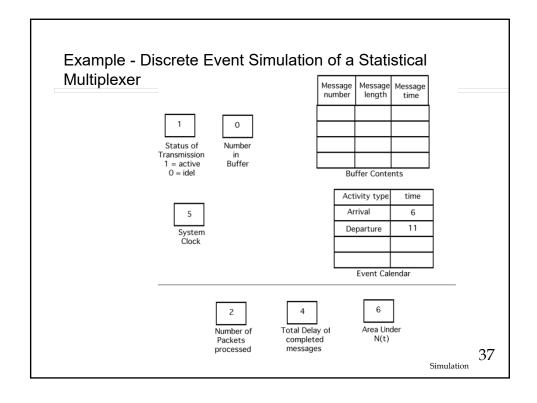
Message number	1	2	3	4	5	6	7	8	9	10	11	12
Interarrival time between i+1 and i message (seconds)	2	1	3	1	1	4	2	5	1	4	2	
Length of i th message (seconds)	1	3	6	2	1	1	4	2	5	1	1	3

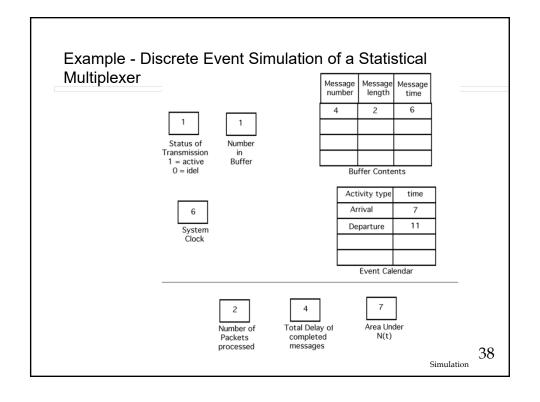
29 Simulation

Example - Discrete Event Simulation of a Statistical Multiplexer Message number Message length Message Time 0 0 Status of Transmission 1 = active 0 = idel Number in Buffer Buffer Contents Activity type 0 0 System Clock Event Calendar 0 0 0 Number of Packets processed Total Delay of completed messages Area Under 30 Simulation

Example - Discrete Event Simula Multiplexer	
O O Status of Number Transmission in	Message number length dessage time
1 = active Buffer 0 = idel 1 System Clock	Buffer Contents Activity type time Arrival 2
Packets com	Delay of Deleted N(t) Area Under N(t) Simulation 32

Example - Discrete Event Simulation of a Statistical Multiplexer

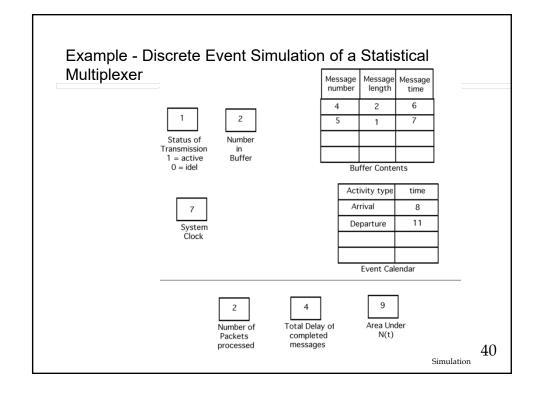

Message number	1	2	3	4	5	6	7	8	9	10	11	12
Interarrival time between i+1 and i message (seconds)	2	1	3	1	1	4	2	5	1	4	2	
Length of i th message (seconds)	1	3	6	2	1	1	4	2	5	1	1	3

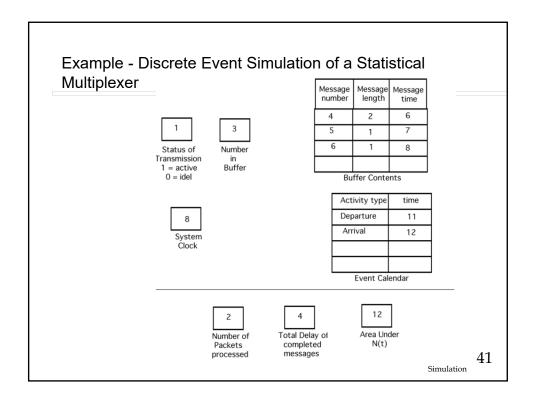

33 Simulation

Example - Discrete Event Simulation of a Statistical Multiplexer Message number Message length Message time 0 Status of Transmission Number in Buffer 1 = active 0 = idel Buffer Contents Activity type Arrival 3 System Clock Departure Event Calendar Total Delay of completed messages Area Under N(t) Number of Packets processed 34 Simulation

Example - Discrete Event Simulation of a Statistical Multiplexer Message number Message length Message time 6 3 1 Status of Transmission 1 = active 0 = idel Number in Buffer Buffer Contents Activity type time Arrival 5 6 Departure System Clock Event Calendar 2 Area Under N(t) Total Delay of completed messages Number of Packets processed 35 Simulation

Example - Discrete Event Simulation of a Statistical Multiplexer												
Message number	1	2	3	4	5	6	7	8	9	10	11	12
Interarrival time between i+1 and i message (seconds)	2	1	3	1	1	4	2	5	1	4	2	
Length of i th message (seconds)	1	3	6	2	1	1	4	2	5	1	1	3
										Simu	lation	36




Example - Discrete Event Simulation of a Statistical Multiplexer

Message number	1	2	3	4	5	6	7	8	9	10	11	12
Interarrival time between i+1 and i message (seconds)	2	1	3	1	1	4	2	5	1	4	2	
Length of i th message (seconds)	1	3	6	2	1	1	4	2	5	1	1	3

39

Simulation

Relative Merits of Time Step and Event Scheduling

Approach	Advantages	Disadvantages
Time Step	Efficient for system with very frequently occurring events	Must process at each time step
		Error induced by fixed finite
	Efficient for regularly spaced events	time increment
		Must establish rules to order events that occur in same time increment
Event Scheduling	Only process at event times	Significant programming effort required
	No time increment to select	•
	Flexible	

 $\underset{\text{Simulation}}{42}$

Introduction to Extend

- □ Allows graphical description of networks
- □ Data flow block diagrams
- Hierarchical structure to control complexity

Simulation

43

Example: M/M/1 Simulation in Extend

- □ Execute Extend 10
- □ Add traffic source
- Add queue
- Add server
- □ Add data structure
- □ Add performance measurements
- Make Hierarchical block
- □ Sensitize parameter and show multiple run.
- □ Ehance model after discussion on quality of measurements

Verification and Validation of Communication Network Simulation Models

- Verification is determining whether the simulation model performs as intended
- □ Validation is determining whether the simulation model is a "accurate" representation of the communication network under study

.

45

Verification Methods

- Modular development and verification
- □ Structured walk-through
- □ Event trace

Verification Methods

- Model simplification and comparison to analytic results
- Graphical display of network status as the model progresses

Simulation

47

Some Comments on Validation

- Simulation models are always approximations
- A simulation model developed for one application may not be valid for others
- □ Model development and validation should be done simultaneously

Verify M/M/1 Extend Simulation Model

49

Simulation

Some Comments on Validation

- Specific modeling assumptions should be tested
- Sensitivity analysis should be performed
- Attempt to establish that the model results resemble the expected performance of the actual system; expert analysis

Some Comments on Validation

"For models which attempt to describe *new* systems where *no historical data* are available and which are of such a nature that there are *no input conditions* that correspond to known analytical results, the problem of model validation is, indeed, extremely difficult. About all one can do in this situation is to recheck the logic of the design, run the model over a range of different inputs to determine whether the outputs are within the realm of plausibility, and, if one is so inclined, **pray a lot**."

(From D. Gross and C.M. Harris, "Fundamentals of Queueing Theory," John Wiley & Sons, Inc., New York, 1985)

51

Simulation

Statistical Considerations: Analysis of Results from Communication Network Simulation

- □ Quality of Performance Estimates
 - ☐ Variance of estimated performance measures
 - □ Confidence Intervals (CI)
 - □ Relative Error (RE)
- Starting Rules
 - Overcoming initial transients
 - Ignore initial transient
- Stopping Rules
 - □ Set fixed simulation end time
 - □ Run simulation until specified CI (or RE) met

Quality of the Performance Estimates

- □ Performance estimates should be unbiased
- □ Performance estimates should have "acceptable" error
 - □ Variance (standard deviation)
 - □ Confidence interval
 - □ Relative Error

Simulation

53

Quality of the Performance Estimate

- ☐ The desired confidence interval width (relative error) determines the length of the simulation run
- Observations tend to be correlated: cannot directly apply standard statistical approaches based on iid observations

- □ Common pdf is a Gaussian with two parameters;
 - □ Mean (expected value) μ $N(x; \mu, \sigma) =$
- - \Box Standard deviation σ
- ☐ Generalize the notation for any pdf with M parameters. $f_X(x,\theta_1,\theta_2,...\theta_M)$
- □ Example: Exponential pdf $f_x(x,\theta) = \frac{1}{\theta}$

$$f_X(x,\theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}} \quad x > 0$$
$$f_X(x,\theta) = 0 \quad x < 0$$

Simulation

Introduction to Estimation

- □ Goal:
 - ☐ Given N samples (observations) of the random variable X with $f_X(x; \theta)$, x_1 , x_2 , x_3 , x_4 ,... x_N find $-estimate-\theta$.
- ☐ Example: X is normal with known variance $(\sigma=1)$ and unknown expected value E[X]

$$N(x;\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2}}$$

□ Here θ =E[X] and is unknown

- □ Goal: find a function g(...) that maps N observations $x_1, x_2, x_3, x_4, ... x_N$ into a "good" estimate for θ, i.e., find $\hat{\theta} = g(x_1, x_2, x_3, ... x_M)$
- \square Before the measurement, each observation is a random variable X_i
- \square Typically the RV's X_i are assumed to be i.i.d.
- \square Now $\hat{\theta}$ is a RV.
- The properties of $\hat{\theta}$ determine the "goodness" of the estimate $\hat{\theta} = g(X_1, X_2, X_3, ... X_M)$

57 Simulation

Introduction to Estimation Probabilistic model $x_1, x_2, \dots x_N$ $g(x_1, x_2, x_3, \dots x_M)$

 $\begin{array}{c|c} f_{x}(x;\theta) \\ \hline \\ Parameter \\ Space \\ \hline \\ \end{array} \begin{array}{c} Observation \\ Space \\ \hline \end{array}$

Simulation

- □ Criteria for good estimators g(...)
 - \Box Unbiased $\widehat{\theta}$ is an unbiased estimate for θ if

$$E[\hat{\theta}] = \theta$$

☐ The sample mean is an unbiased estimator for the expected value

$$\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

$$E[\hat{\theta}] = E[\frac{1}{N} \sum_{i=1}^{N} X_i] = \frac{1}{N} \sum_{i=1}^{N} E[X_i] = E[X]$$

59

Simulation

Introduction to Estimation

- □ Example: Binomial RV
 - □ Probability of exactly k successes in n trials, where probability success on one trial = p _____

 $\operatorname{Prob}(k, n, p) = \binom{n}{k} p^{k} (1-p)^{n-k}$

□ Observing x successes in n trials results in the estimator for p $\hat{p} = \frac{x}{p}$

□ For $g(x_1, x_2, x_3, ...x_M)$ to be a "good" estimator the variation about the desired parameter should be small, i.e.,

$$E[|\widehat{\theta} - \theta|]$$
 or $E[(\widehat{\theta} - \theta)^2]$ or θ_{Max} - θ_{Min} should be small.

□ The most common measure of variation is the

Mean Square Error

$$MSE = E[(\widehat{\theta} - \theta)^2] = \sigma_{\widehat{\theta}}^2 - (\theta - E[\widehat{\theta}])^2$$

if $\widehat{\theta}$ is unbiased then $MSE = \sigma_{\widehat{\theta}}^2$

□ The variance of the estimator is the MSE

Simulation

61

Introduction to Estimation

□ The variance of the sample mean is

$$\begin{split} \hat{\theta} &= \frac{1}{N} \sum_{i=1}^{N} X_i \\ E[\hat{\theta}] &= E[\frac{1}{N} \sum_{i=1}^{N} X_i] = \frac{1}{N} \sum_{i=1}^{N} E[X_i] = E[X] \\ \sigma_{\hat{\theta}}^2 &= \frac{1}{N} \sigma_X^2 \\ \text{Note } \lim_{N \to \infty} \sigma_{\hat{\theta}}^2 = 0 \end{split}$$

□ Estimator for the variance

$$\begin{aligned} &f_X(x;\theta_1,\theta_2) \text{ where } \theta_1 = E[X] \text{ and } \theta_2 = \sigma_X^2 \\ &\widehat{\theta}_1 = \overline{X} = \frac{1}{N} \sum_{k=1}^N X_k \\ &\widehat{\theta}_2 = \frac{1}{N-1} \sum_{k=1}^N (X_k - \overline{X})^2 = \text{Sample variance} = s^2 \\ &E[s^2] = \sigma_X^2 \text{ so } s^2 \text{ is an unbiased estimator for the variance} \end{aligned}$$

Simulation

63

Confidence Interval

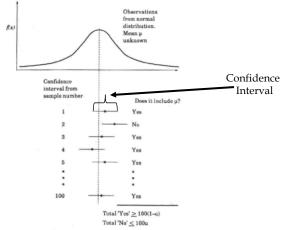


FIGURE 13.1 Meaning of a confidence interval.

From: "The Art of Computer Systems Performance Analysis" Raj Jain, Wiley, 1991

64

Simulation

Confidence Interval: Example

- □ m=25 samples of a RV X are collected $x_1, x_2, x_3, ... x_m$
- □ What is the probability that the true mean is in interval $\overline{X} 3.92 < \mu < \overline{X} + 3.92$
- ☐ Assumptions:
 - □ 25 is large enough such at the sample mean is Gaussian.
 - □ The variance of X is *known* and $\sigma^2 = 100$

65

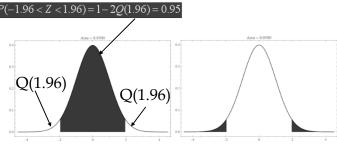
Simulation

Confidence Interval: Example

□ Next find the standard deviation of the sample mean

$$E[\overline{X}] = \mu$$
 and $Var[\overline{X}] = \frac{\sigma^2}{m} = \frac{\sigma^2}{25}$

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{m}} = 2$$


$$\begin{split} P(\overline{X} - 3.92 < \mu < \overline{X} + 3.92) &= P(-3.92 < \mu - \overline{X} < 3.92) \\ E[\mu - \overline{X}] &= 0 \text{ and } Var[\mu - \overline{X}] = Var[\overline{X}] = 4 \\ \text{so} \\ \frac{\mu - \overline{X}}{2} \sim N(0,1) \text{ and} \\ P(\overline{X} - 3.92 < \mu < \overline{X} + 3.92) &= P(-3.92 < \mu - \overline{X} < 3.92) = P(\frac{-3.92}{2} < \frac{\mu - \overline{X}}{2} < \frac{3.92}{2}) \\ &= P(-1.96 < Z < 1.96) \text{ where } Z \sim N(0,1) \end{split}$$

Confidence Interval: Example

$$P(-1.96 < Z < 1.96) \text{ where } Z \sim N(0,1)$$

$$P(-1.96 < Z < 1.96) = \frac{1}{\sqrt{2\pi}} \int_{-1.96}^{1.96} e^{\frac{-z^2}{2}} dz$$
Define $Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\frac{-z^2}{2}} dz$

$$P(-1.96 < Z < 1.96) = 1 - 2Q(1.96) = 0.95$$

 $\underline{https://demonstrations.wolfram.com/StandardNormalDistributionAreas/}$

Simulation

67

Confidence Interval: Example

- □ If the sample mean = 55 then there is a 95% probability that the true mean is between ~51 and 59.
- □ If the sample mean = 60 then there is a 95% probability that the true mean is between ~56 and 64.

Confidence Interval

$$P(1.96 < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{m}}} < 1.96) = 1 - \alpha = 0.95$$

$$\alpha = 0.05$$

$$100(1-\alpha) = \% \text{ confidence}$$

Simulation

69

Confidence Interval

- □ Unknown Variance
- □ Use the sample variance.
- □ If a "large" number of samples (e.g., m>25) are collected then Gaussian approximations are valid and process is the same.

Confidence Interval

- □ Small sample size.
- □ Find the CI using the t-distribution

 $\frac{\mu - \overline{X}}{\frac{\sigma}{l_m}} \sim t$ distribution with m-1 degrees of freedom

Find P(-1.96 < T < 1.96) with $T \sim t$ distribution with m-1 degrees of freedom

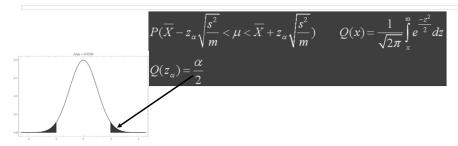
Simulation

71

Confidence Interval

- \Box Finding the limits on the CI in general, i.e. the 1- α CI
- □ Going back to the example: Note Q(1.96)=0.025 or

 z_T =1.96 and $Q(z_T) = 0.025$


In general

nd $Q(z_T) = 0.025$ $3.92 = z_T \sqrt{\frac{s^2}{m}}$

$$P(\overline{X} - z_{\alpha} \sqrt{\frac{s^{2}}{m}} < \mu < \overline{X} + z_{\alpha} \sqrt{\frac{s^{2}}{m}})$$

$$Q(z_{\alpha}) = \frac{\alpha}{2}$$

Confidence Interval

CI %	α	α/2	z_{α}
99	0.01	0.005	2.57
97.5	0.025	0.0125	2.24
95	0.05	0.025	1.96
90	0.1	0.05	1.64

Simulation

72

Confidence Interval

- □ Example: Find 95% CI for the loss probability given 30 replications of the M/M/1/S with S= 10 & ρ =0.7.
- □ Data m=30 [show extend model]

0.066524 1.052449 1.233736 0.197161 0.023002 0.564409 1.943335 0.648561 0.761048 0.130256 1.079867 0.742315 0.724162 1.542741 0.206498 1.38573 4.341059 0.478882 0.207289 0.63875 | 1.066117 0.916407 1.04683 0.837411 0.859991 1.572843 0.067779 0.134131 0.274906 0.169894

- \square Sample mean = 0.830
- \Box Sample standard deviation = 0.837
- Assuming Gaussian
 - \Box CI 0.830 +/-0.299 0.531< μ <1.13
- Assuming student-t
 - \Box CI 0.830 +/-0.31255 0.5179< μ <1.14303

Confidence Interval

- □ Finding the 90% CI for m=25 and s²=100 (assume 25 large enough)
- □ Going back to the example: Note Q(1.645)=0.05 or

$$z_T = 1.645$$

$$z_{T}=1.645$$

$$z_{\alpha}\sqrt{\frac{s^{2}}{m}}=1.64\sqrt{\frac{100}{25}}=3.29$$

$$P(\overline{X}-3.29<\mu<\overline{X}+3.29)$$

See: https://demonstrations.wolfram.com/CriticalValueZForZScoresForConfidenceLevels/

Simulation

75

Confidence Interval

□ As the probability of the true mean being in the CI increases the width of the CI decreases.

$$P(\overline{X} - z_{\alpha} \sqrt{\frac{s^{2}}{m}} < \mu < \overline{X} + z_{\alpha} \sqrt{\frac{s^{2}}{m}})$$

$$Q(z_{\alpha}) = \frac{\alpha}{2}$$

See: https://demonstrations.wolfram.com/CriticalValueZForZScoresForConfidenceLevels/

Relative Error

□ A quality measure related to the CI is the relative error (RE)

$$RE(\%) = \frac{100z_{\alpha}\sqrt{\frac{s^2}{m}}}{\left|\overline{X}\right|}$$

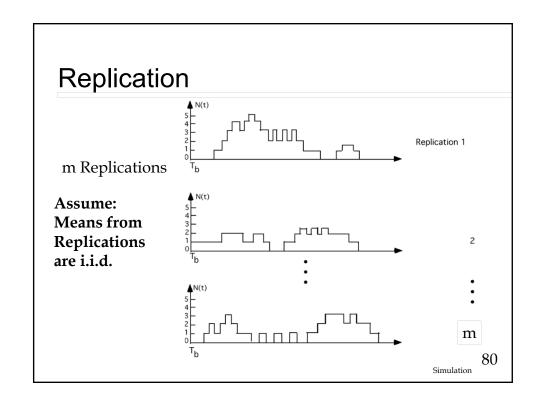
Using Gaussian assumption, i.e., m large

□ Show Extend M/M/1 examples

Simulation

Relative Error

- □ Example: Find the relative error for the loss probability given 30 replications of the $M/M/1/S \rho=0.7$.
- □ Data m=30 [show extend model]


0.066524 1.052449 1.233736 0.197161 0.023002 0.564409 1.943335 0.648561 0.761048 0.130256 1.079867 0.742315 0.724162 1.542741 0.206498 1.38573 4.341059 0.478882 0.207289 0.638751 1.066117 0.916407 1.04683 0.837411 0.859991 1.572843 0.066779 0.134131 0.274906 0.169894

- \square Sample mean = 0.830
- □ Sample standard deviation = 0.837
- □ Assuming Gaussian □ RE= 0.36 (36%)

Statistical Considerations: Common Techniques for Dealing with the Lack of Independence

- Replication
- □ Batching
- □ Regenerative
- * To overcome the initial transient the data from a start-up period is deleted (more later) Collect data for $t>T_b$ or for discrete observations for $n>n_0$

Simulation

Process: Replication

Conduct m replications of size n+n₀ each

1. Compute a mean for each replication:

$$\bar{x}_i = \frac{1}{n} \sum_{j=n_0+1}^{n_0+n} x_{ij} \quad i = 1, 2, \dots, m$$

2. Compute an overall mean for all replications:

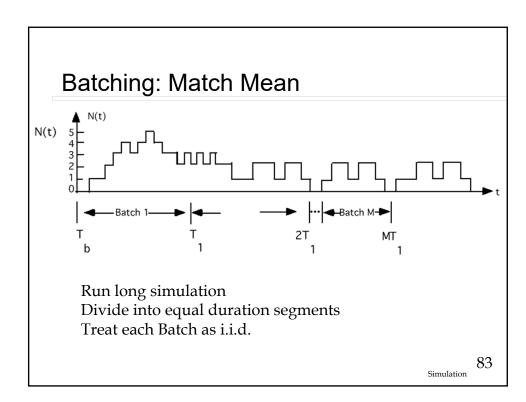
$$\bar{\bar{x}} = \frac{1}{m} \sum_{i=1}^{m} \bar{x}_i$$

3. Calculate the variance of replicate means:

$$Var(\bar{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\bar{x}_i - \bar{\bar{x}})^2$$

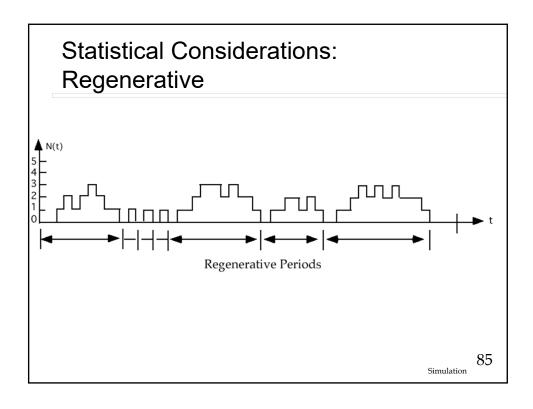
4. Confidence interval for the mean response is: RE(%) =

$$\begin{bmatrix} \bar{x} \mp & \mathbf{Z}_{\alpha} & \sqrt{\operatorname{Var}(\bar{x})/m} \end{bmatrix}$$


 $RE(\%) = \frac{100z_{\alpha}\sqrt{\frac{Var(\overline{x})}{m}}}{\left|\overline{\overline{x}}\right|}$

Modified rom: Raj Jain "The Art of Computer Systems Performance Analysis" https://www.cse.wustl.edu/~jain/books/perf_sli.htm

81


Replication

- Assume results for each replication are independent
- Apply standard statistical techniques
- □ Inefficient because of M startup periods

Statistical Considerations: Batching

- Assume results from each batch are independent
- Apply standard statistical techniques
- □ Batches can be correlated unless "dead" periods between batches are employed
- ☐ Treatment of "dead" periods similar to dealing with initial transients

Statistical Considerations: Regenerative

- □ Assume results from each regenerative period are independent
- □ Apply standard statistical techniques
- □ Regenerative period can become very long in some cases
- □ Note the regenerative technique overcomes the initial transient problem

Initial Transient Removal

- An initial transient period is present which can bias the performance measurements.
- Achieving Steady State
 - □ Run the simulation >> longer than the transient period. Then assume the transient has insignificant impact.
 - □ Use a run-in period:
 - Determine $t_{\rm p}$ such that the long-run distribution adequately describes the system for $t > t_p$
 - The system state at time t_p is a random variable, here we assume the probability of the system state at time t_p is sufficiently close to the steady state distribution.
 - Delete collected data before time t_p.
 - ☐ Use a "typical" starting condition (state) to initialize the model

87

Simulation

Initial Transient Removal

1. Get a mean trajectory by averaging across replications

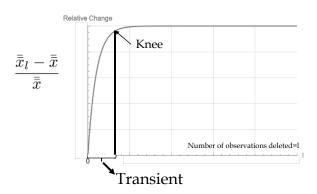
$$\bar{x}_j = \frac{1}{m} \sum_{i=1}^m x_{ij} \quad j = 1, 2, \dots, n$$

2. Get the overall mean:

$$\bar{\bar{x}} = \frac{1}{n} \sum_{j=1}^{n} \bar{x}_j$$

 $\bar{\bar{x}} = \frac{1}{n} \sum_{i=1}^{n} \bar{x}_{j}$ 3. Delete the first *l* observations and get an overall mean from the remaining *n-l* values:

Set l=1 and proceed to the next step.

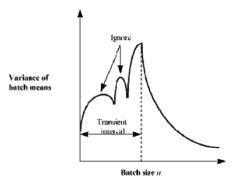

$$\bar{\bar{x}}_l = \frac{1}{n-l} \sum_{j=l+1}^n \bar{x}_j$$

4. Compute the relative change:

Relative change =
$$\frac{\bar{\bar{x}}_l - \bar{\bar{x}}}{\bar{\bar{x}}}$$

- 5. Repeat steps 3 and 4 by varying l from 1 to n-l.
- 6. Plot the overall mean and the relative change
- 7. *l* at knee = length of the transient interval.

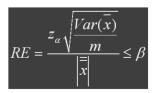
Initial Transient Removal



Simulation

89

Batching: Transient Removal


□ Finding batch size and transient time?

 $Modified \ from: \ Raj \ Jain \ "The \ Art \ of \ Computer \ Systems \ Performance \ Analysis" \\ \underline{https://www.cse.wustl.edu/~jain/books/perf_sli.htm}$

Stopping Rules

- □ Replication
- Assume initial transient has been removed
- □ Stop simulation when RE<set threshold

Simulation

91

Stopping Rules: Process

- □ Start simulation with m₁ replication.
- □ Check condition if satisfied then stop
- □ Else execute another replication and check again.
- $\ \square$ Stop simulation when RE< β

$$RE = \frac{z_{\alpha}\sqrt{\frac{Var(\overline{x})}{m}}}{\left|\overline{x}\right|} \le \beta$$

Stopping Rules: Process

□ Show Extend Example

Simulation

93

Evolution of Computer-Aided Analysis and Design Tools for Networks

- □ "Zeroth" generation general purpose languages
 - □ Fortran
 - □ C/C++
 - □ Pascal
 - □ Basic
- □ "First" generation general purpose queueing system simulations
 - □ GPSS
 - □ SLAM
 - □ SIMSCRIPT

Evolution of Computer-Aided Analysis and Design Tools for Networks

- "Second" generation application specific: computer systems and wide-area communication networks
 - □ RESO
 - PAWS
- □ "Third" generation integration of second generation languages with a graphics-oriented analysis and modeling environment
 - □ Extendsim (<u>www.imaginethatinc.com</u>)
 - □ GENESIS (from University of Massachusetts)
 - □ ns3
 - □ SES/Workbench (SES/Workbench is a trademark of Scientific and Engineering Software, Inc., Austin, TX)
 - □ OPNET (Mil 3, Inc., Washington, DC)

95

Simulation

Relative Merits of General Purpose Languages

Advantages	Disadvantages
Wide Availability	Longer programming and debugging time
Few restrictions imposed on the model	Difficult verification
User may have prior knowledge of the language	Unless object-oriented, limited ability to reuse models
Generally more computationally efficient	Model enhancement and evolution are difficult

Advantages	Disadvantages		
Provide built-in simulation services o reduce programming effort	Must adhere to a particular "world view" of the language		
Provide error-checking techniques uperior to those provided in general purpose languages	Availability and support		
Provide a brief, direct vehicle for expressing the concepts arising in a imulation study	Cost		
Provide ability to construct user ubroutines required as a part of any simulation routine	Increased computer running time		
Contain set of subroutines for ommon random numbers	Training required to learn the language and modeling paradigm		
facilitate collection and display of lata produced			
acilitate model reuse		Simulation	

Relative Merits of Computer-Aided Analysis and Design Environments

Advantages	Disadvantages
Provide a complete integrated performance analysis environment	Tailored to a specific modeling paradigm
Graphically based	May be tied to a specific hardware platform
Typically integrate language, database, prior knowledge, and statistical analysis packages	Increased execution time
Support management of models and input/output data	Cost
Facilitate model reuse and group model development	

Criteria for Selecting a Computer-Aided Analysis and Design Tool

- Availability
- □ Cost
- □ Usage
- Documentation
- Ease of Learning
- Computation Efficiency
- Flexibility
- Portability
- User Interface
- Extendibility
- Memory Requirements

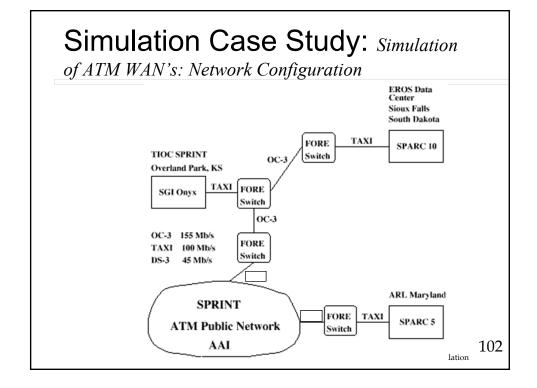
Simulation

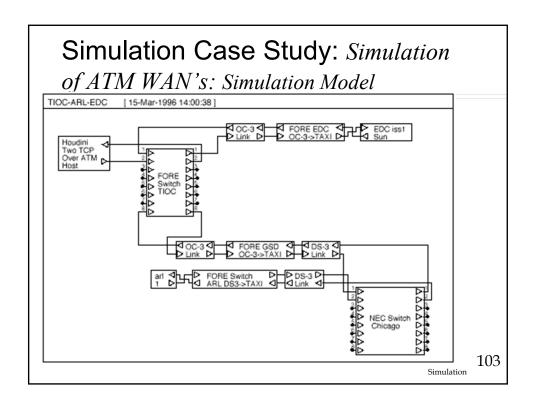
99

Simulation Case Study:

Simulation of ATM WAN's

- Determine the level of model fidelity required to accurately predict ATM WAN performance
- Determine the feasibility of measurement based validation of ATM WAN simulation models
- Identify factors influencing ATM WAN performance


Simulation Case Study:


Simulation of ATM WAN's

System Parameter	Value		
TCP MTU size	9180 bytes		
TCP processing and OS overhead time			
- DEC 3000 AXP	200-300 µs		
- SGI	550 µs		
- SPARC 10	550 µs		
- SPARC 5	700µs		
TCP user send buffer size	64 kBytes		
Slow-timer period	0.5 s		
Fast-timer period	0.2 s		
Minimum RTO	1.0 s		
AAL5 SAR processing time	0.2 µs		
AAL5 cell payload size	48 Bytes		
Switch processing time	4 µs		
Switch output buffer size per VC	256 cells		
OC-3c link speed	155 Mb/s		
TAXI link speed	100 Mb/s		
DS-3 link speed	45 Mb/s		

101

Simulation

Connection	Experimental Results	Simulation Results
Baseline results: Point-to-point connections		
TIOC to ARL	4.2 Mb/s	7.18 Mb/s
TIOC to EDC	64.2 Mb/s	65.98 Mb/s
Simultaneous traffic streams: Single source, two destinations		
TIOC to ARL	4.45 Mb/s	4.60 Mb/s
TIOC to EDC	64.36 Mb/s	61.37 Mb/s
Simultaneous traffic streams: Two sources, single destination		
ARL to TIOC	2.15 Mb/s	4.87 Mb/s
EDC to TIOC	52.42 Mb/s	65.01 Mb/s
Simultaneous full duplex traffic streams		
TIOC to ARL	4.34 Mb/s	5.16 Mb/s
ARL to TIOC	4.3 Mb/s	5.16 Mb/s
TIOC to EDC	22.18 Mb/s	41.80 Mb/s
EDC to TIOC	31.18 Mb/s	41.30 Mb/s

Simulation

Guidelines to Simulation, Modeling and Analysis of Communications Networks

- □Know the customer
- □Know the network
- Know the important performance metrics

Simulation 10

105

Guidelines to Simulation, Modeling and Analysis of Communications Networks

- Know how to establish a credible model
- □ Expect the model to evolve
- Know how to apply good software management techniques

Conclusions

- ☐ Simulation can be an important tool for communication network design and analysis
- □ Care and thought must go into construction of communication network models
- Care and thought must go into interpretation of model output

107

Simulation