
Understanding Hardware
Interference Channels in Multicore

 Computer architecture basics for multicore real-time systems

Heechul Yun

Associate Professor

University of Kansas

https://www.ittc.ku.edu/~heechul

https://www.ittc.ku.edu/~heechul

Agenda

•Memory-level parallelism

• Split-transaction bus

•Non-blocking cache

•Banked cache and DRAM organization

•Memory controller

•Effective “attack” strategies to cause massive cross-core interference

Memory-level parallelism (MLP)

•MLP is the key to understand modern multicore processors (MCP)
• essential for performance (throughput)

•A core can request multiple concurrent memory accesses at a time
• times the number of cores (and accelerators)

• Interconnect (bus) supports split-transactions
• multiple outstanding transactions can occur simultaneously

•Non-blocking cache can handle multiple outstanding cache misses
• it can continue to serve hits under multiple misses

•Cache and DRAM are composed of multiple independent resources
• cache/dram banks can be accessed simultaneously in parallel

Memory-level parallelism (MLP)

Last Level Cache (LLC)

DRAM

Memory Controller (MC)

Core1 Core2 Core3 Core4

Request buffers
 Read Write

Scheduler

MSHRs, WB Buffer

CMD/ADDR DATA

Out-of-order core:
Multiple memory requests

Non-blocking caches:
Multiple cache-misses

DRAM:
Multiple banks serve multiple requestsBank

Nd
Bank
Nd-1

Bank
2

Bank
1

MSHRs MSHRs MSHRs MSHRs

Memory controller:
Request buffering, re-ordering

Bank 1 Bank Nc

I DI DI DI D

Split-transaction bus

Figure source: John Paul Shen and Mikko H Lipasti. “Modern processor design: fundamentals of superscalar processors.” Waveland Press, 2013

Interconnect is usually not a bottleneck

Non-blocking cache

•A core can generate multiple simultaneous accesses to a cache

•Multiple cores/accelerators can simultaneously access a shared cache

• So, a shared cache can get lots of parallel requests

•A non-blocking shared cache is essential for performance

Non-blocking cache

•Can serve cache hits under multiple cache misses

•Essential for performance in multicore

cpu cpu

miss hit miss

Miss penalty

Miss penalty

stall only when
result is needed

D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

cpu cpu

miss

Miss penalty

hit

Blocking cache Non-blocking cache

Non-blocking cache

•Cache internal structures are potential interference channels

Miss Status Holding Registers

● Track outstanding cache misses.

● Allow high memory-level

parallelism

Writeback Buffer.

● Hold evicted dirty lines

(writebacks).

● Prevent cache refills from waiting.

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In IEEE RTAS, 2016 (Best Paper Award)
Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019 (Outstanding Paper Award)

Multi-bank cache/DRAM organizations

• Shared cache and DRAM are not a single resource

•Each is composed of multiple resources---banks

•Banks are (largely) independent and can be accessed in parallel

•Generally, more banks = more parallelism/throughput

Cache bank organization

•Multiple banks can be accessed simultaneously

Tag bank

ARM Cortex A72/A57 LLC Bank Organization

63 0

Data bank

6 5 4

memory address mapping

DRAM bank organization

•Multiple banks can be accessed simultaneously

LLC

DRAM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

63 0

 bank #

 14 13 12 11

memory address mapping

Raspberry Pi 4 DRAM bank
mapping (16 banks)

Multi-bank cache/DRAM organizations

•Can be a problem when all try to access the same cache/dram bank

LLC

DRAM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Memory controller (MC)

• Schedule memory requests on DRAM chips

• Subject to DDR timing constraints

•Can re-order the requests to
maximize memory throughput

•Often prioritize reads over writes
unless too many writes are pending

• Scheduling algorithms can greatly
impact worst-case timing

Read request
 buffer

Write request
buffer

Bank 1
scheduler

Channel scheduler

Bank 2
scheduler

Bank N
scheduler

DRAM chips

Memory requests from cores

Heechul Yun, Rodolfo Pellizzoni, Prathap Kumar Valsan. “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems.” In ECRTS, 2015

Effective strategies to cause interference

•Try to exhaust various hardware queues/buffers

•Try to generate many requests targeting a single resource (bank)

•Writes often cause worse contention than reads

Effects of cache internal buffer attacks

LLC

Core
1

Core
2

Core
3

Core
4

victim attackers

•Observed worst-case: >300X (times) slowdown on popular multicores

•Even when the cache is partitioned to protect the victim

>300X

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019

Sequential writes
(a.k.a. ‘MemBomb’)

Effects of DRAM bank attacks

• Targeting a single DRAM bank caused up to 44X slowdown in real apps

• LLC space partitioning was not effective

M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.” In IEEE Transactions on Computers, 2021

Bank-aware parallel
pointer chasing

Sequential writes
(a.k.a. ‘MemBomb’)

Parallel pointer chasing

Victim on Core 1

Effects of cache bank attacks

• Targeting a single cache bank caused up to 2.3X slowdown in real apps

• LLC space partitioning and DRAM bandwidth throttling were not effective
M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023

Bank-aware LLC fitting
parallel pointer chasing

LLC fitting
sequential writes

LLC fitting parallel
pointer chasing

Victim on Core 1

Takeaways

•Memory-level parallelism (MLP) is key to understand modern
multicore processors (MCPs)

•High MLP designs at all levels of the memory hierarchy are essential
for performance/throughput, but they also can be problematic
hardware interference channels from a real-time perspective

•Contrary to popular beliefs, interconnects are usually not major
interference channels in modern MCPs. Major ones are at the edges

•There are effective “attack” strategies to cause massive cross-core
interference, which cannot be easily mitigated by existing
software/hardware partitioning techniques

References

● [C] Michael Garrett Bechtel and Heechul Yun. Cache Bank-Aware Denial-of-Service Attacks on Multicore

ARM Processors. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications

Symposium (RTAS), May 2023. [paper] [slides] [code]

● [J] Michael Garrett Bechtel and Heechul Yun. Memory-Aware Denial-of-Service Attacks on Shared Cache in

Multicore Real-Time Systems. IEEE Transactions on Computers, 2021. [paper] [code]

● [C] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore:

Analysis and Prevention. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications

Symposium (RTAS), April 2019. [paper] [arXiv] [slides] [code] [data] (Outstanding Paper Award)

● [C] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation

in Multicore Real-Time Systems. IEEE Intl. Conference on Real-Time and Embedded Technology and

Applications Symposium (RTAS), IEEE, 2016. [paper] [slides] [code] (Best Paper Award)

● [C] Heechul Yun, Rodolfo Pellizzoni, Prathap Kumar Valsan. Parallelism-Aware Memory Interference Delay

Analysis for COTS Multicore Systems. Euromicro Conference on Real-Time Systems (ECRTS), 2015. [paper]

[slides]

https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-camera.pdf
https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-slides.pdf
https://github.com/CSL-KU/CacheBankDOS
https://ittc.ku.edu/~heechul/papers/hp_attack-tc2021.pdf
https://github.com/mbechtel2/MemoryAwareDOS
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-camera.pdf
https://arxiv.org/abs/1903.01314
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-slides.pdf
https://github.com/mbechtel2/memguard
https://github.com/mbechtel2/CacheDOS
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-camera.pdf
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-slides.pdf
https://github.com/CSL-KU/IsolBench
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15.pdf
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15-slide.pdf

