SpectreGuard: An Efficient Data-centric
Defense Mechanism against Spectre Attacks

Jacob Fustos, Farzad Farshchi, Heechul Yun

University of Kansas

@ cwese KU
\ COMPUTER SYSTEMS LAB

Speculative Execution Attacks

 Attacks exploiting microarchitectural side-effects of executing
speculative (transient) instructions

* Many variants

Attack

Description

I Variant 1 (Spectre) [16]

Bounds Check Bypass

Variant 1.1 [15]

Variant 1.2 [15]

Variant 2 (Spectre) [16]
Variant 3 (Meltdown) [18]
Variant 3a [12]

Lazy FP [24]

Variant 4 [9]

ret2spec [20]

L1 Terminal Fault [11, 26]

Bounds Check Bypass Store
Read-only Protection Bypass
Branch Target Injection
Supervisor Protection Bypass
System Register Bypass

FPU Register Bypass
Speculative Store Bypass
Return Stack Buffer

Virtual Translation Bypass

No hardware support
planned in near future

Spectre Attack (Variant 1)

1f (x < arrayl length) {
val = arrayl|[x];
tmp = arrayZ([val*512];

* Assume x is under the attacker’s control
e Attacker trains the branch predictor to predict the branch is in-bound

Spectre Attack (Variant 1)

(x < arravl lenoth

L faccess|

tmp = arrayZ val*512

e Speculative execution of the first line accesses the secret (arrayl[x])

Spectre Attack (Variant 1)

1f (x < arrayl length) {
val = arravl[X];
tmp = arrayZ([val*>12]; 2. [TRANSMIT]

» Speculative execution of the second, secret dependent load transmits
the secret to a microarchitectural state (e.q., cache)

Spectre Attack (Variant 1)

1f (x < arrayl length) {

val = arrayl|[x];

tmp = arrayZ2(val*bl2];
}

. Receve

» Attacker receives the secret by timing access latency differences
(cache hit vs. miss) among the elements in the probe array

* Flush+reload, prime+probe, ...

Existing Software Mitigation

1f (x < arrayl length) {
_mm lfence();
val = arravyl|[x];
tmp = arrayZ2(val*bl12];
}

* Manually stop speculation
* Byinserting ‘1 fence’ instructions [Intel, 2018]
e Or by introducing additional data dependencies [Carruth, 2018]
* Error prone, high programming complexity, performance overhead

Existing Hardware Mitigation

Address
Valid
Load Queue

(LQ) Pcrformcd} Status
State: Bits
E/VIC/N
Prefetch

——————————— Taill = Head = — — — — — — — — — =
Speculative Buffer Data Line

(SB)

Address Mask o
InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]

* Hide speculative execution

* By buffering speculative results into additional “shadow” hardware structures
e High complexity, high overhead (performance, space)

SpectreGuard

 Data-centric software/hardware collaborative approach
» Software tells hardware what data (not code) needs protection
* Hardware selectively protects the identified data from Spectre attacks

* Key observations
* Not all data is secret
* Not all speculative loads in a vulnerable code leak secret

Obs. 1: Not All Data Is Secret
« Non-sensitive data

* Most program code, data - Attacker’s controlled data
 Optimize for performance ‘ AES encryption table

‘ Other public information

* Sensitive (secret) data
* Cryptographic keys, passwords, ...

e Optimize for security
RSA private key

Bank account information

Other secret data

21

10

Obs. 2: Not All Speculative Loads Leak Secret

1f (x < arrayl length) {
val = arrayl[x]; 1. [ACCESS]
tmp = array2|[val*5l2]; 2. [TRANSMIT]

* The first load does NOT leak secret
* The second, secret dependent load leaks the secret
* Delay the secret dependent load until after the branch is resolved

11

Approach

Memory
System

e Step 1: Software tells OS

what data is secret Software
Interface

Binary File
Binary Loader Virtual
System Call

Operating System

* Step 2: OS updates the page
table entries Instructions Hardware

 Step 3: Load of the secret
data is identified by MMU
=
Iﬂ Forwarding

e Step 4: Non-speculative
data forwarding is delayed Sefiiiaan
until safe Dependent l Forwarding

12

Linux Kernel Support
Non-speculative (NS) flag propagation

ELF File _ ardware
Elf File Loader Virtual > VMU
age
System Call ST o

Areas Tables

mma
(VMA:s) Page Fault

d(CE

* Non-Speculative (NS) memory regions

 Memory regions that may contain secret
* Declared by software through a system call (mmap) or ELF header
* Updated by OS in the page table (a single bit NS flag per page)

13

Gem5 Implementation

IEW Unit

Issue instructions with all
dependencies completed

Commit Unit

Instruction Dispatched
Instruction is in Re-order Issue Instruction
| Buffer to maintain order

Dependencies complete

Functional Units

Calculate
Address

Instruction Queue

iLD/STQueue
HEEEEEEE

Translate address,
check access rights

yd

[

Write-back buffer

N\

buffer

Y

>

If page marked non-speculative

mark instruction non-speculative-write-back

Request sent
to memory

/]

N

ScoreBoard

Re-order Buffer

Completed instructions—>»
at head of Re-order
Buffer are retired

Check completed

Notify ScoreBoard when
previous branches complete

Requet returns

from memory

Write-back data
A4

Register File

Mark as completed

Key:
Standard Load Instruction Path

SpectreGuard Load Differences

14

Evaluation Setup

 Full system simulation using Gem5 (O3CPU model) and Linux kernel (4.18)

Core

Single-core (x86 ISA), 8 issue, out-of-order, 2 GHz
1Q: 64, ROB: 192, LSQ: 32/32

Cache

Private L1-I/D: 16/64 KiB (4/8-way), 1 cycle latency
Shared L2: 256 KiB (16-way), 8 cycle latency

DRAM

Read/write buffers: 32/64, open-adaptive policy
DDR3@800MHz, 1 rank, 8 banks

* Comparison

* Native: unmodified baseline system

* InvisiSpec: a fully hardware solution [Yan et al., Micro’18]

* Fence: a fully software solution (insert 1 fence after all branches)
* SG: SpectreGuard

15

Synthetic Workloads
char // secret data Secret data

void benchmark(int S, int C)
{
// (S)pectre gadget, unrelated to the secret
for (i =0; 1 < S; i++)
do_work();

// En(C)ryption task accessing the secret
for (i =0; 1 <C; i++)
encrypt();

* (S)pectre: contains Spectre gadget; does not access the secret key
* En(C)ryption: background communication, access the secret key

16

Results of Synthetic Workloads

char *secret_key; // secret data P S — e -
w e R
void benchmark(int S, int C) E .
{ = I S N N
// (S)pectre gadget, unrelated to the secret =
for (i = @; i <S; i++) O D m s e Y Y S R
v : s ; —
do_work(); X i — Fli I@!
- ; :gs E N N
1 1 Q b S, 52 ’."
// En(C)ryption task accessing the secret N e — = -;:;
for (i =0; i <C; i++) E %@ NQEIN%E NgmsE \gined N
. v R P e %
encrypt(); S K %E N S N N N —
} < o ol o i P
.‘&3 #:3:1 P P
a5 [[[b (K]

o
O

0S

755 5C E

* Varies percent time spentin Sand C

* SG(Key) achieves native performance
* Only secret key is marked non-speculative

* SG(All) achieves comparable performance with InvisiSpec
* All memory (code, data, heap, stack) is marked non-speculative (NS)

17

Results of SPEC2006 Benchmarks

"~ Native &3 5 5 5 i - 5 5 ; ; ; : : 5 5 5
SG(HEaP) BB e R
SG(All) B
InvisiSpec Il
: Fence &1,

Normalized Execution Time

(=] =] W
o |9} = |9} L] (8] w o
| | | | |
LN
=
R L
VALV
.y

) 6 o) 2. < O c
6, . S %y % T "%, T, 9
. Q % -~ f/®
Op) Ky

* SG(All) achieves comparable performance with InvisiSpec

* SG(Heap) achieves better performance than InvisiSpec
* Only heap is marked as non-speculative (NS) pages

* SpectreGuard enables targeted security and performance trade-offs

18

Conclusion

e Speculative execution attacks
» Affect all high-performance out-of-order processors
* Existing software mitigation suffers high programming complexity/overhead
* Hardware only mitigation is costly

* SpectreGuard
* A data-centric software/hardware collaborative defense mechanism
* Low programming effort (identifying secret data, not vulnerable code)
e Low hardware cost (no additional "shadow" structure)
 Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard

19

Future Work

* FPGA implementation extending an open-source RISC-V SoC
» Additional compiler/library support to aid programmers

* Apply our data-centric approach to address other speculative
execution attacks

Thank You!

Disclaimer:

This research is supported by NSF CNS 1718880 and NSA Science of
Security initiative contract #H98230-18-D-0009.

21

