

 CPI2 : CPU performance isolation for
 shared compute clusters

1. Xiao Zhang
2. Eric Tune
3. Robert Hagmann
4. Rohit Jnagal
5. Vrigo Gokhale
6. John Wilkes

 Class Presentation : Siddhartha Biswas

1

 Abstract:
 1. Performance isolation is a key challenge in cloud computing.

 2. Linux has few defenses against performance interference in
 shared resources such as processor caches and memory buses.

 Result : Applications experience unpredictable performance for other programs.

 Solution : CPI2 - CPU performance isolation - Using cycles-per-instruction (CPI)
 data from hardware performance counters to

 A. Identify Problems.
 B. Select the likely perpetrators.
 C. Throttle the perpetrators (Optionally).
 D. Helping the victim to return to their expected behavior.

2

 Introduction:

 1. Google’s compute clusters share machine between applications to increase

 resource utilization .

 2. Most Google machine run multiple tasks.

 3. Interference can occur in any processor that is shared between threads of
 different jobs.

 4. This interference can negatively affect the performance of latency sensitive
 applications.

 5. Performance isolation in Linux is limited.

3

 No of tasks in standard Google machine

 High probability of getting interference because of
 shared hardware.

4

 Solving interference problem by
 statistical approach:

 1. Google’s compute clusters run thousands of similar tasks .

 2. Find statistical performance of each task (CPI2).

 3. Need to find performance outliers among them (Victim) .

 4. Need to reduce the interference on them from other tasks (Antagonist) .

 6. Determining which antagonist is the likely cause and throttle it.

 5. Checking new performance and continue the same procedure over time .

5

 CPI as a metric:

 1. Cycles per instruction (CPI) is used as a performance

 indicator for detecting interference.

 2. CPI can be measured directly from existing hardware and
 does not require application level input.

 6

 Concerns about CPI (as a metric):

 1. CPI might not be well correlated with application-level behavior.

 2. Instructions required to accomplish a fixed amount of work may vary

 between tasks of the same job, or over time in one task . Will CPI

 be proper performance indicator for these tasks?

 - It was found not an issue , in practice.

 3. CPI only shows a symptom, not the root cause.

 - True. But treating symptoms can restore good performance.

 4. CPI doesn’t measure network or disk interference effects.

 - True. Other techniques required to detect I/O interference

7

CPI might not be well correlated with application-level behavior.

Observation – It will

show correct beha-

viour (Batch job).

Correlation between
TPS & IPS is about
97%.

 IPS =
CPU Cycle Speed / CPI

8

CPI might not be well correlated with application-level behavior.

Observation – It will

show correct beha-

viour (Latency

Sensitive Application).

Correlation between

CPI & Request Latency

is about 97% .

9

CPI is a function of Hardware Platform:

A . Computation intensive
 application.

B. Computation intensive
 application.

C. I/O dependent application

Observation:
Job C shows poor correlation
because CPI does not capture
I/O behavior.

10

CPI changes slowly over time as the instruction mix that gets

executed changes.

Observation:

 1. CPI of a web search job over five days.
 2. Almost same pattern everyday .
 3. Only 4% coefficient of variation (standard deviation divided by mean).

11

Conclusion (CPI as a metric) :

1. Positive correlation between changes in CPI and

 changes in compute intensive application.

2. CPI is reasonably stable measure over time.

12

Collecting CPI Data:

1.CPI is gathered for every task on a machine.
2.Collected data is sent to a service where data for related task is aggregated .
3. Per job, per-platform aggregated CPI is sent back to each machine.
4. Anomalies are detected locally which enables rapid response.

13

CPI Sampling:

1.CPI data is derived from hardware counters.

2.CPI = (CPU CLK UNHALTED.REF counter / INSTRUCTIONS RETIRED

counter) .

3. Data is collected per Cgroup basis.

4.CPI data is sampled periodically – usually 10 second period a minute.

14

CPI data aggregation:

1.The data aggregation component of CPI2 calculates the mean and standard

deviation of each job’s CPI – called CPI spec.

2.Information is updated every 24 hours .

3.Since CPI changes with time very slowly , CPI spec acts like predicted CPI.

15

Identifying antagonists:

1.CPI values are measured and analyzed locally by a management agent that

runs in every machine.

2.A predicted CPI distribution is provided to this management agent .

3.A CPI measurement is flagged as an outliner if it is larger than the 2 times of

standard deviation point of predicted CPI distribution.

4.Tasks which take less than 0.25 CPU-sec/ sec are also ignored because

default CPI value for these tasks are very high.

5.A list of suspects is made from the other high CPU usage tasks.

6.Correlation is checked between the victim’s CPI value and Antagonist’s CPU

usage.

7.A good correlation means the suspect is highly likely to be a real antagonist –

higher the correlation value (near to 1), the greater the accuracy in identifying

an antagonist . This value is > 0.35 in practice.

16

Dealing with antagonists:

1.Find the first job from the list of jobs which has the biggest correlation with

victim.

2.Forcibly reduce antagonist’s CPU usage by applying CPU hard-capping.

3.Check the victim’s performance whether it is improved or not?

4.If yes- then kill the current antagonist .

5.If performance of victim is not improved , do second round of same checking.

17

Case Study : Effectiveness of the antagonist

identification algorithm:

Case 1:

18

Case Study : Effectiveness of the antagonist

identification algorithm:

Case 2:

Observation:
15 minute CPU

hard capping

was done here

to check the

victim’s

performance.

19

Case Study : Effectiveness of the antagonist

identification algorithm:

Case 3:

20

Large Scale Evaluation:

Is antagonism

correlated with

machine load? No.

Observation:

1. Correlation > 0.35

 for various loads (

 distributed evenly).

2.High CPI for machines

 with low CPU

 utilization.

21

Large Scale Evaluation:

Benefits to victim jobs

? Yes.

Observation:

1.Relative CPI is < 1 in most

 cases.

 Relative CPI = CPI after

 throttling / Actual CPI .

22

 Related Work:
 1. Pure software approach taken by CPI2 complements work in the

 architecture community on cache monitoring and partitioning. But

 CPI2 is deployable in existing hardware.

 2. CPI2 is a larger body of work on making performance of

 applications in shared computer clusters more predictable : Q-

 cloud is such a system which aims to provide QoS to cloud

 computing applications.

 3. Where CPI2 uses CPI increases to indicate conflicts, there are

 other related works which use application level metrics, which is

 more precise than CPI, but less general and need application

 modification.

 4. Google-Wide Profiling gathers performance counter sampled

 profile of both hardware and software performance events, but it

 is enabled only for a tiny fraction of a second in order to reduce

 overhead of profiling.

23

 Future Work:

 1. Disk and network I/O conflicts can be resolve by correlation-based

 antagonist identification.

 2. Exploring adaptive throttling and making job placement

 antagonist-aware automatically.

 3. In this algorithm , the antagonist is throttled only to 0.01 CPU-

 sec/sec. This is quite harsh . A feedback driven throttling which

 dynamically set the hard capping would be more appropriate.

 4. This algorithm is very simple – it will not work well if a group of

 antagonists together cause significant performance issue , which

 individually did not have much effect on the victim . In future work

 , it is required to reduce the number of antagonists or thinking

 antagonists as a group.

24

 Conclusion:
 1. CPI2 is a CPI-based system for large clusters to detect and handle

 CPU performance isolation faults.

 2. The design, implementation, and evaluation of CPI2 is presented

 in this paper.

 3. The authors demonstrated CPI2’s usefulness in solving real pro-

 duction issues – it has been deployed in Google’s fleet .

 4. The beneficiaries include

 A. End users, who experience fewer performance outliers.

 B. System operators, who have a greatly reduced load tracking

 down transient performance problems.

 C. Application developers, who experience a more predictable

 deployment environment.

25

 Class Discussion:

 1. What is good and bad in this model?

 2. If you have any question for me regarding this paper.

26

