Communication Networks
The University of Kansas EECS 780
Introduction to Network Simulation with ns-3

Anh Nguyen, Mohammed J.F. Alenazi,
Egemen K. Çetinkaya, and James P.G. Sterbenz

Department of Electrical Engineering & Computer Science
Information Technology & Telecommunications Research Center
The University of Kansas

jgps@eecs.ku.edu

http://www.ittc.ku.edu/~jgps/courses/nets
Network Simulation with ns-3

Outline

L3.1 Motivation and overview
L3.2 ns-3 installation and use
L3.3 Network simulation example
Network Simulation with ns-3

Motivation and Overview

L3.1 Motivation and overview
L3.2 ns-3 installation and use
L3.3 Network simulation example
Motivation and Overview
Network Analysis Techniques

• Analytical analysis
 – mathematical analysis/modeling of systems (e.g. RTT calc.)

• Simulation
 – model the system at abstract level via software
 – various network simulators exist (e.g. ns-3, OPNET, OMNet)

• Emulation
 – HW component that behave like real system (e.g. ONL)

• Measurement
 – active (e.g. ping, traceroute) or passive (e.g. Wireshark)

• Experimentation
 – experiment on a testbed (e.g. GENI)
Motivation and Overview

Network Simulation

• **Goal**
 – build software *simulation model* of system
 – to analyze/study/improve/develop network protocols

• **Reason**
 – real systems are expensive, complex, unavailable

• **Advantages**
 – relatively easy and less time consuming

• **Disadvantages**
 – simplified view of complex interactions
 – could be immensely misleading
 • dependence on assumptions and model
Motivation and Overview

Simplified Network Simulation Flowchart

- Define topology, protocols, models
- Specify initial values
- Process output/trace files
- Plot throughput, goodput, delay etc.
- Are results expected?
- Confidence level attained?
Motivation and Overview
ns-3 Highlights and History

• ns-3 is a discrete-event network simulator for:
 – Internet systems
 • emphasis on layer 2-4
 – targeted for research and education
 – aims to replace venerable ns-2 simulator

• Community-oriented open source development
 – integration of open source tools/software
 • e.g. Wireshark, tcpdump

• First release in June 2008
 – latest release (ns-3.27) on October 2017
 – planned for new releases every 3-4 months
Motivation and Overview
Architecture, Protocols, Models of ns-3

• ns-3 software architecture is built on C++
 – Python for front-end (e.g. scripting, visualization)

• Some protocols/models include:
 – socket like API, on/off application
 – error models (rate, list, receive list, burst*)
 • * by Anh Nguyen supervised by Dr. Sterbenz
 – TCP, TCP stack emulation (Linux, BSD), UDP
 – TCP congestion control algorithms
 • NewReno, Highspeed, Hybla, Westwood (+)*, Illinois*, Vegas*
 • Scalable*, Veno*, YeAH*, BIC, H-TCP*, LEDBAT
 • * by ResiliNets group members supervised by Dr. Sterbenz
 – Anh Nguyen, Siddharth Gangadhar, Amir Modarresi, Keerthi Ganta
Motivation and Overview
Architecture, Protocols, Models of ns-3

• Some protocols/models include:
 – IPv4, IPv6 support, Static routing (Dijkstra)
 – MANET (OLSR, DSR, AODV, DSDV*)
 • * by Hemanth Narra & Yufei Cheng supervised by Dr. Sterbenz
 – IEEE 802.11 and variants, PPP
 – IEEE 802 physical layers, Rayleigh fading channel
 – mobility models: 3D Gauss-Markov (merged to ns-3.8)
 • developed by Dan Broyles under supervision of Dr. Sterbenz
Network Simulation with ns-3

ns-3 Installation and Use

L3.1 Motivation and overview
L3.2 ns-3 installation and use
L3.3 Network simulation example
ns-3 Installation and Use

Installation Overview

• ns-3 can be installed on common platforms
 – desktop & servers – 32 bit & 64 bit architectures
 – any major OS: Linux, Mac OS, Windows
 • Windows requires Cygwin
 • we do not support ns-3 in Cygwin, use virtual machine instead
 – detailed instructions:
 • http://www.nsnam.org/getting_started.html
 • http://www.nsnam.org/wiki/index.php/Installation

• Installation includes following steps:
 – download
 – build
 – validation
ns-3 Installation and Use

Installation Steps Using waf

• Download ns-3 package, unzip and untar it
 – [Link](http://www.nsnam.org/ns-3-21/download/)
 – `tar -jxf ns-allinone-3.21.tar.bz2`
– Check the system for prerequisites and build
 – `cd ns-allinone-3.21/ns-3.21/`
 – `./waf configure`
 – `./waf`

• Validate build by running unit and regression tests
 – `./waf check`
ns-3 Installation and Use

Installation Notes

- At the end of installation run following and verify:
 - ./waf --run hello-simulator
 - Hello Simulator

- Source code can be downloaded from a repository
 - Mercurial

- There are other methods of building the ns-3
 - using Python script to install downloaded source code

- If you need to uninstall ns-3 package
 - rm -rf ns-3.x
 - where ns-3.x is the directory
ns-3 Installation and Use

Usage Overview

• Decide what you want to simulate
 – define the topology
 – create nodes, channel, network interfaces
 – configure Internet stack and applications
 – set attributes

• Build the simulation script using a text editor
 – e.g. emacs, vi, textpad

• Execute the .cc program via waf

• Analyze output

• Good documentation always helps!
ns-3 Installation and Use
Abstractions

• Simulations performed on an abstract model
• Abstracts represented in C++ by classes
• Classes provide methods to manage representations
• Key objects in ns-3
 – node
 – application
 – channel
 – net device
 – topology helpers
ns-3 Installation and Use

Script Structure

- C++ scripts include the following structure
 - boilerplate: important for documentation
 - module includes: include header files
 - ns-3 namespace: global declaration
 - logging: optional
 - main function: declare main function
 - topology helpers: objects to combine distinct operations
 - applications: on/off application, UdpEchoClient/Server
 - tracing: .tr and/or .pcap files
 - simulator: start/end simulator, cleanup
ns-3 Installation and Use

waf

- waf is a general purpose build system to:
 - configure
 - compile
 - install
- Instead of ./configure;make type ./waf
- waf is Python based
- More information can be found on
 - http://code.google.com/p/waf/
ns-3 Installation and Use

Post-Processing

- Once the simulations are over process trace files
- Trace files can be filtered via a script
 - e.g. Python, Perl
- Filtered results can be processed via a plotting tool
 - gnuplot
 - gpwrapper (developed by Abdul Jabbar at KU)
- Output files in .pcap format is possible
 - Wireshark or tcpdump can be used to view .pcap files
- Logs can be enabled to analyze output
- ns-3 package built-in tools for post-processing
 - flow monitor
• Internal workings can be viewed by log output
 – export 'NS_LOG=*=level_all|prefix_func|prefix_time'
 – ./waf --run scratch/first >& log.out
• For C++ you can use gdb tool for debugging
 – ./waf -shell
 – gdb ./build/debug/scratch/my-app
• Memory debugging via valgrind tool
 – ./waf --valgrind --regression
Network Simulation with ns-3

Network Simulation Example

L3.1 Motivation and overview
L3.2 ns-3 installation and use
L3.3 Network simulation example
Network Simulation Example

Network Simulation Setup

- Two nodes, one network interface device per node
- Point-to-point link
 - transmission delay: 2 ms, data rate: 5 Mbps
- Application
 - UdpEchoClient on node 0, UdpEchoServer on node 1
 - payload size of 1024-byte packet
 - time interval between packets is 1 s

point-to-point Link

IP block: **10.1.1.0/24**
Network Simulation Example
First.cc Script

• Main function
 – int main (int argc, char *argv[]) {
• NodeContainer class, create method
 – NodeContainer nodes;
 – nodes.Create (2);
• PointToPoint helper, set link attributes
 – PointToPointHelper pointToPoint;
 pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
 – pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));
Network Simulation Example
First.cc Script

- **NetDevice container**
 - NetDeviceContainer devices;
 - devices = pointToPoint.Install (nodes);

- **InternetStackHelper**
 - InternetStackHelper stack;
 - stack.Install (nodes);

- **Ipv4AddressHelper**
 - Ipv4AddressHelper address;
 - address.SetBase ("10.1.1.0", "255.255.255.0");
 - Ipv4InterfaceContainer interfaces = address.Assign (devices);
Network Simulation Example
First.cc Script

- **Application**
 - UdpEchoServerHelper echoServer (9);
 - ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));
 - serverApps.Start (Seconds (1.0));
 - serverApps.Stop (Seconds (10.0));
 - UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);
 - ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));
 - clientApps.Start (Seconds (2.0)); clientApps.Stop (Seconds (10.0));
Network Simulation Example

First.cc Script

- Simulator run of scheduled events
 - Simulator::Run ();
- Destruction of objects and cleanup
 - Simulator::Destroy ();
 - return 0; }
Network Simulation Example
Post-processing with Wireshark

- `pcap` traces can be viewed by Wireshark
- For flow diagram: statistics → flow graph
Network Simulation with ns-3
Assignment Configuration

• 2 nodes, with 1 interface each
• Point-to-point link
 – data rate: 1 Mb/s, transmission delay: 1 ms
• IP address assignment
 – 192.168.10.0/24
• Application
 – UdpEchoServer on port 53
 – packet size: 1472 byte
• Enable ASCII and pcap tracing
• Rest of the attribute values: use from the example
Network Simulation with ns-3
Assignment Submission Guidelines

• Write 1–2 page summary
• Report should include the following sections:
 – experiment setup and procedure (topology, issues, etc.)
 – explain why 1472 is used for the packet size
 – results
 • include flow diagram in Wireshark as screenshot in report
 – conclusions (what you learned, etc.)
Network Simulation with ns-3
Assignment Submission Guidelines

• You can discuss with other students but ...
 ... everyone must submit individual report
• Attach .cc file along with your submission
• Send report in PDF format to GTA, cc: Dr. Sterbenz
Network Simulation with ns-3

Extra Credit

- Add two more nodes to the topology
- Generate NetAnim screenshot
- Extra more credits for identifying bugs in that code
Network Simulation with ns-3

Further Reading

- ns-3 main page (for documents, news, announcements)
 http://www.nsnam.org/
- ns-3 wiki (howtos, roadmap)
 http://www.nsnam.org/wiki/index.php/Main_Page
- ns-3 documentation: tutorial (chapter 4,5,6), manual, doxygen
 http://www.nsnam.org/docs/release/3.10/tutorial/singlehtml/
- ns-3 users mailing list (usage, implementations, discussions)
 http://groups.google.com/group/ns-3-users
- ns-3 bug list (closed, open bugs)
 http://www.nsnam.org/bugzilla/
Network Simulation with ns-3

Acknowledgements

Some material in these foils comes from the ns-3 tutorial presentations from conferences, workshops:

- Tom Henderson,
 ns-3 tutorial
 SIMUTools 2009
 http://www.nsnam.org/tutorials.html

- Gustavo Carneiro,
 NS-3 Tutorial
 April 2010
 http://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf
Network Simulation with ns-3

Other References

- C++ tutorials online
 - and many more links and books on the subject
- GDB
 - http://www.gnu.org/software/gdb/
- valgrind
 - http://valgrind.org/
- gnuplot
 - http://www.gnuplot.info/
- Python
 - http://www.python.org/