SpectreRewind: Leaking
Secrets to Past Instructions

Jacob Fustos, Michael Bechtel, Heechul Yun

University of Kansas, USA

@ Ku-csL
. COMPUTER SYSTEMS LAB

Speculative Execution Attacks

* Attacks exploiting microarchitectural side-effects
left by speculative (transient) instructions

 Many variants: Spectre, Meltdown, Foreshadow,
MDS, LVI, ...

e Secrets are transferred over microarchitectural
covert channels

e Most known attacks use cache covert channels

Cache-based Covert Channels

* Exploit that speculatively executed memory instructions change cache
* Encode secret by executing secret dependent memory accesses

* Use cache hit/miss timing differences to recover the secret

* Cache miss = 0 (was not accessed)
e Cache hit 2 1 (was accessed)

Traditional Specte Attack

Transmit ‘0’

* Secret is recovered after transient 1 1
executions are squashed

Transmit ‘1’

to t1 t2 t3 ta ts

Cache Covert Channel Mitigation Solutions

Address 1ILB

ShadowiTLB
Valid

Load Qllelle Pexf 4 Pr FETC
erforme
(LQ) Status L T poge
State: t
EJ'r‘v'r.'fCJ'I.\' DDDDDD
tru Q

Prefetch

Speculative Buffer
(SB)

Address Mask

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC'19]

* Prevent speculative execution from modifying the cache
» Buffer speculative results in additional “shadow” hardware structures

* Undo cache changes. E.g., CleanupSpec [Saileshwar et al., MICRO’19]

Contention-based Covert Channels on SMT

* Exploit that contention on shared functional units/ports between
Simultaneous multithreading (SMT) hardware threads

* Secret is transmitted during the speculative execution
* Bypass stateful covert channel defenses such as InvisiSpec

* Can be mitigated by Contention channel on SMT Core
* Disabling SMT SMT #1

* Preventing co-scheduling of
different domains

SMT #0

to t1 t t3 ts ts

Core

e.g,. SmotherSpectre [Bhattacharyya+, CCS 19]

Outline

* Background

* SpectreRewind
 Evaluation

* Conclusion

SpectreRewind

* A novel approach for creating contention-based covert channels
* From a single hardware thread (doesn’t require SMT)

* Transmit secret to past instructions

* Bypasses existing cache covert channel defenses

* Key insight:
* Contention-based covert channels w/o SMT are possible

* Contention between speculative and past non-speculative instructions can
create covert channels

Our Approach

* Receiver: instructions executed before speculative execution
* Sender: instructions conditionally (secret dependent) executed during

speculative execution

e Both sender and receiver are in the
same hardware thread

e Contention between the sender and
the receiver creates a channel

e 0—fast
* 1 —slow (due to contention)

* Target non-pipelined functional units

SpectreRewind Covert Channel

Transmit '0'

Transmit '1'

to t1 | W) 13 ts ts

* Blue = Receiver, Red = Sender

Pipelined vs. Non-pipelined Function Units

sender receiver sender receiver
\ / Integer Multiplier \ / Floating Point Divider
Scheduler Scheduler
Stage 1 Stage 2 Stage 3 Stage 1
o . . . m . . .
Ready Waiting Ready Waiting
Integer Multiplier Floating Point Divider
Scheduler Scheduler
Stage 1 Stage 2 Stage 3 Stage 1
. - ...
Ready Ready
Integer Multiplier Floating Point Divider
Scheduler Scheduler
Stage 1 Stage 2 Stage 3 Stage 1
.. - ...
Ready
(a) Fully pipelined (b) Non-pipelined

* No impact to receiver execution time * Receiver execution time is prolonged

Floating Point Division Covert Channel

1 double recv, div;
2 double sendl, send2, send3, send4;
. 3 int message; // secret
® 4
Start a tlmer 5 Istart = rdtscp(); // start rimerl
L] L] L] L] 6
® Perform multlple dIVISlonS ; :gc\ll)e}gzindir:’%'eiver (12 dependent FP divisions)
. . 9 recv /= giv;
* Cause a mis-speculation O e
. . 12 // end of
e Calculate a bit to transmit I ——
15
[}] l ’ ° °]
] 16 dependent branch
If blt IS 1 do more dIVISIon 17 sender (independent FP divisions)
.] . 18 for (in = 0; x < 100; x++) {
e Cause contention with receiver 1 i g e i
. . 21 send3 /= div;
* Time entire attack - et I s
24 // end of sender
25]
26 }
27
28 Icnd = rdtscp(): // end limerl
|

Outline

* Background

e SpectreRewind
* Evaluation

* Conclusion

Evaluation Platforms and Methodology

e Used eight platforms from Intel, AMD, and ARM

* Native SpectreRewind PoC
* Written in standard C language

* Timing measurement methods
e RDTSC instructions on Intel and AMD (x86-64)
* A counting thread on ARM (arm64)

* Methodology

e Send 1 million known ‘0’ and ‘1’ bit values over the division channel and
measure the timings

Channel Prop

erties

i i j

300 350 400 450
Number of Clock Cycles

250

(b) Skylake (i5-6500)

0.25 - 0.4 —
0.35

0.2 = :

i 0.3 +
80,15 frmemmmmfrenmed £025 -
® E 02 -

0.05 _ 0.1 '_

i 0.05 ~
i i i Qi
200 250 300 350 400 450 200

Number of Clock Cycles
(a) Kabylake R (i5-8250U)

0.8 i 0.9
206 - zoL
B 205+
O 0.4 et R E=]

e 04 *F
o a B
03 F
0.2 ~
0.1 ~
1 J 0 I
200 250 300 350 450 200
Number of Clock Cycles
(e) Zen (Ryzen3 2200G)

* Clearly distinguishable patterns on all tested platforms

300 350
Number of Clock Cycles

(f) Zen+ (Ryzen5 2600)

Probability

A1 i 1l i

300 350 400
Number of Clock Cycles

200

(c) Haswell (E5-2658v3)

g [

450

ol i

40 60 80 100 120 140 160

Number of Clock Cycles

(g) Cortex-A57 (Jetson Nano)*

180 200

| F l,

300 350
Number of Clock Cycles

250

(d) Ivybridge (i5-3340M)

400

450

70 75 80
Number of Clock Cycles

(h) Cortex-A72 (Raspberry Pi 4)”

13

85

90

Performance Analysis

. Latency | Throughput | Transfer Rate | Error Rate

CPU Microarch. (cycles); (cyclgesI; (KB/s) (%)

Intel Core 15-8250U | Kabylake R | 13-15 4 53.1 0.02
Intel Core 15-6500 Skylake 13-15 4 105.3 <0.01
Intel Core 15-6200U Skylake 13-15 4 74.9 0.04
Intel Xeon E5-2658 v3 Haswell 10-20 8 64.1 <0.01
Intel Core 15-3340M Ivybridge 10-20 8 75.6 0.16
AMD Ryzen 3 2200G Zen 8—13 4 83.1 5.50
AMD Ryzen 5 2600 Zen+ 8—13 4 84.8 3.30
NVIDIA Jetson Nano | Cortex A57 N/A N/A 87.7 0.02

* High transfer rates and low error rates

14

Google Chrome Sandbox

N i
60 70 80 90 100 110
Number of Clock Cycles

* Implemented a SpectreRewind PoC in JavaScript on Chrome
* Noisier but still distinguishable timing differences

15

Outline

* Background

e SpectreRewind
 Evaluation

* Conclusion

Discussion

* Benefits
* Does not require SMT hardware (single thread)
» Defeats all known hardware solutions for stateful (cache) covert channels
* Alternative to cache-based covert channels like Flush+Reload

* Limitations
* Limited to same address space attacks
* Finding division-based gadgets may be difficult
» Attacker controls both receiver and sender

Conclusion

* A novel approach for creating contention-based covert channels

* Transmit secret to past instructions
* Bypass existing cache covert channel defenses

* Exploits contention on non-pipelined functional units
* Between speculative and past non-speculative instructions
* From a single hardware thread

* Floating point division unit based covert channel

e ~100KB/s transfer rate, <1% error
* Works across CPUs from Intel, AMD, and ARM

