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Agenda

•Memory-level parallelism

• Split-transaction bus

•Non-blocking cache

•Banked cache and DRAM organization

•Memory controller

•Effective “attack” strategies to cause massive cross-core interference



Memory-level parallelism (MLP)

•MLP is the key to understand modern multicore processors (MCP)
• essential for performance (throughput)

•A core can request multiple concurrent memory accesses at a time
• times the number of cores (and accelerators)

• Interconnect (bus) supports split-transactions
• multiple outstanding transactions can occur simultaneously 

•Non-blocking cache can handle multiple outstanding cache misses 
• it can continue to serve hits under multiple misses 

•Cache and DRAM are composed of multiple independent resources
• cache/dram banks can be accessed simultaneously in parallel
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Split-transaction bus

Figure source: John Paul Shen and Mikko H Lipasti. “Modern processor design: fundamentals of superscalar processors.” Waveland Press, 2013 

Interconnect is usually not a bottleneck



Non-blocking cache

•A core can generate multiple simultaneous accesses to a cache

•Multiple cores/accelerators can simultaneously access a shared cache

• So, a shared cache can get lots of parallel requests 

•A non-blocking shared cache is essential for performance



Non-blocking cache

•Can serve cache hits under multiple cache misses

•Essential for performance in multicore 
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Non-blocking cache

•Cache internal structures are potential interference channels

Miss Status Holding Registers

● Track outstanding cache misses.

● Allow high memory-level 

parallelism

Writeback Buffer.

● Hold evicted dirty lines 

(writebacks).

● Prevent cache refills from waiting.

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In IEEE RTAS, 2016  (Best Paper Award)
Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019  (Outstanding Paper Award)



Multi-bank cache/DRAM organizations

• Shared cache and DRAM are not a single resource

•Each is composed of multiple resources---banks

•Banks are (largely) independent and can be accessed in parallel

•Generally, more banks = more parallelism/throughput



Cache bank organization

•Multiple banks can be accessed simultaneously
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DRAM bank organization

•Multiple banks can be accessed simultaneously
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Multi-bank cache/DRAM organizations

•Can be a problem when all try to access the same cache/dram bank
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Memory controller (MC)

• Schedule memory requests on DRAM chips

• Subject to DDR timing constraints

•Can re-order the requests to
maximize memory throughput

•Often prioritize reads over writes 
unless too many writes are pending

• Scheduling algorithms can greatly 
impact worst-case timing
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Effective strategies to cause interference

•Try to exhaust various hardware queues/buffers

•Try to generate many requests targeting a single resource (bank)

•Writes often cause worse contention than reads



Effects of cache internal buffer attacks
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•Observed worst-case: >300X (times) slowdown on popular multicores

•Even when the cache is partitioned to protect the victim

>300X

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.”  In IEEE RTAS, 2019
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Effects of DRAM bank attacks

• Targeting a single DRAM bank caused up to 44X slowdown in real apps

• LLC space partitioning was not effective

M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.”  In IEEE Transactions on Computers, 2021
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Effects of cache bank attacks

• Targeting a single cache bank caused up to 2.3X slowdown in real apps 

• LLC space partitioning and DRAM bandwidth throttling were not effective 
M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.”  In IEEE RTAS, 2023
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Takeaways

•Memory-level parallelism (MLP) is key to understand modern 
multicore processors (MCPs)

•High MLP designs at all levels of the memory hierarchy are essential 
for performance/throughput, but they also can be problematic 
hardware interference channels from a real-time perspective

•Contrary to popular beliefs, interconnects are usually not major 
interference channels in modern MCPs. Major ones are at the edges 

•There are effective “attack” strategies to cause massive cross-core 
interference, which cannot be easily mitigated by existing 
software/hardware partitioning techniques
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