Drain Output Resistance

I fibbed!

I have been saying that for a MOSFET in saturation, the drain current is independent of the drain-to-source voltage v_{DS} . I.E.:

$$\dot{I}_{D} = K \left(V_{GS} - V_{t} \right)^{2}$$

In reality, this is only **approximately** true!

Due to a phenomenon known as channel-length modulation, we find that drain current i_D is slightly dependent on v_{DS} . We find that a more accurate expression for drain current for a MOSFET in saturation is:

$$i_{D} = \mathcal{K} \left(\mathcal{V}_{GS} - \mathcal{V}_{t} \right)^{2} \left(1 + \lambda \, \mathcal{V}_{DS} \right)$$

Where the value λ is a MOSFET **device parameter** with units of 1/V (i.e., V⁻¹). Typically, this value is small (thus the dependence on v_{DS} is slight), ranging from 0.005 to 0.02 V⁻¹.

Often, the channel-length modulation parameter λ is expressed as the **Early Voltage** V_A , which is simply the inverse value of λ :

$$V_{A} = \frac{1}{\lambda}$$
 [V]

Thus, the drain current for a MOSFET in **saturation** can **likewise** be expressed as:

$$\dot{I}_{D} = \mathcal{K} \left(\mathcal{V}_{GS} - \mathcal{V}_{T} \right)^{2} \left(1 + \frac{\mathcal{V}_{DS}}{\mathcal{V}_{A}} \right)$$

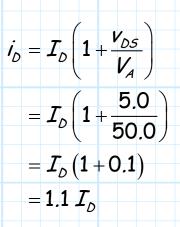
Now, let's **define** a value I_D , which is simply the drain current in saturation **if** no channel-length modulation actually occurred—in other words, the **ideal** value of the drain current:

$$\boldsymbol{I}_{\mathcal{D}} \doteq \boldsymbol{K} \left(\boldsymbol{v}_{\mathcal{GS}} - \boldsymbol{V}_{\mathcal{T}} \right)^2$$

Thus, we can **alternatively** write the drain current in saturation as:

$$\dot{I}_{D} = I_{D} \left(1 + \frac{V_{DS}}{V_{A}} \right)$$

This **explicitly** shows how the drain current behaves as a function of voltage v_{DS} . For example, consider a **typical** case case where v_{DS} =5.0 V and V_A = 50.0 V. We find that:



In other words, the drain current is 10% larger than its "ideal" value I_D .

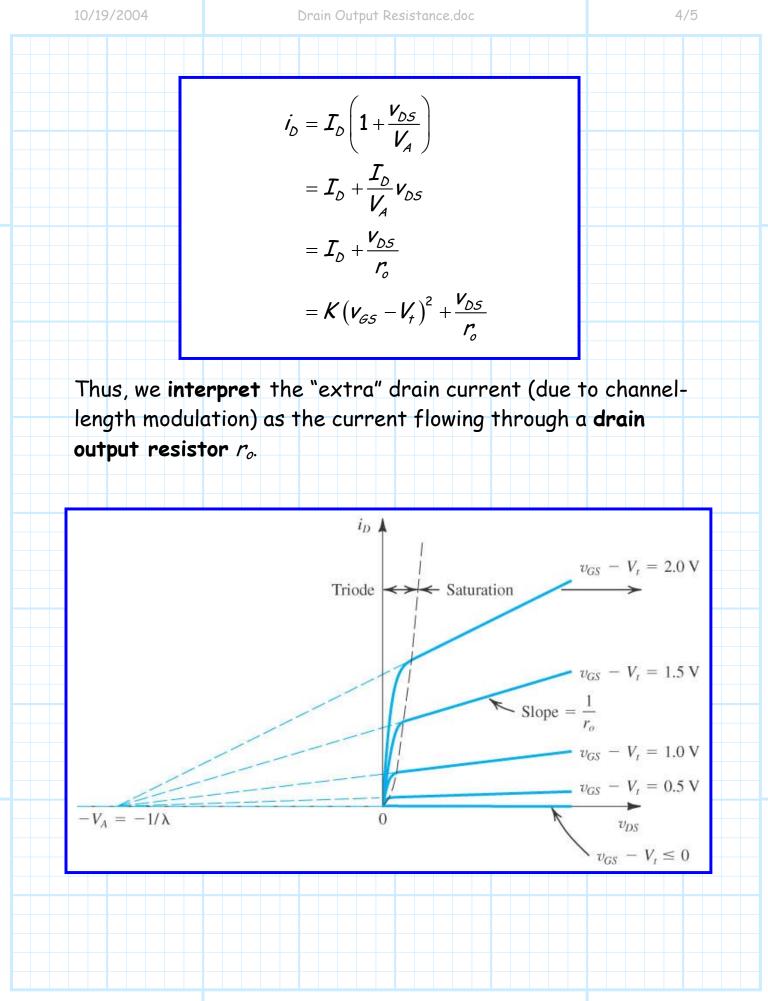
We can thus interpret the value v_{DS}/V_A as the **percent** increase in drain current i_D over its ideal (i.e., no channellength modulation) saturation value $I_D = K (v_{GS} - V_t)^2$.

Thus, as v_{DS} increases, the drain current i_D will increase slightly.

Now, let's introduce a **third** way (i.e. in addition to λ , V_A) to describe the "extra" current created by channel-length modulation. Define the **Drain Output Resistance** r_o :

$$r_{o} \doteq \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}}$$

Using this definition, we can write the **saturation** drain current expression as:



Finally, there are **three** important things to remember about channel-length modulation:

* The values λ and V_A are MOSFET device parameters, but drain output resistance r_o is not (r_o is dependent on I_D !).

* Often, we "**neglect** the effect of channel-length modulation", meaning that we use the **ideal** case for saturation- $i_D = K(v_{GS} - V_t)^2$. Effectively, we assume that $\lambda = 0$, meaning that $V_A = \infty$ and $r_o = \infty$ (i.e., **not** $V_A = 0$ and $r_o = 0$!).

* The drain output resistance r_o is **not** the same as channel resistance r_{DS} ! The two are different in **many**, **many** ways:

$$\dot{V}_{D} = \mathcal{K} \left(V_{GS} - V_{T} \right)^{2} + \frac{V_{DS}}{V_{o}}$$
 for a MOSFET in saturation

 $i_{D} = \frac{v_{DS}}{r_{DS}}$ for a MOSFET in **triode** and v_{DS} small

$$\therefore r_o \neq r_{DS}$$
 |||||||