
MURAL: A Multi-Resolution Anytime Framework
for LiDAR Object Detection Deep Neural Networks

Ahmet Soyyigit1, Shuochao Yao2, and Heechul Yun3

1,3University of Kansas, Lawrence, KS, {ahmet.soyyigit, heechul.yun}@ku.edu
2George Mason University, Fairfax, VA, shuochao@gmu.edu

Abstract—Making tradeoffs between execution latency and
result utility (i.e., anytime computing) to adapt to dynamic opera-
tional requirements has been shown to enhance the performance
of cyber-physical systems. In this work, we focus on enabling
anytime computing for deep neural networks (DNNs) that process
LiDAR point clouds for 3D object detection. We propose a novel
method that enables multi-resolution inference, allowing the input
to be dynamically scaled and processed at the resolution needed
to meet timing requirements.

Importantly, our memory-efficient approach requires the de-
ployment of only a single DNN model, avoiding the need to deploy
multiple models, each trained for a different input resolution. We
also introduce a deadline-aware scheduler that selects the highest
possible resolution for any given input by accurately predicting
the execution time for all possible resolutions at runtime, which is
a challenging task due to the irregularity of LiDAR point clouds.

Experimental results on the nuScenes autonomous driving
dataset demonstrate that our method significantly outperforms
existing anytime computing approaches for LiDAR object de-
tection. By achieving superior detection accuracy under varying
time constraints while maintaining deployment simplicity, our
work establishes a new state-of-the-art in this domain.

Index Terms—LiDAR, 3D object detection, Anytime computing

I. INTRODUCTION

Autonomous systems are critically dependent on the ac-
curate detection of surrounding objects in real-time. For this
task, numerous highly accurate LiDAR-based object detection
deep neural networks (DNNs) have been proposed in recent
years [1]–[4]. However, these state-of-the-art LiDAR object
detection DNNs are computationally expensive, making de-
ployment on resource-constrained embedded computing hard-
ware challenging. This challenge is particularly pronounced in
systems with strict size, weight, and power (SWaP) constraints,
necessitating trade-offs between accuracy and latency.

The required accuracy/latency trade-offs depend not only
on the SWaP constraints but also on the dynamic operation
environment [5], [6]. For example, in complex and crowded
urban environments where objects move slowly, processing
input in a fine-grained manner may be desirable to maximize
detection accuracy, even if it takes longer. However, in simpler
environments with fast-moving objects, such as highways,
it may be preferable to process quickly in a coarse-grained
manner, as lower processing latency could be more important
than high precision and fine-grained details.

Algorithms that can trade off quality and latency are known
as anytime algorithms in the literature [7], and there has

been significant effort in recent years to make DNNs that
process perceptual input data anytime-capable. For image
classification and object detection tasks, “early-exit” architec-
tures have been explored [8]–[11], where additional output
layers are integrated at intermediate stages of a DNN to
allow making predictions before reaching the full depth of the
model. Criticality-based slicing and scheduling of input [10],
[12]–[15] and dynamic scaling of image resolution [16]–[18]
have been studied to enable anytime processing capabilities in
object classification and detection DNNs. However, most prior
works have focused on DNNs that process camera images.

For LiDAR-based object detection tasks, Anytime-
LiDAR [19] combined the early-exit method with a novel
detection head scheduling technique to enable dynamic
latency/accuracy tradeoffs for PointPillars [4]. VALO [20]
explores a deadline-aware input slicing and scheduling
approach that greatly improves the anytime performance,
achieving higher accuracy across a gamut of deadlines,
when applied to the state-of-the-art LiDAR object detection
models [2], [21]. However, input resolution, defined here as
the spatial granularity of the input encoded from the LiDAR
scans, remains a largely underexplored scaling factor in
the design of anytime LiDAR detection models. Although
adjusting resolution provides an excellent trade-off between
detection accuracy and execution time (as shown in Figure 3),
the runtime memory requirements grow linearly with the
number of supported resolutions, presenting a key challenge
for practical deployment.

In this paper, we propose MURAL, a multi-resolution
anytime framework for LiDAR object detection DNNs. First,
MURAL enables dynamic selection of input resolution, al-
lowing flexible trade-offs between accuracy and latency while
using a single shared set of network weights. This is possible
thanks to its multi-resolution architecture enhancement and
training methodology (Section IV-B). Second, MURAL can
support arbitrary input resolutions, including those not seen
during training, by applying an interpolation technique to
batch normalization layers (Section IV-C). Third, MURAL
incorporates a deadline-aware scheduler that dynamically se-
lects the highest feasible input resolution for a given time
constraint, based on accurate execution time predictions for
each resolution (Section IV-D).

We apply MURAL on a state-of-the-art LiDAR object de-
tection DNN, Pillarnet [3], and a popular one, PointPillars [4].



Fig. 1: Architecture of pillar-based LiDAR object detection DNNs.

We evaluate their performance in terms of accuracy, latency,
and resource demands, compared to the separately trained
baseline models for each considered input resolution and the
prior state-of-the-art anytime approach. The results show that
MURAL achieves detection accuracies higher than those of the
baseline models for each resolution under a range of deadlines,
as well as the prior state-of-the-art anytime approach.

In summary, our contributions are as follows:
• We present the first work exploring runtime resolution

scaling in LiDAR object detection DNNs.
• We provide a general framework that is applicable to any

pillar-based LiDAR object detection DNN 1.
• We achieve superior performance (higher accuracy for

a given deadline) compared to the prior state-of-the-
art anytime LiDAR approach and non-anytime baseline
models.

II. BACKGROUND

In this section, we provide the necessary background on
LiDAR object detection DNNs and resolution scaling.

A. LiDAR Object Detection DNNs

The LiDAR sensor periodically scans the environment. Each
scan can be represented as a point cloud P having a set of n
points, defined as:

P = {(x1, y1, z1, i1), . . . , (xn, yn, zn, in)} (1)

where each point has its 3D coordinate in meters and laser
return intensity. To accurately detect objects of interest in a
point cloud, researchers have proposed using DNNs [2]–[4],
[22]. To efficiently process point clouds with DNNs, the cubic
space S containing the point cloud is divided into a grid G
of fixed-size cubical cells. All cells containing one or more
points are called voxels. The dimensions of G are calculated
as:

G = (
Xe −Xs

Vx
,
Ye − Ys

Vy
,
Ze − Zs

Vz
) (2)

where (Xs, Xe, Ys, Ye, Zs, Ze) define the range of S in
LiDAR-centered coordinate system and (Vx, Vy, Vz) is the
voxel size, both in meters. Transforming a point cloud into
voxels allows utilizing convolutional neural networks (CNNs)
for feature extraction, since the grid that includes the voxels
can be considered as a tensor (i.e., multidimensional array).

1Code repository: https://github.com/CSL-KU/MURAL

When the height of the voxels (Vz) is equal to the height
of the cubic space (Ze −Zs), effectively removing the height
dimension of G, the voxels are called instead pillars. Many
works have proposed using pillars instead of voxels [3], [4]
to avoid expensive 3D convolutional layers and thus provide
deployment-friendly solutions with minimal or no sacrifice in
accuracy.

Figure 1 shows the general architecture of the pillar-based
LiDAR object detection DNNs. The pillar feature encoder
(PFE) transforms points into pillars defined in coordinate list
(COO) format. At this stage, the pillars occupy a very small
part of the grid (e.g. 3%-20%), and applying dense convolution
(which is used for processing images) on the entire grid can
be computationally wasteful. An option to avoid this waste
is to keep the pillars in COO format and process them with
a sparse CNN [22]. The sparse convolutions mathematically
do the same operations as dense convolutions, but on sparse
tensors instead of dense. After sparse CNN, the grid is viewed
as a bird-eye view (BEV) image by scattering the sparse output
tensor on a dense grid of zeros and then processed by a CNN
of dense convolutions, which we call dense CNN. Finally,
post-processing operations such as non-maximum suppression
are applied to obtain the detection result.

B. Convolution and Batch Normalization

As discussed above, once the 3D point cloud input is
encoded into pillars, they are processed by convolutional
layers similar to how convolutions process pixels of images.
Convolutional layers apply fixed-size filters on any given input
with dimensions NCHW (i.e., batch size, channel, height,
width). Because convolutional layers do not enforce a specific
height and width for their inputs, they can technically be
applied to inputs of any resolution.

Note that CNNs usually include batch normalization (BN)
layers after each convolution layer to make model training
faster and more stable. A BN layer is defined as follows:

y = γ · x− µ

σ
+ β (3)

where y is the normalized output, x is the input, µ is the mean,
σ is the standard deviation, and γ and β are learnable scale
and shift parameters, which are dependent on the statistical
distribution of input tensors they process [23].

C. Resolution Scaling of 3D Point Cloud

Given the general architecture of a LiDAR object detection
DNN described above, adjusting the size of the pillars can

https://github.com/CSL-KU/MURAL


Pillar size: 0.1m x 0.1m
Grid size: 600 x 600

Number of pillars: 12342

Pillar size: 0.3m x 0.3m
Grid size: 200 x 200

Number of pillars: 5024

Pillar size: 0.5m x 0.5m
Grid size: 120 x 120

Number of pillars: 2925
Fig. 2: Bird-eye-views of a LiDAR point cloud transformed into pillars of three sizes. In all cases, the cubical space S that
contains the point cloud (thus pillars) is defined by range (Xs = −30m,Xe = 30m,Ys = −30m,Ye = 30m,Zs = 0m,Ze =
8m). A darker color indicates containing more points in a pillar.

be an effective way to scale the resolution of the detector’s
input [3], [24]. Figure 2 illustrates three examples of pillars
generated from the same point cloud. Increasing the size of the
pillars (Vx, Vy) in which the points are encoded reduces the
number of pillars and also the height and width dimensions of
the grid G. This enables faster processing without the need to
change the model architecture. However, using larger pillars
results in a decreased ability to capture fine-grained details,
similar to using images of lower resolutions.

III. MOTIVATION

In this section, we explore the feasibility and challenges of
resolution scaling to enable anytime computing capability in
LiDAR object detection.

Pillarnet (0.100) Pillarnet (0.128) Pillarnet (0.160) Pillarnet (0.200)Pillarnet (0.100) Pillarnet (0.128) Pillarnet (0.160) Pillarnet (0.200)Pillarnet (0.100) Pillarnet (0.128) Pillarnet (0.160) Pillarnet (0.200)Pillarnet (0.100) Pillarnet (0.128) Pillarnet (0.160) Pillarnet (0.200)
0

50

100

150

200

250

300

Ex
ec

ut
io

n 
tim

e 
(m

se
c)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Ac

cu
ra

cy
 (m

AP
)

1.00 0.96 0.93 0.89
1.00 0.96 0.93 0.89
1.00 0.96 0.93 0.89
1.00 0.96 0.93 0.89

Fig. 3: Execution time (on Jetson AGX Orin at 30W) and accu-
racy statistics of Pillarnet separately trained with four different
pillar sizes (0.1002m2, 0.1282m2, 0.1602m2, 0.2002m2). Ac-
curacies are normalized w.r.t. the accuracy of Pillarnet (0.100).

Figure 3 shows the execution time distribution and the
average accuracy of Pillarnet [3] LiDAR object detection
models, each of which was trained with a different pillar size
(i.e., input resolution). As expected, higher resolution leads

to higher accuracy but also, on average, to longer execution
times. Given this, one simple approach to enable anytime
computing is to use multiple models with different resolutions
and switch between them depending on the deadline. However,
such an approach would require loading multiple DNN models
into GPU memory, which may not be feasible on memory-
constrained embedded computing platforms.

While it is technically possible to use a resolution different
from the specific resolution for which the model was trained,
due to the fully-convolutional nature of LiDAR object detec-
tion models, it would significantly impact accuracy.

Pillar size (m2) Normalized mAP (%)
0.1002 100.0
0.1282 78.8
0.1602 41.0
0.2002 18.0

TABLE I: Normalized accuracy of Pillarnet (0.100) when the
pillar size used in testing differs from training.

Table I shows the normalized mAP scores of the Pillarnet
(0.100) model when used with different resolutions. As can
be seen, when the resolution used during testing differs from
that used during training, the accuracy drops significantly.

In this paper, our goal is to develop a framework that enables
a single LiDAR object detection model to operate with anytime
capability in a deployment-friendly manner. Specifically, we
aim to support multiple input resolutions with minimal runtime
memory overhead and without sacrificing accuracy compared
to baseline models trained for fixed resolutions.

IV. MURAL

In this section, we introduce MURAL, a MUlti-Resolution
Anytime LiDAR framework, which transforms any pillar-
based LiDAR object detection DNN into an (non-interrupable)



Fig. 4: The architecture of MURAL. RA stands for resolution-aware.

Fig. 5: Baseline versus resolution-aware batch normalization.

anytime algorithm, ensuring that detection results are delivered
in a timely manner with the highest possible accuracy.

A. Overview

MURAL is designed to enable efficient accuracy–latency
trade-offs by dynamically adjusting the pillar size used to
encode the input point cloud. Recall that increasing the pillar
size reduces the resolution (i.e., the width and height dimen-
sions) of the grid processed by the CNN (Section II-C). By
adjusting the pillar size, MURAL ensures that the entire input
is processed within the deadline for each invocation of the
object detector. To support this capability, MURAL modifies
the normalization layers of the target DNN to be resolution-
aware and trains the model to adapt to multiple pillar sizes
(Section IV-B). After training, MURAL can support addi-
tional pillar sizes—beyond those used during training—by
interpolating or extrapolating resolution-specific parameters
(Section IV-C).

At inference, its scheduler (Section IV-D) takes the input
point cloud and predicts the execution time required for each
candidate pillar size. It then selects the smallest pillar size (i.e.,
the highest resolution) that can meet the real-time deadline
and configures the rest of the detection pipeline accordingly.
MURAL also incorporates two optimizations from our prior
work [20]. The first eliminates redundant computations in
dense CNN layers (Section IV-E), while the second forecasts
object positions based on previous detections (Section IV-F).

After forecasting, detected and forecasted objects are merged,
with priority given to detected objects to improve accuracy.

Figure 4 illustrates the overall runtime architecture of MU-
RAL, where the orange color indicates that a part is added or
modified with respect to the baseline.

B. Multi-Resolution Training and Inference

We propose a training scheme for LiDAR object detection
DNNs that enables dynamically deciding the pillar size for
each input for a single DNN model. Importantly, for each
pillar size, the accuracy delivered by this model is expected
to be comparable to or better than that of separately trained
models. In this way, a MURAL-applied DNN can replace
multiple DNNs, enabling efficient and memory-friendly trade-
offs between accuracy and latency.

In our training scheme, for each input batch of point clouds,
we perform a separate forward pass for all targeted pillar sizes
and accumulate the loss values calculated for each, as follows:

Ltotal =
∑
p∈P

L(fθ(x, p), y) (4)

where Ltotal is the total accumulated loss, P is the set of all
targeted pillar sizes, L is the loss function of the baseline
DNN, fθ is the DNN with weights θ, x is the input point
cloud which the DNN encodes into pillars of size p and y is
the ground truth.

Then, we apply backpropagation using Ltotal and update the
model parameters θ. This allows the parameters to be updated
with gradients accumulated from all resolutions. Although
this approach makes the DNN adaptable to P—to a certain
degree—we find that the accuracy obtained for each pillar size
still falls noticeably short of that achieved by models trained
separately.

To address this issue, we introduce separate batch normal-
ization (BN) layers for each input resolution across the DNN,
as illustrated for a single BN in Figure 5. Our design is inspired
by a prior study on image classification [17], which finds that
different image resolutions produce distinct statistical distri-
butions that affect the behavior of batch normalization (see
Section II-C). They propose using resolution-aware BN layers
as an effective way to support multiple image resolutions while
sharing weights of other layers.

We hypothesize that LiDAR pillars exhibit resolution-
dependent distributions similar to feature maps of camera



1 2 3 4
Layer index

0.18

0.20

0.22

0.24

0.26

Ch
an

ne
l-w

ise
 m

ea
n 

of
pa

ra
m

am
et

er
 v

al
ue

s
Weight

1024x1024
928x928*
800x800
672x672*
512x512
384x384*

1 2 3 4
Layer index

0.10

0.08

0.06

0.04
Bias

1 2 3 4
Layer index

1.2

1.0

0.8

0.6

0.4

0.2
Running mean

1 2 3 4
Layer index

2

3

4

5

6

7
Running variance

Fig. 6: Channels-wise means of all batch normalization parameters (weight, bias, running mean, running variance) for six grid
areas from 1024× 1024 to 384× 384. The grid areas of the additional pillar sizes are indicated with a (*) in the legend. Their
predicted batch normalization parameters are crafted with interpolation/extrapolation.

object detection networks, which motivates our design choice
of replacing all BN layers with resolution-aware ones in
LiDAR object detection networks.

During training, since we perform forward passes with
each pillar size, all BN layers are eventually activated. Thus,
backpropagation updates the parameters of the BN layers that
belong to all resolutions. At runtime, however, depending on
the selected pillar size, we dynamically activate the corre-
sponding normalization layers in the DNN. Note that because
each BN layer contains only a few parameters, using separate
layers for each resolution does not incur a noticeable memory
overhead, while it significantly improves accuracy.

C. Supporting Arbitrary Resolution at Inference

At inference time, restricting ourselves to only the pil-
lar sizes used during training results in coarse-grained la-
tency–accuracy trade-offs due to the limited set of options. To
provide greater flexibility, we enable the use of arbitrary pillar
sizes at runtime by artificially generating batch normalization
(BN) layers—without retraining. The parameters of these
artificially created BN layers are predicted by interpolating or
extrapolating from the parameters of the trained BN layers.
Specifically, for each BN parameter (mean, variance, scale
γ, and shift β), we apply interpolation or extrapolation inde-
pendently for each input channel. Interpolation is used when
the target pillar size lies between two trained sizes, while
extrapolation applies when the target size falls outside the
range of the trained values.

Figure 6 shows the BN layers for six different resolutions,
where channel-wise means are visualized to illustrate that
the relationship between the grid area and the parameter
values can be modeled independently for each layer. Note that
only three of these were obtained through training, while the
other three (marked with ‘*’) were generated artificially after
training.

This approach allows our model to generalize to input
grid areas beyond those seen during training. Empirically, we
observe that the accuracy achieved with interpolated pillar
sizes mostly falls between the accuracies of the two closest
training pillar sizes. Additionally, we support extrapolation to

pillar sizes larger than the maximum used in training, enabling
MURAL to meet strict latency requirements.

D. Deadline-aware Resolution Scheduling

To maximize detection accuracy within a dynamically given
deadline, we propose scheduling the highest input resolution
(i.e., the smallest pillar size) that meets the deadline. This
requires accurately predicting the model’s latency for multiple
pillar sizes, which is a non-trivial task due to the highly
varying latencies.

To tackle the time prediction challenge, we break down the
latency L of a LiDAR object detection model into four parts:

L = LPFE + LSC + LDC + LPP (5)

where the four components indicate the latency of the pil-
lar feature encoder, sparse CNN, dense CNN, and post-
processing, respectively.

Figure 7-a shows the latencies of these four components
for a representative LiDAR object detection DNN [3]. Note,
first, that LPP and LDC are highly predictable. Therefore, it is
viable to use their 99th percentile values, acquired from offline
benchmarking for each input resolution, to predict them.

For LPFE , shown in Figure 7-b, there is a strong correlation
between the number of input points and the latency without
significant variance. Thus, we use a simple quadratic equation-
based regression to predict it.

Finally, LSC exhibits high variation, as illustrated in Fig-
ure 7-c, even when processing the same number of input
pillars. This variability makes it difficult to predict execution
time using either a fixed worst-case estimate or a simple
quadratic equation as used for LPFE .

This variation occurs because each sparse convolution in-
side the sparse CNN produces a different number of output
pillars for the same number of input pillars. The coordinates
of the output pillars (representing non-zero elements in the
grid) depend not only on the count but also on the specific
spatial distribution (i.e., coordinates) of the input pillars, as
shown in Figure 8. This spatial dependency creates a cascade
effect through the sparse CNN, causing the number of active



LPFE LSC LDC LPP

(a)

0

50

100

150

200
Ex

ec
ut

io
n 

tim
e 

(m
se

c)

180 200 220 240 260 280
Number of points (x103)

(b)

10

11

12

13

14

15

L P
FE

 (m
se

c)

20 40 60 80 100
Number of pillars (x103)

(c)

50

75

100

125

150

175

200

L S
C
 (m

se
c)

Fig. 7: (a) Component-wise execution timing of the Pillarnet (pillar size is 0.1002m2). (b) PFE latency of the same Pillarnet
with respect to its input. (c) Sparse CNN latency of the same Pillarnet with respect to its input.

pillars to dynamically vary between layers—the primary factor
behind the variability of execution time [20].

Although the relationship between the input pillar count and
execution time of any individual sparse convolution can be
accurately modeled with a quadratic equation, the challenge
lies in predicting these counts before execution at runtime. Our
previous work [20] used a history-based approach, assuming
temporal consistency between consecutive LiDAR frames.
However, this assumption breaks down in highly dynamic
environments.

In this work, we propose a more robust method that
estimates the input pillar counts for all sparse convolutions
without executing the actual sparse CNN. Our approach uses
lightweight max pooling operations configured to mimic the
sparse convolution layers. The key insight is that for a given
input, the output pillar coordinates produced by a convolution
(whether sparse or dense) can be accurately reproduced by
an appropriately configured max pooling operation (using the
same kernel size, stride, and padding as the convolution it
mimics). After calculating the input pillar counts of all sparse
convolution layers with max pooling operations, we predict
LSC by mapping these pillar counts to execution times with
quadratic equations per layer and taking their sum. Note that
all pillar count calculations are performed for all pillar sizes
considered for scheduling.

After predicting the execution times, MURAL’s scheduler
picks the smallest pillar size for a given input that can meet
the deadline. MURAL dynamically reconfigures the DNN to
accommodate the selected pillar size by following the steps
below:

1) PFE is configured to encode the points into pillars of
selected size.

2) The normalization layers of the selected pillar size are
activated in PFE, sparse CNN, and dense CNN.

3) Post-processing is informed of the resolution change
to make processing of output tensors correct, since the
output tensor sizes change with respect to the input.

E. Dense CNN Optimizations

The point cloud from LiDAR may occupy a smaller area
in the BEV than the cuboidal space defined by its range. As

Fig. 8: Example of convolution and maximum pooling pro-
ducing the same nonzero coordinates, assuming all elements
in the grid are greater than or equal to zero when max pooling
is applied.

a result, large portions of the grid, especially at the edges,
can be empty. We crop these empty regions to speed up the
dense CNN without sacrificing accuracy, as implemented in
our prior work [20]. Additionally, dense convolutions that infer
object attributes (e.g., size, velocity) may perform redundant
computations across the entire grid, including empty regions.
To avoid this, we apply an optimization from [20] that limits
inference to regions with detected objects, reducing latency
while maintaining accuracy. This optimization is also incor-
porated into MURAL.

F. Forecasting

The forecasting process involves predicting the current
position of objects detected in previous frames using their
inferred velocity and ego-vehicle localization information.
In our prior work [20], we used input data scheduling to
make latency–accuracy trade-offs. Since the approach skips
processing a portion of the data, it employs forecasting of
past detection results to compensate for the skipped infor-
mation. Interestingly, we found forecasting to be beneficial
for MURAL, even though no input data is skipped. It allows
objects missed in the current frame (e.g., due to occlusion)
but detected in the previous frame to be continuously tracked.
Therefore, we incorporate forecasting into MURAL.



V. EVALUATION

We extended OpenPCDet [25], an open-source LiDAR
object detection framework that supports state-of-the-art meth-
ods, to implement MURAL. Our primary evaluation uses
PillarNet [3], a leading pillar-based DNN. To demonstrate
MURAL’s general applicability, we also present results on
PointPillars [4] with CenterHead [2] attached. Unlike Pillar-
Net, PointPillars does not employ a sparse CNN, which sim-
plifies scheduling because latency prediction becomes more
straightforward.

For comparison, we evaluated MURAL against our prior
work, VALO [20], a state-of-the-art anytime LiDAR ob-
ject detection framework that achieves its anytime capability
through input data slicing and scheduling. VALO is applied to
baseline models that utilize the smallest available pillar size
to maximize accuracy.

For training and testing of the models, we use the
nuScenes [26] autonomous driving dataset and report de-
tection accuracy using the mean average precision (mAP)
metric. Training is performed with the entire training split
of nuScenes, containing 700 distinct scenes, each being a
20-second LiDAR scan sequence sampled at 50-millisecond
intervals. For runtime evaluation, we use 75 distinct scenes
from the nuScenes validation split and process all annotated
frames in each sequence, spaced 250 milliseconds apart, one
by one. We repeated this process under different deadline
constraints for each tested model. During both training and
testing, we merge the 10 most recent LiDAR scans for each
input. This technique is commonly used to improve accuracy
and enable object velocity estimation [26].

To assess detection timeliness, we evaluate under varying
deadline constraints. Our testing methodology maintains a
buffer of the most recent successful detection results, updating
it whenever a method meets its deadline. When a deadline is
missed, we discard the late output and instead use the buffered
results, simulating job abortion.

We conducted performance evaluations on two platforms:
NVIDIA Jetson AGX Xavier and NVIDIA Jetson AGX Orin,
both configured with a 30W power profile. Details of the
platforms are provided in Table II. On both devices, we
dedicated six CPU cores and all available GPU resources
exclusively to the method under test.

Jetson AGX Xavier Jetson AGX Orin
CPU 8-core NVIDIA Carmel 12-core Arm Cortex-A78AE
RAM 16 GB 32 GB
OS Ubuntu 20.04 Ubuntu 22.04

Software Jetpack 5.1 Jetpack 6.0

TABLE II: Experiment platforms

Our evaluation results are organized into six subsections:
(1) details of MURAL’s training; (2) MURAL’s performance
on Pillarnet; (3) MURAL’s performance on PointPillars; (4)
an ablation study of MURAL’s components; (5) an analysis
of the scheduler’s time prediction errors; and (6) overhead
analysis. In each section (except for the first), we normalize the

detection scores (mAP) of all the methods evaluated relative
to the highest score obtained in that section.

A. Training Results

Using the nuScenes dataset, we first trained the baseline
Pillarnet three times, each with a different pillar size. We then
compared MURAL’s performance at different resolutions with
the corresponding baseline Pillarnet models. Note that in this
experiment, we disabled forecasting of MURAL and assumed
no deadline violations for all methods to isolate the accuracy
implications of MURAL.

Table III shows the results. Note that MURAL maintains
comparable accuracy for the smallest (0.1002) and largest
(0.2002) pillar sizes, while achieving higher accuracy for the
medium pillar size (0.1282). This demonstrates that MURAL,
despite being a single model supporting multiple resolutions,
achieves comparable or better accuracy than individual models
trained for specific resolutions. We posit that the improved ac-
curacy stems from the regularization effect of multi-resolution
training, as also suggested in [17] for multi-resolution image
classification.

Pillar size (m2) Pillarnet MURAL
0.1002 0.564 0.564 (+0.000)
0.1282 0.537 0.560 (+0.023)
0.2002 0.506 0.499 (-0.007)

TABLE III: Accuracy in mAP of baseline Pillarnet and the
MURAL-applied version. Numbers in parentheses indicate the
differences with respect to the baseline.

In the next experiment, to evaluate the effectiveness of
arbitrary resolution support described in Section IV-C, we
introduce several non-trained resolutions and evaluate their
mAP scores.

Table IV shows the results. Note that the blue color repre-
sents the additional resolutions introduced post-training. The
results show that these additional resolutions, enabled by
interpolated BN layers, achieve satisfactory accuracy, falling
between the neighboring trained resolutions. The extrapolated
resolution (0.2632m2) further allows tight deadlines to be met.

Pillar size (m2) Grid area mAP
0.1002 10242 0.564
0.1092 9282 0.568
0.1282 8002 0.560
0.1512 6722 0.540
0.2002 5122 0.499
0.2632 3842 0.390

TABLE IV: MURAL on Pillarnet with post-training intro-
duced pillar sizes (blue).

B. MURAL on Pillarnet

Figures 9-a and 9-b illustrate how detection accuracy
changes with respect to the deadline, with MURAL outper-
forming the baselines on both platforms. Due to its dynamic
resolution scheduling, MURAL can select from a wide range
of resolutions to meet a given deadline, maximizing accuracy



75125175225275
Deadline (msec)

(a)

0

20

40

60

80

100

No
rm

al
ize

d 
ac

cu
ra

cy
 (%

) Jetson AGX Orin

Pillarnet(0.100)
Pillarnet(0.128)
Pillarnet(0.200)
VALO(0.100)
MURAL

100150200250300350
Deadline (msec)

(b)

0

20

40

60

80

100

No
rm

al
ize

d 
ac

cu
ra

cy
 (%

) Jetson AGX Xavier

Pillarnet(0.100)
Pillarnet(0.128)
Pillarnet(0.200)
VALO(0.100)
MURAL

50658095110
Deadline (msec)

(c)

0

20

40

60

80

100

No
rm

al
ize

d 
ac

cu
ra

cy
 (%

) Jetson AGX Orin

PointPillars(0.200)
PointPillars(0.256)
PointPillars(0.400)
VALO(0.200)
MURAL

75100125150175
Deadline (msec)

(d)

0

20

40

60

80

100

No
rm

al
ize

d 
ac

cu
ra

cy
 (%

) Jetson AGX Xavier

PointPillars(0.200)
PointPillars(0.256)
PointPillars(0.400)
VALO(0.200)
MURAL

Fig. 9: (a,b) Pillarnet and (c,d) PointPillars experiments on both evaluation platforms. In each plot figure, MURAL and VALO
were applied to the baseline they are being compared.

275 225 175 125 75
Deadline (msec)

0

20

40

60

80

100

Pi
lla

r s
ize

se
le

ct
io

n 
ra

te
 (%

)

0.1002 m
0.1092 m
0.1282 m
0.1512 m
0.2002 m
0.2632 m

Fig. 10: Pillar size selection rates of MURAL during Pillarnet
experiment on Orin.

within any given time constraint, as shown in Figure 10.
However, the baseline Pillarnet models can only provide
predictions for a much narrower range of deadlines, as they
lack anytime computing capability, resulting in lower accura-
cies. In contrast, VALO [20] has anytime capability and can
achieve higher accuracies than the baselines across a wider
range of deadlines. Nevertheless, its data scheduling approach
is less effective than MURAL’s dynamic resolution scaling.
The primary reason for MURAL’s superior performance over
VALO is that VALO processes only a small subset of the
input data for tight deadlines, making it more dependent on

forecasted detections. MURAL, on the other hand, processes
the entire input frame, albeit at a lower resolution, regardless of
the deadline. As a result, MURAL achieves higher accuracies
than both VALO and the separately trained baseline models.

C. MURAL on PointPillars

We also evaluate MURAL using PointPillars [4], comparing
its performance against multiple baseline PointPillars models
and a VALO [20] version applied to PointPillars. The MURAL
model was trained to support all pillar sizes used in the
baselines, along with five additional resolutions introduced
after training via BN interpolation (see Section IV-C).

Figures 9-c and 9-d present the results. Similarly to Pillar-
net, MURAL maintains better or comparable accuracy across
all the tested deadlines compared to the PointPillars baselines
and the VALO-applied model.

Overall, the results show that MURAL is generalizable
to multiple DNNs and efficient across different computing
platforms, establishing it as the new state-of-the-art anytime
LiDAR object detection method.

D. Ablation study

We perform our ablation study of MURAL on Pillarnet by
comparing the following methods:

• DS-PSI-DCO-FRC: MURAL with all its four compo-
nents: dynamic scheduling (Section IV-D), introducing



post-training pillar sizes (Section IV-C), dense convolu-
tion optimization (Section IV-E), and forecasting (Sec-
tion IV-F).

• DS-PSI-DCO: MURAL without forecasting.
• DS-PSI: MURAL without forecasting and dense CNN

optimizations.
• DS: MURAL with dynamic scheduling only.
• SS: MURAL with a static scheduler that chooses the

highest possible input resolution by considering the
worst-case execution time (WCET) of all resolutions.
These WCETs were obtained by offline benchmarking.

Table V shows the results in which none of the compared
methods missed any deadlines shown in the table. Using
dynamic scheduling (DS) improves performance over static
scheduling (SS) because of its more accurate execution time
prediction. Introducing new pillar sizes (DS-PSI) gives more
flexibility to utilize the time until the deadline, improving
accuracy. Adding dense convolution optimization (DS-PSI-
DCO) benefits more as the deadline becomes tighter, since
it allows choosing higher resolutions for more samples with-
out sacrificing accuracy. Finally, forecasting improves perfor-
mance (DS-PSI-DCO-FRC), even though MURAL processes
the entire input regardless of the deadline. This benefit comes
from allowing occluded or missed objects to be detected again
in case they were detected in the previous frame.

MURAL variant Deadlines (ms)
225 175 125

SS 96.17 85.60 85.60
DS 96.70 95.08 87.68
DS-PSI 97.03 96.14 89.66
DS-PSI-DCO 96.93 96.46 91.28
DS-PSI-DCO-FRC 100.00 99.49 93.98

TABLE V: Normalized accuracy of MURAL (on Pillarnet)
variants created for the purpose of an ablation study. DS-PSI-
DCO-FRC is the actual MURAL.

We also train MURAL without resolution-aware BN to
demonstrate its effect. Table VI illustrates the results, where
resolution-aware BN significantly improves performance,
while using common BN layers for all pillar sizes degrades
accuracy and makes it mostly adapt to the middle pillar size
(0.1282m2).

Pillar size (m2) MURAL w/o RABN MURAL w/ RABN
0.1002 75.00 100.00
0.1282 93.373 99.238
0.2002 61.836 88.395

TABLE VI: Normalized accuracy of MURAL (on Pillarnet)
without and with resolution-aware BN (RABN). Forecasting
was disabled and no deadline was considered.

E. Time Prediction Error

In this experiment, we investigate the time prediction er-
ror of our method’s scheduler and compare it with that of
VALO [20]. In particular, we focus on the sparse CNN, as
time prediction for the dense CNN and post-processing stages

20 10 0 10 20
Sparse CNN time
pred. error (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

VALO(0.100) (dl=75 ms)
MURAL (dl=75 ms)

20 10 0 10 20
Sparse CNN time
pred. error (msec)

0.0

0.2

0.4

0.6

0.8

1.0

VALO(0.100) (dl=275 ms)
MURAL (dl=275 ms)

Fig. 11: Time prediction errors of VALO and MURAL applied
Pillarnet on Jetson AGX Orin. The errors were calculated by
subtracting the actual time from the predicted time.

are straightforward and work the same in both MURAL and
VALO.

Figure 11 illustrates the time prediction errors as cumula-
tive distribution functions. As shown in the figure, MURAL
outperforms VALO by accurately predicting the number of
input pillars for each sparse convolution executed in the sparse
CNN. This is achieved by efficiently mimicking all sparse
convolutions through max-pooling operations.

In contrast, VALO assumes the number of input pillars to be
the same for each layer, based on the most recent pillar counts
observed in the past. However, this assumption does not hold
in highly dynamic environments, where the 3D structure of
consecutive LiDAR scans can differ significantly. As a result,
VALO’s history-based time prediction method is less effective
than MURAL’s approach.

F. Time and Memory Overhead Analysis

Table VII shows the average scheduling overhead of MU-
RAL variants, measured on the Jetson AGX Orin. For the static
scheduler (SS), the overhead is negligible since we simply con-
sider the WCETs acquired from offline benchmarking. Using
the dynamic scheduler (DS) notably increases the overhead of
MURAL on Pillarnet, as sparse convolutions are mimicked for
time prediction. However, the overhead increases only slightly
for PointPillars, as there is no sparse CNN. When we introduce
post-training pillar sizes (DS-PSI), the scheduling overhead
increases with respect to the number of resolutions considered
for scheduling. Adding dense convolution optimization (DS-
PSI-DCO) requires determining the empty parts of the input
scene in BEV, which increases scheduling overhead. How-
ever, cropping these empty parts accelerates the dense CNN,
compensating for the overhead. Enabling forecasting (DS-PSI-
DCO-FRC) incurs no significant overhead, as it occurs in
parallel on the CPU while the DNN layers execute on the
GPU.

Finally, Table VIII shows the memory overhead of MURAL
compared to using multiple Pillarnet baseline models with dif-
ferent resolutions. Note that MURAL, despite supporting five
different resolutions (plus an extrapolated one), uses almost
the same number of parameters as a single baseline model that



MURAL variant Applied baseline
Pillarnet PointPillars

SS 0.31 0.13
DS 3.23 0.53
DS-PSI 5.47 1.17
DS-PSI-DCO 6.22 2.01
DS-PSI-DCO-FRC 6.24 1.97

TABLE VII: Average scheduling overhead (milliseconds) of
MURAL variants on Jetson AGX Orin.

supports only one resolution. This is because MURAL’s mem-
ory overhead for supporting a new resolution is limited to the
parameters for added BN layers, which are minimal compared
to all the weights of the DNN. As a result, MURAL’s memory
overhead increases only slightly as a function of the number of
resolutions it supports, whereas the memory overhead of the
baseline models increases multiplicatively with the number of
supported resolutions.

Pillarnet PointPillars
Baseline 61.003× 6 23.956× 6
MURAL 61.378 24.259

TABLE VIII: Memory in MiB (megabytes) needed to store
DNN parameters in 32-bit floating-point format.

VI. RELATED WORK

Cyber-physical system software necessitates prompt execu-
tion for safety and efficiency. Traditional approaches employ-
ing fixed deadlines established during design [27], [28] lack
adaptability to varying execution time requirements [6], [29].

“Anytime” processing of perception deep neural networks,
which balances time and accuracy to meet specific deadlines
in processing the DNNs, has gained popularity in recent years.
Lee et al. [30] prioritized critical neurons by deactivating
others to reduce processing time. Kim et al. [31] achieved
this through incremental layer addition and early exits in
image classification networks. Yao et al. [9] and Bateni et
al. [32] explored scheduling multiple DNN tasks using im-
precise computation with early exits and per-layer approxima-
tion, respectively. These methods primarily focused on image
classification, which differs significantly from complex object
detection tasks.

For object detection under deadline constraints, Kuhse et
al. [8] analyzed early exit strategies for YOLO. Heo et al. [33]
developed a multipath architecture for anytime perception.
Hu et al. [12] proposed adaptive resolution reduction in less
critical scene areas. Lie et al. [10], [13] segmented image
frames into criticality-based sub-regions, utilizing LiDAR data
for priority processing for efficient processing. Kang et al. [14]
employed a split-and-merge technique, processing critical im-
age regions at high resolution and non-critical regions at
low resolution. Gog et al. [34] suggested dynamic DNN
switching. Heo et al. [16] introduced adaptive image scaling
based on operational environment, training a single DNN for
multi-resolution processing. However, their evaluation lacked

comparison with single-resolution baseline models. Further-
more, most prior work is on 2D vision, neglecting the unique
characteristics of 3D LiDAR point cloud object detection.

LiDAR object detection is crucial for autonomous driv-
ing [1]. With large-scale datasets [26], [35], research has
focused on accuracy improvement and latency reduction [2]–
[4], [21], [36]–[38]. While these models perform well on
high-end hardware, deployment on embedded/edge platforms
remains challenging due to size, weight, and power (SWaP)
constraints and computing resource limitations.

Soyyigit et al. [19] proposed Anytime-LiDAR, utilizing
early exits and detection head scheduling for non-sparse CNN
models to enable anytime processing capability. However, its
effectiveness is limited with modern models utilizing a sparse
CNN [2], [3], [21]. Subsequently, VALO [20] introduced a
data-scheduling approach for anytime computing, maximizing
input processing within deadlines and forecasting skipped data
for accuracy. VALO, while flexible, suffers from accuracy
degradation at tight deadlines due to partial input processing.
Yuhang et al. [39] explored multi-modal BEV detection,
dynamically skipping camera processing and LiDAR scans.
However, their data scheduling is not directly applicable to
single-modality models, which we focus on in this work.

Reducing input resolution offers potentially significant la-
tency reduction with minimal accuracy loss. However, dy-
namic resolution adjustment in a single DNN, maintaining or
improving upon single-resolution baseline accuracy, is chal-
lenging. Wang et al. [17] used resolution-sensitive batch nor-
malization and ensemble distillation for image classification.
Zhu et al. [18] incorporated a resolution predictor network.
Chin et al. [40] employed a resolution predictor for video
object detection, leveraging temporal consistency. Unlike these
works, our research addresses dynamic resolution inference for
real-time LiDAR object detection.

VII. CONCLUSION

This paper presented MURAL, a multi-resolution anytime
framework for LiDAR 3D object detection that balances
detection accuracy and processing latency through dynamic
resolution scaling. Our approach combines multi-resolution
training with shared weights, batch normalization parameter
interpolation for arbitrary resolution support, and deadline-
aware scheduling, providing a memory-efficient solution for
anytime LiDAR object detection.

Experiments with Pillarnet and PointPillars demonstrate that
MURAL achieves higher detection accuracy across various
deadlines compared to both baseline models and the prior
state-of-the-art approach, particularly under tight deadline con-
straints. By eliminating the need to store multiple model vari-
ants, MURAL offers a state-of-the-art solution for resource-
constrained embedded platforms with SWaP constraints.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants CNS-
1815959, CPS-2038923, III-2107200, and CPS-2038658.



REFERENCES

[1] Y. Li and J. Ibanez-Guzman, “LiDAR for autonomous driving: The
principles, challenges, and trends for automotive LiDAR and perception
systems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61,
2020.

[2] T. Yin, X. Zhou, and P. Krähenbühl, “Center-based 3D object detection
and tracking,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[3] C. M. Guangsheng Shi, Ruifeng Li, “PillarNet: Real-time and high-
performance pillar-based 3D object detection,” in European Conference
on Computer Vision (ECCV), 2022.

[4] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“PointPillars: Fast encoders for object detection from point clouds,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[5] G.-E. Sela, I. Gog, J. Wong, K. K. Agrawal, X. Mo, S. Kalra, P. Schafhal-
ter, E. Leong, X. Wang, B. Balaji, J. Gonzalez, and I. Stoica, “Context-
aware streaming perception in dynamic environments,” in European
Conference on Computer Vision (ECCV), 2022.

[6] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, “D3: a
dynamic deadline-driven approach for building autonomous vehicles,”
in European Conference on Computer Systems (EuroSys), 2022.

[7] M. Boddy and T. Dean, “Solving time-dependent planning problems,” in
International Joint Conference on Artificial Intelligence (IJCAI), 1989.

[8] D. Kuhse, H. Teper, S. Buschjäger, C.-Y. Wang, and J.-J. Chen, “You
only look once at anytime (AnytimeYOLO): Analysis and optimization
of early-exits for object-detection,” in arXiv preprint:2503.17497, 2025.

[9] S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and
T. Abdelzaher, “Scheduling real-time deep learning services as imprecise
computations,” in IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2020.

[10] S. Liu, S. Yao, X. Fu, H. Shao, R. Tabish, S. Yu, A. Bansal, H. Yun,
L. Sha, and T. Abdelzaher, “Real-time task scheduling for machine
perception in intelligent cyber-physical systems,” IEEE Transactions on
Computers, vol. 71, no. 8, pp. 1770–1783, 2022.

[11] J.-E. Kim, R. Bradford, M.-K. Yoon, and Z. Shao, “ABC: Abstract
prediction before concreteness,” in Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2020.

[12] Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring
image resizing for optimizing criticality-based machine perception,” in
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2021.

[13] S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha,
and T. Abdelzaher, “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in IEEE Real-Time Sys-
tems Symposium (RTSS), 2020.

[14] W. Kang, S. Chung, J. Y. Kim, Y. Lee, K. Lee, J. Lee, K. G. Shin, and
H. S. Chwa, “DNN-SAM: Split-and-merge DNN execution for real-
time object detection,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2022.

[15] L. Liu, J. Lee, and K. G. Shin, “Rt-bev: Enhancing real-time bev percep-
tion for autonomous vehicles,” in IEEE Real-Time Systems Symposium
(RTSS), pp. 267–279, 2024.

[16] S. Heo, S. Jeong, and H. Kim, “RTScale: Sensitivity-aware adaptive
image scaling for real-time object detection,” in Euromicro Conference
on Real-Time Systems (ECRTS), 2022.

[17] Y. Wang, F. Sun, D. Li, and A. Yao, “Resolution switchable networks
for runtime efficient image recognition,” in European Conference on
Computer Vision (ECCV), 2020.

[18] M. Zhu, K. Han, E. Wu, Q. Zhang, Y. Nie, Z. Lan, and Y. Wang,
“Dynamic resolution network,” in International Conference on Neural
Information Processing Systems (NeurIPS), 2021.

[19] A. Soyyigit, S. Yao, and H. Yun, “Anytime-LiDAR: Deadline-aware 3D
object detection,” in IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2022.

[20] A. Soyyigit, S. Yao, and H. Yun, “VALO: A versatile anytime framework
for LiDAR-based object detection deep neural networks,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 43, no. 11, pp. 4045–4056, 2024.

[21] Y. Chen, J. Liu, X. Zhang, X. Qi, and J. Jia, “VoxelNeXt: Fully
sparse VoxelNet for 3D object detection and tracking,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[22] Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), 2015.

[24] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in International
Conference on Neural Information Processing Systems (NeurIPS), 2017.

[25] O. D. Team, “OpenPCDet: An open-source toolbox for 3D object de-
tection from point clouds.” https://github.com/open-mmlab/OpenPCDet,
Last accessed: 27-05-2025.

[26] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal
dataset for autonomous driving,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[27] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,”
in ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2018.

[28] Baidu Apollo Team, “Apollo: Open Source Autonomous Driving.”
https://github.com/ApolloAuto/apollo, Last accessed: 27-05-2025.

[29] M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Timing of autonomous driving software: Problem analysis
and prospects for future solutions,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

[30] S. Lee and S. Nirjon, “Subflow: A dynamic induced-subgraph strategy
toward real-time DNN inference and training,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2020.

[31] J.-E. Kim, R. Bradford, and Z. Shao, “AnytimeNet: Controlling time-
quality tradeoffs in deep neural network architectures,” in Design,
Automation Test in Europe Conference and Exhibition (DATE), 2020.

[32] S. Bateni and C. Liu, “ApNet: Approximation-aware real-time neural
network,” in IEEE Real-Time Systems Symposium (RTSS), 2018.

[33] S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection system
with multi-path neural networks,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

[34] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and
I. Stoica, “Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[35] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, et al., “Scalability in perception for
autonomous driving: Waymo open dataset,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[36] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation
network,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 43, no. 8, 2020.

[37] T. Zhao, X. Ning, K. Hong, Z. Qiu, P. Lu, Y. Zhao, L. Zhang,
L. Zhou, G. Dai, H. Yang, and Y. Wang, “Ada3D : Exploiting the spatial
redundancy with adaptive inference for efficient 3d object detection,” in
IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

[38] J. Liu, Y. Chen, X. Ye, Z. Tian, X. Tan, and X. QI, “Spatial pruned
sparse convolution for efficient 3d object detection,” in International
Conference on Neural Information Processing Systems (NeurIPS), 2022.

[39] Y. Xu, Z. Liu, X. Fu, S. Liu, F. Wu, and G. Chen, “FLEX: Adaptive task
batch scheduling with elastic fusion in multi-modal multi-view machine
perception,” in IEEE Real-Time Systems Symposium (RTSS), 2024.

[40] T.-W. Chin, R. Ding, and D. Marculescu, “Adascale: Towards real-time
video object detection using adaptive scaling,” in Conference on Machine
Learning and Systems (MLSys), 2019.


	Introduction
	Background
	LiDAR Object Detection DNNs
	Convolution and Batch Normalization
	Resolution Scaling of 3D Point Cloud

	Motivation
	MURAL
	Overview
	Multi-Resolution Training and Inference
	Supporting Arbitrary Resolution at Inference
	Deadline-aware Resolution Scheduling
	Dense CNN Optimizations
	Forecasting

	Evaluation
	Training Results
	MURAL on Pillarnet
	MURAL on PointPillars
	Ablation study
	Time Prediction Error
	Time and Memory Overhead Analysis

	Related Work
	Conclusion
	References

