EECS 388 Lab #1
Introduction

Welcome to EECS388 lab.

In this semester, you will develop parts of a self-driving car (watch the video in the link) using
small embedded computers, sensors, and actuators. In the process, you will learn the
fundamental concepts and practical skills to design and implement an embedded system.

Hardware Platforms

We will use two embedded single board computer (SBC) platforms, shown below.

Chaoice of RAM

e
More powerful
processor

USB-C
Power
supply

GIGABIT
ETHERNET
MICRO HDMI PORTS ’\ UsB3

Supporting 2 x 4K displays UsB 2

(a) HiFive1 Microcontroller (b) Raspberry Pi 4

The first is an Arduino compatible SBC featuring a RISC-V architecture microcontroller called
HiFive1, which will be responsible for basic control and safety of the car, and the second is a
Raspberry Pi 4, which will be responsible for vision-based steering using deep learning. In the
first half of the semester, we will use the HiFive1 while in the second half of the semester, we
will use both platforms.

More detailed technical specs can be found in the following links. We will provide additional
details of the hardware platforms when necessary for the labs in the future.

SiFive HiFive 1 rev b: https://www.sifive.com/boards/hifive1-rev-b
Raspberry Pi 4: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

https://devblogs.nvidia.com/deep-learning-self-driving-cars/
https://www.sifive.com/boards/hifive1-rev-b
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

Part 1. Setup development environment

For software development on the microcontroller, we will use Visual Studio Code (VSCode) and
PlatformlO IDE combination. VSCode is already installed on your computer but you will need to
install the PlatformlO IDE and other extensions.

(Note that the following installation instructions are based on the PlatformlO IDE for VSCode
documentation at: https://docs.platformio.org/en/latest/ide/vscode.html#installation)

Task 1.1: Take a look at Visual Studio Code

Launch the Visual Studio Code program from the command line as follows.

$ code

Task 1.2: Install PlatformlO extensions

Next, Install the PlatformlO IDE extension for VSCode as follows.

1. Open VSCode Package Manager
2. Search for official “platformio ide” extension
3. Install PlatformlO IDE

@ EXTENSIONS

o e |)

PlatformiO IDE

Official PlatformlO IDE for VSCode: The next generation integrated
development environment for loT. Cross-platform build system and
unified debugger. Remote unit testing and firmware updates.

After the installation is completed, check if you have both ‘PlatformIO IDE and ‘C/C++’
extensions installed as follows. Optionally, installing ‘vscode-icons’ and ‘vscode-pdf’
extensions are also recommended.

https://docs.platformio.org/en/latest/ide/vscode.html#installation
https://marketplace.visualstudio.com/items?itemName=platformio.platformio-ide

File Edit Selection View Go Debug Terminal

Microsoft

* PlatformiO IDE 17.1
opment environment for loT, Arduino, ...
FormlO {;‘}

Task 1.3. Connect the board to your PC

Next, connect your board to one of your PC’s USB ports. Once the board is connected to the
PC, two yellow power LEDs (3.3V and 1.8V) should be turned on. (See the figure below).

USB to JTAG and Serial 32Mbit SPI Flash Memory

Shield connectors
Reset Button

Wake Button RGB LED
Micro-B USB it
__‘ FE310-G002

WiFi + Bluetooth

7-12V DC ESP32-SOLO-1
Power Input
Shield connectors
3.3V Power LED

1.8V Power LED , JTAG direct

Part 2: Run your first program on the HiFive1 board.

Task 2.1. Setup a project.

Download the sample project as follows.

$ mkdir -p ~/Documents/PlatformIO

$ cd ~/Documents/PlatformIO

$ wget https://ittc.ku.edu/~heechul/courses/eecs388/11-blinky.tar.gz
$ tar zxvf 11-blinky.tar.gz

Task 2.2. Add the project folder
Add the I1-blinky folder in VSCode.

File Edit Selection View Go Debug Terminal Help Untitled (Workspace)

b OPEN EDITORS
p 4 NO FOLDER OPENED

You have not yet added a folder to the w
Add Folder

DEBUG CONSOLE

4 DUTLINE

a >

Python 2.7.1364-bit €0 A0 & PlatformlO: Checking PlatformlQ Core installation...

| File Edit Selection View Go Debug Terminal Help = blink.c - Untitled (Workspace) - Visual Studio ... — O

@ EXP! platformio eecs388 blinkc *
b OPEN EDITORS
p 4 UNTITLED (WORKSPACE)

P oW INCiuGe
» » o lib
Y sTC

eecs388 blink.c int main()

30 ib. i ;
Q. t gpio = GREEN_LED;

[.] Sl gpio_mode(gpio, OUTPUT);

-y il

@ £¥ platformio.ini

4 OUTLINE gpio_write(g

de
& mainQ ‘ (

£

Python27.1364-bit @O0A0 & v + ® 0 H B = Ln1,Col1 Spacesd UTF-8 CRIF C Win32 @ A

You should be able to see the screen above.

Task 2.3. Build and Deploy.

You are now ready to build the code and deploy it on the target board.

First build the program by clicking the build button in the toolbar as shown below or with
ctrl+alt+b hotkey.

If it is successful, you can now upload the compiled program binary to the board by clicking the
upload button or with ctri+a1t+u hotkey.

Data: 9 bytes (@.4% Full)
e (.data + .bss + .noinit)

S%] Took 3.63 seconds =——=

Ln11, Col1 Spaces:4 UTF-8 LF C++

If it was successful, you should see the green led on the board is blinking. (orange circle in the
figure below)

USB to JTAG and Serial 32Mbit SPI Flash Memory

Shield connectors

__— RGBLED

Reset Button

Wake Button

SiFive
FE310-G002
WiFi + Bluetooth
7-12v DC ESP32-SOLO-1
Power Input

Shield connectors

3.3V Power LED

1.8V Power LED JTAG direct

Task 2.4. Debugging (Optional)

The HiFive1 board is already equipped with a hardware debugger support. Thus, you can utilize
PlatformlO+VSCode’s debugging capability to debug your code. To use debugging, find the
‘Debug’ menu from the pull down menu or hit ‘F5’ (or ‘Ctrl+F5’). You should be able to see
something like the following screen. Then, you can use the debugger toolbar (right top corner of
the screenshot) to navigate the code.

eecs388_blink.c - Untitled (Workspace) - Visual Studio Code
File Edit Selection View Go Debug Terminal Help

@ DEBUG p PIO Debug (11-blinky) ¥ ## & eecs388_tfm eecs388_blinkc x ® m

W 1-b

4 Local

p b Global

» Static

40 A
mainy)

@ 4 CALL STACK AUS - gpio = GREEN _LED;

[.] 9 gpio_mode(gpio, OUTPUT);

4 PERIPHERALS de].a
gplo
delay(3

b BREAKPOINTS
4 DISASSEMBLY

7
Pmaster* © @O0A0 OPIODebug(li-blinky) ¢ + » & T E B <« & main() Ln9, Col1 Spaces:4 UTF8 LF C Linux & &

Appendix

PlatformlO Keybindings

e ctrl+alt+b / cmd-shift-b / ctrl-shift-b Build Project

e cmd-shift-d / ctrl-shift-d Debug project

e ctrl+alt+u Upload Firmware

e ctrl+alt+s Open Serial Port Monitor
PlatformlO Toolbar

& v » & M L B « [

1. PlatformlO Home
2. PlatformlO: Build

https://docs.platformio.org/en/latest/userguide/cmd_device.html#cmd-device-monitor
https://docs.platformio.org/en/latest/home/index.html#piohome

PlatformlO: Upload

PIO Remote

PlatformlO: Clean

P10 Unit Testing

Run a task... (See “Task Runner” below)
Serial Port Monitor

P1O Terminal

© O N AW

PlatformlO documentation

https://docs.platformio.org/en/latest/ide/vscode.html#installation

https://docs.platformio.org/en/latest/plus/pio-remote.html#pioremote
https://docs.platformio.org/en/latest/plus/unit-testing.html#unit-testing
https://docs.platformio.org/en/latest/userguide/cmd_device.html#cmd-device-monitor
https://docs.platformio.org/en/latest/ide/vscode.html#installation

