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Linear Circuits 
 
Many analog devices and circuits are linear (or approximately so).  
  
Let’s make sure that we understand what this term means, as if a circuit 
is linear, we can  apply a large and helpful mathematical toolbox! 
 
 

Mathematicians often speak of operators, which is “mathspeak” 
for any mathematical operation that can be applied to a single 
element (e.g., value, variable, vector, matrix, or function).  

 
 
 
 
For example, a function ( )f x  describes an operation on variable x  (i.e., ( )f x  is 
operator on x ). E.G.: 
 

( ) ( ) ( )2 3 2f y y g t t y x x= − = =  
 

 ...operators, operators, operators!! 
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Functions can be operated on 
 
Moreover, we find that functions can likewise be operated on!   
 
For example, integration and differentiation are likewise mathematical 
operations—operators that operate on functions.  E.G.,: 
 

( ) ( ) ( )d g tf y dy y x dx
dt

∞

−∞
∫ ∫  

 
A special and very important class of operators are linear operators.   

 
 
Linear operators are denoted as [ ]yL , where: 
 

* L  symbolically denotes the mathematical operation; 
 

* And y denotes the element (e.g., function, variable, vector) being 
operated on. 
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We call this linear superpostion 
 
A linear operator is any operator that satisfies the following two statements 
for any and all y : 
 
 

1.   [ ] [ ] [ ]1 2 1 2y y y y+ = +L L L  
 

2.  [ ]a y a y=⎡ ⎤⎣ ⎦L L ,  where a  is any constant. 
 
 

 
From these two statements we can likewise conclude that a linear operator has 
the property: 
 
 

[ ] [ ]1 2 1 2a y b y a y b y+ = +⎡ ⎤⎣ ⎦L L L  
 

 
where both a and b are constants. 
 

Essentially, a linear operator has the property that any weighted sum 
of solutions is also a solution! 
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An example of a linear function 
 
For example, consider the function: 
 

[ ] ( ) 2t g t t= =L  
 

 
At 1t = : 

( ) ( )1 2 1 2g t = = =  
 

 
and at 2t = : 

( ) ( )2 2 2 4g t = = =  
 
 
Now at 1 2 3t = + =  we find: 
 

( ) ( )

( ) ( )

1 2 2 3
6
2 4

1 2

g

g g

+ =

=

= +

= +

 

 



 

1/24/2011 Linear Circuits lecture 5/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

See, it works like it’s suppose to! 
 
 
More generally, we find that: 
 

( ) ( )

( ) ( )

1 2 1 2

1 2

1 2

2
2 2

g t t t t
t t

g t g t

+ = +

= +

= +

 

 
and 

( )

( )

2
2

g at at
a t
a g t

=

=

=

 

 
Thus, we conclude that the function ( ) 2g t t=  is indeed a linear function! 
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Surely this is linear 
 
Now consider this function: 
 

( )y x m x b= +  
 

Q:  But that’s the equation of a line!  That must be a linear 
function, right? 
 
A:  I’m not sure—let’s find out! 
 
We find that: 

( ) ( )y a x m ax b
mx ba

= +

= +
 

 
but: 

( ) ( )a y x a m x b
a m ax b

= +

= +
 

 
therefore:   

( ) ( )y a x a y x≠   !!! 
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It’s not; and stop calling me Shirley 
 
Likewise: 

( ) ( )1 2 1 2

1 2

y x x m x x b
m bm x x

+ = + +

= + +
 

but: 
( ) ( ) ( ) ( )1 2 1 2

1 2 2
y x y x m x b m x

m b
b

m x x
+ = + + +

= + +
 

 
therefore:   

( ) ( ) ( )1 2 1 2y x x y x y x+ ≠ +   !!! 
 

The equation of a line is not a linear function!  
 

 
Moreover, you can show that the functions: 

 
( ) ( )2 3f y y y x x= − =  

 
are likewise non-linear. 
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The derivative is a linear operator 
 
Remember, linear operators need not be functions.   
 
Consider the derivative operator, which operates on 
functions.   

( )d f x
dx

 

 
Note that: 
 

( ) ( ) ( ) ( )d d f x d g xf x g x
dx dx dx

+ = +⎡ ⎤⎣ ⎦  

 
and also: 

( ) ( )d d f xa f x a
dx dx

=⎡ ⎤⎣ ⎦  

 
We thus can conclude that the derivative operation is a linear operator on 
function ( )f x : 
 

( ) ( )d f x f x
dx

= ⎡ ⎤⎣ ⎦L  

 

d
dx
 

( )f x  
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Most operators are not linear 
 
You can likewise show that the integration operation is likewise a linear 
operator: 
 

( ) ( )f y dy f y⎡ ⎤= ⎣ ⎦∫ L  
 

But, you will find that operations such as: 
 

( ) ( )
2d g t y x dx

dt

∞

−∞
∫  

 
are not linear operators (i.e., they are non-linear operators). 
 
We find that most mathematical operations are in fact non-linear!  
 
Linear operators are thus form a small subset of all possible mathematical 
operations. 
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Linear operators allow for “easy” evaluation 
 
Q:  Yikes! If  linear operators are so rare, we are we wasting our time learning 
about them?? 
 
A:  Two reasons! 
 
Reason 1:  In electrical engineering, the behavior of most of our fundamental 
circuit elements are described by linear operators—linear operations are 
prevalent in circuit analysis! 
 
Reason 2: To our great relief, the two characteristics of linear operators allow 
us to perform these mathematical operations with relative ease! 
 
  


