
SpectreRewind: Leaking 
Secrets to Past Instructions

Jacob Fustos, Michael Bechtel, Heechul Yun

University of Kansas, USA



Speculative Execution Attacks

• Attacks exploiting microarchitectural side-effects 
left by speculative (transient) instructions 

• Many variants: Spectre, Meltdown, Foreshadow, 
MDS, LVI, …

• Secrets are transferred over microarchitectural 
covert channels

• Most known attacks use cache covert channels

2



Cache-based Covert Channels

• Exploit that speculatively executed memory instructions change cache

• Encode secret by executing secret dependent memory accesses

• Use cache hit/miss timing differences to recover the secret
• Cache miss → 0 (was not accessed)

• Cache hit → 1 (was accessed)

• Secret is recovered after transient
executions are squashed

3



Cache Covert Channel Mitigation Solutions

• Prevent speculative execution from modifying the cache
• Buffer speculative results in additional “shadow” hardware structures 

• Undo cache changes. E.g., CleanupSpec [Saileshwar et al., MICRO’19]
4

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]



Contention-based Covert Channels on SMT

• Exploit that contention on shared functional units/ports between 
Simultaneous multithreading (SMT) hardware threads

• Secret is transmitted during the speculative execution
• Bypass stateful covert channel defenses such as InvisiSpec

• Can be mitigated by
• Disabling SMT

• Preventing co-scheduling of 
different domains

Contention channel on SMT Core

t0 t1 t2 t3 t4 t5

SMT #1

SMT #0

5e.g,. SmotherSpectre [Bhattacharyya+, CCS 19]

Core



Outline

• Background

• SpectreRewind

• Evaluation

• Conclusion



SpectreRewind

• A novel approach for creating contention-based covert channels

• From a single hardware thread (doesn’t require SMT)

• Transmit secret to past instructions

• Bypasses existing cache covert channel defenses

• Key insight: 
• Contention-based covert channels w/o SMT are possible

• Contention between speculative and past non-speculative instructions can 
create covert channels

7



Our Approach

• Receiver: instructions executed before speculative execution

• Sender: instructions conditionally (secret dependent) executed during
speculative execution

• Both sender and receiver are in the
same hardware thread

• Contention between the sender and 
the receiver creates a channel
• 0 – fast
• 1 – slow (due to contention)

• Target non-pipelined functional units

8

• Blue = Receiver, Red = Sender

SpectreRewind Covert Channel

t0 t1 t2 t3 t4 t5

Transmit '0'

Transmit '1'



Pipelined vs. Non-pipelined Function Units

(b) Non-pipelined

sender receiversender receiver

• No impact to receiver execution time • Receiver execution time is prolonged

(a) Fully pipelined



Floating Point Division Covert Channel

• Start a timer

• Perform multiple divisions

• Cause a mis-speculation

• Calculate a bit to transmit

• If bit is ‘1’ do more division

• Cause contention with receiver

• Time entire attack



Outline

• Background

• SpectreRewind

• Evaluation

• Conclusion



Evaluation Platforms and Methodology

• Used eight platforms from Intel, AMD, and ARM

• Native SpectreRewind PoC
• Written in standard C language

• Timing measurement methods
• RDTSC instructions on Intel and AMD (x86-64) 

• A counting thread on ARM (arm64)

• Methodology
• Send 1 million known ‘0’ and ‘1’ bit values over the division channel and 

measure the timings



Channel Properties

• Clearly distinguishable patterns on all tested platforms

13



Performance Analysis

• High transfer rates and low error rates

14



Google Chrome Sandbox

• Implemented a SpectreRewind PoC in JavaScript on Chrome

• Noisier but still distinguishable timing differences

15



Outline

• Background

• SpectreRewind

• Evaluation

• Conclusion



Discussion

• Benefits 
• Does not require SMT hardware (single thread) 

• Defeats all known hardware solutions for stateful (cache) covert channels

• Alternative to cache-based covert channels like Flush+Reload

• Limitations
• Limited to same address space attacks

• Finding division-based gadgets may be difficult

• Attacker controls both receiver and sender

17



Conclusion

• A novel approach for creating contention-based covert channels
• Transmit secret to past instructions

• Bypass existing cache covert channel defenses

• Exploits contention on non-pipelined functional units
• Between speculative and past non-speculative instructions

• From a single hardware thread

• Floating point division unit based covert channel
• ~100KB/s transfer rate, <1% error

• Works across CPUs from Intel, AMD, and ARM


