Introduction to Communication Networks
The University of Kansas EECS 563
Physical Layer

James P.G. Sterbenz

Department of Electrical Engineering & Computer Science
Information Technology & Telecommunications Research Center
The University of Kansas

jpgs@eecs.ku.edu

http://www.ittc.ku.edu/~jpgs/courses/intronets
Communication Networks

Physical Layer

PL.1 Line Coding
PL.2 Signals and transmission
PL.3 Physical media
PL.4 Performance characteristics
Physical Layer

Physical Layer Communication

- Physical layer
 - is responsible for moving bits through a channel
Physical Layer

Physical Layer Communication

- Physical layer communicates digital information
 - through a communication *channel* in a *medium*
 - digital bits are *coded* as electronic or photonic *signals*
 - digital or analog coding
 - over a *link* between *nodes* (layer 2)
Physical Layer
Line Coding

PL.1 Line coding
PL.2 Signals and Transmission
PL.3 Physical media
PL.4 Performance characteristics
Physical Layer

Line Coding and Symbol Rate

- Digital Communication
 - we consider only *digital* communication for networking
 - transmission of binary data (bits) through a channel

- Line coding
 - way in which bits are encoded for transmission
 - digital codes (binary, trinary, ...)
 - analog modulation

- Symbol rate
 - baud rate [symbols/s]
 - baud = b/s only if one symbol/bit
 - clever encodings (e.g. QAM) allow high baud rates
Line Coding
Digital Code Types

• Code
 – level code
 • symbol depends on the voltage level (amplitude)
 – transition code
 • symbol depends on transition between levels
 – differential code
 • symbol depends on difference from last symbol
 – level or transition

• Polarity in electrical codes
 – unipolar: transitions between 0 and nonzero voltage
 – bipolar: transitions between a positive and negative voltage
Digital Line Coding
Binary Codes

- Binary line coding:
 - two voltage levels: high and low
 - bit rate = baud rate
- Binary amplitude code
 - 0 = low, 1 = high
 - clock rate = bit rate

Original text:

- Binary line coding:
 - two voltage levels: high and low
 - bit rate = baud rate
- Binary amplitude code
 - 0 = low, 1 = high
 - clock rate = bit rate

Problems?
Digital Line Coding

Binary Codes

- **Binary line coding:**
 - two voltage levels: high and low
 - bit rate = baud rate
- **Binary amplitude code**
 - 0 = low, 1 = high
 - clock rate = bit rate
 - problems: long runs of 0 or 1
 - DC bias
 - insufficient transitions for clock synchronisation
Digital Line Coding

Binary Codes

- Binary line coding:
 - two voltage levels: high and low
 - bit rate = baud rate
- Binary amplitude code
 - 0 = low, 1 = high
 - clock rate = bit rate
 - problems: long runs of 0 or 1
 - DC bias
 - insufficient transitions for clock synchronisation

Alternatives?
properties?
Digital Line Coding

Binary Codes

- Binary line coding:
 - two voltage levels: high and low
 - bit rate = baud rate
- Binary amplitude code
 - 0 = low, 1 = high
- Manchester coding
 - 0 = low → high
Digital Line Coding

Binary Codes

- Binary line coding:
 - two voltage levels: high and low
 - bit rate = baud rate

- Binary amplitude code
 - 0 = low, 1 = high

- Manchester coding
 - 0 = low → high, 1 = high → low
 - clock rate = 2 × bit rate
 - no DC bias
 - ensures at least one transition per clock cycle

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Digital Line Coding

Binary Codes

- **Binary line coding:**
 - two voltage levels: high and low
 - bit rate = baud rate

- **Binary amplitude code**
 - 0 = low, 1 = high

- **Manchester coding**
 - 0 = low → high, 1 = high → low

- **Differential Manchester coding**
 - transition=0, none=1
Line Coding
Analog Coding

- Analog line coding
 - modulate an *analog carrier* with a *digital signal*
Analog Line Coding
Amplitude Modulation

- Analog line coding
 - modulate an analog carrier

- Amplitude modulation
 - each symbol a different level of carrier
 - one may be zero voltage
 - compare to AM radio
 - modulate an analog carrier with an analog signal
Analog Line Coding

Frequency Modulation

• Analog line coding
 – modulate a *carrier*

• Amplitude modulation
 – each symbol a different level

• Frequency modulation
 – each symbol a different frequency
 – FSK (frequency shift keying)
 – compare to FM radio
 • modulate an analog carrier with an *analog* signal
Analog Line Coding

V.21 AFSK

- AFSK analog modem line coding
 - AFSK (audio frequency shift keying)
 - modem (modulate / demodulate)
- ITU V.21 300 baud = 300b/s (1964 – 1980s)
 - full duplex: one channel for each direction
 - frequencies within audio spectrum of POTS telephone line

why?
Analog Line Coding
V.21 AFSK

- AFSK analog modem line coding
 - AFSK (audio frequency shift keying)
 - modem (modulate / demodulate)
- ITU V.21 300 baud = 300b/s (1964 – 1980s)
 - full duplex: one channel for each direction
 - frequencies within audio spectrum of POTS telephone line
 - motivation: transport data over existing phone lines
 - old timers recall modem squeal

<table>
<thead>
<tr>
<th>Channel</th>
<th>Carrier</th>
<th>0 Symbol</th>
<th>1 Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1080 Hz</td>
<td>1180 Hz</td>
<td>980 Hz</td>
</tr>
<tr>
<td>2</td>
<td>1750 Hz</td>
<td>1850 Hz</td>
<td>1650 Hz</td>
</tr>
</tbody>
</table>
Analog Line Coding

DTMF

- DTMF (dual tone multi-frequency)
 - AMFSK (audio multi-frequency shift keying)
- PSTN in-band signalling
 - handset (user–network) and network–network
- Design goals
 - within PSTN audio spectrum
 - not a binary code: symbols include all decimal numbers
 - MPSK
 - multiple frequencies
 - two frequencies per symbol
 - avoid harmonics that could lead to false symbol decoding
Analog Line Coding

DTMF

- DTMF (dual tone multi-frequency)
 - AMFSK (audio multi-frequency shift keying)
- PSTN in-band signalling

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>440 Hz</th>
<th>480 Hz</th>
<th>620 Hz</th>
<th>1209 Hz</th>
<th>1336 Hz</th>
<th>1477 Hz</th>
<th>1633 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>697 Hz</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>770 Hz</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>852 Hz</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>941 Hz</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>0</td>
<td>#</td>
<td>D</td>
</tr>
</tbody>
</table>
Analog Line Coding

Phase Modulation

- Analog line coding
 - modulate a *carrier*
- Amplitude modulation
 - each symbol a different level
- Frequency modulation
 - each symbol a different frequency
- Phase modulation
 - each symbol a different phase
 - e.g. 0°, 180°
Analog Line Coding

Combination Codes

- Analog line coding: modulate a carrier
- Amplitude modulation: each symbol a different level
- Frequency modulation: each symbol a different frequency
- Phase modulation: each symbol a different phase
- Combinations possible: why?

0 0 1 0 0 1 0 1 1 1
Analog Line Coding
Combination Codes

- Analog line coding:
 - modulate a carrier
- Amplitude modulation
 - each symbol a different level
- Frequency modulation
 - each symbol a different frequency
- Phase modulation
 - each symbol a different phase
- Combinations possible
 - e.g. amplitude and phase
Analog Line Coding

PAM

- PAM: pulse amplitude modulation
 - n bits coded in $2n$ amplitudes per symbol
 - PAM-5 in 1GBaseT for CAT-5 100MHz frequency limit

<table>
<thead>
<tr>
<th>Name</th>
<th>Amplitudes</th>
<th>Phases</th>
<th>Bits/Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAM-4</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PAM-5</td>
<td>5</td>
<td>1</td>
<td>2 + error</td>
</tr>
<tr>
<td>PAM-8</td>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PAM-16</td>
<td>16</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Analog Line Coding
QPSK and QAM

• Combination of amplitude- and phase-modulation
 – allows more bits per symbol

• QAM: quadrature amplitude modulation
 – quadrature = 4 phases carried on two sine waves
 – PAM is case for only one phase
 – QPSK is case for only one amplitude

<table>
<thead>
<tr>
<th>Name</th>
<th>Amplitudes</th>
<th>Phases</th>
<th>Bits/Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>QAM-16</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>QAM-64</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>QAM-256</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Analog Line Coding
QPSK and QAM

- QAM: amplitude- and phase modulation
- Represented by *constellation diagram*
 - amplitude is distance from origin
 - phase is angle

QPSK
- 90°
- 180°
- 270°
- 0°

QAM-16
- 90°
- 180°
- 270°
- 0°

QAM-64
- 90°
- 180°
- 270°
- 0°
Analog Line Coding

Modem Standards Summary

<table>
<thead>
<tr>
<th>Std.</th>
<th>Duplex</th>
<th>Echo</th>
<th>Baud</th>
<th>b/Sym</th>
<th>Data Rate</th>
<th>Modulation</th>
<th>Year Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.21</td>
<td>full</td>
<td>none</td>
<td>300</td>
<td>1</td>
<td>300 b/s</td>
<td>AFSK</td>
<td>1964</td>
</tr>
<tr>
<td>V.22</td>
<td>full</td>
<td>none</td>
<td>600</td>
<td>1</td>
<td>600 b/s</td>
<td>APSK</td>
<td>1980</td>
</tr>
<tr>
<td>V.22 bis</td>
<td>full</td>
<td>none</td>
<td>600</td>
<td>2</td>
<td>1200 b/s</td>
<td>APSK QAM</td>
<td>1984</td>
</tr>
<tr>
<td>V.27</td>
<td>half/full</td>
<td>none</td>
<td>1600</td>
<td>3</td>
<td>4800 b/s</td>
<td>8PSK</td>
<td>1972</td>
</tr>
<tr>
<td>V.27 ter</td>
<td>half</td>
<td>cancel</td>
<td>1200</td>
<td>2</td>
<td>2400 b/s</td>
<td>QPSK 8PSK</td>
<td>1976</td>
</tr>
<tr>
<td>V.29</td>
<td>half/full</td>
<td>none</td>
<td>4800</td>
<td>2</td>
<td>4800 b/s</td>
<td>QPSK QAM-8</td>
<td>1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7200</td>
<td>3</td>
<td>7200 b/s</td>
<td>QAM-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9600</td>
<td>4</td>
<td>9600 b/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analog Line Coding

Modem Standards Summary

<table>
<thead>
<tr>
<th>Std.</th>
<th>Duplex</th>
<th>Echo</th>
<th>Baud</th>
<th>b/Sym</th>
<th>Data Rate</th>
<th>Modulation</th>
<th>Year Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V32</td>
<td>full</td>
<td>cancel</td>
<td>2400</td>
<td>2,4</td>
<td>4800 b/s, 9600 b/s</td>
<td>QPSK, QAM-16, trellis-32</td>
<td>1984</td>
</tr>
<tr>
<td>V.32 bis</td>
<td>full</td>
<td>cancel</td>
<td>2400</td>
<td>2,3,4,5,6</td>
<td>4800 b/s, 7200 b/s, 9600 b/s, 12000 b/s, 14400 b/s</td>
<td>QPSK, trellis-16, trellis-32, trellis-64, trellis-128</td>
<td>1991</td>
</tr>
<tr>
<td>V.34</td>
<td>full</td>
<td>cancel</td>
<td>600</td>
<td>. . . 3429</td>
<td>2400 b/s, 33600 b/s</td>
<td>trellis</td>
<td>1998</td>
</tr>
</tbody>
</table>
Analog Line Coding
Modem Standards Summary

<table>
<thead>
<tr>
<th>Std.</th>
<th>Duplex</th>
<th>Echo</th>
<th>Baud</th>
<th>b/Sym</th>
<th>Data Rate</th>
<th>Modulation</th>
<th>Year Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V90</td>
<td>full asym.</td>
<td>cancel</td>
<td>8000</td>
<td>7</td>
<td>28800↓b/s 4800↑b/s ... 56000↓b/s 28800↑b/s</td>
<td>PCM</td>
<td>1998</td>
</tr>
<tr>
<td>V.92</td>
<td>full asym.</td>
<td>cancel</td>
<td>8000</td>
<td>7</td>
<td>28000↓b/s 24000↑b/s ... 56000↓b/s 48000↑b/s</td>
<td>PCM</td>
<td>2000</td>
</tr>
</tbody>
</table>
Physical Layer
Signals and Transmission

PL.1 Line coding
PL.2 Signals and transmission
PL.3 Physical media
PL.4 Performance characteristics
Communication

Signal Types

- Transmission of a *signal* through a *medium*
Communication

Signal Types

• Transmission of a *signal* through a *medium*

• Analog signal: time-varying levels
 – electrical: voltage levels
 – photonic: light intensity
Communication

Signal Types

• Transmission of a *signal* through a *medium*

• Analog signal: time-varying levels
 – electrical: voltage levels
 – photonic: light intensity

• Digital signal: sequence of bits represented as levels
 – electrical: voltage pulses
 – photonic: light pulses
 – *two* levels for *binary* digital signal
 – more levels in some coding schemes
Communication

Digital vs. Analog

- Digital bits are reconstructed at the receiver
Communication
Digital vs. Analog

- Digital bits are reconstructed at the receiver
 - all transmission is *actually* analog!
 - frequency response determines
 - pulse rate that can be transmitted
 - shape of pulse → ability for receiver to recognise pulse
Communication
Digital vs. Analog

- Digital bits are reconstructed at the receiver
 - all transmission is *actually* analog!
 - frequency response determines
 - pulse rate that can be transmitted
 - shape of pulse → ability for receiver to recognise pulse
 - high-frequency attenuation reduces quality of pulse

adapted from [Tanenbaum 2003]
Communication

Medium Types

- Guided through waveguide
 - wire (generally copper)
 - fiber optic cable
Communication
Medium Types

- Guided through waveguide
 - wire (generally copper)
 - fiber optic cable
- Unguided (wireless) free space propagation
 - wireless
 (generally implying RF – radio frequency)
 - free-space optical
Communication
Medium Sharing

- Dedicated
 - single transmitter attached to medium
 - signals may be multiplexed by a *single* transmitter
 - link multiplexing

- Shared: multiple access
 - multiple transmitters transmit into a the same medium
Communication Challenges

- Goal: receiver reconstruct signal transmitter sent
Communication Challenges

- **Goal:** receiver reconstruct signal transmitter sent
- **Noise makes this difficult**
 - background noise N_o interferes with the signal bit energy E_b
 - SNR: signal to noise ratio $= 10 \log_{10} \left(\frac{E_b}{N_o} \right)$ dB
 - interference from other signals in shared medium
 - collisions among multiple transmitters
 - jamming from adversaries
 - imperfections in the physical medium that alters the signal
 - especially in fiber optic cables
Communication
Challenges

• Goal: receiver reconstruct signal transmitter sent
• Noise makes this difficult
 – background noise N_o interferes with the signal bit energy E_b
 • SNR: signal to noise ratio = $10 \log_{10} \left(\frac{E_b}{N_o} \right)$ dB
 – interference from other signals in shared medium
 • collisions among multiple transmitters
 • jamming from adversaries
 – imperfections in the physical medium that alters the signal
 • especially in fiber optic cables
• Attenuation over distance that reduces the amplitude
 – $10 \log_{10} \left(\frac{E_t}{E_r} \right)$ dB
Communication
Challenges

• Goal: receiver reconstruct signal transmitter sent

• Noise makes this difficult
 – background noise N_0 interferes with the signal bit energy E_b
 • SNR: signal to noise ratio $= 10 \log_{10} \left(\frac{E_b}{N_0} \right)$ dB
 – interference from other signals in shared medium
 • collisions among multiple transmitters
 • jamming from adversaries
 – imperfections in the physical medium that alters the signal
 • especially in fiber optic cables

• Attenuation over distance that reduces the amplitude
 – $10 \log_{10} \left(\frac{E_t}{E_r} \right)$ dB

• Frequency response of the medium
Communication Challenges

- Result: difficulty in reconstructing signal
Communication Challenges

- Result: difficulty in reconstructing signal
- Analog: distortion of received waveforms
Communication Challenges

- Result: difficulty in reconstructing signal
- Analog: distortion of received waveforms
- Digital: bit errors – an artifact of distortion
 - distance attenuation reduces level of pulse
 - frequency attenuation distorts shape of pulse
 - distortion changes shape of pulse
 - dispersion smears pulses
Communication Challenges

- Result: difficulty in reconstructing signal
- Analog: distortion of received waveforms
- Digital: bit errors – an artifact of distortion
 - distance attenuation reduces level of pulse
 - frequency attenuation distorts shape of pulse
 - distortion changes shape of pulse
 - dispersion smears pulses
- Physical and link layer devices help
 - amplifiers ameliorate attenuation
 - regenerators and repeaters reconstruct digital signals
 - spaced closely enough to keep bit error rate low
Physical Layer
Physical Media

PL.1 Line coding
PL.2 Signals and transmission
PL.3 Physical media
PL.3 Performance characteristics
Physical Media

Wire

- Unshielded twisted pair
 - cheap, moderate bandwidth (~100Mb/s)
 - and increasing with more sophisticated coding techniques
- Shielded twisted pair
 - expensive, higher bandwidth
- Coaxial cable
 - expensive, high bandwidth (~ 500 MHz)
Physical Media

Wire: Twisted Pair

- **UTP**: unshielded twisted pair
 - twisting reduces radiation and noise susceptibility
 - used for most wired LANs
 - CAT-{5|6|7} for data applications such as Ethernet
 - 100 Mb/s supported over 100 m for 100BaseT Ethernet
 - legacy telephone wiring
 - supports much lower data rates (1–10 Mb/s)
 - used by DSL (digital subscriber line)

- **STP**: shielded twisted pair
Physical Media
Wire: Shielded Twisted Pair

- **UTP:** unshielded twisted pair
- **STP:** shielded twisted pair (S for braided shielding)
 - adds conducting shield outside of twisted pair
 - more resistant to noise than UTP
 - more expensive than UTP; no longer commonly used ...
 - but needed for high data rates: cat 6A, 7, 8
 - **FTP:** foil shielding
 - U/FTP: each pair foil shielded
 - {F|S}/UTP: overall {foil | braided} shield; pairs unshielded
 - {F|S}/FTP: overall {foil | braided} shield; pairs foil shield
Physical Media

Wire: TP Types

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>BW</th>
<th>Application</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 3</td>
<td>UTP</td>
<td>16 MHz</td>
<td>telephone</td>
<td></td>
</tr>
<tr>
<td>Cat 5</td>
<td>UTP</td>
<td>100 MHz</td>
<td>10BaseT 100BaseT</td>
<td>100m</td>
</tr>
<tr>
<td>Cat 5e</td>
<td>UTP</td>
<td>100 MHz</td>
<td>100BaseT</td>
<td>100m</td>
</tr>
<tr>
<td>Cat 6</td>
<td>UTP</td>
<td>250 MHz</td>
<td>1GBaseT 10GBaseT</td>
<td>100m 55m</td>
</tr>
<tr>
<td>Cat 6_A</td>
<td>U/FTP F/UTP</td>
<td>500 MHz</td>
<td>10GBaseT</td>
<td>100m</td>
</tr>
<tr>
<td>Cat 7</td>
<td>F/FTP S/FTP</td>
<td>1 GHz</td>
<td>10GBaseT</td>
<td>100m</td>
</tr>
<tr>
<td>Cat 7_A</td>
<td>F/FTP S/FTP</td>
<td>1 GHz</td>
<td>10GBaseT</td>
<td>100m</td>
</tr>
<tr>
<td>Cat 8</td>
<td>U/FTP F/UTP F/FTP S/FTP</td>
<td>2 GHz</td>
<td>40GBaseT</td>
<td></td>
</tr>
</tbody>
</table>
Physical Media

Wire: Coaxial Cable

- High quality shielded cable
 - used in some LANs (and early Ethernet)
 - used in CATV (RG6 better than RG59)
 - HFC: hybrid fiber coax for data
Physical Media
Fiber Optics

- Fiber optics
 - bandwidth \approx 20 THz within 800–1700 nm
 - attenuation [dB/km]
 - dispersion: waveform smearing limits bandwidth-distance

Much more about optical communication in EECS 881
Physical Media

Fiber Optic Cable

- Lightwave travels along glass or plastic core
 - multimode: reflected along core/cladding boundary
 - single mode: guided with no reflections

- Transmitter
 - LED or solid-state laser
Physical Media
Fiber Optic Modes

- **Multimode**: 50 – 85 µm core
 - signal reflected in multiple modes
 - intermodal dispersion limits length to a few km
 why?

transmitted signal
Physical Media
Fiber Optic Modes

- **Multimode**: 50 – 85 μm core
 - signal reflected in multiple modes
 - intermodal dispersion limits length to a few km
 - different modes arrive at different times

\[\text{consequence?} \]

transmitted signal

mode x

mode y
Physical Media
Fiber Optic Modes

- **Multimode**: 50 – 85 µm core
 - signal reflected in multiple modes
 - intermodal dispersion limits length to a few km
 - different modes arrive at different times
 - received signal is sum of modes

\[
\text{transmitted signal} \overset{\text{reflections}}{\rightarrow} \text{mode } x \rightarrow \text{mode } y \rightarrow \text{received signal} = x + y
\]
Physical Media
Fiber Optic Modes

- **Multimode**: 50 – 85 \(\mu \text{m} \) core
 - signal reflected in multiple modes
 - intermodal dispersion limits length to a few km

- **Single mode**: 8–10 \(\mu \text{m} \) core
 - core acts as *waveguide* with *no* reflections
 - suitable for 10s of km between digital regenerators
Physical Media
Fiber Optic Cable Constraints

- **Attenuation**
 - distance
 - frequency

- **Dispersion**: smearing limits bandwidth-\times-delay
 - intermodal: different modes travel different distances
 - chromatic: different wavelengths travel different velocities
 - polarisation mode: diff. polarisation states travel at diff.

- **Nonlinearities** limit WDM
 - stimulated Raman scattering (due to molecular vibrations)
 - stimulated Brillouin scattering (acoustic wave interaction)
 - carrier-induced cross-phase modulation ($c \uparrow$ w/other signals)
 - four-wave mixing (3 wavelengths induce fourth sum/diff)
Physical Media

Wireless Free Space

- Signals transmitted through free space
 - no waveguide
- Spectrum \((\lambda f = c ; \ c = 3 \times 10^5 \text{ km/s}) \)
 - only some spectrum usable for communication
 - RF: radio frequency
 - optical
 - infrared 800–900 nm = 333–375 THz 41 THz spectrum

Much more about wireless communication in EECS 882

Wireless Free Space Spectrum

<table>
<thead>
<tr>
<th>Band</th>
<th>Description</th>
<th>Frequencies</th>
<th>Wavelength</th>
<th>Propagation</th>
<th>Usage Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELF</td>
<td>ext. low</td>
<td>30– 300 Hz</td>
<td>10– 1Mm</td>
<td>GW</td>
<td>home automation</td>
</tr>
<tr>
<td>VF</td>
<td>voice</td>
<td>300–3000 Hz</td>
<td>1000–100km</td>
<td>GW</td>
<td>voice tel., modem</td>
</tr>
<tr>
<td>VLF</td>
<td>very low</td>
<td>3– 30kHz</td>
<td>100–10km</td>
<td>GW</td>
<td>atmos. noise, submarine</td>
</tr>
<tr>
<td>LF</td>
<td>low</td>
<td>30– 300kHz</td>
<td>10– 1km</td>
<td>GW</td>
<td>daytime, maritime</td>
</tr>
<tr>
<td>MF</td>
<td>medium</td>
<td>300–3000kHz</td>
<td>1000–100 m</td>
<td>GW</td>
<td>daytime, maritime, AM radio</td>
</tr>
<tr>
<td>HF</td>
<td>high</td>
<td>3 – 30MHz</td>
<td>100–10 m</td>
<td>SW</td>
<td>daytime, transportation</td>
</tr>
<tr>
<td>VHF</td>
<td>very high</td>
<td>30 –300MHz</td>
<td>10– 1 m</td>
<td>LOS</td>
<td>temp, cosmic, television, FM radio</td>
</tr>
<tr>
<td>UHF</td>
<td>ultra high</td>
<td>300–3000MHz</td>
<td>1000–100mm</td>
<td>LOS</td>
<td>cosmic noise, TV, cell tel, LAN/MAN</td>
</tr>
<tr>
<td>SHF</td>
<td>super high</td>
<td>3 –30GHz</td>
<td>100– 10mm</td>
<td>LOS</td>
<td>O₂, H₂O, p2p µwave, LAN/MAN</td>
</tr>
<tr>
<td>EHF</td>
<td>ext. high</td>
<td>30–300GHz</td>
<td>10– 1mm</td>
<td>LOS</td>
<td>O₂, H₂O vapor, wireless LAN/MAN</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
<td>300GHz–400THz</td>
<td>1000–770nm</td>
<td>LOS</td>
<td>optical comm</td>
</tr>
<tr>
<td>visible</td>
<td>visible</td>
<td>400–900THz</td>
<td>770–330 nm</td>
<td>LOS</td>
<td></td>
</tr>
</tbody>
</table>
Wireless Free Space
Propagation Modes

- Ground-wave propagation < 2 MHz
- Sky wave propagation 2 – 30 MHz
- Line-of-sight propagation > 30 MHz
Wireless Free Space
Propagation Modes: Ground Wave

- Ground-wave propagation \(< 2\; MHz\)
 - signals follow curvature of earth
 - scattered in upper atmosphere
- Sky wave propagation \(2 – 30\; MHz\)
- Line-of-sight propagation \(> 30\; MHz\)
Wireless Free Space
Propagation Modes: Sky Wave

- Ground-wave propagation < 2 MHz
- Sky wave propagation $2 - 30$ MHz
 - signals refracted off ionosphere
 - communication possible over thousands of kilometers
- Line-of-sight propagation > 30 MHz
Wireless Free Space

Propagation Modes: Line of Sight

- Ground-wave propagation < 2 MHz
- Sky wave propagation 2 – 30 MHz
- Line-of-sight propagation > 30 MHz
 - antennæ must be in view of one-another
 - terrain and earth curvature block signature
Wireless Free Space Licensing

- Licensed and regulated spectrum
 - ITU (international) and each country (FCC in US) regulate
 - most frequency bands require license to transmit
 - e.g. broadcast TV, radio, amateur radio, GMRS
 - some bands do not require explicit license application
 - e.g. US CB (citizen band), FRS (family radio system)
Wireless Free Space
Microwave Terrestrial Links

• Microwave links
 – typically point-to-point directional links
 – once ubiquitous for long-distance telephony
 • 4 GHz TD radio and 6 GHz TH radios
 • mostly replaced by fiber optic cables in 1980s
 – subject to fading during rain storms

• New interest
 – local loops and MANs
 – backhaul for 3G/4G to fibre infrastructure
 – point-to-point links
 – mmwave (60–90 GHz) can provide 1–10 Gb/s links
Wireless Free Space
Satellite Characteristics

- Satellite orbit characteristics

<table>
<thead>
<tr>
<th>Type</th>
<th>Altitude</th>
<th>Constellation Size</th>
<th>Link Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO low earth orbit</td>
<td>100 km – 1 000 km</td>
<td>~50 – 1000</td>
<td>~1–10 ms</td>
</tr>
<tr>
<td>MEO medium earth orbit</td>
<td>5 000 km – 15 000 km</td>
<td>~10</td>
<td>~35–85 ms</td>
</tr>
<tr>
<td>GEO geosynchronous EO</td>
<td>36786 km</td>
<td>3 (plus polar)</td>
<td>270 ms</td>
</tr>
</tbody>
</table>

- Tradeoffs
 - cost per satellite (GEO), high link power, high delay
 - total cost of constellation, constellation management
Wireless Free Space
Microwave Satellite Links

- **Satellite links**

<table>
<thead>
<tr>
<th>Band</th>
<th>Typical Frequency [GHz]</th>
<th>Bandwidth</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downlink</td>
<td>Uplink</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>1.5</td>
<td>1.6</td>
<td>15 MHz</td>
</tr>
<tr>
<td>S</td>
<td>1.9</td>
<td>2.2</td>
<td>70 MHz</td>
</tr>
<tr>
<td>C</td>
<td>4.0</td>
<td>6.0</td>
<td>500 MHz</td>
</tr>
<tr>
<td>(K_u)</td>
<td>11</td>
<td>14</td>
<td>500 MHz</td>
</tr>
<tr>
<td>(K_a)</td>
<td>20</td>
<td>30</td>
<td>3.5 GHz</td>
</tr>
</tbody>
</table>
Wireless Free Space
Unlicensed Spectrum

- Unlicensed spectrum
 - regulations for use (FCC 15.243–249)
 - e.g. max transmit power
 - e.g. spread spectrum parameters
 - ISM: industrial, scientific, and medical
 - ... 900 MHz, 2.4 GHz, 5.8 GHz, 24GHz, 60GHz ...
 - UNII: unlicensed national information infrastructure
 - 5.8 GHz
 - may be use by *anyone* for *any* purpose (subject to regulations)

*problem?
Wireless Free Space
Unlicensed Spectrum

- Unlicensed spectrum
 - regulations for use (FCC 15.243–249)
 - e.g. max transmit power
 - e.g. spread spectrum parameters
 - ISM: industrial, scientific, and medical
 - ... 900 MHz, 2.4 GHz, 5.8 GHz, 24GHz, 60GHz, ...
 - UNII: unlicensed national information infrastructure
 - 5.8 GHz
 - may be use by anyone for any purpose (subject to regulations)
 - interference a significant problem
 - e.g. 2.4 GHz FHSS cordless phones against 802.11b
 - e.g. interference among 802.11 hubs in dense environments
Wireless Free Space

FCC Spectrum Allocation

• FCC allocates and licenses spectrum in US
 – static allocations lead to significant inefficiency in use

Wireless Free Space
RF Antennae and Attenuation

• Antennae
 – omnidirectional: RF radiated in all directions
 – directional: focused beam of radiation
 • reduces contention and improves *spatial reuse*
 • significantly complicates network design if mobile
 – beam steering
 • laser/maser: focused coherent light/microwave transmission

• Attenuation
 – signal strength decreases as $1/r^2$ in perfect medium
 – signal may decrease as $1/r^x$ with multipath interference
 • rural environments: $x > 2$
 • urban environments: $x \rightarrow 4$
Physical Layer
Performance Characteristics

PL.1 Line Coding
PL.2 Signals and transmission
PL.3 Physical media
PL.4 Performance characteristics
Physical Media Performance

Velocity

• Velocity $v = \frac{c}{n}$ [m/s]
 – speed of light $c = 3 \times 10^5$ km/s
 – index of refraction n

Consequences?
Physical Media Performance
Velocity and Delay

- **Velocity** $v = c / n$ [m/s]
 - speed of light $c = 3 \times 10^5$ km/s
 - index of refraction n
 - this is why velocity slower than c in fiber and wire

- **Delay** $d = 1/v$ [s/m]
 - generally we will express delay in [s] given a path length
Physical Media Performance

Link Length

• **Link Length**
 – distance over which signals propagate
 • point-to-point: wire or fibre length
 • shared medium: longest path
 – constrained by physical properties of medium

Consequences?
Physical Media Performance
Link Length and Attenuation

- **Link Length**
 - distance over which signals propagate
 - point-to-point: wire length
 - shared medium: longest path
 - constrained by physical properties of medium

- **Attenuation**: decrease in signal intensity
 - over distance expressed as \([\text{dB/m}]\)
 - at a particular signal frequency
Physical Media Performance
Frequency Response and Attenuation

- Frequency range and attenuation
 - ability to propagate signals of a given frequency
- Characteristics of guided media
 - wire: generally falls off above a certain f_{max}
 - fiber optic cable & free space transparent to certain ranges

analogy:

- UV blocking sunglasses (high attenuation)
 - vs.
- standard glass (moderate attenuation)
 - vs.
- UV transparent black light glass (low attenuation)
Physical Media Performance

Frequency Response and Attenuation: Optical

- Fiber-optic cable transparency bands
 - 1300 and 1550 nm
 - 850 nm for lower cost

![Graph showing attenuation vs wavelength for 850, 1300, and 1550 nm wavelengths.](adapted from Tannenbaum 2003)
Physical Media Performance

Frequency Response and Attenuation: RF

- Atmospheric transparency bands
 - RF: 10MHz – 10GHz
 - VHF meter band, UHF millimeter band
 - Infrared: N-band

![Graph showing atmospheric opacity and frequency response](coolcosmos.ipac.caltech.edu/cosmic_classroom/ir_tutorial/irwindows.html)
Wireless Performance

Propagation Mechanisms

- Direct signal
- Reflection
- Diffraction
- Scattering
Wireless Performance

Propagation Mechanisms: Direct

- Direct signal
 - direct transmission from transmitter to receiver
- Reflection
- Diffraction
- Scattering
Wireless Performance

Propagation Mechanisms: Reflection

- Direct signal
- Reflection
 - reflected off object large relative to wavelength
- Diffraction
- Scattering
Wireless Performance

Propagation Mechanisms: Diffraction

- Direct signal
- Reflection
- Diffraction
 - bending by object comparable to wavelength
- Scattering
Wireless Performance

Propagation Mechanisms: Scattering

- Direct signal
- Reflection
- Diffraction
- Scattering
 - by many objects smaller than wavelength
 - multiple weaker signals
Wireless Performance

Propagation Mechanisms: Multipath

- Multipath
 - multiple signals using different propagation mechanisms

question?
Wireless Performance

Propagation Mechanisms: Multipath

- Multipath interference or distortion
 - multiple signals using different propagation mechanisms
 - time-shifted versions of signal interfere with one another
Physical Media

Performance Characteristics Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Medium</th>
<th>Frequency Range</th>
<th>Velocity</th>
<th>Delay</th>
<th>Typical Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire</td>
<td>twisted pair</td>
<td>0–1 MHz</td>
<td>0.67c</td>
<td>5 s/km</td>
<td>0.7 dB/km</td>
</tr>
<tr>
<td></td>
<td>coax</td>
<td>0–500 MHz</td>
<td>0.66–0.95c</td>
<td>4 s/km</td>
<td>7.0 dB/km</td>
</tr>
<tr>
<td>Optical fiber</td>
<td>glass</td>
<td>120–250 THz, 1700–800 nm</td>
<td>0.68c</td>
<td>5 s/km</td>
<td>0.2–0.5 dB/km</td>
</tr>
<tr>
<td>Wireless</td>
<td>microwave</td>
<td>1–300 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>infrared</td>
<td>0.3–428 THz</td>
<td>1.0c</td>
<td>3.3 s/km</td>
<td>1/r^2</td>
</tr>
<tr>
<td></td>
<td>visible</td>
<td>428–750 THz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physical Layer
Further Reading

Physical Layer

Key Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTMF</td>
<td>dual tone multi-frequency</td>
</tr>
<tr>
<td>QAM</td>
<td>quadrature amplitude modulation</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>UTP</td>
<td>unshielded twisted pair</td>
</tr>
<tr>
<td>LEO</td>
<td>low-earth orbiting (satellite)</td>
</tr>
<tr>
<td>GEO</td>
<td>geosynchronous satellite</td>
</tr>
<tr>
<td>FCC</td>
<td>(US) Federal Communications Commission</td>
</tr>
<tr>
<td>ISM</td>
<td>industrial, scientific, and medical</td>
</tr>
</tbody>
</table>
Physical Layer

Acknowledgements

Some material in these foils comes from the textbook supplementary materials:

- Sterbenz & Touch,
 High-Speed Networking: A Systematic Approach to High-Bandwidth Low-Latency Communication
 http://hsn-book.sterbenz.org