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Speculative Execution Attacks

• Attacks exploiting microarchitectural side-effects of executing 
speculative (transient) instructions 

• Many variants
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No hardware support
planned in near future



Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Assume x is under the attacker’s control

• Attacker trains the branch predictor to predict the branch is in-bound
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Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the first line accesses the secret (array1[x])

1. [ACCESS]
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Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the second, secret dependent load transmits
the secret to a microarchitectural state (e.g., cache)

2. [TRANSMIT]
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Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Attacker receives the secret by timing access latency differences 
(cache hit vs. miss) among the elements in the probe array 
• Flush+reload, prime+probe, …

3. [RECEIVE]
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Existing Software Mitigation

• Manually stop speculation
• By inserting ‘lfence’ instructions [Intel, 2018]

• Or by introducing additional data dependencies [Carruth, 2018] 

• Error prone, high programming complexity, performance overhead

if(x < array1_length){

_mm_lfence();

val = array1[x];

tmp = array2[val*512];

}
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Existing Hardware Mitigation

• Hide speculative execution
• By buffering speculative results into additional “shadow” hardware structures

• High complexity, high overhead (performance, space)

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]
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SpectreGuard

• Data-centric software/hardware collaborative approach
• Software tells hardware what data (not code) needs protection

• Hardware selectively protects the identified data from Spectre attacks

• Key observations
• Not all data is secret

• Not all speculative loads in a vulnerable code leak secret
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Obs. 1: Not All Data Is Secret

• Non-sensitive data
• Most program code, data

• Optimize for performance

• Sensitive (secret) data
• Cryptographic keys, passwords, …

• Optimize for security

Memory

Attacker’s controlled data

AES encryption table

Other public information

RSA private key

Bank account information

Other secret data
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Obs. 2: Not All Speculative Loads Leak Secret

• The first load does NOT leak secret

• The second, secret dependent load leaks the secret

• Delay the secret dependent load until after the branch is resolved 

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

1. [ACCESS]
2. [TRANSMIT]
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Approach

• Step 1: Software tells OS 
what data is secret

• Step 2: OS updates the page 
table entries

• Step 3: Load of the secret 
data is identified by MMU

• Step 4: Non-speculative 
data forwarding is delayed
until safe

Hardware
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Linux Kernel Support

• Non-Speculative (NS) memory regions
• Memory regions that may contain secret

• Declared by software through a system call (mmap) or ELF header

• Updated by OS in the page table (a single bit NS flag per page)
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Gem5 Implementation
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Evaluation Setup

• Full system simulation using Gem5 (O3CPU model) and Linux kernel (4.18)

• Comparison
• Native: unmodified baseline system
• InvisiSpec: a fully hardware solution [Yan et al., Micro’18]
• Fence: a fully software solution (insert lfence after all branches)
• SG: SpectreGuard
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Synthetic Workloads

• (S)pectre: contains Spectre gadget; does not access the secret key

• En(C)ryption: background communication, access the secret key
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Secret data



Results of Synthetic Workloads

• Varies percent time spent in S and C
• SG(Key) achieves native performance

• Only secret key is marked non-speculative

• SG(All) achieves comparable performance with InvisiSpec
• All memory (code, data, heap, stack) is marked non-speculative (NS)
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Results of SPEC2006 Benchmarks

• SG(All) achieves comparable performance with InvisiSpec

• SG(Heap) achieves better performance than InvisiSpec
• Only heap is marked as non-speculative (NS) pages

• SpectreGuard enables targeted security and performance trade-offs
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Conclusion

• Speculative execution attacks
• Affect all high-performance out-of-order processors

• Existing software mitigation suffers high programming complexity/overhead

• Hardware only mitigation is costly

• SpectreGuard
• A data-centric software/hardware collaborative defense mechanism

• Low programming effort (identifying secret data, not vulnerable code)

• Low hardware cost (no additional "shadow" structure)

• Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard
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Future Work

• FPGA implementation extending an open-source RISC-V SoC

• Additional compiler/library support to aid programmers

• Apply our data-centric approach to address other speculative 
execution attacks
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Thank You!
Disclaimer:

This research is supported by NSF CNS 1718880 and NSA Science of 
Security initiative contract #H98230-18-D-0009.
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