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Speculative Execution Attacks

* Attacks exploiting microarchitectural side-effects
left by speculative (transient) instructions

 Many variants: Spectre, Meltdown, Foreshadow,
MDS, LVI, ...

e Secrets are transferred over microarchitectural
covert channels

e Most known attacks use cache covert channels




Cache-based Covert Channels

* Exploit that speculatively executed memory instructions change cache
* Encode secret by executing secret dependent memory accesses

* Use cache hit/miss timing differences to recover the secret

* Cache miss = 0 (was not accessed)
e Cache hit 2 1 (was accessed)

Traditional Specte Attack
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Cache Covert Channel Mitigation Solutions
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InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC'19]

* Prevent speculative execution from modifying the cache
» Buffer speculative results in additional “shadow” hardware structures

* Undo cache changes. E.g., CleanupSpec [Saileshwar et al., MICRO’19]



Contention-based Covert Channels on SMT

* Exploit that contention on shared functional units/ports between
Simultaneous multithreading (SMT) hardware threads

* Secret is transmitted during the speculative execution
* Bypass stateful covert channel defenses such as InvisiSpec

* Can be mitigated by Contention channel on SMT Core
* Disabling SMT SMT #1

* Preventing co-scheduling of
different domains

SMT #0
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e.g,. SmotherSpectre [Bhattacharyya+, CCS 19]
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SpectreRewind

* A novel approach for creating contention-based covert channels
* From a single hardware thread (doesn’t require SMT)

* Transmit secret to past instructions

* Bypasses existing cache covert channel defenses

* Key insight:
* Contention-based covert channels w/o SMT are possible

* Contention between speculative and past non-speculative instructions can
create covert channels



Our Approach

* Receiver: instructions executed before speculative execution
* Sender: instructions conditionally (secret dependent) executed during

speculative execution

e Both sender and receiver are in the
same hardware thread

e Contention between the sender and
the receiver creates a channel

e 0—fast
* 1 —slow (due to contention)

* Target non-pipelined functional units

SpectreRewind Covert Channel
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* Blue = Receiver, Red = Sender




Pipelined vs. Non-pipelined Function Units

sender receiver sender receiver
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(a) Fully pipelined (b) Non-pipelined

* No impact to receiver execution time * Receiver execution time is prolonged



Floating Point Division Covert Channel

1 double recv, div;
2 double sendl, send2, send3, send4;
. 3 int message; // secret
® 4
Start a tlmer 5 Istart = rdtscp(); // start rimerl
L] L ] L] L ] 6
® Perform multlple dIVISlonS ; :gc\ll)e}gzindir:’%'eiver (12 dependent FP divisions)
. . 9 recv /= giv;
* Cause a mis-speculation O e
. . 12 // end of
e Calculate a bit to transmit I ——
15
[} ] l ’ ° ° ]
] 16 dependent branch
If blt IS 1 do more dIVISIon 17 sender (independent FP divisions )
. ] . 18 for (in = 0; x < 100; x++) {
e Cause contention with receiver 1 i g e i
. . 21 send3 /= div;
* Time entire attack - et I s
24 // end of sender
25 ]
26 }
27
28 Icnd = rdtscp(): // end limerl
|
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Evaluation Platforms and Methodology

e Used eight platforms from Intel, AMD, and ARM

* Native SpectreRewind PoC
* Written in standard C language

* Timing measurement methods
e RDTSC instructions on Intel and AMD (x86-64)
* A counting thread on ARM (arm64)

* Methodology

e Send 1 million known ‘0’ and ‘1’ bit values over the division channel and
measure the timings



Channel Prop

erties
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* Clearly distinguishable patterns on all tested platforms
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Performance Analysis

. Latency | Throughput | Transfer Rate | Error Rate

CPU Microarch. (cycles); (cyclgesI; (KB/s) (%)

Intel Core 15-8250U | Kabylake R | 13-15 4 53.1 0.02
Intel Core 15-6500 Skylake 13-15 4 105.3 <0.01
Intel Core 15-6200U Skylake 13-15 4 74.9 0.04
Intel Xeon E5-2658 v3 Haswell 10-20 8 64.1 <0.01
Intel Core 15-3340M Ivybridge 10-20 8 75.6 0.16
AMD Ryzen 3 2200G Zen 8—13 4 83.1 5.50
AMD Ryzen 5 2600 Zen+ 8—13 4 84.8 3.30
NVIDIA Jetson Nano | Cortex A57 N/A N/A 87.7 0.02

* High transfer rates and low error rates
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Google Chrome Sandbox
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* Implemented a SpectreRewind PoC in JavaScript on Chrome
* Noisier but still distinguishable timing differences
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Discussion

* Benefits
* Does not require SMT hardware (single thread)
» Defeats all known hardware solutions for stateful (cache) covert channels
* Alternative to cache-based covert channels like Flush+Reload

* Limitations
* Limited to same address space attacks
* Finding division-based gadgets may be difficult
» Attacker controls both receiver and sender



Conclusion

* A novel approach for creating contention-based covert channels

* Transmit secret to past instructions
* Bypass existing cache covert channel defenses

* Exploits contention on non-pipelined functional units
* Between speculative and past non-speculative instructions
* From a single hardware thread

* Floating point division unit based covert channel

e ~100KB/s transfer rate, <1% error
* Works across CPUs from Intel, AMD, and ARM



