Understanding Hardware
Interference Channels in Multicore

Computer architecture basics for multicore real-time systems

Heechul Yun
Associate Professor
University of Kansas
https://www.ittc.ku.edu/~heechul

https://www.ittc.ku.edu/~heechul

Agenda

* Memory-level parallelism

* Split-transaction bus

* Non-blocking cache

* Banked cache and DRAM organization

* Memory controller

* Effective “attack” strategies to cause massive cross-core interference

Memory-level parallelism (MLP)

* MLP is the key to understand modern multicore processors (MCP)
 essential for performance (throughput)

* A core can request multiple concurrent memory accesses at a time
 times the number of cores (and accelerators)

* Interconnect (bus) supports split-transactions
* multiple outstanding transactions can occur simultaneously

* Non-blocking cache can handle multiple outstanding cache misses
* it can continue to serve hits under multiple misses

e Cache and DRAM are composed of multiple independent resources
 cache/dram banks can be accessed simultaneously in parallel

Memory-level parallelism (MLP)

Out-of-order core:
Multiple memory requests

Last Level Cache (LLC
= =) Non-blocking caches:

Multiple cache-misses
MSHRs, WB Buffer

Memory Controller (MC)

Request buffers _ _
Read Write Request buffering, re-ordering

=) Memory controller:
Scheduler

DRAM:

Bank Bank Bank Bank = Multiple banks serve multiple requests
1 p) N-1 N¢

Split-transaction bus

| ReqA | Rsp~A |Read A from DRAM| Xmit A

(a) Simple bus with atomic transactions

| Req A

Req B

ReqB | Rsp~B |Read B from DRAM| XmitB |
l I | I

Rsp ~A (Read A from DRAM Xmit A
I
Rsp ~B | Read B from DRAM Xmit B
Req C Rsp ~C |Read C from DRAM Xmit C
I I
Req D | Rsp~D Read D from DRAM Xmit D
l | I I |

(b) Split-transaction bus with separate requests and responses

A split-transaction bus enables higher throughput by pipelining requests, responses, and data transmission.

Figure 11.9

Simple Versus Split-Transaction Busses.

Figure source: John Paul Shen and Mikko H Lipasti. “Modern processor design: fundamentals of superscalar processors.” Waveland Press, 2013

Non-blocking cache

* A core can generate multiple simultaneous accesses to a cache

* Multiple cores/accelerators can simultaneously access a shared cache
* S0, a shared cache can get lots of parallel requests

* A non-blocking shared cache is essential for performance

Non-blocking cache

miss hit
cpu cpu
Miss penalty

Blocking cache

stall only when
result is needed

Ti vl

Miss penalty

cpu

Miss penalty
Non-blocking cache

* Can serve cache hits under multiple cache misses

* Essential for performance in multicore

D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

Non-blocking cache

Miss Status Holding Registers

Track outstanding cache misses.
Allow high memory-level
parallelism

Core Core Core Core
IIII [D] Ell [D] III| [D] EII [D]
L2 cache
Tag array Data array
" MsHR | WB Buffer | |

/

address/respond bus

data bus

Writeback Buffer.

Hold evicted dirty lines
(writebacks).
Prevent cache refills from waiting.

* Cache internal structures are potential interference channels

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In IEEE RTAS, 2016 (Best Paper Award)
Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019 (Outstanding Paper Award)

Multi-bank cache/DRAM organizations

* Shared cache and DRAM are not a single resource

* Each is composed of multiple resources---banks

* Banks are (largely) independent and can be accessed in parallel
* Generally, more banks = more parallelism/throughput

Cache bank organization

* Multiple banks can be accessed simultaneously

Tag Bank 1 Tag Bank 2 memory address mapping
63 6514 0
Data Bank 1 Data Bank 1
Data Bank 2 Data Bank 2
Data Bank 3 Data Bank 3
Data Bank 4 Data Bank 4 Tag bank Data bank

ARM Cortex A72/A57 LLC Bank Organization

DRAM bank organization

* Multiple banks can be accessed simultaneously

memory address mapping

63 14131211 0

bank #

Raspberry Pi 4 DRAM bank
mapping (16 banks)

Multi-bank cache/DRAM organizations

* Can be a problem when all try to access the same cache/dram bank

\ ///Memsfy CaptFoller (MC)

1w 7

1y .7
s
! l/il//
-’

Bank Bank Bank
1 p) 3

Memory controller (MC)

* Schedule memory requests on DRAM chips
* Subject to DDR timing constraints

Memory requests from cores

* Can re-order the requests to eadrequest e reduest
maximize memory throughput
» Often prioritize reads over writes B I e

unless too many writes are pending

Channel scheduler

* Scheduling algorithms can greatly

Impact worst-case timing DRAM chips

Heechul Yun, Rodolfo Pellizzoni, Prathap Kumar Valsan. “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems.” In ECRTS, 2015

Effective strategies to cause interference

* Try to exhaust various hardware queues/buffers

*Try to generate many requests targeting a single resource (bank)
e Writes often cause worse contention than reads

Effects of cache internal buffer attacks

victim

/

attackers

Core
2 3

4

LLC

25

20

Slowdown
[y
o

-
o

Sequential writes

? (a.k.a. ‘MemBomb’)

>300X
[T T
solo 1
i Gk +1 attacker KXX7 <
- +2 attackers EZz2Xd <
+3 attackers N “
230.6
K5
o
o
s
- S i
X
""" 2 e B
Pi 3(A53) C2(A53) XU4(A15) Pi 2(A7) XU4(A7)

* Observed worst-case: >300X (times) slowdown on popular multicores

* Even when the cache is partitioned to protect the victim

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019

Effects of DRAM bank attacks Sequential writes

(a.k.a. ‘MemBomb’)

e e BwWrite T—— | |
PLLWrite mmmmmm < Parallel pointer chasing
25 I BKPLLWrite M.

20 - —\ Bank-aware parallel

-
= pointer chasing
o 15 + o
=
S
w
10 - —
| ‘ ‘ —
0‘ II|I|II ||I||I|I|III||II|II||I|II
'O‘D3°>n<,ﬁ‘lﬁmhc"a3"'8555—"8§'35“39-6'33‘£-3_2$”‘9
- 33 ¥838 5533537338553 82857535828¢8
Victim on Core 1 2 g8 € 2 gg°~~<= 8t =2"38§ 5 R
S @
Q
=

* Targeting a single DRAM bank caused up to 44X slowdown in real apps
* LLC space partitioning was not effective

M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.” In IEEE Transactions on Computers, 2021

LLC fitting parallel

Effects of cache bank attacks

PLLWrite(LLC) mmmm«—— pointer chasing

— BwWrite(LLC) EXX3 BkPLLWrite(LLC) mmm—

Solo

LLC fitting

sequential writes

Bank-aware LLC fitting

parallel pointer chasing

2

UMOPMO|S

Victimon Corel ——

* Targeting a single cache bank caused up to 2.3X slowdown in real apps

* LLC space partitioning and DRAM bandwidth throttling were not effective

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023

Takeaways

* Memory-level parallelism (MLP) is key to understand modern
multicore processors (MCPs)

* High MLP designs at all levels of the memory hierarchy are essential
for performance/throughput, but they also can be problematic
hardware interference channels from a real-time perspective

* Contrary to popular beliefs, interconnects are usually not major
interference channels in modern MCPs. Major ones are at the edges

* There are effective “attack” strategies to cause massive cross-core
interference, which cannot be easily mitigated by existing
software/hardware partitioning techniques

References

e [C] Michael Garrett Bechtel and Heechul Yun. Cache Bank-Aware Denial-of-Service Attacks on Multicore
ARM Processors. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications
Symposium (RTAS), May 2023. [paper] [slides] [code]

® [J] Michael Garrett Bechtel and Heechul Yun. Memory-Aware Denial-of-Service Attacks on Shared Cache in
Multicore Real-Time Systems. IEEE Transactions on Computers, 2021. [paper] [code]

e [C] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore:
Analysis and Prevention. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2019. [paper] [arXiv] [slides] [code] [data] (Outstanding Paper Award)

e [C] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation
in Multicore Real-Time Systems. IEEE Intl. Conference on Real-Time and Embedded Technology and
Applications Symposium (RTAS), IEEE, 2016. [paper] [slides] [code] (Best Paper Award)

e [C] Heechul Yun, Rodolfo Pellizzoni, Prathap Kumar Valsan. Parallelism-Aware Memory Interference Delay
Analysis for COTS Multicore Systems. Euromicro Conference on Real-Time Systems (ECRTS), 2015. [paper]

[slides]

https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-camera.pdf
https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-slides.pdf
https://github.com/CSL-KU/CacheBankDOS
https://ittc.ku.edu/~heechul/papers/hp_attack-tc2021.pdf
https://github.com/mbechtel2/MemoryAwareDOS
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-camera.pdf
https://arxiv.org/abs/1903.01314
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-slides.pdf
https://github.com/mbechtel2/memguard
https://github.com/mbechtel2/CacheDOS
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-camera.pdf
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-slides.pdf
https://github.com/CSL-KU/IsolBench
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15.pdf
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15-slide.pdf

